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Humanoid Robots are Retrieving Emotion from
Motion Analysis

Tino Lourens Emilia Barakova

Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands

Abstract

This paper presents an application for hand waving in real time using a parallel framework. Analysis
of 15 different video fragments demonstrates that acceleration and frequency are relevant parameters for
emotion classification of hand waving. Its solution will be used for human-robot interaction with the aim
of training autistic children social behavioral skills in a natural environment.

1 Introduction
A little more than a decade ago, Honda Corporation demonstrated an Advanced Step In MObility (ASIMO)
[9, 10]. The introduction of ASIMO has led to a boost in humanoid robotic research and development.
One of the trends in humanoid robot development is the androids/actroids like Repliee [20] and DER, while
another trend are relatively inexpensive open humanoid platforms like Speecys SPC-101C and the NAO
humanoid from Aldebarn. Latter has become a standard platform in the robocup soccer competition. Due to
their standardized hardware and software, which will make the experiments reproducible, these robots have
become an attractive platform for conduction of behavioral studies.

Sociable humanoid robots pose a dramatic and intriguing shift in the way one thinks about control of
autonomous robots, and are the first generation of robots where a substantial human-robot interaction is
expected [5]. The introduction of mobile robots that have to demonstrate a certain degree of autonomy yield
different requirements than an industrial robot or the way ASIMO has been pre-programmed in a conditioned
environment. These robots need to have a higher level perceptual, behavior, emotion system, see [5, 2], but
also a mechanism to cooperate with uncertainty and one for survival to guarantee a degree of autonomy. In
many ways such a system resembles aspects of brain like functional behavior, its evident that such a robot
should be able to process information in real time in a highly parallel way.

Recent developments by the personal computers provide a substantial computing power of graphical
processing units (GPUs).1 Moreover the GPUs reach this performance due to massive parallelism making
them as powerful as a fast supercomputer of just three years ago. Parallelism is an important aspect for
both functional brain modeling [18] and graphical software development [14] and it implies that real world
applications that are bound by real time constraints have become feasible.

Our goal is to construct a computational framework for social interaction where both technologies for
parallelism are used. More specifically we are interested in scenarios involving multiple simultaneous ac-
tions performed by different body parts of a human or a robot. We assume realistic imitation scenarios,
i.e., scenarios where a human freely behaves and a robot tracks its actions with the intend to act upon the
meaningful ones, for instance by imitation [3] or by encoding episodes [1].

The paper is organized as follows: In Section 2 we focus on the physical characteristics of the used
platform and elaborate on the parallel architecture. Section 3 describes the experimental setup and gives the
implementation of marking a moving hand in an image using skin color and motion characteristics. For the
sequence of images such region is marked to construct a stream that is used to analyze hand waving behavior.
Section 4 provides insight how these data streams are used to extract social behavior for interaction with a
robot. The paper finishes with a discussion and future research.

1A single GPU card is able to process more than one tera (1012) floating point operations per second (TFLOPS).



Figure 1: Application platform humanoid robot NAO.

2 Infrastructure

2.1 Humanoid robot
Commercially available humanoid robot NAO, illustrated in Figure 1, is used for the experiment. The robot
has 25 degrees of freedom, 5 in each leg and arm, and 1 in each hand. Further it has 2 degrees of freedom
in its head and one in the pelvis. The platform contains 2 color cameras with a maximum resolution of
640x480 pixels at a speed of 30 frames per second. The platform contains an embedded AMD Geode
500MHz processor and is shipped with an embedded Linux distribution. A software library called NaoQi
is used to control the robot. This API provides an easy to use C++ interface to the robot’s sensors and
actuators. Due to this library its is relatively easy to control the robots actuators and make use of advanced
routines that let the robot move and talk using text to speech.

2.2 Parallel processing units
Graphics processing units (GPUs) were originally designed to perform highly parallel computations required
for graphics rendering. But over the last couple of years, they have proven to be powerful computing
workhorses across more than just graphics applications. Designed with more resources devoted to data
processing rather than flow control and data caching, GPUs can be leveraged to significantly accelerate
portions of codes traditionally run on CPUs.

Compute unified device architecture (CUDA) is Nvidia’s parallel computing architecture, which man-
ages computation on the GPU in a way that provides a simple interface for the programmer. The CUDA
architecture can be programmed in C with a few extensions [8].

2.3 Software
The proposed parallel processing framework assumes a set of useful functional units. These units are con-
nected with each other to exchange information. Figure 2a illustrates such a parallel framework, where
processing units and connections are represented by squares and directed arrows, respectively. Using a
graphical setup gives fast insight in the available parallel processes and their respective connections, and can
be implemented in graphical programming environment TiViPE (www.tivipe.com) preserving its graphical
representation [14]. Such network can be transferred into a formal language and described in a BackusNaur
Form (BNF), as illustrated Figure 2b. This makes such a framework attractive for TiViPE to generate and
compile code fully automatically from a constructed graphical network.

The setup of such a framework is simple and elegant, but powerful enough to describe any parallel
algorithm. In this respect it can be used as an artificial neural network, where the squares and connections
denote the neurons, and synapses, respectively. The framework could be used as probabilistic network where
connections denote the chance to go from one state to another one.

Figure 2c shows a conceptual network of brain areas involved in hand object interaction. In this example
the visual input has been described as a single block, but it contains many parallel processing units, as
provided in earlier work [22, 17, 15, 16]. Our goal is to make a brain model from a functional perspective
using this parallel framework [18].
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Figure 2: General parallel framework where yellow squares denote processing units. Arrowed connection
denote information exchange in direction of the arrow between processing units. a) An example of such
a network, and b) Its textual description. c) Brain areas involved in hand object interaction. d) Isolated
processing unit with input and output connections.

3 Experimental setup
The experiment we have been conducting is hand waving. Figure 5 depicts four (happy, angry, sad, and
polite) different emotional waving patterns. A camera records images that are processed using a combination
of skin color and motion detection, with the aim of tracking a single area. This area is associated with the
waving movement in the most natural way. The robot should be able to extract a simple motion pattern and
derive its behavioral aspects, and should be able to imitate this pattern and eventually adjust its behavior,
both with the aim of either to teach or to influence behavior of the human to improve his or her social skills.

The implementation of detection and tracking a waving hand is given in Figure 3, and has been decom-
posed into several building blocks:

1. acquiring data from a camera or reading a stored image sequence
2. binarizing an image by marking a pixel either as skin color or other color and in parallel binarizing an

image by marking pixels either as observed motion or as static element
3. marking skin and motion regions by a pyramid decomposition
4. selection of these regions that are both skin and motion region
5. averaging skin-in-motion regions to a single region
6. tracking an averaged skin-in-motion region
7. visualization of regions in an image
8. visualization of a waving hand
9. classification of waving profiles

3.1 Skin color detection
An image is defined as a two-dimensional matrix where a pixel at position (x, y) has an intensity Ic(x, y) =
(r, g, b), where r, g, and b ∈ [0, . . . , 255] are the red, green, and blue component. Segmentation using skin
color can be made independent of differences in race when processing image pixels in Y-Cr-Cb color space
[6]. The following (r, g, b) to (Y,Cr, Cb) conversion is used

Y = 0.2989r + 0.5866g + 0.1145b; Cr = 0.7132(r − Y ); Cb = 0.5647(b− Y ).

Threshold values as used by Chai and Ngan[6]

77 < Cb < 127; 133 < Cr < 173

yield good results for classifying pixels belonging to the class of skin tones.
In our experiments we also excluded the “white area”. Formally an element belongs to the “white area”

if it satisfies the following:

|r − g|
m

< 0.1 ∧ |r − b|
m

< 0.1 ∧ |g − b|
m

< 0.1, (1)



Figure 3: TiViPE [14] implementation of handwaving. The icons from top to bottom at the left-side process
skin areas, while motion sensitivity is processed at the right-side.

where m = min(r, g, b), r > 0.3, g > 0.3, and b > 0.3. Its implementation given by ‘the “SkinColor” icon
in Figure 3 yields a binary image.

It is plausible that the functional concept as described above contains similarities with how the brain
processes visual data, since primary visual cortex area V4 provides a substantial role in processing color
[23].

3.2 Motion detection
A pixel at location (x, y) with intensity I(x, y) = (r + g + b)/3 will have moved by (δx, δy) over a time
span δt, hence the following image constraint equation can be given:

I(x, y, t) = I(x+ δx, y + δy, t+ δt). (2)

In this method the following needs to be solved:

IxVx + IyVY = −It, (3)

where (VX , Vy) denotes the flow, Ix and Iy the derivatives in horizontal and vertical direction, respectively.
The Lucas-Kanade operator [19] is used, it is a two-frame differential method for optical flow estimation
where the derivatives are obtained by using a Sobel filter kernel [21]. Instead of using Sobel kernels the
more biologically plausible Gabor kernels can be used as well [7, 13]. Receptive fields of a cat’s primary
visual cortex area V1 and V2, that show striking similarities with these Gabor kernels, have been found in
the 1950’s by neuroscientists and Nobel laureates Hubel and Wiesel [11, 12]. It is plausible that a similar
activity flow map might be expected in the middle temporal are MT, also known as primary visual cortex
area V5 [23].

From (Vx, Vy) the L-2 norm (top right “DoubleOperand” icon of Figure 3) is taken and thresholded at 5
to obtain a binary “motion classified” image.

3.3 Rectangular region marking
The next stage is marking a cluster of “skin tone classified” or “motion classified” pixels by a rectangular
window. This is performed by decomposing the image into a pyramid, where every pixel in the next level of
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Figure 4: Marked regions of interest. Red and green areas denote skin and motion area, respectively. A blue
area is the combined moving skin area that has been averaged over all skin areas that are moving.

the pyramid is computed as follows:

Ii+1(x, y) = (Ii(2x, 2y) + Ii(2x+ 1, 2y) + Ii(2x, 2y + 1) + Ii(2x+ 1, 2y + 1)) /4, (4)

where (x, y) is the position in image Ii, i denotes the level in the pyramid, and base level 0 contains the
original image I0. The construction of a pyramid using (4) provides a strongly reduced search space, since
if in level i + 1 a pixel Ii+1(x, y) is found to belong to the desired region then in level i of the pyramid a
cluster of 2x2 pixels (Ii(2x, 2y), Ii(2x+ 1, 2y), Ii(2x, 2y+ 1), and Ii(2x+ 1, 2y+ 1)) belong to the same
region.

The search for regions of interest starts at the highest level, and decreases until an a-priori known min-
imum level has been reached. It is therefore possible that no regions of interest are found. Taking into
consideration that if a pixel is marked as “skin tone” or motion it has value 1, and 0 otherwise. We define a
pixel to belong to a unique region j if it satisfies the following:

Rj
i (x, x+ 1, y, y + 1) = Ii(x, y) ≡ 1. (5)

Regions Rj
i in their initial setting are bound by a single pixel Ii(x, y), and a region growing algorithm

is applied to determine the proper size of the rectangular region. Lets assume that the initial size of the rect-
angle is Rj

i (xl, xr, yu, yd) and that the possible growing areas are left (Rjl

i = Rj
i (xl − 1, xl, yu, yd)), right

(Rjr

i = Rj
i (xr, xr +1, yu, yd)), above (Rju

i = Rj
i (xl, xr, yu−1, yu), and below (Rjd

i = Rj
i (xl, xr, yd, yd+

1) this region. The average value of all four growing areas is taken, where the maximum value determines
the direction of growing. The following procedure

Ajx

i = avg
(
Rjx

i

)
x ∈ {l, r, u, d}; M jx

i = max
x

(
Ajx

i

)
; Rj

i = Rj
i ∪R

jx

i if M jx

i ≥ Trg

is repeated until M jx

i < Trg . From experiments Trg = 0.67 provides a rectangle that corresponds roughly
to a skin area in the original image and 0.5 gives a sufficiently large motion area, see also Figure 4.

The method described above is able to find all uniform skin color and motion regions in an image in real
time.
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Figure 5: Waving patterns. a-d) show acceleration profiles for happiness, anger, sadness, and politeness,
respectively.

Formally such a feature f can be described by its region, type, and time: f(xl, xr, yu, yd, regiontype, t).
This f in turn could be further processed by other visual areas or passed on to both STS and PFC, as
illustrated in Figure 2c.

3.4 Tracking
Two examples of the waving experiment using color images of 640x480 pixels at a speed of 29 frames per
second are provided in Figure 4. The aim of creating a single region in the image rather than multiple regions
of interest is being able to unambiguously track an object of interest. These tracked objects are stored as
file, see also icon “StreamTrackRegionToFile” of Figure 3, and processed further.

Fifteen recordings of 20 seconds have been made where a Laban expert was asked to demonstrate hap-
piness, anger, sadness, or politeness. In every row the acceleration profile is given it has been obtained by
taking the second derivative of the central point of the tracked object. These four different mental states are
given in Figure 5, and from this figure the following can be observed:

1. happy waving provides a regular waving pattern with a relatively high frequency.
2. anger demonstrates bursts with tremendous acceleration
3. sadness demonstrates a profile of low acceleration, its frequency is relatively low and appears to have

a lower frequency compared to the other three emotions.
4. politeness that demonstrates a queen type of waving profile is a regular pattern with a relatively high

frequency that is obtained by using minimal energy.

Figure 6 supports these observations. In a an average acceleration-frequency matrix four distinctive
clusters are formed. In one of the image sequences the Laban expert was instructed to perform polite
waving, but in the sequence she seemed to be happy, indicating that there might be a smooth boundary
between these emotional states. The average energy in one of the five bursts of Figure 5c gave an average
acceleration score of more than 0.07 and gives an indication of the energetic upper bound.
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Figure 6: Distinct emotion profiles are revealed by average frequency and acceleration.

4 Behavioral Primitives
Understanding motion from waving patterns requires a mechanism that is able to learn to interpret and
classify these sequences, and ideally able to extract the observations provided in Section 3.4. In a comple-
mentary study we are attempting to classify motion by so-called Laban primitives. Using these primitives
we classify whether the wave pattern demonstrates normal, polite, stressed behavior, or abnormal behavior.

The current method is developed to enable the robot to interact with a human in realistic scenarios.
Being able to track regions of interest in parallel, a considerable number of interesting scenarios are possible
without have any notion of the meaning of an object. Moreover, using an earlier developed technique [4]
the robot recognizes and learns repeating patterns of behavior, which it considers important, and discards
occasional movements which most often are not important. For instance, if during waving of the hand a
head movement takes place because at this time somebody enters the room, this movement will be ignored.
However, if an autistic child performs repeatedly a movement with his/her head while waving, this will be
learned and eventually included in the imitation behavior of the robot.

5 Discussion and Future work
We have presented a computational framework that is simple and elegant, but powerful enough to describe
any parallel algorithm. This framework is used as basis for our social interaction with the robot, and appli-
cation of hand waving as well. The goal of this application is to demonstrate some simple social interaction
between man and machine.

In this paper we have shown that the robot is able to detect multiple regions in real time and that a stream
of such information provides clear insight in the movements of a waving hand. In a complementary study
these regions are transfered into behavioral primitives. These primitives are used by the robot to socially
interact with a human.

It is obvious that we have barely touched the surface of all the research we would like to conduct. Even
a simple experiment like hand waving elicits a number of questions:
• Could any type of waving be predicted?
• How to respond to a waving pattern?
• Does it lead to adaptive or predictive behavior?
• How does the design of simple reactive behavior look like?
• How to design imitation, such that it appears natural and distinctive on a humanoid robot?

Nevertheless, the newly acquired NAO humanoid robots provide an excellent test-bed for machine-
interaction, and opens a wide range of possible research areas. An important aspect on these robots will
be how closely one can emulate human movement. It implies that understanding the physical limitations
of these robots, and getting insight in the parameters settings of the 25 joints of these robots will play an
important role for social interaction. Next a basic set of motion primitives needs to be derived that yield the
back-bone for social interaction on the basis of body language.
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