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Abstract

The Richards equation is a nonlinear parabolic equation that is commonly used for modelling satu-

rated/unsaturated flow in porous media. We assume that the medium occupies a bounded Lipschitz

domain partitioned into two disjoint subdomains separated by a fixed interface Γ. This leads to two

problems defined on the subdomains which are coupled through conditions expressing flux and pressure

continuity at Γ. After an Euler implicit discretisation of the resulting nonlinear subproblems, a linear

iterative (L-type) domain decomposition scheme is proposed. The convergence of the scheme is proved

rigorously. In the last part we present numerical results that are in line with the theoretical finding, in

particular the convergence of the scheme under mild restrictions on the time step size. We further compare

the scheme to other approaches not making use of a domain decomposition. Namely, we compare to a

Newton and a Picard scheme. We show that the proposed scheme is more stable than the Newton scheme

while remaining comparable in computational time, even if no parallelisation is being adopted. After

presenting a parametric study that can be used to optimise the proposed scheme, we briefly discuss the

effect of parallelisation and give an example of a four-domain implementation.

Keywords: Domain decomposition, L-scheme linearisation, Richards equation

1. Introduction

Unsaturated flow processes through porous media appear in a variety of physical situations and ap-

plications. Notable examples are soil remediation, enhanced oil recovery, CO2 storage, harvesting of

geothermal energy, or the design of filters and fuel cells. Mathematical modelling and numerical simula-
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tion are essential for understanding such processes, since measurements and experiments are very difficult

if not impossible, and hence only limitedly available. The associated mathematical and computational

challenges are manifold. The mathematical models are usually coupled systems of nonlinear partial

differential equations and ordinary ones, involving largely varying physical properties and parameters,

like porosity, permeability or soil composition. Together with the large scale and possible complexity of

the domain, this poses significant computational challenges, making the design and analysis of robust

discretisation methods a non-trivial task.

In this work we focus on saturated/unsaturated flow of one fluid (water) in a porous medium (e.g. the

subsurface) occupying the domain Ω⊂ Rd (d ∈ {1,2,3}). Besides water, a second phase (air) is present,

which is assumed to be at a constant (atmospheric) pressure. This situation is described by the Richards

equation, here in pressure formulation

Φ∂tS(p)−∇ ·
[

KKK
µ

kr
(
S(p)

)
∇∇∇
(

p+ z
)]

= 0, (1)

see e.g. [1], originally [2, 3]. In the above Φ denotes the porosity, S is the water saturation, p is the water

pressure, kr is the relative permeability, KKK the intrinsic permeability and z =−ρwgx3 is the gravitational

term in direction of the x3-axis. Finally, g is the gravitational acceleration, ρw the water density and µ its

viscosity. With T > 0 being a maximal time, the equation is defined for the time t ∈ (0,T ) on the bounded

Lipschitz domain Ω.

Below we propose a domain decomposition (DD) scheme for the numerical solution of (1). To this aim

we assume that Ω is partitioned into two subdomains Ωl (l ∈ {1,2}) separated by a Lipschitz-continuous

interface Γ, see Fig. 1. In other words one has Ω = Ω1 ∪Ω2 ∪Γ. The restriction to two subdomains is

made for the ease of presentation, but the scheme can be extended straightforwardly to more subdomains,

see Remark 3 and Subsection 4.4. In each Ωl (l ∈ {1,2}) we use the physical pressure pl as primary

variable. Furthermore, the permeability and porosity in each of the subdomains may be different and even

discontinuous, which is the case of a heterogeneous medium consisting of block-type heterogeneity (like

a fractured medium).

In view of its relevance for manifold applications in real life, Richards’ equation has been studied

extensively, both analytically and numerically, and the dedicated literature is extremely rich. We restrict

ourselves here by mentioning [4, 5] for the existence of weak solutions and [6] for the uniqueness.

Numerical schemes for the Richards equation, or in general for degenerate parabolic equations, are

analysed in [7, 8, 9, 10, 11, 12, 13, 14, 15]. Most of the papers are considering the backward Euler method

for the time discretisation in view of the low regularity of the solution, see [4], and to avoid restrictions

on the time step size.
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Different approaches with regard to spatial discretisation have been considered. Galerkin finite el-

ements were used in [8, 16, 17]. Discontinuous Galerkin finite element schemes for flows through

(heterogeneous) porous media have been studied in [18, 19]. Finite volume schemes including multipoint

flux approximation ones for the Richards equation are analysed in [20, 21, 13], and mixed finite elements

in [7, 22, 10, 11, 12, 15, 14]. Such schemes are locally mass conservative.

Applying the Kirchhoff transformation [4] brings the mathematical model to a form that simplifies

mathematical and numerical analysis, see e.g. [8, 7, 10, 11]. However, the transformed unknown is not

directly related to a physical quantity like the pressure, and therefore a postprocessing step is required after

a numerical approximation of the solution has been obtained. Alternatively, one may develop numerical

schemes for the original formulation and in terms of the physical quantities. Nevertheless, when proving

the convergence rigorously, one often resorts to a Kirchhoff transformed formulation as intermediate step.

Alternatively, sufficient regularity of the solution, e.g. by avoiding cases where the medium is completely

saturated, or completely dry, has to be assumed. We point out that in this work we will not make use of

the Kirchhoff transformation, keeping the equation in a more relevant form for applications.

If implicit methods are adopted for the time discretisation, the (elliptic or fully discrete) problems

obtained at each time step are nonlinear. For solving these, different approaches have been proposed. Ex-

amples are the Newton method [23, 24, 25], the Picard/modified Picard method [26, 27], or the Jäger-Kacur

method [28, 29]. We refer to [30] for the convergence analysis of such nonlinear schemes. Assuming that

the initial guess is the solution from the previous time step, the convergence of such schemes can only be

guaranteed under severe restriction for the time step in terms of the mesh size. Additionally, regularising

the problem is required, which prevents the Jacobian from becoming singular, see [30]. Such difficulties

do not appear when the L-scheme is being used, which is a fixed point scheme transforming the iteration

into a contraction, [31, 32, 16]. The convergence is merely linear but in a better norm (H1) and requires

no regularization or severe constraint on the time step. We also refer to [33] for a combination of the

Newton method and the L-scheme. Moreover, we mention [12] for the application of the L-scheme to

Hölder instead of Lipschitz continuous nonlinearities.

Independently of the chosen discretisation method and of the linearisation scheme, domain decompo-

sition (DD) methods offer an efficient way to reduce the computational complexity of the problem, and

to perform calculations in parallel. This is in particular interesting whenever domains with block type

heterogeneities are considered, as DD schemes allow decoupling the models defined in different homo-

geneous subdomains and solving these numerically in parallel. We refer to [34] for a detailed discussion

of linear DD methods and to [35] for a general introduction into the subject. Comprehensive studies of

nonlinear DD schemes in the field of fluid dynamics can be found in [36, 37, 38]. For articles strictly
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related to porous media flow models, we refer to [39, 40] for an overview of different overlapping domain

decomposition strategies. Linear and nonlinear additive Schwartz methods are compared, and the use

of such methods as linear and nonlinear preconditioners is discussed. Regardless of the type of the DD

scheme, choosing the optimal parameters is a key issue. Such aspects are analysed e.g. in [41, 42]. We

also refer to [43] for a DD algorithm for porous media flow models, where a-posteriori estimates are used

to optimise the parameters and the number of iterations.

Recall that the Richards equation is a nonlinear evolution equation. For solving this type of equation,

methods like parareal [44] and wave-form relaxation [45, 46] have been proposed. The main ideas there

are to decompose the problem into separate problems defined in time/space-time domains. DD methods

for the Richards equation are discussed in [47, 48]. In these papers the domain is decomposed into

multiple layers and the Richards models restricted to adjacent layers are coupled by Robin type boundary

conditions. The approach uses nonoverlapping domain-decomposition and generalises the ideas of the

method introduced in [49] for linear elliptic problems (see also [50, 51]), leading to decoupled, nonlinear

problems in the subdomains.

Here we consider a linear DD scheme for the numerical approximation of the time discrete problems

obtained after substructuring into subproblems and performing an Euler implicit time stepping. A nonover-

lapping DD scheme (referred to henceforth as LDD scheme) inspired by the DD method introduced in

[49] is defined. The LDD iterations are linear, based on an L-type scheme. This approach differs from the

one commonly used when dealing with nonlinear elliptic problems in the context of DD. In most cases,

the DD iterations lead to nonlinear subproblems. For solving these, iterative methods in each subdomain

are applied. In our approach, the linearisation step is part of the DD iterations, which reduces the computa-

tional time. More precisely, the L-scheme idea is combined with the nonoverlapping DD scheme such that

the equations defined in each subdomain along with the Robin type coupling conditions on the interface

become linear. For the resulting scheme we prove rigorously the convergence under mild restrictions on

the time step, and provide numerical examples supporting the theoretical findings and demonstrating its

effectiveness.

The paper is structured as follows. In Sec. 2 we present the mathematical model and introduce the DD

scheme. Section 3 contains the analysis of the scheme. Finally, Sec. 4 provides numerical experiments

in two spatial dimensions, together with an analysis of the practical performance of the scheme. This

includes a comprehensive comparison (including robustness and efficiency) between the proposed DD

scheme and standard monolithic schemes based on Newton, modified Picard as well as the L-scheme.

Moreover, we give an example of a four subdomain implementation of the LDD scheme and illustrate the

benefit of distributing the workload of each subdomain to dedicated CPU.
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2. Problem formulation and iterative scheme

2.1. Problem formulation

Figure 1: Illustration of a layered soil domain Ω=Ω1∪Ω2 ⊂Rd

with fixed interface Γ. Also shown are the normal vectors along

the interface.

Recall that T > 0 and Ω ⊂ Rd is a bounded

Lipschitz domain partitioned in two subdomains

Ω1,2, separated by the Lipschitz-continuous inter-

face Γ. The boundary of Ω is denoted by ∂Ω and

the portions of ∂Ω that are also boundaries of Ωl

are denoted by ∂Ωl (see also Fig. 1). To ease the

presentation, the two subdomains are assumed to

be homogeneous and isotropic, i.e. we can have

two different relative permeabilities kr = kr,l on

each Ωl , the intrinsic permeabilities KKK = Kl are

scalar and the two porosities Φl (l = 1,2) are con-

stant. The product Kl kr,l
Φl µl

in (1) is abbreviated by kl henceforth. We solve equation (1) in Ω together with

initial and homogeneous Dirichlet boundary conditions. We refer to [47, 52] for more general conditions,

including outflow-type ones.

On the two subdomains, the problem transforms into two subproblems, coupled through two conditions

at the interface Γ: the continuity of the normal fluxes and the continuity of the pressures. With the fluxes

FFF l :=−kl
(
Sl(pl)

)
∇∇∇
(

pl + z
)
, (1) becomes

∂tSl(pl)+∇∇∇ ·FFF l = 0 in Ωl× (0,T ], (2)

FFF1 ·nnn111 =−FFF2 ·nnn222 on Γ× [0,T ], (3)

p1 = p2 on Γ× (0,T ], (4)

pl = 0 on ∂Ωl× (0,T ]. (5)

This is closed by the initial conditions pl(·,0) := pl,0 in Ωl , where pl is the water pressure on Ωl , l = 1,2,

and kl are (given) scaled relative permeability functions, that are assumed to be smooth enough. In the

above, nnnlll stands for the outer unit normal vector at ∂Ωl .
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Semi-discrete formulation (discretisation in time)

For the time discretisation we let N ∈ N be given and τ := T
N be the corresponding time step. Then pn

l

is the approximation of the pressure pl at time tn = nτ . The Euler implicit discretisation of (2) – (5) reads

Sl
(

pn
l
)
−Sl

(
pn−1

l

)
+ τ∇∇∇ ·FFFn

l = 0 in Ωl , (6)

FFFn
1 ·nnn111 =−FFFn

2 ·nnn222 on Γ, (7)

pn
1 = pn

2 on Γ, (8)

pn
l = 0 on ∂Ωl , (9)

where FFFn
l :=−kl

(
Sl(pn

l )
)
∇∇∇
(

pn
l + z

)
is the flux at time step tn. Observe that (7) and (8) are the coupling

conditions at the interface Γ.

2.2. The LDD iterative scheme

If
(

pn−1
1 , pn−1

2

)
is known,

(
pn

1, pn
2
)

can be obtained by solving the nonlinear system (6)–(9). To this

end, we define an iterative scheme that uses Robin type conditions at Γ to decouple the subproblems

in Ωl , and linearises the terms due to the saturation-pressure dependency by adding stabilisation terms

that cancel each other in the limit (see e.g. [33, 31]). Specifically, assuming that for some i ∈ N the

approximations pn,i−1
l and gi−1

l are known, we seek
(

pn,i
1 , pn,i

2

)
solving the problems

Ll pn,i
l −Ll pn,i−1

l + τ∇∇∇ ·FFFn,i
l =−Sl

(
pn,i−1

l

)
+Sl

(
pn−1

l

)
in Ωl , (10)

FFFn,i
l ·nnnlll = gi

l +λ pn,i
l on Γ× [0,T ], (11)

gi
l :=−2λ pn,i−1

3−l −gi−1
3−l . (12)

Following the previously introduced notation, FFFn,i
l :=−kl

(
Sl(pn,i−1

l )
)
∇∇∇
(

pn,i
l + z

)
denotes the linearised

flux at iteration i. By λ ∈ (0,∞), we denote a (free to be chosen) parameter used to weight the influence of

the pressure on the interface conditions at Γ. The parameters Ll > 0 must adhere to some mild constraints

in order for the scheme to converge, which will be discussed later, but other than that, are arbitrary. The

iteration starts with

pn,0
l := pn−1

l , and g0
l := FFFn−1

l ·nnnlll−λ pn−1
l ,

and clearly, the difference Ll pn,i
l −Ll pn,i−1

l is vanishing in case of convergence.

Remark 1. The usage of the terms gi
l and of the parameter λ is motivated by the following. With the

notation f n
l := FFFn

l ·nnnlll , the transmission conditions (7)-(8) become f n
1 =− f n

2 and pn
1 = pn

2. For any λ 6= 0,

these are equivalent to

f n
1 = (− f n

2 −λ pn
2)+λ pn

1,

f n
2 = (− f n

1 −λ pn
1)+λ pn

2.
(13)
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Denoting the terms between brackets by gl , one obtains

f n
1 = g1 +λ pn

1,

f n
2 = g2 +λ pn

2,
and

g1 =−2λ pn
2−g2,

g2 =−2λ pn
1−g1.

(14)

The conditions in (11)-(12) are the linearised counterparts of (14).

Remark 2 (different decoupling formulations). The decoupled conditions in (7)-(8) can be formulated

as convex combinations of the terms g and p, namely

FFFn,i
l ·nnnlll = (1−λ )gi

l +λ pn,i
l , (11’)

(1−λ )gi
l :=−2λ pn,i−1

3−l − (1−λ )gi−1
3−l . (12’)

The convergence analysis below can be carried out for this formulation without any difficulty. However,

the DD scheme using this convex formulation showed a slower convergence in the numerical experiments

than when (11)-(12) was used. Moreover, it is easier to find close to optimal parameters for the latter.

Such aspects are discussed in Section 4. In view of this, in what follows we restrict the analysis to the

initial formulation.

Remark 3 (multi domain formulation). The scheme presented here for two subdomains and its analysis

can be extended to more subdomains. To see this assume that Ω = ∪W
l=1Ωl is decomposed into W open

subdomains Ωl , and Ωl ∩Ωr = /0 for all l,r ∈ {1,2, ..,W}, l 6= r. For all l, let Il = {r : r ∈ {1, ..,W}, r 6= l,

s.t. measd−1
(
Ωl ∩Ωr

)
> 0}. For all r ∈ Il , let Γl,r = Ωl ∩Ωr be the interface separating the subdomains

Ωl and Ωr and let nnnl,r be the outwards pointing unit normal of Ωl on Γl,r. Furthermore, define the outer

boundaries of subdomains as ∂Ωl = Ωl ∩ ∂Ω. Observe that r ∈ Il implies l ∈ Ir for all l,r. Moreover,

Γl,r = Γr,l and nnnl,r =−nnnr,l . Then, the LDD scheme for N subdomains amounts to solving the following

subproblems:

Ll pn,i
l + τ ∇∇∇·FFFn,i

l = Ll pn,i−1
l −

(
Sl(pn,i−1

l )−Sl(pn
l )
)
, on Ωl , (15)

FFFn,i
l ·nnnl,r = gi

l,r +λl,r pn,i
l ,

gi
l,r =−2λl,r pn,i−1

r −gi−1
r,l ,

 on Γl,r for all r ∈ Il , (16)

pn,i
l = 0 on ∂Ωl , (17)

for all l ∈ {1, ...,W}. Here, λl,r > 0 are parameters that can be chosen freely as long as they satisfy

λl,r = λr,l for l ∈ {1, ..,W} and r ∈ Il . For ease of presentation we have restricted ourselves to discussing

the situation on two domains.
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Remark 4 (Applicability of the LDD scheme). The idea of the LDD scheme is by far not restricted to

the Richards equation and can be extended to other models. It is well suited for problems involving

monotonic nonlinearities. Examples in this sense are reactive transport models, or coupled flow and

poromechanics models, see e.g. [53]. The application to two-phase flow models is ongoing research.

Before formulating the main result we specify the notation that will be used below.

Notation 1. L2(Ω) is the space of Lebesgue measurable, square integrable functions over Ω. H1(Ω)

contains functions in L2(Ω) having also weak derivatives in L2(Ω). H1
0 (Ω) = C∞

0 (Ω)H1
, where the

completion is with respect to the standard H1 norm and C∞
0 (Ω) is the space of smooth functions with

compact support in Ω. The definition for H1(Ωl) (l = 1,2) is similar. With Γ being a (d−1) dimensional

manifold in Ω, H
1
2 (Γ) contains the traces of H1 functions on Γ (see e.g. [54, 55, 34]). Given u ∈ H1(Ω),

by its trace on Γ is denoted by u|Γ.

Furthermore, the following spaces will be used

Vl :=
{

u ∈ H1(Ωl)
∣∣u|∂Ωl

≡ 0
}
, (18)

V :=
{
(u1,u2) ∈ V1×V2

∣∣u1|Γ ≡ u2|Γ
}
, (19)

H1/2
00 (Γ) =

{
ν ∈ H1/2(Γ)

∣∣ν = w|Γ for a w ∈ H1
0 (Ω)

}
. (20)

where the norms in the spaces Vl are the standard H1-norms, with the straightforward extension to the

product space V . V ′l stands for the dual of Vl with the norm ‖F‖V ′l = supϕl∈Vl

‖Fϕl‖Vl
‖ϕl‖Vl

. Moreover, since the

boundaries of Ω and Ωl have a non-zero (d−1)-measured intersection, the functions in Vl are vanishing

on this common part of the boundary. H1/2
00 (Γ)′ denotes the dual space of H1/2

00 (Γ). 〈·, ·〉X will denote the

L2(X) scalar product, with X being one of the sets Ω, Ωl (l = 1,2) or Γ. Whenever self understood, the

notation of the domain of integration X will be dropped. Furthermore,
〈
·, ·
〉

Γ
stands also for the duality

pairing between H1/2
00 (Γ)′ and H1/2

00 (Γ).

In what follows we make the following

Assumptions 1. With l = 1,2, we assume that

a) kl : R→ [0,1] are strictly monotonically increasing and Lipschitz continuous functions with Lips-

chitz constants Lkl > 0,

b) there exists m ∈ R such that 0 < m≤ k1(S), k2(S) for all S ∈ R,

c) Sl : R→ R are monotonically increasing and Lipschitz continuous functions with Lipschitz con-

stants LSl > 0.
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For later use we define Lk := max{ Lk1 ,Lk2} and LS := max{LS1 ,LS2}.

In a simplified formulation, the main result in this paper is

Theorem 1. Assume there exists a solution pair (pn
1, pn

2) to (6)–(9) that additionally fulfils supl‖∇∇∇
(

pn
l +

z
)
‖L∞ ≤M < ∞. Let Ll obey LSl < 2Ll for l = 1,2 and assume that the time step τ > 0 is chosen small

enough, so that for both l one has

τ <
2m

L2
kl

M2

(
1

LSl

− 1
2Ll

)
. (21)

Then the sequence of solution pairs
{
(pn,i

1 , pn,i
2 )
}

i≥1 of (10)–(11) converges to (pn
1, pn

2).

Remark 5. The precise form of Theorem 1 will be formulated in Section 3, after having defined a weak

solution. The theorem above is given for the ease of presentation.

3. Analysis of the scheme.

This section gives the convergence proof for the proposed scheme. The starting point is the Euler

implicit discretisation in Section 2. Assuming
(

pn−1
1 , pn−1

2

)
∈ V to be known, a weak formulation of

(6)–(9) is given by

Problem 1 (Semi-discrete weak formulation). Find (pn
1, pn

2) ∈ V such that FFFn
l · nnnlll ∈ H1/2

00 (Γ)′ for

l = 1,2 and 〈
Sl(pn

l ),ϕl
〉
− τ
〈
FFFn

l ,∇∇∇ϕl
〉
+ τ
〈
FFFn

3−l ·nnnlll ,ϕl |Γ
〉

Γ
=
〈
S1(pn−1

1 ),ϕl
〉
, (22)

for all (ϕ1,ϕ2) ∈ V .

Remark 6. If (pn
1, pn

2) ∈ V is a solution of Problem 1, we have pn
1|Γ = pn

2|Γ by definition of V . Testing

in (22) by an arbitrary ϕl ∈ C∞
0 (Ωl) shows that the distribution ∇∇∇·FFFn

l is regular and in L2, yielding

FFFn
l ∈ H(div,Ωl) and

Sl(pn
l )−Sl(pn−1

l ) =−τ ∇∇∇·FFFn
l a. e. in Ωl (23)

by the variational lemma. By Lemma III. 1.1 in [54], FFFn
l · nnnlll ∈ H−1/2(∂Ωl) and integrating by parts in

(22) yields

0 =−
〈
FFFn

l ·nnnlll ,ϕl |Γ
〉

Γ
+
〈
FFFn

3−l ·nnnlll ,ϕl |Γ
〉

Γ
(24)

for all (ϕ1,ϕ2) ∈ V . Therefore

FFFn
l ·nnnlll = FFFn

3−l ·nnnlll (25)

in H1/2
00 (Γ)′ since the trace is a surjective operator.
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Note additionally that Problem 1 is equivalent to the semi-discrete Richards equation on the whole domain,

namely to find (pn
1, pn

2) ∈ V such that

〈
S1(pn

1),ϕ1
〉
− τ
〈
FFFn

1,∇∇∇ϕ1
〉
+
〈
S2(pn

2),ϕ2
〉
− τ
〈
FFFn

2,∇∇∇ϕ2
〉

=
〈
S1(pn−1

1 ),ϕ1
〉
+
〈
S2(pn−1

2 ),ϕ2
〉
, (26)

for all (ϕ1,ϕ2) ∈ V .

Remark 7. By applying a Kirchhoff transform in each subdomain Ωl , Problem 1 can be reformulated

as a nonlinear transmission problem. The existence and uniqueness of a solution for such problems has

been studied in [56, 57] for the case when Ω1 is surrounded by Ω2, and the common boundary is smooth,

however.

Now we can give the weak form of the iterative scheme. Let n ∈ N and assume that the pair
(

pn−1
1 ,

pn−1
2

)
∈ V is given. Furthermore, let λ > 0 and Ll > 0 (l = 1,2) be fixed parameters and

pn,0
l := pn−1

l , as well as g0
l := FFFn−1

l ·nnnlll−λ pn−1
l |Γ.

The iterative scheme is defined through

Problem 2 (L-scheme, weak form). Let i∈N and assume that the approximations
{

pn,k
l

}i−1
k=0 and

{
gk

l

}i−1
k=0

are known for l = 1,2. Find
(

pn,i
1 , pn,i

2

)
∈ V such that

Ll
〈

pn,i
l ,ϕl

〉
− τ
〈
FFFn,i

l ,∇∇∇ϕl
〉
+ τ
〈
λ pn,i

l +gi
l ,ϕl
〉

Γ

= Ll
〈

pn,i−1
l ,ϕl

〉
−
〈
Sl(pn,i−1

l )−Sl
(

pn−1
l

)
,ϕl
〉
, (27)〈

gi
l ,ϕl
〉

Γ
:=
〈
−2λ pn,i−1

3−l −gi−1
3−l ,ϕl

〉
Γ

(28)

holds for all (ϕ1,ϕ2) ∈ V .

3.1. Intuitive justification of the L-scheme

We start the analysis by taking a closer look at the formal limit of the L-scheme iterations in weak

form and show that this is actually a reformulation of Problem 1.

Lemma 2 (Limit of the L-scheme). Let n ∈ N be fixed and assume that the functions pn
l ∈ Vl and

gl ∈ H1/2
00 (Γ)′ (l = 1,2) exist such that

〈
Sl(pn

l ),ϕl
〉
−
〈
Sl
(

pn−1
l

)
,ϕl
〉
− τ
〈
FFFn

l ,∇∇∇ϕl
〉
+ τ
〈
λ pn

l +gl ,ϕl
〉

Γ
= 0, (29)〈

gl ,ϕl
〉

Γ
=
〈
−2λ pn

3−l−g3−l ,ϕl
〉

Γ
, (30)

10



hold for all (ϕ1,ϕ2) ∈ V . Then the interface conditions

pn
1|Γ = pn

2|Γ in H1/2
00 (Γ), (31)

FFFn
1 ·nnn111 = FFFn

2 ·nnn111 in H1/2
00 (Γ)′ (32)

are satisfied and (pn
1, pn

2) solves Problem 1. Moreover,

gl =−λ pn
l |Γ +FFFn

l ·nnnlll (33)

in H1/2
00 (Γ)′. Conversely, if (pn

1, pn
2) ∈ V is a solution of Problem 1 and gl :=−λ pn

l |Γ +FFFn
l ·nnnlll , then pn

l

and gl solve the system (29), (30).

Remark 8. Lemma 2 states that solving Problem 1 is equivalent to finding a solution to (29), (30). This

reformulation will be used to show that the L-scheme converges to a solution of Problem 1.

Proof. Writing out (30) for l = 1,2 and subtracting the resulting equations yields pn
1|Γ = pn

2|Γ in the sense

of traces. On the other hand, adding up these equations leads to (g1 +g2) =−λ (pn
1|Γ + pn

2|Γ). Inserting

this into the sum of the equations (29) leads to (26), and by equivalence to the semi-discrete formulation

(22). Moreover, by (23) one has Sl(pn
l )−Sl(pn−1

l ) =−τ ∇∇∇·FFFn
l a.e. and therefore integrating by parts in

(29) gives gl =−λ pn
l |Γ +FFFn

l ·nnnlll in H1/2
00 (Γ)′.

Conversely, if (pn
1, pn

2) solves Problem 1, then pn
1|Γ = pn

2|Γ and

gl =−λ pn
l |Γ +FFFn

l ·nnnlll =−λ pn
3−l |Γ +FFFn

3−l ·nnn3−l =−2λ pn
3−l |Γ−g3−l (34)

is deduced by the flux continuity (25). Finally, (29) now follows by integrating (23) by parts and using the

definition of gl .

3.2. Convergence of the scheme

The convergence of the L-scheme involves two steps: first, we prove the existence and uniqueness of

a solution to Problem 2 defining the linear iterations, and then we prove the convergence of the sequence

of such solutions to the expected limit.

Lemma 3. Problem 2 has a unique solution.

Proof. This is a direct consequence of the Lax-Milgram lemma.

We now prove the convergence result, which was announced in Theorem 1. We assume that the

solution
(

pn−1
1 , pn−1

2

)
of Problem 1 at time step (n− 1) is known and let pn,0

l ∈ Vl be arbitrary starting

pressures (however, a natural choice is pn,0
l := pn−1

l ).

11



Lemma 3 enables us to construct a sequence
{

pn,i
l

}
i∈N0
∈ V N

l of solutions to Problem 2 and prove its

convergence to the solution
(

pn
1, pn

2
)

of Problem 1 at the subsequent time step.

Theorem 4 (Convergence of the LDD scheme). Assume there exists a solution (pn
1, pn

2) ∈ V to Problem

1 s.t. supl‖∇∇∇
(

pn
l + z

)
‖L∞ ≤M < ∞ and let gl be as in (33). Let Assumptions 1 hold, λ > 0 and Ll ∈ R

be given with LSl/2 < Ll for l = 1,2. For arbitrary starting pressures pn,0
l := vl,0 ∈ Vl (l = 1,2) let{

(pn,i
1 , pn,i

2 )
}

i∈N0
be the sequence of solutions of Problem 2 and let

{
gi

l

}
i∈N0

be defined by (28). Assume

further that the time step τ satisfies (21). Then pn,i
l → pn

l in Vl and gi
l → gl in V ′l as i→ ∞ for l = 1,2.

Remark 9. The essential boundedness of the pressure gradients can be proven under the additional

assumption that the functions Sl are strictly increasing and the domain is of class C1,α , see e.g. [58,

Lemma 2.1].

Proof. We introduce the iteration errors ei
p,l := pn

l − pn,i
l as well as ei

g,l := gn
l − gi

l , add Ll〈pn
l ,ϕl〉 −

Ll〈pn
l ,ϕl〉 to (29) and subtract (27) to arrive at

Ll
〈
ei

p,l ,ϕl
〉
+ τλ

〈
ei

p,l ,ϕl
〉

Γ
+ τ
〈
ei

g,l ,ϕl
〉

Γ
+ τ

[〈
−FFFn

l−kl
(
Sl(pn,i−1

l )
)
∇∇∇
(

pn
l + z

)
+kl

(
Sl(pn,i−1

l )
)
∇∇∇
(

pn
l + z

)
+FFFn,i

l ,∇∇∇ϕl

〉]
= Ll

〈
ei−1

p,l ,ϕl
〉
−
〈
Sl(pn

l )−Sl(pn,i−1
l ),ϕl

〉
. (35)

Inserting ϕl := ei
p,l in (35) and noting that

Ll

〈
ei

p,l− ei−1
p,l ,e

i
p,l

〉
=

Ll

2

[∥∥ei
p,l

∥∥2−
∥∥ei−1

p,l

∥∥2
+
∥∥ei

p,l− ei−1
p,l

∥∥2
]
,

yields

Ll

2

[∥∥ei
p,l

∥∥2−
∥∥ei−1

p,l

∥∥2
+
∥∥ei

p,l− ei−1
p,l

∥∥2
]
+
〈
Sl(pn

l )−Sl(pn,i−1
l ),ei−1

p,l

〉︸ ︷︷ ︸
=:I1

+τλ
〈
ei

p,l ,e
i
p,l
〉

Γ

=
〈
Sl(pn

l )−Sl(pn,i−1
l ),ei−1

p,l − ei
p,l
〉︸ ︷︷ ︸

=:I2

−τ
〈
ei

g,l ,e
i
p,l
〉

Γ

− τ

〈(
kl
(
Sl(pn

l )
)
− kl

(
Sl(pn,i−1

l )
))

∇∇∇
(

pn
l + z

)
,∇∇∇ei

p,l

〉
︸ ︷︷ ︸

=:I3

− τ

〈
kl
(
Sl(pn,i−1

l )
)
∇∇∇ei

p,l ,∇∇∇ei
p,l

〉
.︸ ︷︷ ︸

=:I4

(36)

We estimate now the terms I1–I4 in (36) one by one. By Assumption 1c), for I1 we have

1
LSl

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2 ≤

〈
Sl(pn

l )−Sl(pn,i−1
l ),ei−1

p,l

〉
. (37)

12



I2 is estimated by

∣∣I2
∣∣= ∣∣∣〈Sl(pn

l )−Sl(pn,i−1
l ),ei−1

p,l − ei
p,l

〉∣∣∣
≤ Ll

2

∥∥ei−1
p,l − ei

p,l

∥∥2
+

1
2Ll

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2
. (38)

For an εl > 0 to be chosen below we use Young’s inequality to deal with I3, which can be estimated by

∣∣I3
∣∣= ∣∣∣τ〈(kl

(
Sl(pn

l )
)
− kl

(
Sl(pn,i−1

l )
))

∇∇∇
(

pn
l + z

)
,∇∇∇ei

p,l

〉∣∣∣
≤ τ
∥∥(kl

(
Sl(pn

l )
)
− kl

(
Sl(pn,i−1

l )
))

∇∇∇
(

pn
l + z

)∥∥∥∥∇∇∇ei
p,l

∥∥
≤ τLkl M

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥∥∥∇∇∇ei

p,l

∥∥
≤ τLkl Mεl

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+ τ
Lkl M
4εl

∥∥∇∇∇ei
p,l

∥∥2
, (39)

where we used the Lipschitz continuity of kl and the assumption supl
∥∥∇∇∇
(

pn
l + z

)∥∥
L∞ < M. Finally, by

Assumption 1b) one has

τ

〈
kl
(
Sl(pn,i−1

l )
)
∇∇∇ei

p,l ,∇∇∇ei
p,l

〉
≥ τm

∥∥∇∇∇ei
p,l

∥∥2 (40)

for I4. Using the estimates (37)–(40), (36) becomes

Ll

2

[∥∥ei
p,l

∥∥2−
∥∥ei−1

p,l

∥∥2
]
+

1
LSl

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+ τλ
〈
ei

p,l ,e
i
p,l
〉

Γ
+ τ
〈
ei

g,l ,e
i
p,l
〉

Γ

≤
(

1
2Ll

+ τLkl Mεl

)∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+ τ

(
Lkl M
4εl
−m

)∥∥∇∇∇ei
p,l

∥∥2
. (36’)

In order to deal with the interface term τ
〈
ei

g,l ,e
i
p,l

〉
Γ

recall, that
〈
·, ·
〉

Γ
denotes the dual pairing of H1/2

00 (Γ)′

and H1/2
00 (Γ) and the H1/2

00 (Γ)-norm simultaneously. Subtracting (28) from (30), i.e. ei
g,l =−2λei−1

p,3−l−

ei−1
g,3−l , we get

∥∥ei
p,l

∥∥2
Γ
=

1
4λ 2

(∥∥ei+1
g,3−l

∥∥2
Γ
−
∥∥ei

g,l

∥∥2
Γ
−4λ

〈
ei

p,l ,e
i
g,l
〉

Γ

)
. (41)

With b ∈ {p,g} we let ei
b := (ei

b,1,e
i
b,2) ∈ V1×V2 and ‖ei

b‖2 :=
∑2

l=1‖ei
b,l‖2. Similarly, on Γ we let〈

ei
b,e

i
b

〉
Γ

:=
∑2

l=1
〈
ei

b,l ,e
i
b,l

〉
Γ

and correspondingly ‖ei
b‖2

Γ
=
∑2

l=1‖ei
b,l‖2

Γ
. Summing in (41) over l = 1,2

gets

‖ei
p‖2

Γ =
1

4λ 2

(
‖ei+1

g ‖2
Γ−‖ei

g‖2
Γ−4λ

〈
ei

p,e
i
g
〉

Γ

)
. (42)
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Doing the same for (36’) and inserting (42), leaves us with

Ll

2

[∥∥ei
p
∥∥2−

∥∥ei−1
p
∥∥2
]
+

2∑
l=1

1
LSl

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+
τ

4λ

(
‖ei+1

g ‖2
Γ−‖ei

g‖2
Γ

)
+ τ

2∑
l=1

(
m−

Lkl M
4εl

)∥∥∇∇∇ei
p,l

∥∥2

≤
2∑

l=1

(
1

2Ll
+ τLkl Mεl

)∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2
. (43)

Now, summing for the iteration index i = 1, . . . ,r and noticing the telescopic property of the sums one

gets

r∑
i=1

2∑
l=1

( 1
LSl

− 1
2Ll
− τLkl Mεl

)∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2

+ τ

r∑
i=1

2∑
l=1

(
m−

Lkl M
4εl

)∥∥∇∇∇ei
p,l

∥∥2

≤ Ll

2

[∥∥e0
p
∥∥2−

∥∥er
p
∥∥2
]
+

τ

4λ

(
‖e1

g‖2
Γ−‖er+1

g ‖2
Γ

)
. (44)

Now we choose εl =
Lkl

M
2m , hence m− Lkl

M
4εl

= m
2 > 0 for both l. Recalling the restriction on Ll , 1

LSl
− 1

2Ll
> 0,

as well as that by the time step restriction 1
LSl
− 1

2Ll
− τ

L2
kl

M2

2m > 0 for l = 1,2, the estimates

r∑
i=1

2∑
l=1

(
1

LSl

− 1
2Ll
− τ

L2
kl

M2

2m

)∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥2 ≤ Ll

2

∥∥e0
p
∥∥2

+
τ

4λ
‖e1

g‖2
Γ, (45)

τ

r∑
i=1

m
2

∥∥∇∇∇ei
p
∥∥2 ≤ Ll

2

∥∥e0
p
∥∥2

+
τ

4λ
‖e1

g‖2
Γ (46)

follow for any r ∈ N. Since the right hand sides are independent of r, we conclude that the series on the

left are absolutely convergent and therefore
∥∥Sl(pn

l )−Sl(pn,i−1
l )

∥∥,
∥∥∇∇∇ei

p,l

∥∥→ 0 as i→∞. Moreover, (46)

implies
∥∥ei

p,l

∥∥→ 0 (i→ ∞) as well, by the Poincaré inequality.

To show that ei
g,l → 0 in V ′l we subtract again (27) from (29) and consider test functions ϕl ∈C∞

0 (Ωl)

to get

−τ

〈
FFFn

l −FFFn,i
l ,∇∇∇ϕl

〉
=−Ll

〈
ei

p,l ,ϕl
〉
+Ll

〈
ei−1

p,l ,ϕl
〉
−
〈
Sl(pn

l )−Sl(pn,i−1
l ),ϕl

〉
. (47)

Thus, ∇∇∇·
(

FFFn
l −FFFn,i

l

)
exists in L2 and

−τ ∇∇∇·
(

FFFn
l −FFFn,i

l

)
= Ll

(
ei

p,l− ei−1
p,l

)
+Sl(pn

l )−Sl(pn,i−1
l ) (48)
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almost everywhere. Therefore, for any ϕl ∈ Vl one has∣∣∣〈∇∇∇·
(
FFFn

l −FFFn,i
l

)
,ϕl

〉∣∣∣≤ Ll

τ

∥∥ei
p,l− ei−1

p,l

∥∥∥∥ϕl
∥∥+ 1

τ

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥∥∥ϕl

∥∥. (49)

Abbreviating the left hand side of (49) as
∣∣Ψn,i

l

(
ϕl
)∣∣, (49) means

sup
ϕl∈Vl
ϕl 6=0

∣∣Ψn,i
l

(
ϕl
)∣∣

‖ϕl‖H1(Ωl)

≤ Ll

τ

∥∥ei
p,l− ei−1

p,l

∥∥
+

1
τ

∥∥Sl(pn
l )−Sl(pn,i−1

l )
∥∥−→ 0 (i→ ∞) (50)

as a consequence of (46). In other words
∥∥Ψ

n,i
l

∥∥
V ′l
→ 0 as i→ ∞. Starting again from (35) (without the

added zero term), this time however inserting ϕl ∈ Vl , integrating by parts and keeping in mind (48) one

gets 〈
ei

g,l ,ϕl
〉

Γ
=−λ

〈
ei

p,l ,ϕl
〉

Γ
+
〈[

FFFn
l −FFFn,i

l

]
·nnnlll ,ϕl

〉
Γ

. (51)

We already know that
∥∥ei

p,l

∥∥
Vl
→ 0 as i→∞ so by the continuity of the trace operator the first term on the

right vanishes in the limit. For the last summand in (51) we use the integration by parts formula to obtain〈[
FFFn

l −FFFn,i
l

]
·nnnlll ,ϕl |Γ

〉
Γ

= Ψ
n,i
l (ϕl)+

〈
FFFn

l −FFFn,i
l ,∇∇∇ϕl

〉
. (52)

While the first term on the right approaches 0, the second can be estimated by∣∣∣〈kl
(
Sl(pn

l )
)
∇∇∇
(

pn
l + z

)
− kl

(
Sl(pn,i−1

l )
)
∇∇∇
(

pn,i
l + z

)
,∇∇∇ϕl

〉∣∣∣
≤ Lkl M

∥∥S
(

pn
l
)
−S
(

pn,i−1
l

)∥∥∥∥ϕl
∥∥

H1(Ωl)
+
∥∥∇∇∇ei

p,l

∥∥∥∥ϕl
∥∥

H1(Ωl)
, (53)

where we used the same reasoning as in (39). With this we let i→ ∞ in (52) to obtain

sup
ϕl∈Vl
‖ϕl‖Vl

=1

∣∣∣〈[FFFn
l −FFFn,i

l

]
·nnnlll ,ϕl

〉
Γ

∣∣∣≤ ∥∥Ψ
n,i
l

∥∥
V ′l

+Lkl M
∥∥S
(

pn
l
)
−S
(

pn,i−1
l

)∥∥+∥∥∇∇∇ei
p,l

∥∥−→ 0. (54)

Finally, using the above and letting i→ ∞ in (51) gives

sup
ϕl∈Vl
ϕl 6=0

∣∣〈ei
g,l ,ϕl

〉
Γ

∣∣
‖ϕl‖H1(Ωl)

−→ 0.

This shows ei
g,l → 0 in V ′l for both l and concludes the proof.

Remark 10. Note that Theorem 4 states that if a solution to the semi-discrete coupled problem exists,

then it is the limit of the iteration scheme. Since in the convergence proof we use the existence of a

solution to Problem 1, the argument cannot be used to prove existence. The difficulty lies in the fact that

the nonlinearities encountered in the diffusion terms are space dependent and may be discontinuous with

respect to x at the interface.
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4. Numerical Experiments

This section is devoted to numerical experiments and the implementation of the proposed domain

decomposition L-scheme. As our formulation and analysis did not specialise to a particular spatial

discretisation, the numerical implementation of the LDD scheme can in principal be done with finite

difference, finite elements as well as finite volume schemes. Since mass conservation is an essential

feature of porous media flow models, we adopted a cell-centred two point flux approximation variant of a

finite volume scheme to reflect this on the numerical level. The domain Ω is assumed to be rectangular

and a rectangular uniform mesh was used.

Remark 11 (different decoupling formulations revisited). We saw in Remark 2 that another decou-

pling formulation is possible. In fact, this can be taken a step further. Equations (11), (12) as well as

(11’), (12’) can be embedded into a combined formulation. For some 0 < η < 1 and M > 0, consider the

generalised decoupling

FFFn,i
l ·nnnlll = M

[
(1−η)gi

l +η pn,i
l

]
, (11’’)

(1−η)gi
l =−2η pn,i−1

3−l − (1−η)gi−1
3−l . (12’’)

Observe that the λ -formulation (11), (12), as well as the convex-combination formulation (11’), (12’), are

special cases of this general formulation: In particular, M = (1−η)−1 and λ = η(1−η)−1 recovers the

λ -formulation, M = 1 and η = λ yields the convex-combination formulation. Although (11’’) and (12’’)

might give even greater parametric control over the numerics, in this paper we adhere to the λ -formulation

because of its simplicity. Fig. 9 and Fig. 10 show the influence of λ and η in both formulations.

We start by considering an analytically solvable example. The LDD scheme is tested against other

frequently used schemes that do not use a domain decomposition. All of them are defined on the entire

domain and the continuity of normal flux and pressure over Γ is maintained implicitly. The first scheme

to be compared is a finite volume implementation of the original L-scheme on the whole domain (see

[16, 31, 33]), henceforth referred to as LFV scheme. Comparison is also drawn to the modified Picard

scheme, (which performs better than the Picard method, see [26]), which is given by

S′l
(

pn,i−1
l

)(
pn,i

l − pn,i−1
l

)
+ τ∇∇∇ ·FFFn,i

l = τ fl−
(

Sl
(

pn,i−1
l

)
−Sl

(
pn−1

l

))
on Ωl , (55)

q
FFFn,i

l ·nnn111
y
= 0 on Γ. (56)
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Here, the brackets J·K denote the jump over the interface. Finally, a comparison with the quadratically

convergent Newton scheme is made. Writing δ pi
l = pn,i

l − pn,i−1
l , it reads as follows:

S′l
(

pn,i−1
l

)
δ pi

l− τ∇∇∇ ·
[
kl
(
Sl(pn,i−1

l )
)
∇∇∇δ pi

l + k′l
(
Sl(pn,i−1

l )
)
S′l
(

pn,i−1
l

)
δ pi

l∇∇∇
(

pn,i
l + z

)]
= τ fl−

(
Sl
(

pn,i−1
l

)
−Sl

(
pn−1

l

))
− τ∇∇∇ ·

(
kl
(
Sl(pn,i−1

l )
)
∇∇∇
(

pn,i−1
l + z

))
on Ωl (57)

r
kl
(
Sl(pn,i−1

l )
)
∇∇∇δ pi

l ·nnn111

z
+

r
kl
(
Sl(pn,i−1

l )
)′

δ pi
l∇∇∇
(

pn,i−1
l + z

)
·nnn111

z

=−
r

kl
(
Sl(pn,i−1

l )
)
∇∇∇
(

pn,i−1
l + z

)
·nnn111

z
on Γ. (58)

We refer to [33] for a recent study on linearisations for Richards equation.

4.1. Results for a case with known exact solution

To demonstrate the robustness of the proposed scheme, we solve (2)–(5) with both Dirichlet and

Neumann type boundary conditions. In the first case we disregard gravity. Specifically, we consider

Ω1 = (−1,0)× (0,1), Ω2 = (0,1)× (0,1), and Γ = {0}× [0,1]. (59)

The relative permeabilities are k1(S1) = S2
1 on Ω1, k2(S2) = S3

2 on Ω2 and the saturations

Sl(p) =


1

(1−p)
1

l+1
for p < 0,

1 for p≥ 0
, l = 1,2. (60)

The boundaries and right hand sides are chosen to make the exact solution

p1(x,y, t) = 1− (1+ t2)(1+ x2 + y2), t > 0, (x,y) ∈Ω1,

p2(x,y, t) = 1− (1+ t2)(1+ y2), t > 0, (x,y) ∈Ω2,

and this corresponds to the right hand sides

f1(x,y, t) =
4

(1+ x2 + y2)2 −
t√

(1+ t2)3(1+ x2 + y2)
,

f2(x,y, t) =
2(1− y2)

(1+ y2)2 −
2t

3 3
√
(1+ t2)4(1+ y2)

,

for t > 0, and (x,y) ∈Ωl respectively. The boundary and initial conditions are summed up in Table 1. All

linear systems were solved using a restarted generalised minimum residual method (GMRES) and the

ILU[0] preconditioner has been used for all computations, [59]1.

To boost up speed, a sparse triplet format has been used in the matrix computation. The programs are

implemented in ANSI C. The role of the different schemes in the numerical approach is explained in Fig.

2.

1see also the project’s website http://people.sc.fsu.edu/~jburkardt/cpp_src/mgmres/mgmres.html
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BC Ω1 Ω2

t = 0 p1(x,y,0) =−(x2 + y2) p2(x,y,0) =−y2

y = 0 ∂y p1 = 0 ∂y p2 = 0

y = 1 k1
(
S1(p1)

)
∂y p1 =

2
2+x2 k2

(
S2(p2)

)
∂y p2 = 1

x =−1 p1(−1,y, t) = 1− (1+ t2)(2+ y2)

x = 1 p2(1,y, t) = 1− (1+ t2)(1+ y2)

Table 1: Initial and boundary conditions for the example with exact solution.

Figure 2: Sketch presenting the different schemes compared in this section. The chart starts with an already computed solution at

time step tn−1 and depicts an iteration step for computing the solution at the time step tn. The node solver iteration i marks

the beginning of one solution step of the solver of the nonlinear problem. Every path between the node solver iteration i

and the node linear solver GMRES represents one of the schemes used. All schemes lead to a linear algebraic system, which

is solved by the GMRES solver. Throughout the rest of the article, we refer to the grey block as inner iteration.
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For the implementation we took the same Ll in both sub-domains, i.e. L := L1 = L2. The results

are shown in Figures 3 and 4a. For ∆x = 10−2, τ = 2 · 10−4 as well as parameters L = 0.25 and

λ = 4, the maximum relative error between numerical and analytical solution was less than 0.03%,

i.e.
∥∥ pn

exact−pn,i

pn

∥∥
L∞(Ω)

< 0.0003. This is illustrated in Fig. 3, where the difference pn,i− pn
exact is shown.

Observe, that the pressure continuity is met and the error is largest at the boundary. The relative errors

of the LDD, LFV and Newton schemes at the mid-line y = 0.5 are plotted in Fig. 4a. The LDD scheme

preserves the flux continuity and pressure continuity at the interface at every time step without having to

solve for the entire domain. We test this theory numerically. Fig. 4b shows how different kinds of errors

behave within one time step. The errors ‖pn,i− pn,i−1‖L2(Ω), ‖pn,i− pn,i−1‖L∞(Ω) defined on the domain

Ω, as well as
∥∥qpn,i

y∥∥
L2(Γ)

and
∥∥qFFFn,i

lll ·nnnlll
y∥∥

L2(Γ)
defined on the interface Γ, are shown. We observe that

the flux and pressure jump tend to zero which implies that flux and pressure continuity is achieved. Note

that the flux at x = 0 from the exact solution is 0.

Figure 3: Difference function pn,i − pn
exact over the computational do-

main.

Next, we compare the LDD scheme with

other schemes and study their dependence on

discretisation parameters. We compare the

Newton scheme, the modified Picard itera-

tion (called from now on simply the Picard

scheme), the already mentioned LFV scheme

and the LDD scheme, investigating the de-

pendence of time step refinement and space

grid refinement separately. For any of the

schemes discussed in what follows, we refer

to the iterations defining the nonlinear solver

as inner iterations. For the LDD scheme, this

means solving Problem 2 and similarly for

the LFV and the Picard scheme. For the New-

ton scheme, it means one step of the Newton iteration, see the grey block in Fig. 2.

The first study, shown in Fig. 5, plots log10
(
‖pn,i− pn,i−1‖L2(Ω)

)
for all schemes, at the fixed time

step corresponding to t = 0.2. As expected, Newton is the fastest and shows a quadratic convergence

rate. However, this behaviour may change once the mesh is further refined. Observe in Figure 5 that the

convergence behaviour, though still quadratic, depreciates for the finest mesh. The convergence rate of

the Picard iteration is linear, faster than both the L-schemes and is stable with respect to variation in mesh

size.
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(a) Comparison between the numerical solutions pro-

vided by the LDD, LFV and the Newton schemes. Plot-

ted are the relative errors
∥∥ pexact−pnum

pexact

∥∥ as functions of

x, for y = 0.5 and t = 1.

(b) Different errors vs inner iterations for the case with

exact solution. Here t = 0.2, L = 0.25 and λ = 4.

Figure 4: Comparison of schemes and illustration of convergence for the analytically solvable case.

∆x Newton Picard LFV LDD

0.1 - 0.0504 0.4046 0.4400

0.05 - 0.0504 0.3906 0.4270

0.02 - 0.0505 0.3909 0.4221

0.01 0.0113 0.0567 0.3910 0.4221

Type Quadratic Linear Linear Linear

Table 2: The average convergence rate, ‖en,i+1‖/‖en,i‖, for the

different schemes and with respect to the mesh-size.

Both L-schemes exhibit linear convergence as

well, albeit slower than Picard, and the conver-

gence speed does not vary much with the mesh

size. This is in accordance with the restriction (21)

not involving spatial discretisation parameters. A

similar restriction holds for the monolithic scheme,

see [33]. LFV and LDD schemes have practically

the same convergence rate. Table 2 complements

the plot in Fig. 5 and lists experimental average

convergence rates, defined as ‖en,i+1
p ‖/‖en,i

p ‖, for

all schemes (Newton data is not shown for ∆x = 0.1, 0.05, 0.02 as it reaches an error lower than 10−10 in

3 iterations).

Secondly, we study the dependence of the convergence rates on time step size for a fixed mesh size

(∆x = 0.02). The error characteristics of all four schemes in Fig. 6 are shown for t = 0.5. In Fig. 6a

both, Newton and Picard, diverge, whereas both L-schemes converge for L = 0.25. The LFV scheme,

however, exhibits some oscillations, which are due to the dependence of the choice of L on the time step.
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Figure 5: Performance comparison and mesh study for the convergence of the LDD, LFV, Picard and Newton schemes. Here

L = 0.25 and λ = 4.

The convergence of both L-schemes is guaranteed under (mild) restrictions, involving L, the time step as

well as the Poincaré constant of the domain(s). In the experiment reported in Fig. 6a, τ = 0.5 is quite

large and so the choice of L = 0.25 in the LFV scheme is inappropriate for this time step, resulting in

oscillations and a very slow convergence. Indeed, observe that LFV becomes convergent if either the L

parameter is enlarged (the LFV* results) or the time step is being decreased (Fig. 6b and Fig. 6c), which

sustains the above interpretation. Note, that the LDD scheme converges for all τ and is at least as fast as

the LFV scheme in all the cases. For smaller values of τ the Newton and Picard iteration converge faster

than both L-schemes, as shown in Figures 6b and 6c. According to the theory, the convergence of the

Newton and Picard schemes is only guaranteed if the initial guess is close enough to the exact solution.

Therefore, starting the iteration with the numerical solution at the previous time step this suggests that the

time step should be taken small enough to have a guaranteed convergence (see [24, 30, 33]. Contrariwise,

L-schemes are free of this constraint.

To illustrate this behaviour, we have investigated the convergence of the schemes for a constant initial

guess. Specifically, pn,0 =−5 has been used instead of pn,0 = pn−1. In this case, the Newton and Picard

schemes are divergent whereas both L-schemes still produce a good approximation after several iterations.

This is displayed in Fig. 6d. A similar behaviour will be observed again while discussing a numerical
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example with realistic parameters.

Remark 12. The convergence behaviour of the LDD scheme can be optimised by choosing λ properly.

In the above comparison λ was chosen differently for every choice of mesh size. The optimality of λ is

dependent on the mesh and the time step size. With a good choice of λ , one can make the LDD scheme at

least as fast as the LFV scheme. This is discussed in more detail in Section 4.3.

(a) τ = 0.1 (b) τ = 0.01

(c) τ = 0.001 (d) Error decay for the different schemes for a constant

initial guess, pn,0 =−5. Here L = 0.25, λ = 4.

Figure 6: Convergence study for the time steps τ = 0.1, 0.01, 0.001. Here, L = 0.25 for the LFV scheme and L = 0.5 for the LFV*

scheme. For the LDD scheme one has L = 0.25, λ = 2 in case 6a, L = 0.25, λ = 4 in case 6b, and L = 0.25, λ = 10 in case 6c.
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4.1.1. Results for a realistic case with van Genuchten parameters

We demonstrate the applicability of the LDD scheme for a case with realistic parameters, incorporating

also gravity effects. We consider a van-Genuchten-Mualem parametrisation [60] with the curves k and S

Sl(p) = Sl,r +(Sl,s−Sl,r)Φl(p),

Φl(p) =
1(

1+(−αl p)n̂l
)ml

, ml = 1− 1
n̂l
,

kl(S) =
√

Φl(p)
(

1−
(
1−Φl(p)

1
ml
)ml
)2

.

(61)

The specific parameter values are listed in Table 3 and are characteristic for particular types of materials,

silt loam G.E. 3 (Ω1) and sandstone (Ω2). These materials have very different absolute permeabilities

K1,K2, which makes the numerical calculations more challenging.

The dimensional governing equations and boundary conditions become (l = 1,2)

Ll pn,i
l + τ∇ ·FFFn,i

l = Ll pn,i−1
` −φl

(
Sl(pn,i−1

l )−Sl(pn−1
l )

)
, on Ωl , (62)

FFFn,i
l ·nnnlll = gi

l +2λ pn,i
l , on Γ, (63)

pn,i
l = 0 on ∂Ωl . (64)

In this case FFFn,i
l =−Kl

µ
kr,l
(
Sl(pn,i−1

l )
)(

∇∇∇pn,i
l −ρggg

)
. Here ggg = geeexxx is the gravitational acceleration aligned

with the positive x-direction, ρ , µ are the density and the viscosity of the fluid and Kl , φl are the abso-

lute permeability as well as the porosity of the medium. The problem is nondimensionalised by using

Parameter Unit Silt Loam G.E. 3 (Ω1) Sandstone (Ω2)

Porosity (φl) - 0.35 0.35

Water Density (ρ) kg m−3 1×103 1×103

Water Viscosity (µ) Pa·s 1×10−3 1×10−3

Absolute permeability (Kl) m2 5.7407×10−14 1.2500×10−12

Retention exponent (n̂l) - 2.06 10.4

Retention parameter (αl) Pa−1 4.23×10−5 7.90×10−5

Irreducible water saturation (Sl,r) - 0.131 0.153

Irreducible air saturation (1−Sl,s) - 0.604 0.75

Table 3: The van Genuchten-Mualem parameters in the realistic test case.

the characteristic pressure p∗ := −14.8×103Pa, length 1.48m and time t̃∗ = 41.440s. This leads to the

nondimensional quantities p̃ := p
p∗ , (x,y) and t := t̃

t̃∗ , where t̃ denotes the physical time. After nondimen-

sionalisation, the domain used is again taken to be Ω1 = (−1,0)× (0,1), Ω2 = (0,1)× (0,1). The initial
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condition used is

p̃(x,y,0) =−1 (65)

and boundary conditions are

p̃(−1,y, t) =

−1+ ty if y < (1− ε)t−1

−ε if y≥ (1− ε)t−1
,

p̃(1,y, t) =−1,

together with a no-flow condition at y = 0,1. We take ε > 0 to avoid degeneracy.

(a) Different errors vs inner iterations for the realistic

case at t = 0.2. The parameters are τ = 0.01, ∆x = 0.02,

Ll = 0.25 and λ = 10. Only the LDD scheme is shown

in this plot.

(b) Error vs inner iterations for the realistic case. LDD ,

LFV and Newton errors are plotted at t = 0.2. Newton∗

denotes the errors of Newton scheme at t = 0.9. Picard

is plotted at t = 0.02. Here, L = 0.5, λ = 10.

Figure 7: Error plots and scheme comparison for the realistic case.

Fig. 7a shows the different errors for this case and it can be seen that all the errors are decreasing

for the LDD scheme. Errors at the interface and inside the domain tend to 0, the convergence is slower

compared to the case with exact solution, however. This is due to the large variance of the parameters as

well as the highly nonlinear nature of the associated functions. Because of this, both Newton and Picard

schemes diverge. The behaviour of different schemes for the same set of parameters is shown in Fig.

7b. Observe that for the Newton scheme the starting error as well as the number of iterations required

increases steadily with t until t = 0.94, at which point the errors start diverging. The Picard scheme

becomes divergent even before t = 0.2. In contrast, both L-schemes remain stable in this case.
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4.2. Time Performance

This section is devoted to the comparison of time performance of the schemes. We have seen that

L-schemes are more stable than Newton and Picard. But if they are converging, then Newton and Picard

schemes converge faster than the L-schemes. Below we investigate how the schemes compare to one

another with respect to actual computational time. We set an error tolerance for the schemes that stops the

iterations within one time step, after reaching an error lower than 10−6, i.e. ‖pn,i− pn,i−1‖L2(Ω) < 10−6.

This is to ensure that we get comparative CPU-clock-time for different schemes for the same degree of

accuracy.

Figure 8: Time performance of the LDD, L-FV and the Newton-

FV schemes.

We computed the exactly solvable case on a

LINUX server (mammoth.win.tue.nl) for all four

schemes using the same set of parameters (∆x =

0.02, τ = 0.001, L = 0.25 and λ = 10). Figure 8

illustrates the time-performances of these schemes

over the whole computational time domain. No

parallelisation has been implemented in this study,

except for the the solid line in Fig. 8, where each

domain in the LDD scheme has been calculated

on a different processor. Table 4 shows how many

inner iterations are required on average for differ-

ent schemes to reach the error criterion at different

points in time. The number of iterations per time

step increases for all schemes as the boundary conditions change more rapidly with time. Table 4 shows

the average number of inner iterations needed by the schemes to reach the required error accuracy as well

as the average time per inner iteration. Additionally, the last row of Table 4 shows how many GMRES

iterations were required by each scheme to execute one inner iteration.

Unsurprisingly, excluding the parallel version of LDD, the Newton scheme is the fastest, followed by

the Picard and the LDD scheme. However, the latter competes closely with the Newton and the Picard

schemes. Even more surprising is the fact that the LFV scheme takes considerably more time to reach

the desired accuracy compared to the LDD scheme, despite both having almost the same convergence

rate. The reason becomes apparent from Table 4: The LDD scheme requires much less time per inner

iteration than all other schemes. The LFV scheme has the second fastest average time per iteration. For

the Picard iteration, the derivative of the saturation function needs to be evaluated which in turn costs more

time than an iteration in the LFV scheme. The Newton scheme is computationally most expensive per
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iteration because it calculates the Jacobian at every iteration. The schemes that do not decouple the domain

Average inner iterations required

Time-step/Scheme LDD (parallel) LFV Picard Newton

10 7.3 7.5 2.3 2.3

50 9.880 10.72 2.520 2.060

100 11.26 12.31 2.760 2.030

500 11.19 11.79 2.952 2.006

1000 14.18 14.35 2.946 2.408

Avg. time per iter. 0.1965 0.5392 0.6591 0.6722

Avg. GMRES iterations 119 + 123 396.6 390.9 397.7

Table 4: The average number of inner iterations per time step required by the different schemes to reach the stopping criterion

‖pn,i − pn,i−1‖L2(Ω) < 10−6. The last two rows give the average time and the average number of GMRES-iterations per inner

iteration. Observe that for the LDD scheme the two numbers given in the last row reflect average numbers per subdomain.

require much more time and many more GMRES-iterations per inner iteration. The reason is that the

domain decomposition schemes involve smaller matrices and they have smaller condition numbers. This is

illustrated by the last row of Table 4. The LDD scheme requires on average 119 GMRES-iterations on Ω1

and 123 GMRES-iterations on Ω2 and both domains have 52×50 elements. Compare this with Newton,

which takes almost 400 GMRES-iterations and deals with 104×50 variables on each GMRES-iteration.

Condition number

∆x 0.1 0.05 0.02

LDD (Ω1) 7.6191 11.8947 73.362

LDD (Ω2) 7.0219 12.3557 74.519

LFV (Ω) 94.8158 171.47 397.34

Table 5: The condition number vs mesh size for the LDD and

LFV schemes. Here, τ = 0.001, t = 0.2, L = 0.25, λ = 10. The

condition numbers are calculated for the 200th time step for the

matrices of the first inner iteration.

This explains why the LDD scheme takes so much

less time per inner iteration. Table 5 compares the

condition numbers of the LDD and the LFV scheme.

It shows that the matrices for the LFV scheme are

worse conditioned than the ones of the LDD scheme.

The latter has two condition numbers, one for each

domain. The 2-norm condition numbers were cal-

culated with MATLAB’s build in cond() function.

Finally, the solid line plots the computational

time of the LDD scheme which has been paral-

lelised using OpenMP. The two different domains are run on two different processors and a speedup

ratio of 1.79 is obtained. This makes the scheme actually slightly faster than the Newton scheme. Ob-

serve that the average number of required inner iterations and GMRES-iterations of the parallelised LDD

scheme is the same as for the LDD scheme without parallelisation.
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Remark 13. The fact that the LDD scheme performance competes closely with Newton and Picard,

even without distributing the calculation on the subdomains to different processors, along with its global

convergence property and robustness is a key advantage of the LDD scheme. Parallelisation helps even

further, as this study suggests, although of course for the other schemes the linear algebraic solver can

also be parallelised, which can lead to a further computational speedup. This is a general feature of all

schemes, whereas an additional level of parallelisation is possible for the LDD scheme because of the

inherent decoupling of the subproblems.

4.3. Parameter dependence and key features

Having outlined the robustness and speed of the proposed LDD scheme we turn to investigate some

of its properties. Two important parameters have been introduced in the LDD scheme, i.e. Ll and λ ,

and apart from a lower bound on Ll nothing has been specified about these parameters. This means that

they can freely be adjusted to give optimal convergence rate. In fact, in this section we will see that the

convergence rate depends strongly on these parameters.

The influence of λ

(a) The decay of the pressure error in terms of λ . (b) The decay of the g-error in terms of λ .

Figure 9: The influence of λ on the convergence rate. The parameters for the LDD scheme are τ = 0.01, ∆x = 0.02, Ll = 0.25 at

t = 0.2.

Figure 9 shows the influence of the parameter λ on error characteristics. All the results shown are

for the case with exact solution. Figure 9a focuses on the errors ‖pn,i− pn,i−1‖L2(Ω) on the domain Ω,

while Fig. 9b depicts the L2-errors ‖gi− gi−1‖L2(Γ) on the interface for the same time step. Clearly, λ
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(a) The decay of the pressure error in terms of η . (b) The decay of the g-error in terms of η .

Figure 10: The influence of η on the convergence rate in the convex-combination formulation (M = 1 in Remark 2). The parameters

for the LDD scheme are τ = 0.01, ∆x = 0.02, Ll = 0.25 at t = 0.2.

has tremendous impact on the convergence rate. The convergence rate rapidly increases with λ at first

but after a certain point the convergence rate starts decreasing. This trend is noticeable in both plots of

Figure 9. This indicates that there is an optimal lambda λopt for which the whole scheme has a fastest

convergence rate. The optimality of λ is actually a well studied behaviour in the domain decomposition

literature. In [61, 50] it has been shown that λopt depends at least on mesh size and sub- domain size.

Later we will show that it also depends on Ll and τ in our case. This control over the convergence rate is

the reason why the λ -formulation was chosen over the convex-combination formulation given in Remark

2. To illustrate this, Fig. 10 shows the same plots as Figure 9 but for the convex-combination formulation.

In order to differentiate between plots more easily, we use the combined formulation (11’’), (12’’) and set

M = 1. For η = 0.01 the convex-combination formulation even fails to converge. In all other cases the

convergence is considerably slower.

The influence of Ll

We briefly give an overview over the influence of Ll on the convergence rate. Figure 11a depicts this

for L := L1 = L2. For L-schemes it is common to diverge if L is too small, which seems to be the case

for L = 0.1. On the other hand, the convergence rate decreases significantly for very large L, a behaviour

that is common to all L-schemes, see [10]. It is best to choose L as small as possible, yet great enough to

ensure convergence of the scheme. Note that Ll = 0 represents the original (nonmodified) Picard iteration

case and Figure 11a suggests that the original Picard scheme fails for these problems.
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The dependence of λopt on Ll , τ and ∆x

(a) The influence of L on the convergence rate, as ob-

tained for the inner iterations for the 50th time step.

(b) Convergence rate vs λ for L = 0.25 and L = 1. For

L = 0.25, λopt ≈ 4.

Figure 11: Influence of L on the convergence rate (11a) and optimality study for λopt (11b).

L λ = 0.1 λ = 1 λ = 10 λ = 100 λopt ∈

0.1 diverged diverged diverged diverged -

0.25 0.9020 0.6223 0.5480 0.7721 (1,10)

1 diverged 0.7675 0.7750 0.8138 (1,10)

5 diverged 0.8993 0.8718 0.8708 (10,100)

Table 6: The dependence of the convergence rates on λ and L: the geometric average of the contraction rates over the first 20

iterations and for different (L,λ ) pairs is given in the first columns, whereas the last gives the interval for λopt. Here, ∆x = 0.02,

τ = 0.01, t = 0.2.

In this section we investigate numerically how λopt depends on the choice of L, τ and ∆x. For a fixed

grid in time and space Table 6 lists convergence rates for different λ and L. With this table we can guess

the interval in which λopt lies. Within this estimated interval, Fig. 11b shows how the convergence rate

varies with λ for fixed L. For L = 0.25, ∆x = 0.02 and τ = 0.01 the fastest convergence is achieved for

λ = 4 (this is why λ = 4 was chosen for the above comparisons, wherever the specified L, ∆x, τ set was

used). The λ dependence for higher values of L is less pronounced.

For a fixed L, Tables 7a, 7b show the dependence of λopt on the time step and the mesh size respectively.

The second row of each table shows estimates of λopt based on a study like shown in Fig. 11b, such that
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τ 0.1 0.01 0.001

λopt ≈ 2 4 6

Avg. CR 0.4444 0.4221 0.5408

(a) Estimation of λopt for fixed ∆x = 0.02, Ll =

0.25 and varying τ . In this case λopt needs to be

adjusted to keep Avr. CR low.

∆x 0.1 0.05 0.02 0.01

λopt ≈ 3 4 4 4

Avg. CR 0.4398 0.4270 0.4221 0.4221

(b) Estimation of λopt for fixed τ = 0.01, Ll = 0.25 and varying

∆x. In this case no adjustment of λopt is needed to keep Avr.

CR low.

Table 7: Influence of λopt on the average convergence rates (Avg. CR) for varying τ and ∆x. λopt in each case is estimated, based

on an optimality study similar to the one shown in Fig. 11b.

the average convergence rates are minimal. The results indicate a quite strong correlation of λopt with the

time step size, contrasted by a rather minor correlation with the mesh size.

4.4. Multi domain and parallelisation study

Finally, we give an example where the LDD scheme is applied to four subdomains . For this purpose,

the numerical domain as well as the solution defined in the test case with exact solution is extended by

reflection of Ω along the y axis. With this extension, the four domains are

Ω1 = (−1,0)× (0,1), Ω2 = (0,1)× (0,1),

Ω3 = (0,1)× (−1,0), Ω4 = (−1,0)× (−1,0),

and interfaces are defined as in Remark 3. Now, Ω = ∪4
l=1Ωl . To prevent all the interfaces from having

zero flux, gravity is included which modifies the definition of one of the source terms such that it reads

f1(x,y, t) =
2(1− y2)

(1+ y2)2 −
2t

3 3
√

(1+ t2)4(1+ y2)
− 2x

(1+ t2)(1+ x2 + y2)2 in Ω1∪Ω4. (66)

All other functions and exact solutions defined in Section 4.1 remain essentially the same, the only

difference being that all definitions on Ω1 are extended to Ω1∪Ω4 and all definitions on Ω2 are extended

to Ω2∪Ω3. In line with the optimal choice of L and λ found for the two domain studies, we have kept

Ll := L = 0.25 and λl,r := λopt = 4 for the multi domain experiment and l ∈ {1,2,3,4}, r ∈ Il .

For this experiment, triangular unstructured meshes Th have been used on all domains, namely, we

used FVCA8 benchmark meshes in order to better resolve the solution at (sub)domain corners. Fig. 12

shows the results for h = 0.05, where h = sup{diam(T ),T ∈ Th}, τ = 0.01 and t = 1.0. Fig. 12a shows

the profile of p over Ω and it is a close match to the analytical solution, with the maximum relative error

being
∥∥ pn

exact−pn,i

pn

∥∥
L∞(Ω)

< 0.0311. This is of the order of the discretisation error. Clearly, the pressure

30



(a) Pressure profile on Ω for the parameters h = 0.05, τ =

0.01 and t = 1.0. The maximum relative error with respect

to the exact solution is 0.0311.

(b) Error characteristics of the same computation at

t = 0.2. Note, that errors on all subdomains are

summed up and shown.

Figure 12: Solution profile and error decay for the multi domain experiment.

continuity over all four interfaces is achieved. Fig. 12b shows the monotonic decay of all plotted errors,

i.e. error of pressure on Ω in L2 and L∞ as well as the L2(Γ) error of the g terms. The convergence rate

can be improved by an optimality study of L and λ but for the sake of brevity we do not perform this.

1 CPU 2 CPUs 4 CPUs

Time 753s 411s 207s

Speedup - 1.83 3.64

Table 8: Speedup for the parallelisation of the multi-

domain example on up to 4CPUs. The computation

was done on the four subdomains with Ll := 0.25, λl ,

r = 4, h = 0.05, τ = 0.001 until an accuracy of 10−6

was reached. Times are compared at t = 1.

To illustrate the possible speedup of the parallelisation

of the LDD scheme on multiple domains, we computed

the same problem as described above on one, two and four

processors. The results are shown in Table 8. For two and

four CPUs, the computations are 1.83 and 3.64 times faster

than on a single CPU, which shows that the computational

speeds scale almost perfectly with the number of CPUs. It

should however be mentioned that this is in the most opti-

mum case of perfect load balancing since all four domains

are of the same size.

5. Conclusion

We considered a nonlinear parabolic problem appearing as mathematical model for variably saturated

flow in porous media. For the numerical solution of the nonlinear, time discrete problems we proposed a
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combined scheme (LDD) that is based on a fixed point iteration (the L-scheme), and on a domain decom-

position scheme involving Robin type coupling conditions at the interface separating different subdomains.

The result is a scheme featuring the advantages of both approaches: a convergence, analytically proven

under mild restrictions on the time step and numerically found to be robust regardless of time step and

starting point. The decoupling of the time discrete problems into subproblems that the LDD scheme in-

herently offers, lends itself naturally to parallelisation, which speeds up the computation almost optimally.

The stability, robustness and efficiency of the method is tested for various cases and also compared to

Newton and Picard schemes. The tests include situations where the latter diverge whereas the proposed

scheme is converging. In summary, the key advantages of the method are:

• The LDD scheme converges under mild restrictions on the time step size, i.e. the restriction does

not depend on the space discretisation parameters. It can provide accurate results even in situations

where the Picard or Newton iterations fail.

• In conjunction with a suitable space discretisation, it provides a decoupled, mass conservative

approach. This is very useful in particular when dealing with models defined in media with block-

type heterogeneities, where the material properties in different blocks may vary significantly.

• Though linearly convergent, the computational time required by the LDD scheme for achieving

a certain accuracy of the approximation is comparable to the time needed by Newton and Picard

schemes, and much faster than a standard L-scheme applied to the model in the entire domain. This

efficiency is due to the fact that the scheme needs less time per inner iteration than a scheme defined

in the entire domain. Moreover LDD offers inherently a way of parallelisation due to the decoupling

of the subproblems, see Remark 13, which gives the possibility of increasing its efficiency even

further.

• The convergence rate of LDD schemes depends on the choice of L and λ . With the optimal choice

of parameters, the convergence order can be reduced significantly.
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[16] M. Slodička, A Robust and Efficient Linearization Scheme for Doubly Nonlinear and Degenerate

Parabolic Problems Arising in Flow in Porous Media, SIAM J. Sci. Comput. 23 (5) (2002) 1593–

1614.

[17] H. Berninger, R. Kornhuber, O. Sander, Fast and Robust Numerical Solution of the Richards Equation

in Homogeneous Soil, SIAM J. Numer. Anal. 49 (6) (2011) 2576–2597.

[18] P. Bastian, O. Ippisch, F. Rezanezhad, H. J. Vogel, K. Roth, Numerical Simulation and Experimental

Studies of Unsaturated Water Flow in Heterogeneous Systems, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007, pp. 579–597.

[19] Y. Epshteyn, B. Rivière, Analysis of hp discontinuous galerkin methods for incompressible two-

phase flow, J. Comput. Appl. Math. 225 (2) (2009) 487–509.

[20] R. Eymard, M. Gutnic, D. Hilhorst, The finite volume method for Richards equation, Comput.

Geosci. 3 (3) (1999) 259–294.

[21] R. Eymard, D. Hilhorst, M. Vohralík, A combined finite volume–nonconforming/mixed-hybrid finite

element scheme for degenerate parabolic problems, Numerische Mathematik 105 (1) (2006) 73–131.

[22] M. Bause, P. Knabner, Computation of variably saturated subsurface flow by adaptive mixed hybrid

finite element methods, Adv. Water Resour. 27 (6) (2004) 565 – 581.

[23] L. Bergamaschi, M. Putti, Mixed finite elements and Newton-type linearizations for the solution of

Richards’ equation, Int. J. Numer. Methods Eng. 45 (8) (1999) 1025–1046.

[24] E.-J. Park, Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J.

Numer. Anal. 32 (3) (1995) 865–885.

34

http://dx.doi.org/10.1002/fld.1787
http://dx.doi.org/10.1002/fld.1787
http://www.math.pitt.edu/~yotov/research/publications/eastwest97_TR.pdf
http://www.math.pitt.edu/~yotov/research/publications/eastwest97_TR.pdf
http://dx.doi.org/10.1137/S0036142996311040
http://dx.doi.org/10.1137/S0036142996311040
http://dx.doi.org/10.1137/S1064827500381860
http://dx.doi.org/10.1137/S1064827500381860
http://dx.doi.org/10.1137/100782887
http://dx.doi.org/10.1137/100782887
http://dx.doi.org/10.1007/978-3-540-28396-6_22
http://dx.doi.org/10.1007/978-3-540-28396-6_22
http://www.sciencedirect.com/science/article/pii/S0377042708004214
http://www.sciencedirect.com/science/article/pii/S0377042708004214
http://dx.doi.org/10.1023/A:1011547513583
http://dx.doi.org/10.1007/s00211-006-0036-z
http://dx.doi.org/10.1007/s00211-006-0036-z
http://www.sciencedirect.com/science/article/pii/S0309170804000600
http://www.sciencedirect.com/science/article/pii/S0309170804000600
http://dx.doi.org/10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G
http://dx.doi.org/10.1137/0732040


[25] K. Brenner, C. Cancès, Improving newton’s method performance by parametrization: The case of

the richards equation, SIAM Journal on Numerical Analysis 55 (4) (2017) 1760–1785.

[26] M. A. Celia, E. T. Bouloutas, R. L. Zarba, A General Mass-Conservative Numerical Solution for the

Unsaturated Flow Equation, Water Resour. Res. 26 (7) (1990) 1483–1496.

[27] P. Lott, H. Walker, C. Woodward, U. Yang, An accelerated Picard method for nonlinear systems

related to variably saturated flow, Adv. Water Resour. 38 (2012) 92 – 101.
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[29] J. Kačur, Solution to strongly nonlinear parabolic problems by a linear approximation scheme, IMA

Journal of Numerical Analysis 19 (1) (1999) 119–145.

[30] F. A. Radu, I. S. Pop, P. Knabner, Newton-Type Methods for the Mixed Finite Element Discretization

of Some Degenerate Parabolic Equations, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp.

1192–1200.

[31] I. S. Pop, F. A. Radu, P. Knabner, Mixed finite elements for the Richards’ equation: linearization

procedure, J. Comput. Appl. Math. 168 (1–2) (2004) 365–373.

[32] F. A. Radu, J. M. Nordbotten, I. S. Pop, K. Kumar, A robust linearization scheme for finite volume

based discretizations for simulation of two-phase flow in porous media, J. Comput. Appl. Math. 289

(2015) 134–141.

[33] F. List, F. A. Radu, A study on iterative methods for solving Richards’ equation, Comput. Geosci.

20 (2) (2016) 341–353.

[34] A. Quarteroni, A. Valli, Domain decomposition methods for partial differential equations, repr.

Edition, Numerical mathematics and scientific computation, Clarendon Press, Oxford [u.a.], 2005.

[35] V. Dolean, P. Jolivet, F. Nataf, An introduction to domain decomposition methods, Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015, algorithms, theory, and parallel

implementation.

[36] R. Glowinski, Q. V. Dinh, J. Periaux, Domain decomposition methods for nonlinear problems in

fluid dynamics, Comput. Methods Appl. Mech. Engrg. 40 (1) (1983) 27–109.

35

https://doi.org/10.1137/16M1083414
https://doi.org/10.1137/16M1083414
http://dx.doi.org/10.1029/90WR00196
http://dx.doi.org/10.1029/90WR00196
http://www.sciencedirect.com/science/article/pii/S0309170811002569
http://www.sciencedirect.com/science/article/pii/S0309170811002569
http://www.numdam.org/item?id=M2AN_1995__29_5_605_0
http://www.numdam.org/item?id=M2AN_1995__29_5_605_0
http://dx.doi.org/10.1093/imanum/19.1.119
https://doi.org/10.1007/978-3-540-34288-5_120
https://doi.org/10.1007/978-3-540-34288-5_120
http://www.sciencedirect.com/science/article/pii/S037704270301001X
http://www.sciencedirect.com/science/article/pii/S037704270301001X
http://www.sciencedirect.com/science/article/pii/S0377042715001387
http://www.sciencedirect.com/science/article/pii/S0377042715001387
http://dx.doi.org/10.1007/s10596-016-9566-3
http://dx.doi.org/10.1137/1.9781611974065.ch1
http://dx.doi.org/10.1016/0045-7825(83)90045-2
http://dx.doi.org/10.1016/0045-7825(83)90045-2


[37] M. Dryja, W. Hackbusch, On the nonlinear domain decomposition method, BIT 37 (2) (1997) 296–

311.

[38] X.-C. Tai, M. Espedal, Rate of convergence of some space decomposition methods for linear and

nonlinear problems, SIAM J. Numer. Anal. 35 (4) (1998) 1558–1570.

[39] J. O. Skogestad, E. Keilegavlen, J. M. Nordbotten, Domain decomposition strategies for nonlinear

flow problems in porous media, J. Comput. Phys. 234 (2013) 439–451.

[40] J. O. Skogestad, E. Keilegavlen, J. M. Nordbotten, Two-scale preconditioning for two-phase nonlin-

ear flows in porous media, Transp. Porous Media 114 (2) (2016) 485–503.

[41] M. J. Gander, O. Dubois, Optimized Schwarz methods for a diffusion problem with discontinuous

coefficient, Numer. Algorithms 69 (1) (2015) 109–144.

[42] M. J. Gander, L. Halpern, F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional

wave equation, SIAM J. Numer. Anal. 41 (5) (2003) 1643–1681.

[43] E. Ahmed, S. Ali Hassan, C. Japhet, M. Kern, M. Vohralik, A posteriori error estimates and stopping

criteria for space-time domain decomposition for two-phase flow between different rock types, Tech.

rep., HAL archives-uvertes.fr (2017).

[44] M. J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM

J. Sci. Comput. 29 (2) (2007) 556–578.

[45] M. J. Gander, C. Rohde, Overlapping Schwarz waveform relaxation for convection-dominated non-

linear conservation laws, SIAM J. Sci. Comput. 27 (2) (2005) 415–439.

[46] M. J. Gander, F. Kwok, B. C. Mandal, Dirichlet-Neumann and Neumann-Neumann waveform

relaxation algorithms for parabolic problems, Electron. Trans. Numer. Anal. 45 (2016) 424–456.

[47] H. Berninger, O. Sander, Substructuring of a Signorini-type problem and Robin’s method for the

Richards equation in heterogeneous soil, Computing and Visualization in Science 13 (5) (2010)

187–205.

[48] H. Berninger, R. Kornhuber, O. Sander, A multidomain discretization of the Richards equation in

layered soil, Comput. Geosci. 19 (1) (2015) 213–232.

[49] P.-L. Lions, On the Schwarz alternating method, in: R. Glowinski, G. H. Golub, G. A. Meurant, J. Pe-

riaux (Eds.), Proceedings of the 1st International Symposium on Domain Decomposition Methods

for Partial Differential Equations, SIAM, Philadelphia, 1988, pp. 1–42.

36

http://dx.doi.org/10.1007/BF02510214
http://dx.doi.org/10.1137/S0036142996297461
http://dx.doi.org/10.1137/S0036142996297461
http://www.sciencedirect.com/science/article/pii/S002199911200589X
http://www.sciencedirect.com/science/article/pii/S002199911200589X
http://dx.doi.org/10.1007/s11242-015-0587-5
http://dx.doi.org/10.1007/s11242-015-0587-5
http://dx.doi.org/10.1007/s11075-014-9884-2
http://dx.doi.org/10.1007/s11075-014-9884-2
https://www.unige.ch/~gander/Preprints/Wave1dPaper.pdf
https://www.unige.ch/~gander/Preprints/Wave1dPaper.pdf
https://hal.inria.fr/hal-01540956
https://hal.inria.fr/hal-01540956
http://dx.doi.org/10.1137/05064607X
http://dx.doi.org/10.1137/030601090
http://dx.doi.org/10.1137/030601090
https://www.unige.ch/~gander/Preprints/mandalb_mini_17.pdf
https://www.unige.ch/~gander/Preprints/mandalb_mini_17.pdf
http://dx.doi.org/10.1007/s00791-010-0141-5
http://dx.doi.org/10.1007/s00791-010-0141-5
http://dx.doi.org/10.1007/s10596-014-9461-8
http://dx.doi.org/10.1007/s10596-014-9461-8


[50] L. Qin, X. Xu, On a Parallel Robin-Type Nonoverlapping Domain Decomposition Method, SIAM J.

Numer. Anal. 44 (6) (2006) 2539–2558.

[51] T.-T.-P. Hoang, J. Jaffré, C. Japhet, M. Kern, J. E. Roberts, Space-time domain decomposition

methods for diffusion problems in mixed formulations, SIAM Journal on Numerical Analysis 51 (6)

(2013) 3532–3559.

[52] B. Schweizer, Regularization of outflow problems in unsaturated porous media with dry regions,

Journal of Differential Equations 237 (2) (2007) 278 – 306.

[53] J. Both, M. Borregales, J. Nordbotten, K. Kumar, F. Radu, Robust fixed stress splitting for biot’s

equations in heterogeneous media, Applied Mathematics Letters 68 (Supplement C) (2017) 101 –

108.

[54] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Vol. 15 of Springer Series in

Computational Mathematics, Springer, 1991.

[55] W. MacLean, Strongly elliptic systems and boundary integral equations, 1st Edition, Cambridge

University Press, Cambridge [u.a.], 2000.

[56] W. Jäger, N. Kutev, Discontinuous Solutions of the Nonlinear Transmission Problem for Quasilinear

Elliptic Equations, preprint 98-22 (SFB 359), Universitat Heidelberg. (June 1998).

[57] W. Jäger, L. Simon, On transmission problems for nonlinear parabolic differential equations, Ann.

Univ. Sci. Budapest 45 (2002) 143–168.

[58] X. Cao, I. Pop, Uniqueness of weak solutions for a pseudo-parabolic equation modeling two phase

flow in porous media, Appl. Math. Lett. 46 (2015) 25 – 30.

[59] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,

H. v. d. Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods,

1994.

[60] M. T. Van Genuchten, A closed form equation for predicting the hydraulic conductivity of unsaturated

soils, Soil. Sci. Soc. Am. J. 44 (1980) 892–898.

[61] Q. LiZhen, S. ZhongCi, X. XueJun, On the convergence rate of a parallel nonoverlapping domain

decomposition method, Science in China Series A: Mathematics 51 (8) (2008) 1461–1478.

37

http://dx.doi.org/10.1137/05063790X
https://doi.org/10.1137/130914401
https://doi.org/10.1137/130914401
http://www.sciencedirect.com/science/article/pii/S0022039607000940
http://www.sciencedirect.com/science/article/pii/S0893965917300034
http://www.sciencedirect.com/science/article/pii/S0893965917300034
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=009028341&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
http://www.sciencedirect.com/science/article/pii/S0893965915000488
http://www.sciencedirect.com/science/article/pii/S0893965915000488
http://dx.doi.org/10.1137/1.9781611971538
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
http://dx.doi.org/10.1007/s11425-008-0103-2
http://dx.doi.org/10.1007/s11425-008-0103-2

	Introduction
	Problem formulation and iterative scheme
	Problem formulation
	The LDD iterative scheme

	Analysis of the scheme.
	Intuitive justification of the L-scheme
	Convergence of the scheme

	Numerical Experiments
	Results for a case with known exact solution
	Results for a realistic case with van Genuchten parameters

	Time Performance
	Parameter dependence and key features
	Multi domain and parallelisation study

	Conclusion

