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Abstract—In this study, the imperialist competitive algorithm
(ICA) is applied for classification of epileptic seizure and psy-
chogenic nonepileptic seizure (PNES). For this purpose, after
decomposing the EEG signal into five sub-bands and extracting
some complexity features of EEG, the ICA is applied to find
the predictive feature subset that maximizes the classification
performance in the frequency spectrum. Results show that the
spectral entropy and Renyi entropy are the most important
EEG features as they are always appeared in the best feature
subsets when applying different classifiers. Also, it is observed
that the SVM-RBF and SVM-linear models are the best
classifiers resulting in highest performance metrics compared to
other classifiers. Our study shows that the reported algorithm
is able to classify the epileptic seizure and PNES with a very
high classification metrics.

Keywords-epileptic seizures, PNES, complexity, EEG, impe-
rialist competitive algorithm.

I. INTRODUCTION

An epileptic seizure, also known as an epileptic fit or
attack, is a transient occurrence of signs and/or symptoms
due to abnormal excessive or synchronous neuronal activity
in the brain [1]. The outward effect can vary from tempo-
rary confusion, loss of awareness and uncontrolled jerking
movement to as subtle as a momentary loss of awareness
or whole body convulsion. Patients are often unaware of
the occurrence of seizure due to the random nature of them
which may increase the risk of physical injury.
Psychogenic nonepileptic seizures (PNES) are attacks that
may look like epileptic seizures, but caused purely by
the emotions and not associated with abnormal electrical
discharges in the brain. The symptoms of PNES usually
reflect a psychological conflict that are inconsistent with a
neurologic disease and it is often associated with distress,
disability, and a poor prognosis [2]. PNES episodes are
not purposely produced by the patient, and the patient is
not aware that the seizures are non-epileptic, so the patient
may become anxious over having these symptoms. The
presentation of the differential diagnosis should be done
early in the course of treatment for better patient acceptance,
and treatment options should be presented early in the
evaluation period [3].

Early diagnosis of epileptic seizure or PNES is critical. Due
to the delay in early prediction of epileptic seizures, many
patients may experience the attack, which could be avoided
by the drug. Also, because of delay in early diagnosis,
many patients experience significant morbidity from inap-
propriate treatment, including adverse effects of antiepileptic
drugs and aggressive interventions, such as intubation for
pseudostatus epilepticus [4]. However, PNES is commonly
misdiagnosed as epileptic seizure or epilepsy, and patients
are often treated for years with an incorrect diagnosis. The
management of PNES as epileptic seizures can lead to
very significant iatrogenic harm. Moreover, the failure to
recognize the psychological cause of the disorder detracts
physicians from addressing associated psychopathology, and
enhances secondary somatization processes [5]. Last, the
inappropriate treatment of PNES as epilepsy is costly.
In the current day practice, the intensive monitoring with
electroencephalogram (EEG) and video over a long period
is the standard way in differentiating PNES from epileptic
seizure. It simultaneously records the patients brain electrical
activity and captures corresponding behaviours on video.
However, the long-term monitoring with EEG and video is
expensive, time-consuming and can be very unpleasant for
patients, and analysing large amounts of EEG/video-data is
very labor intensive for medical personnel.
To overcome the above-mentioned issues, several scholars
have focused on EEG signal analysis and process to aid
in the diagnosis and treatment of brain disorders. Hence,
various mathematical techniques were proposed in the liter-
ature for the detection of epileptic seizures and/or PNES
in EEG signals. The first step in EEG signal analysis
is to extract selected features by applying various time-
domain, frequency-domain, time-frequency domain, or non-
linear methods [6]. Then, the selected features should be
considered as discriminative features for classification of
these two groups by analysing different EEG signals. For this
purpose, numerous classifiers such as (non-)linear classifiers
and techniques based on neural networks are used for EEG
classification [7].
In this paper, the imperialist competitive algorithm (ICA),



as a capable evolutionary algorithm based on the meta-
heuristic of humans socio-political evolution [8], is applied
for classification of epileptic seizure and PNES.
The ICA algorithm has been successfully applied to a variety
of optimization problems [8], [9]. The key features of ICA
are its fast convergent rate to reach global optimum, which
has been proved in dealing with various optimization prob-
lems. The results reported in various studies [8], [9] confirm
its competitiveness over other evolutionary algorithm such
genetic algorithm. The ease of performing neighborhood
movement, less dependency on initial solutions, and having a
better convergence rate are other advantages of the ICA [8].
Hence, the advantages of ICA are beneficial to improvement
of decision efficiency. In this algorithm, an individual of
the population is called a country. The ICA divides its
population into several groups, called empires, and allows
these empires to evolve concurrently. In each empire, the
best country is called imperialist and the others are called
colonies. The ICA moves all colonies toward the imperialist
through assimilation policy in each empire. The basic feature
of the ICA is that it permits all empires to interact via im-
perialist competition policy. The competition policy simply
moves a colony from the weakest empire to another empire.
Some colonies may withstand absorption by the imperialists.
These colonies make some improvements in their attributes,
and this process is called revolution in the ICA. Revolution
operation occurs after the assimilation process and causes
unexpected random changes in one or more parameters
of the problem. This operation increments exploration and
prevents fast convergence of countries toward local minima.
After decomposition of the EEG signals by the wavelet
transform (WT), some selected signal complexity features
are extracted at different frequency bands. Then, the ICA
algorithm is applied to find feature subset that maximizes
the classification performance in the frequency spectrums.
given in the last section.

II. METHODOLOGY

A. Clinical Data

The experimental data used in this paper were obtained
from the UZ Gent Hospital in Belgium. The EEG recordings
were obtained from 20 epilepsy and 20 PNES patients and
the recordings from each subject include 27 EEG recordings
electrode and reference (G2) on the right mastoid bone plus
the ground (G1) on the left mastoid bone. The sampling rate
of all data channels is 256 Hz, and the duration of each trial
is 3 hours. The 27 channels are: Fp1, Fpz, Fp2, F7, F3, Fz,
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz,
O2, T9, T10, FT9, FT10, TP9, TP10. Fig. 1 shows the EEG
recording positions on brain.

B. EEG Decomposition

EEG signals which are the records of the electrical activity
going on inside the brain as taken from the scalp with the

Figure 1: Electrode positions and labels on brain.

help of electrodes. Brain waves are measured in Hertz (Hz)
cycles per second, and can change across a wide range of
variables. The main frequency components of EEG signals
are Delta (¡4 Hz), Theta (4-8 Hz), Alpha (9-13 Hz), Beta (14-
30 Hz) and finally Gamma (above 30 Hz) (see Fig. 2). In this
study, a wavelet-based time-frequency scheme [10] is used to
decompose the EEG signals into the above-mentioned sub-
bands. The wavelet decomposition is a smooth and quickly
vanishing oscillating function with good localization in both
frequency and time.

Figure 2: Sub-bands of EEG brain signal.

C. EEG Features

A feature represents a distinguishing property and a func-
tional component obtained from a signal. Extracted features
are meant to minimize the loss of important information
embedded in the signal and simplify the amount of resources
needed to describe a huge set of data accurately [11]. This is
necessary to minimize the complexity of implementation, to
reduce the cost of information processing, and to cancel the
potential need to compress the information. In this paper,
we use different features based on EEG signals.

1) Shannon entropy (ShE): Entropy is a way of measur-
ing the degree of uncertainty or unpredictability of a random



variable. Shannon entropy is a non-linear measure quantify-
ing the degree of complexity in a signal. Let X be a set of fi-
nite discrete random variables X = {x1, x2, , xn};xj ∈ Rd.
Now, the Shannon entropy, H(X), is defined as [12]:

ShE = H(X) = −
n∑
j=1

p(xj) ln p(xj) (1)

Where p(xj) is probability of xj ∈ X satisfying∑
j p(xj) = 1. Entropy reflects how well one can predict

the behaviour of each respective part of the trajectory from
the other. Basically, higher entropy indicates more complex
or chaotic systems, thus, less predictability.

2) Spectral entropy (SE): Spectral entropy (SE) compu-
tation uses Shannons entropy formula to represent the power
spectral densities of the EEG signal as probabilities. For this
purpose, fast Fourier’s transformation (FFT) is used to obtain
the spectrum. The SE corresponding to the frequency range
[f1, f2] is defined as [13]:

SE[f1, f2] =

∑f1
f2,f1

Pn(fi) log( 1
Pn(fi)

)

log(N [f1, f2])
(2)

where N [f1, f2] equals the total number of frequency com-
ponents in the frequency range and P (fi) is the power
spectrum calculating from the FFT of signal X .

3) Renyi entropy (RE): Renyi entropy, as an index of
dicersity, is generalizations of Shannon entropy that depend
on a parameter. If p(xi) is a probability distribution on a
finite set, its Renyi entropy of order α is defined as RE =
1

1−α ln
∑n
i=1 p(xi)

α, where 0 < α < ∞. Renyi entropy
approaches Shannon entropy as α→ 1 [14].

4) Higuchi fractal dimension (HFD): Fractal dimension
provides a measure of the complexity of EEG signals. HFD
is a fast non-linear computational method for obtaining
the fractal dimension of signals even when very few data
points are available [15]. HFD is used to quantify the
complexity and self-similarity of a signal. To compute the
HFD, the data set is divided into a k-length sub-data set
as xmk : xm, xm+k, xm+2k, ..., xm+(n−m

k )k, where n is the
total length of the data sequence, k is a constant and
m = 1, 2, ..., k. The length Lm(k) for each sub-data set
is then computed as:

Lm(k) =

∑N−m
k

i=1 | xm+ik − xm+(i−1)k | (n− 1)

(n−mk )k
(3)

Now, the mean of Lm(k) for each k is computed to find the
HFD as:

HFD =
1

k

k∑
m=1

Lm(k) (4)

5) 5) Katz fractal dimension (KFD): KFD is derived
directly from the waveform, eliminating the preprocessing
step of creating a binary sequence, can be defined as [16]:

KFD =
log10(n)

log10( dL ) + log10(n)
(5)

where n is the number of steps in the curve, L is the total
length of the signal, and d is the Euclidean distance between
the first point in the series and the point that provides the
furthest distance with respect to the first point.

D. Imperialist Competitive Algorithm

After extracting the entropy and fractal dimension features
from the EEG signals, they are inputted to a classifier
based on the imperialist competitive algorithm (ICA). The
ICA is based on modelling of the attempts of countries
to dominate other courtiers and like other evolutionary
algorithms, starts with an initial population [8], [17]. In the
ICA, populations are in two types: colonies and imperialists
that the best countries in the population are selected to be
the imperialist states and all the other countries form the
colonies of these imperialists. Imperialist competition among
these empires forms the basis of the ICA, as weak empires
collapse and powerful ones take possession of their colonies.
This competition and collapse mechanism will cause all the
countries to converge to a state in which there exist just
one empire in the world and all the other countries are its
colonies.
The ICA algorithm starts by generating a set of candidate
random solutions in the search space of the optimization
problem. The generated random points are called the initial
countries. In this study, we consider each country as a 1×30
array, where each element of array shows the existence of
one complexity feature in one of the frequency bands and
can take a zero or one as a value. During the initialization
stage, an initial population p1, p2, , pN are randomly created,
where each solution pi is called a country and is a 1 × n
array and N (here: =100) denotes the number of countries
in the population. A user-specified number of countries with
the lowest cost in the population are chosen as imperialists,
(Nimp), and the remaining countries are chosen as colonies,
which all together form empires. For our purpose the cost
function of each country with different feature subset can
be calculated as the average of the misclassification rates
of different classifiers. The initial number of colonies of
an empire is convenience with their powers. To divide the
colonies among imperialists proportionally, the power of an
imperialist is defined as follows [8], [17]:

Pi = maxi≤j≤Nimp
(cj)− ci (6)

where Pi and ci denote the power and cost of the imperialist
of empire i, respectively. Therefore, the number of colonies
assigned to empire I is defined as follows:

NCi = round[| Pi∑Nimp

j=1 Pj
| .(Ni −Nimp)] (7)

To divide the colonies, for each imperialist we randomly
choose NCi of the colonies and give them to it. After
forming the initial empires and during the evolution step,
the colonies start moving toward their relevant imperialist



country. Assimilation within each empire and competition
among all empires occur in every generation until the
termination condition (e.g., all countries have converged or
a user-specified number of generations has been reached) is
satisfied [18]. The colony moves toward the imperialist by
x units, where x is a random variable with uniform or any
proper distribution. The direction of the movement is the
vector from colony to imperialist. In other words, given a
colony pc and its imperialist pi, the assimilation operation
moves pc as follows [8], [17]:

pc = pc + β ∗∆ ∗ (pi − pc) (8)

where β is a parameter greater than one, ∆ is a 1×n array
whose elements are random values between zero and one,
and ∗ denotes element-by-element multiplication between
two 1×n arrays. Note that a β greater than one, causes the
colonies to get closer to the imperialist state from both sides.
If during implementing the above equation, a greater value
outside the search space happens, the out-of-bound value
(e.g., xi on the ith dimension) is replaced by its nearest
boundary.
In the next step, the cost of all colonies is calculated after
updating the position of all colonies through the assimilation
process. Then, the cost of each colony is compared against
the cost of their imperialists. If the cost of a colony be less
than the cost of its imperialist, the colony and the imperialist
swap roles to ensure that the imperialist of an empire is
always the country with the lowest cost in the empire. Next,
the cost and the power of each empire i are calculated using
the cost of its imperialist and the average cost of the colonies
in empire i as follows:

φi = ci + ζ.mean(cost(colonies of empire i)) (9)

Ei = [max1≤j≤Nimp
(φj)]− φi (10)

where φi and Ei are the cost and the power of each empires,
respectively and ζ is a positive number with suggested value
0.1. A little value ζ for causes the total power of the empire
to be determined by just the imperialist and increasing it
will increase the role of the colonies in determining the total
power of an empire. This study uses ζ=0.02. Competition
among all empires is achieved by taking the weakest colony
away from the weakest empire and giving it to a chosen
empire, where the probability of empire i been chosen is
calculated as pi = Ei

max1≤j≤Nimp
(Ej)

.
In the ICA, imperialists try to attempt to achieve the colonies
of other empires and control them. So during the competition
the powerful imperialists will be increased in the power
and the weak ones will be decreased in the power. When
an empire loses all of its colonies, it is assumed to be
collapsed and it’s imperialist also becomes a colony of the
latter empire. At the end the most powerful imperialist will
remain in the world and all the countries are colonies of this
unique empire. In this stage the imperialist and colonies have

the same position and power. After some iteration, only the
most powerful empires will remains and all the other empires
will collapse and their colonies will be under the control of
this unique empire. The algorithm of the ICA is shown in
Fig. 3.

Figure 3: Algorithm of the imperialist competitive algorithm.

E. Classification

We use 80% instances (32 subjects) as the training data
and the rest 20% (8 subjects) as the test data. Due to the
limited number of subjects and in order to avoid over-fitting,
we split the training and the test data randomly and repeat
the split process 10 times. Our results are the means and
variances of these 10 runs. To explore the importance of
features and their combinations in the classification task, five
widely used classifiers are applied. The selected classifiers
are: support vector machine (SVM) classifier with linear and
radial basis function (RBF) kernels [19], decision tree [20],
random forest [21] and gradient boosting [22]. To evaluate
the performance of these features in the classification task,
three evaluation metrics, i.e. accuracy, precision and recall,
are applied in the experiments.

III. RESULTS

In this study, five selected complexity measures should be
examined in all sub-band frequencies of 27 EEG recording
channels. Hence, there are more than 800 features for each
subject. However, many of these features may measure
related properties and so will be redundant. In order to
have less computational complexity and to improve the
accuracy of classification by reducing feature vectors size,
the optimum feature subsets that contain and summarize all
important data are obtained. The top five feature subsets
for each classifier are presented in Table I. Here, each term
shows the name of EEG feature (i.e. ShE, SE, RE, HFD and
KFD) and the frequency sub band (i.e. Gamma, Alpha, Beta,
Theta and Delta), where BB stands for broad band without
frequency decomposition. These top five subsets are ranked
based on the accuracy of the classification that is the number
of correct predictions (or classification) made divided by the



total number of predictions made. The first subset is the
winner of the ICA outputs that has the lowest cost function.
The rest of subsets represent four other subsets (countries)
with low cost functions among the whole subsets in the ICA.
One can see that the winner and other ranked subsets for
each classifier are different. The reason is that each classifier
takes part in the ICA for calculating the cost function and
generates feature subsets for itself. From the data in Table I
it can be seen that spectral entropy (SE) and Renyi Entropy
(RE) are the most important EEG features as they are always
appeared in the best feature subsets.
Our analysis shows that the accuracy of the classification de-
creases significantly when SE and/or RE features are absent
in a subset. The rest of features may be of same importance
since by removing either of them the classification accuracy
changes without any significant differences. Table I shows
the degradation in the classification ranking and accuracy
when the number of features in the subsets is reduced.
Accuracy, precision and recall of selected classifiers with the
presented five best subsets are shown in Tables II to VI. The
classification accuracy displays the correct classifications
that maximize the total number of correct classifications.
Precision is a measure of result relevancy, while recall is
a measure of how many truly relevant results are returned.
The presented data shows degradation in the performance
measures when the rank is increases from 1st to 5th. Hence,
the first subsets represents the feature subset trained by
the ICA for classification of epileptic seizure and PNES
as the highest classification metrics are achieved. Also, it
can be observed that the SVM-RBF and SVM-linear are
the best classifiers resulting in highest performance metrics
compared to other classifiers.

IV. CONCLUSION

In this paper we reported the results on the constructed
benchmark to investigate classification of epileptic seizure
and PNES. We employed the imperialist competitive algo-
rithm (ICA) to identify predictive features for classification
and used state of the art classification techniques on signals
including periods of seizures to see how accurately class
labels can be predicted. The study demonstrated that the
classification performance of the SVM-RBF and SVM-linear
classifiers are the best when the ICA was employed. The
reported algorithm showed a very high classification metrics
for classification of the epileptic seizure and PNES and the
results provide us with the new insights on feature impor-
tance. This study found spectral entropy and Renyi Entropy
as the most important EEG features for classification of
epileptic seizure and PNES.
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Table I: Best feature subsets for different classifiers.

rank SVM-Linear
1st SE-BB, RE-BB, KFD-Beta, ShE-Beta, SE-Alpha, SE-Beta, RE-Beta, RE-Alpha, KFD-Delta, RE-Theta
2nd SE-BB, RE-BB, KFD-Beta, ShE-Beta, SE-Alpha, SE-Beta, RE-Beta, RE-Alpha, KFD-Theta, KFD-BB
3rd SE-BB, RE-BB, KFD-Beta, ShE-Beta, SE-Alpha, SE-Beta, KFD-Delta, RE-Theta, ShE-Alpha, HFD-Delta
4th SE-BB, RE-BB, KFD-Beta, ShE-Beta, SE-Alpha, KFD-Theta, RE-Theta, KFD-BB, ShE-Alpha, HFD-Theta
5th SE-BB, RE-BB, KFD-Beta, ShE-Beta, RE-Beta, RE-Alpha, RE-Theta.

rank SVM-RBF
1st SE-BB, RE-BB, RE-Beta, KFD-Beta, RE-Theta, SE-Alpha, SE-Beta, ShE-Beta, KFD-BB
2nd SE-BB, RE-BB, RE-Beta, KFD-Beta, RE-Theta, SE-Beta, KFD-Theta, ShE-Theta
3rd SE-BB, RE-BB, RE-Beta, KFD-Beta, SE-Alpha, SE-Beta, HFD-Beta
4th SE-BB, RE-BB, RE-Beta, KFD-Beta, ShE-Beta, ShE-Theta.
5th SE-BB, RE-BB, RE-Beta, SE-Alpha, KFD-BB, RE-Alpha

rank Gradient Boosting
1st RE-BB, RE-Beta, ShE-Theta, SE-Alpha, SE-Beta
2nd RE-BB, RE-Beta, SE-Beta, SE-BB, RE-Alpha, RE-Theta
3rd RE-BB, RE-Beta, ShE-Theta, KFD-Beta, RE-Theta, SE-Alpha
4th RE-BB, RE-Beta, SE-Beta, SE-BB, KFD-Beta, HFD-Theta
5th RE-BB, RE-Beta, ShE-Theta, ShE-Beta

rank Decision Tree
1st SE-Beta, RE-Beta, KFD-Alpha, KFD-Beta, ShE-Theta, SE-Theta, RE-BB
2nd SE-Beta, RE-Beta, KFD-Alpha, KFD-Beta, RE-Alpha, KFD-Theta
3rd SE-Beta, RE-Beta, KFD-Beta, RE-BB, HFD-Alpha, HFD-Beta
4th SE-Beta, RE-Beta, KFD-Alpha, KFD-Theta, RE-Theta, RE-BB
5th SE-Beta, RE-Beta, SE-Theta, ShE-Theta, KFD-Alpha

rank Random Forest
1st RE-BB, RE-Beta, SE-Beta, ShE-Theta, RE-Alpha, SE-Alpha
2nd RE-BB, RE-Beta, SE-Beta, ShE-Beta, KFD-Beta, KFD-BB
3rd RE-BB, RE-Beta, RE-Alpha, SE-Alpha, HFD-Theta
4th RE-BB, ShE-BB, SE-Theta, KFD-Theta
5th RE-BB, ShE-BB, HFD-Alpha, RE-Theta

Table II: Performance metrics of SVM-Linear classifier

rank Accuracy Precision Recall

1st 0.9489±0.0016 0.9411±0.0012 0.9392±0.0012
2nd 0.9355±0.0024 0.9363±0.0007 0.9391±0.0009
3rd 0.9231±0.0061 0.9319±0.0011 0.9265±0.0060
4th 0.9201±0.0032 0.9191±0.0010 0.9197±0.0031
5th 0.9169±0.0026 0.9068±0.0028 0.9094±0.0020

Table III: Performance metrics of SVM-RBF classifier

rank Accuracy Precision Recall

1st 0.9503±0.0024 0.9609±0.0013 0.9523±0.0061
2nd 0.9469±0.0041 0.9455±0.0057 0.954±0.0075
3rd 0.9417±0.0015 0.9448±0.0061 0.9415±0.0063
4th 0.9363±0.0016 0.9283±0.0040 0.9303±0.0045
5th 0.9267±0.0058 0.9291±0.0048 0.9233±0.0023

Table IV: Performance metrics of gradient boosting classifier

rank Accuracy Precision Recall

1st 0.9372±0.0016 0.9399±0.0015 0.9415±0.0054
2nd 0.9346±0.0016 0.9202±0.0013 0.9387±0.0008
3rd 0.9299±0.0016 0.9122±0.0029 0.9328±0.0012
4th 0.9125±0.0021 0.9184±0.0018 0.9073±0.0016
5th 0.9088±0.0044 0.8986±0.0041 0.9059±0.0132

Table V: Performance metrics of decision tree classifier

rank Accuracy Precision Recall

1st 0.8711±0.0024 0.8669±0.0011 0.8779±0.0012
2nd 0.8635±0.0064 0.8611±0.0031 0.8544±0.0008
3rd 0.8515±0.0044 0.8569±0.0056 0.8591±0.0016
4th 0.8509±0.0061 0.8603±0.0032 0.8539±0.0062
5th 0.8466±0.0092 0.8314±0.0029 0.8442±0.0041

Table VI: Performance metrics of random forest classifier

rank Accuracy Precision Recall

1st 0.8889±0.0009 0.8787±0.0012 0.8824±0.0012
2nd 0.8823±0.0009 0.8716±0.0008 0.8806±0.0023
3rd 0.8746±0.0015 0.8623±0.0054 0.8765±0.009
4th 0.8639±0.0026 0.8699±0.0049 0.8718±0.0057
5th 0.8625±0.0039 0.8512±0.0031 0.8651±0.0061


