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locality-sensitive filters∗
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Abstract
To overcome the large memory requirement of classical lattice sieving algorithms for solving hard
lattice problems, Bai–Laarhoven–Stehlé [ANTS 2016] studied tuple lattice sieving, where tuples
instead of pairs of lattice vectors are combined to form shorter vectors. Herold–Kirshanova [PKC
2017] recently improved upon their results for arbitrary tuple sizes, for example showing that
a triple sieve can solve the shortest vector problem (SVP) in dimension d in time 20.3717d+o(d),
using a technique similar to locality-sensitive hashing for finding nearest neighbors.

In this work, we generalize the spherical locality-sensitive filters of Becker–Ducas–Gama–
Laarhoven [SODA 2016] to obtain space-time tradeoffs for near neighbor searching on dense
data sets, and we apply these techniques to tuple lattice sieving to obtain even better time
complexities. For instance, our triple sieve heuristically solves SVP in time 20.3588d+o(d). For
practical sieves based on Micciancio–Voulgaris’ GaussSieve [SODA 2010], this shows that a triple
sieve uses less space and less time than the current best near-linear space double sieve.

1998 ACM Subject Classification F.2 Analysis of algorithms and problem complexity

Keywords and phrases near neighbor searching, locality-sensitive hashing/filtering (LSH/LSF),
lattice algorithms, shortest vector problem (SVP), lattice sieving

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Lattice-based cryptography. Over the past few decades, lattice-based cryptography has
emerged as a strong candidate for constructing efficient cryptographic primitives [30, 31, 37].
Its security is based on the hardness of hard lattice problems such as the shortest vector
problem (SVP): given a description of a lattice, find a shortest non-zero lattice vector. To
accurately choose parameters for lattice-based cryptographic primitives, it is crucial to be
able to accurately estimate the computational complexity of solving these problems.

SVP algorithms. Currently there are two main classes of practical algorithms for solving
SVP in high dimensions. Lattice enumeration [20, 15, 17, 33, 7] uses superexponential time
and polynomial space in the lattice dimension d to solve SVP, while lattice sieving [2, 35,
32, 21, 9] requires time and memory both single exponential in d. In high dimensions sieving
will clearly be faster than enumeration, but the large memory requirement both limits our
ability to execute sieving algorithms in high dimensions, and it significantly slows down
sieving in practice due to the costly memory accesses [26, 25, 27].

∗ This paper merges earlier results from [22] regarding dense data sets (the results for sparse data sets
were previously merged into [5]) with new results about tuple lattice sieving.
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2 Faster tuple lattice sieving using spherical LSF

Tuple lattice sieving. Tuple lattice sieving aims to overcome the main drawback of classical
lattice sieving methods by using less memory at the cost of more time, offering a tradeoff
between sieving and enumeration. After Bai–Laarhoven–Stehlé [8] made a first step towards
analyzing tuple lattice sieving, Herold–Kirshanova [18] significantly improved upon this by
(i) proving what are the memory requirements for arbitrary tuple sizes; (ii) analyzing which
configurations of tuples one should look for; (iii) showing that tuple sieving can be modified
to use much less time; and (iv) showing how a near neighbor-like method called Configuration
Extension can be used to further reduce the asymptotic time complexity. As an example,
their optimized triple sieve requires 20.1887d+o(d) memory and 20.3717d+o(d) time.

Locality-sensitive filtering. For finding near neighbors in the context of lattice sieving,
Becker–Ducas–Gama–Laarhoven [9] introduced spherical locality-sensitive filters (LSF), to
date achieving the best heuristic time complexities for sieving with pairwise reductions:
using either 20.2925d+o(d) time and memory, or using 20.3684d+o(d) time with only 20.2075d+o(d)

memory.1 The original LSF framework was only described to provide a balanced tradeoff
between the time and space complexities, and after an early version of this work2 showed
how to obtain arbitrary space-time tradeoffs for the angular distance, both Christiani [14]
and Andoni–Laarhoven–Razenshteyn–Waingarten [5] showed that these tradeoffs can be
extended to any `p distance (p ∈ [1, 2]), and that the resulting tradeoffs are in fact provably
optimal for sparse data sets of size n = 2o(d).

Contributions
Our contributions are essentially three-fold:

We generalize the spherical locality-sensitive filters from [9] to obtain explicit space-time
tradeoffs for uniformly random data sets on the sphere of size n = 2Θ(d).
We adapt tuple lattice sieving to include arbitrary near neighbor techniques, using a new
transform to guarantee that each search is done over uniformly random data sets.
We finally apply the space-time tradeoffs to tuple lattice sieving to obtain improved
asymptotics for the time complexities of tuple lattice sieving for arbitrary tuple sizes.

For the triple sieve, this leads to a time complexity for solving SVP of 20.3588d+o(d), improving
upon the 20.4812d+o(d) of [8] and the 20.3717d+o(d) of [18], while maintaining a space complexity
of 20.1887d+o(d). Using the same amount of memory as a double sieve (20.2075d+o(d)), our
triple sieve can solve SVP in time 20.3317d+o(d). These complexities hold for triple sieves
based on Micciancio–Voulgaris’ GaussSieve [32] as well, which means that compared to the
best GaussSieve-based near-linear space double sieve of [9], running in time 20.3684d+o(d) and
space 20.2075d+o(d), we can either save significantly on the time complexity, or save both on
the time and on the required amount of memory.3 This is a rather surprising result, since
previous results suggested that tuple lattice sieving only offers a tradeoff of using less space
at the cost of more time.

1 Theoretically, one can achieve 20.2925d+o(d) time using only 20.2075d+o(d) memory using a sieve based
on the less practical Nguyen–Vidick’s sieve [35]. In practice no one has ever used the Nguyen–Vidick
sieve to solve SVP in high dimensions, due to the large hidden order terms [1].

2 Historically, in late 2015 the preprint [22] first described these space-time tradeoffs. For the 2017
paper [5], the tradeoffs for sparse data sets of [22] were then merged with the lower bounds of [6],
whereas [14] independently obtained similar lower bounds for sparse regimes in 2017 as well. The
present paper merges results from [22] for dense data sets with new results for tuple lattice sieving.

3 Here, “near-linear space” means that we consider GaussSieve-based sieves with memory bounded by
the list size, 20.2075d+o(d). Using more memory one can solve SVP in time and space 20.2925d+o(d) [9].



Thijs Laarhoven 3

2 Preliminaries

Notation. Throughout, d denotes the dimensionality of the space, n commonly denotes the
(exponential) size of a list of vectors in Rd, and k denotes the tuple size. We write vectors in
boldface (e.g. x), and denote their Euclidean norms by ‖x‖. The unit sphere in d dimensions
is denoted by Sd−1. Given two vectors x,y ∈ Rd, we denote their inner product by 〈x,y〉,
and we write φ(x,y) := arccos 〈x,y〉

‖x‖·‖y‖ for their common angle. We write µ for the canonical
Lebesgue measure over Rd, and we denote half-spaces by Hu,α := {x ∈ Rd : 〈u,x〉 ≥ α}.

Subsets of the unit sphere. We recall some properties about geometric objects on the unit
sphere, similar to [9]. For constants α1, α2 ∈ (0, 1) and vectors u1,u2 ∈ Sd−1 we denote
spherical caps and wedges (intersections of spherical caps) by Cu1,α1 := Sd−1 ∩ Hu1,α1 and
Wu1,α1,u2,α2 := Sd−1 ∩ Hu1,α1 ∩ Hu2,α2 = Cu1,α1 ∩ Cu2,α2 . Denoting θ = φ(u1,u2), the
relative volumes of these objects can be estimated as follows [9, Lemmata 2.1 and 2.2]:

C(α1) := µ(Cu1,α1)
µ(Sd−1) = dΘ(1) (1− α2

1
)d/2

, (1)

W(α1, α2, θ) := µ(Wu1,α1,u2,α2)
µ(Sd−1) = dΘ(1)

(
1− α2

1 + α2
2 − 2α1α2 cos θ

sin2 θ

)d/2
. (2)

Lattices. Lattices are discrete subgroups of Rd. Given a basis B = {b1, . . . , bd} ⊂ Rd of
linearly independent vectors, the lattice generated by B, denoted L or L(B), is given by
L(B) := {

∑d
i=1 λibi : λi ∈ Z}. The shortest vector problem (SVP) is: given a description

of a lattice (e.g. a basis of the lattice), find a shortest non-zero vector in this lattice.

Lattice sieving. The fastest (heuristic) algorithms for solving SVP in high dimensions are
based on lattice sieving, originally described in [2] and later improved in e.g. [35, 38, 32, 42,
44, 21, 10, 24, 11, 9]. Given a basis of a lattice L, lattice sieving attempts to solve SVP
by first generating a long list L ⊂ L of relatively long lattice vectors, and then iteratively
combining vectors in L to form shorter and shorter lattice vectors until a shortest lattice
vector is found. Key properties of lattices used in sieving are (1) if x1,x2 ∈ L, then also
x1 ± x2 ∈ L; and (2) if φ(x1,x2) < π

3 , then min{‖x1 ± x2‖} < max{‖x1‖, ‖x2‖}, so that
adding/subtracting these vectors leads to a shorter lattice vector. After generating a long
list L, classical sieving algorithms usually proceed by picking x1 ∈ L, searching for a vector
x2 ∈ L with angle less than π

3 with x2, performing a reduction x1 ← x1±x2, and repeating.

Sieving complexities. Under the heuristic assumption that when normalized, vectors in
L are uniformly distributed on Sd−1, one can show that the list size under pairwise reduc-
tions scales as |L| = sin(π3 )−d+o(d) = 20.2075d+o(d) [35]. A naive linear search thus leads
to a quadratic time complexity of 20.4150d+o(d) [35], whereas the best near neighbor tech-
niques can speed this up to 20.3684d+o(d) while retaining the same memory [9], and offer a
tradeoff between using even more memory and less time. Minimizing the time complexity
leads to time and space complexities both equal to 20.2925d+o(d) [9].4 To date, all classical
sieving algorithms using pairwise reductions seem bound by a minimum space complexity
of 20.2075d+o(d), which puts a serious restriction on its practicality in high dimensions.

4 Theoretically, one can achieve time complexity 20.2925d+o(d) with space complexity 20.2075d+o(d) using
the NV-sieve of [35] as a starting point, instead of the more practical GaussSieve of [32]. In practice
no records for solving SVP in high dimensions have ever been obtained using the NV-sieve [1].
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Tuple lattice sieving. Tuple lattice sieving, originally proposed in [8] and later improved
in [18], aims to overcome this large space requirement by combining multiple list vectors for
reductions: instead of looking for short vectors x1 ± x2, one looks for short combinations
x1±· · ·±xk with all xi ∈ L.5 By considering a larger number of more intricate combinations
of the list vectors, one hopes to reduce the required list size to make progress. As conjectured
in [8] and later proved in [18], this is indeed the case:

I Lemma 1 (List sizes for tuple sieving [18, Theorem 3]). Let Lk ⊂ Sd−1 consist of n
uniformly random unit vectors. Let L′k consist of all k-tuples (x1, . . . ,xk) ∈ Lkk satisfying
‖x1 ± · · · ± xk‖ < 1. Then |L′k|/|Lk| ≥ 1− o(1) as d→∞ iff:

|Lk| ≥
(
kk/(k−1)

k + 1

)d/2+o(d)

. (3)

In other words, to make sure that (1) we make progress in finding shorter and shorter
lattice vectors, and (2) the output list L′k is not much smaller than the input list Lk, the
above lemma tells us how big Lk needs to be. For k = 2 this gives us the classical bound
L2 = 20.2075d+o(d) for sieving with pairwise reductions [35, 32, 21, 9].

Naively, finding good combinations of k list vectors can be done by considering all k-tuples
of vectors in Lk, requiring time Õ(|Lk|k). In [8] techniques were described to reduce the
search space and find (almost) all good k-tuples faster, and [18] further improved upon this
by stating exactly which configurations of tuples one should be looking for. In particular, this
reduces the “global” search condition on the entire k-tuple (the sum being short) to “local”
conditions on pairs of vectors, greatly simplifying and speeding up the search procedure.

I Lemma 2 (Dominant configurations [18, Theorem 2]). Let ε > 0, and let Lk and L′k as in
Lemma 1. Let L′′k ⊂ L′k denote the k-tuples in L′k with pairwise inner products satisfying:∣∣〈xi,xj〉+ 1

k

∣∣ ≤ ε, (i 6= j). (4)

Then |L′′k |/|L′k| = 1− o(1) as d→∞.

In other words, for k-tuple sieving, it is sufficient to only look for tuples for which all pairwise
inner products are essentially equal to − 1

k , such that together with
∑d
i=1 xi these vectors

are the vertices of a simplex with the origin as its center [18].

Finding near neighbors on the sphere. To describe the near neighbor technique of [9],
we first introduce the near neighbor problem on the sphere as follows. Note that we make
explicit assumptions on the distribution of points in the data set, simplifying later analyses.

I Definition 3 (Near neighbor on the sphere). Let L consist of n points drawn uniformly at
random from Sd−1, and let θ ∈ (0, π2 ). The θ-near neighbor problem is to preprocess L such
that, given a query vector q ∈ Sd−1, one can quickly find a point p ∈ L with φ(p, q) ≤ θ.

Depending on the magnitude of n we further make a distinction between the near neighbor
problem for sparse data sets (n = 2o(d)) and for dense data sets (n = 2Θ(d)). In many
applications of near neighbor searching one is interested in sparse data sets, and various
lower bounds matching upper bounds have been derived for this regime [36, 3, 5, 14]. In
this paper we will focus on the dense regime, of interest in the application of lattice sieving.

5 As described in [8, Section 5.2], for tuple sizes k > 4, one may want to look for combinations λ1x1 +
· · ·+ λkxk with λi potentially coming from a slightly larger set than {−1, 1}.



Thijs Laarhoven 5

3 Spherical locality-sensitive filters for random dense data sets

Spherical locality-sensitive filters. To solve the near neighbor problem on the sphere,
Becker–Ducas–Gama–Laarhoven [9] introduced spherical locality-sensitive filters, inspired by
e.g. the spherical cap LSH of [4]. The idea is to create a data structure of many filter buckets,
where a bucket contains vectors which are close to a randomly drawn filter vector u ∈ Sd−1.
Here, two vectors are considered close iff 〈u,p〉 ≥ α (or equivalently φ(u,p) ≤ arccosα)
for α ∈ (0, 1) to be chosen later. Ideally one generates f � 1 of these buckets, each with
u ∈ Sd−1 chosen independently and uniformly at random. Inserting vectors into the data
structure corresponds to finding the right filters for insertion, while queries first retrieve the
filters that are close to the target, and then searches for near neighbors in those buckets.

Structured filters. A naive implementation of this idea would lead to an impractically
large overhead of finding the filters that a vector is in – one would have to go through all f
filters one by one. To surmount this problem, a small amount of structure is added to the
filter vectors u, making them dependent: small enough so that their joint distribution is
sufficiently close to f independent random vectors, but large enough to ensure that finding
the filters that a vector is in can be done in time proportional to the number of filters that
a vector is in, rather than proportional to the total number of filters f . This technique was
later called “tensoring” in [14], and replaced with a tree-based data structure in [5]. For
further details regarding this technique we refer the reader to [9] – below, we will simply
assume that filter vectors are essentially independent, and decoding can be done efficiently.

Cost analysis. To obtain a tradeoff between the query and update costs of this data struc-
ture, we introduce two different parameters αq and αu. Each vector p ∈ L is inserted into
all buckets with a filter vector u satisfying 〈u,p〉 ≥ αu. Querying for near neighbors to q

is done by retrieving all filters u with 〈u, q〉 ≥ αq, and going through all vectors in these
buckets, looking for near neighbors. Some observations (see also Figure 1):

Updates: A vector is added to a filter with probability C(αu), and is therefore on average
contained in f · C(αu) filters. In total, |L| = n vectors are thus expected to generate
n · f · C(αu) bucket entries, or n · C(αu) vectors per bucket.
Queries: A vector queries a random filter with probability C(αq), and so on average a
query returns f · C(αq) filters, with f · C(αq) · n · C(αu) collisions in the buckets.
Collisions: Two vectors at a specified angle θ are both contained in a random filter with
probabilityW(αq, αu, θ), and collide with constant probability iff f = O(1/W(αq, αu, θ)).
Space: The dominant space requirements are having to store the n vectors, and having
to store the n · f · C(αu) bucket entries in memory.

Constructing the entire data structure can be done by inserting each vector p ∈ L in the data
structure one by one, which under the assumption that the time spent on finding relevant
filters is proportional to the number of filters it should be inserted in, can be done in time
proportional to the memory requirement n · f · C(αu).

Choosing parameters. To guarantee that nearby vectors at angle θ are found through a
collision, we set f ∼ 1/W(αq, αu, θ) (up to polynomial terms). What remains is choosing αq
and αu to obtain a suitable tradeoff between the query and update complexities. Observe
that αq > αu means that queries return fewer filters than the updates, and so queries are
fast but the data structure will use more space. For αq < αu we query more filters at a
higher query cost, but saving on the space complexity and the update costs.
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Sd−1

0
q

p

•

•

αq

αu θ

Pru∼Sd−1 [u ∈ Update(p)]
∝ C(αu)

Pru∼Sd−1 [u ∈ Update(p) ∩Query(q)]
∝ W(αq, αu, θ)

Pru∼Sd−1 [u ∈ Query(q)]
∝ C(αq)

Figure 1 The geometry of spherical filters. A vector p is inserted into a filter u with probability
proportional to C(αu), over the randomness of sampling u at random from Sd−1. A filter u is
queried for near neighbors for q with probability C(αq). A vector p at angle θ from q is found as a
candidate nearest neighbor in one of the filters with probability proportional to W(αq, αu, θ).

To balance the query costs of (1) finding the f · C(αq) relevant filters, and (2) going
through f · n · C(αq) · C(αu) false positives, we choose αu such that n · C(αu) = 1, i.e. we
set αu =

√
1− n−2/d. We further set αq = βαu, so that only β remains to be chosen, and

determines the query/update tradeoff: β < 1 leads to a better space complexity, and β > 1
leads to a better (query) time complexity. For β = 1 we get the results from [9].

Next, observe that for β = cos θ the space complexity scales as n · f · C(αu) ∼ n, which
is the minimum space complexity one can hope for – further decreasing β would only lead
to larger query and update exponents. Similarly, in the limit of β → 1/ cos θ we obtain the
best possible query complexities (subpolynomial in n), and further increasing β would only
lead to worse time and space complexities. This means the optimal parameter range for β
is [cos θ, 1/ cos θ] and for these parameters we obtain the following result.

I Theorem 4 (Near neighbor tradeoffs). Let θ ∈ (0, 1
2π) and let β ∈ [cos θ, 1/ cos θ). Then

using spherical locality-sensitive filters with αu =
√

1− n−2/d and αq = βαu, we can solve
the θ-near neighbor problem with update and query exponents given by:

ρu = log
[
1−

(
1− n−2/d

) 1 + β2 − 2β cos θ
sin2 θ

]
/ log(n−2/d)− 1, (5)

ρq = log
[
1−

(
1− n−2/d

) 1 + β2 − 2β cos θ
sin2 θ

]
/ log(n−2/d) (6)

− log
[
1−

(
1− n−2/d

)
β2
]
/ log(n−2/d). (7)

This data structure requires n1+ρu+o(1) memory, can be initialized in time n1+ρu+o(1), allows
for updates in time nρu+o(1), and answers queries in time nρq+o(1).

In the limit of n1/d = 1 + ε with ε → 0, corresponding to random data sets in the sparse
regime, a Taylor expansion around ε = 0 of ρq and ρu yields:

ρu = (β − cos θ)2

sin2 θ
+ o(1), ρq = (1− β cos θ)2

sin2 θ
+ o(1). (8)

This leads to the concise defining equation √ρq + cos θ√ρu = sin θ for the sparse regime,
which is equivalent to [5, Equation (1)] after substituting cos θ = 1− 1/c2. This also clearly
shows how to set β to minimize ρu or ρq in the sparse regime.
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4 Finding short tuples with near neighbor searching

Problem description. In this section we will consider the following problem, which is
roughly equivalent to the approximate k-list problem defined in [18, Definition 1].

I Definition 5 (Tuples on the sphere). Let k ≥ 2 and let Lk consist of nk points drawn
uniformly at random from Sd−1. Find most k-tuples (x1, . . . ,xk) ∈ Lkk with ‖

∑
i xi‖ ≤ 1.

Solving this problem allows us to solve SVP with tuple lattice sieving with similar space
and time complexities, under the heuristic assumption that throughout the execution of
tuple lattice sieving, normalized lattice vectors are uniformly distributed on the sphere. For
further details on this heuristic assumption, see e.g. [35, 21, 9]. In the application of lattice
sieving, one would (1) generate a long list of long lattice vectors; (2) recursively apply a
tuple sieve to the list several times; and (3) find a shortest vector in the last non-empty list.

Algorithm description. As described in the preliminaries, Herold–Kirshanova [18] showed
that the global configuration search on k-tuples can be efficiently reduced to a local config-
uration search on pairs of vectors. This directly suggests an approach where (after perhaps
initializing some near neighbor data structures) we go through all vectors xk ∈ L = Lk in
the list one by one, and for each xk we find good k-tuples that can be formed with xk: (1)
we first find all vectors in the list satisfying the local configuration property with xk, and (2)
we then proceed in this smaller list Lk−1 to find good (k − 1)-tuples that can be combined
with xk to form a short k-tuple. An outline of this approach is given in Algorithm 1.

Algorithm 1 TupleSieve(k, Lk)
Require: Tuple size k ≥ 2, input list Lk ⊂ Sd−1 uniformly distributed on a unit sphere
Ensure: Returns (almost) all k-tuples (x1, . . . ,xk) ∈ Lkk with ‖

∑
i xi‖ < 1

1: θk ← arccos(− 1
k ) . θk: target local configuration

2: Initialize a θk-NN data structure Dk
3: for each xk ∈ Lk do
4: Insert(Dk,xk)
5: end for
6: Sk ← ∅ . Sk: set of all k-tuple solutions
7: for each xk ∈ Lk do
8: Lk−1 ← Query(Dk,xk) . Lk−1: all θk-near neighbors to xk
9: if k > 2 then

10: L′k−1 ← Transform(k, Lk−1,xk) . Transform: see text below
11: S′k−1 ← TupleSieve(k − 1, L′k−1)
12: Sk−1 ← Transform−1(k, S′k−1,xk) . Sk−1: tuples combinable with xk
13: end if
14: Sk ← Sk ∪ (Sk−1 × {xk})
15: end for
16: return Sk

Transform. Ideally, one might hope that Algorithm 1 cleanly solves the problem recursively
without requiring the transforms in Lines 10 and 12. However, since all vectors in Lk−1 have
inner product approximately − 1

k with xk, the list Lk−1 is clearly not distributed uniformly
on the unit sphere. To solve this problem, observe that if Lk is uniformly distributed on
Sd−1, then Lk−1 is essentially uniformly distributed on Sd−1 ∩ Pxk,

−1
k
, with Pu,α denoting
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the hyperplane in Rd with defining equation 〈x,u〉 = α. This set is isomorphic to Sd−2,
and via a simple transformation of Lk−1 (e.g. applying an orthogonal rotation which maps
ek onto xk, and then projecting onto the first k − 1 coordinates) we can map Lk−1 to a set
L′k−1 which is again uniformly distributed on a unit sphere, albeit of one dimension less.

Transforming local configurations. To understand the effects of the transform, and to
understand how the local configurations of Lemma 2 change after the transform, suppose
w.l.o.g. that xk = ek. Then Lk−1 contains vectors uniformly distributed on {x ∈ Sd−1 :
xk = −1

k }. After the projection eliminates the last coordinate, we are left with (k − 1)-
dimensional vectors of norm

√
k2 − 1/k, so the transform scales the entire data set by

k/
√
k2 − 1 to obtain unit vectors. The transform T : Sd−1 → Sd−2 can thus be modeled as:

T (u1, . . . , uk) = k√
k2 − 1

(u1, . . . , uk−1). (9)

From Lemma 2, in the next recursive step we are again looking for vectors y, z with pairwise
inner product − 1

k . Let y, z ∈ Lk, satisfying the local configuration property with xk, and let
y′ = T y and z′ = T z denote their images after the transform. The condition 〈y, z〉 ≈ − 1

k

then translates to a condition on 〈y′, z′〉 as:

〈y′, z′〉 = k2

k2 − 1

(
〈y, z〉 − ykzk

)
= k2

k2 − 1

(
−1
k
− 1
k2

)
= −1
k − 1 (10)

In other words, after the transform, we have a set of uniformly distributed vectors on a unit
sphere of one dimension less, and the target local configuration (inner product) has changed
from −−1

k for k-tuples to −1
k−1 for (k− 1)-tuples. After searching for pairwise inner products

−1
k in the outermost loop, we are therefore searching for pairwise inner products −1

k−1 in the
next loop, −1

k−2 in the next loop etc., and inner product −1
2 in the innermost loop.

Algorithm 1 describes this approach recursively, with the transform as outlined above
and θk denoting the target configurations of inner product −1

k when looking for k-tuples.

List sizes at given levels. For analyzing the complexities of this algorithm, we need to
know how many vectors are left at each recursive call of the sieve, i.e. how big Lk−1 is
relative to Lk. As the target angle is θk = arccos(−1

k ), a fraction C(−1
k ) = C( 1

k ) of all points
in Lk are expected to be in Lk−1 for any choice of xk. After k− i vectors xk,xk−1, . . . ,xi+1
have been fixed, we are expected to be left with a list Li containing a fraction

∏k
j=i+1 C( 1

j )
of all vectors in Lk. As the product telescopes, for constant k this can be simplified to:

|Li|
|Lk|

=
k∏

j=i+1
C( 1

j ) =

 k∏
j=i+1

(j − 1)(j + 1)
j2

d/2+o(d)

=
(

(k + 1) · i
k · (i+ 1)

)d/2+o(d)
. (11)

In case |Lk| is chosen as in Lemma 1, we find that for the k-tuple sieve, after k−i vectors have
been fixed, we are left with a list of vectors satisfying the pairwise inner product constraint
with these k − i vectors of expected size as follows, similar to [18, Equation (16)].

ni := |Li| =
(

(k + 1) · i
k · (i+ 1)

)d/2+o(d)
·
(
kk/(k−1)

k + 1

)d/2+o(d)

=
(
k1/(k−1) · i
i+ 1

)d/2+o(d)

. (12)

For large k and small i, the expected size of this list may become smaller than 1: in most
cases there are no k-tuples that can be constructed using this choice of xk,xk−1, . . . ,xi+1,
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and in some cases there are only a few solutions. In the tree of choices for the tuple vectors
(similar to the enumeration tree in enumeration-based SVP solvers), this means that in the
lower levels of the tree many branches will lead to dead ends, and the number of leaves is
significantly smaller than the maximum width of the tree.

Tree widths at given levels. Finally, let us also consider the width of the enumeration-like
tree of vector combinations at different levels i, which will be relevant for computing the
time complexity of the tuple sieve. Up to a factor (k − i)! = O(1) due to double counting,
there are

∏k
j=i+1 |Lj | different choices for the first k−i vectors in the tuple, and this product

can be somewhat simplified to:

wi :=
k∏

j=i+1
|Lj | =

(
k(k−i)/(k−1) · i+ 1

k + 1

)d/2+o(d)
. (13)

For i = 0, so that all k vectors have been chosen, we are left with a total of w0 =
∏k
j=1 |Lj | ∼

|Lk| vectors, which exactly matches the condition that the output list of good k-tuples should
be as large as the input list. The number wi can also be interpreted to the number of calls
to TupleSieve(i, Li) for some list Li.

Results. With the above expressions for (the products of) the list sizes at hand, we can
now provide explicit asymptotics for the time and space complexities, in terms of the near
neighbor exponents ρ(i)

q and ρ(i)
u at each level in the tree.

I Theorem 6 (General time and space complexities). Let (ρ(i)
u , ρ

(i)
q ) denote the update and

query exponents for the near neighbor data structure D(i) at level i. Then we can solve tuples
of the sphere with Lk as in Lemma 1 in time T and space S, with:

S = max
{
n

1+ρ(i)
u

i : i = 1, . . . , k
}
, (14)

T = max
{
wi ·max

{
1, n1+ρ(i)

u
i , n

1+ρ(i)
q

i

}
: i = 1, . . . , k

}
. (15)

Here the three terms in the time complexity correspond to the number of recursive calls to
the TupleSieve, the creation of the data structure in Lines 2–5, and the queries to the data
structure in Line 8. As the tuple sieve at level i is essentially called wi times with similar
parameters each time, this explains the leading factors wi in the time complexities. The
space complexity is simply the maximum over the space complexities of the near neighbor
data structures at each level. Note that ρ(i)

u > 0 implies that the data structures require
space at least linear in the list sizes ni.

Choosing parameters. Assuming that there is a strict tradeoff between ρq and ρu at each
level, choosing parameters can now be done as follows, regardless of the near neighbor
method used. Suppose we want to find the best overall time complexity for a given overall
space complexity S. If choosing ρ(i)

q = ρ
(i)
u leads to exponents with n

1+ρ(i)
u

i ≤ S, then this
is optimal - the time complexity symmetrically depends on ρ(i)

q and ρ(i)
u , so the best choice

is to balance them. If a balanced choice leads to n1+ρ(i)
u

i � S, then we cannot use these
parameters as it will take too much space, and so we need to decrease ρ(i)

u until we reach
n

1+ρ(i)
u

i ≈ S. This choice ρ(i)
u then leads to the smallest allowed value ρ(i)

q that can be used.
Note that we can always find such a value ρ(i)

u with n
1+ρ(i)

u
i ≤ S unless S � ni ≤ nk, in

which case the available memory is less than the size of the input/output lists.
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5 Combining tuple lattice sieving with spherical filters

Let us finally describe the results that can be obtained by applying the spherical filters of
Section 3 to the tuple sieving approach of Section 4. As spherical filters have so far led to the
best asymptotic exponents for sieving with pairwise reductions [9], one might expect that
this also leads to the best exponents for tuple lattice sieving. However, no matching lower
bounds for the high-density regime of near neighbor searching are known, and in practice
other methods such as hyperplane/hypercube LSH [13, 21, 23, 26, 27] or cross-polytope
LSH [41, 3, 11] may lead to better results. An experimental evaluation of different near
neighbor methods for tuple lattice sieving is left for future work.

Triple lattice sieving. For k = 3, the input list has size n3 = 20.1887d+o(d), while the filtered
lists have expected size n2 = 20.1037d+o(d) and n1 = 2−0.1037d+o(d). Focusing on the near-
linear space regime with memory bounded by 20.1887d+o(d), we get the following parameters
for the different loops:

For the outermost loop, we need to set ρ(3)
u = 0. This corresponds to setting β(3) =

cos θ3 = −1
3 in Theorem 4, leading to ρ(3)

q = 0.9010.
For the search over pairs, we need to set ρ(2)

u ≤ 0.8188 due to the memory restriction. As
balancing the query and update exponents with β(2) = 1 leads to ρ(2)

q = ρ
(2)
u = 0.3681 <

0.8188, this choice leads to the best time complexity for the inner loop.
This together implies that the space is bounded by 20.1887d+o(d), and (1) the outer loop
takes time 20.1887d+o(d) to initialize/build the data structure D3; (2) the outer loop takes
time 20.3588d+o(d) to query the data structure for each x3; and (3) the inner loops take
total time 20.3307d+o(d) to find suitable triples. Overall the time complexity is therefore
20.3588d+o(d), improving upon the 20.3717d+o(d) of [18].

Larger tuple sizes. As explained at the end of Section 4, optimizing parameters is straight-
forward when given an explicit description of the near neighbor tradeoffs for arbitrary list
sizes and target angles. For arbitrary tuple sizes, with memory limited to near-linear in
the list size, Table 1 lists the resulting optimized time complexity exponents when using
spherical locality-sensitive filters. All these time complexities are improvements over [8, 18].

Complete tradeoff spectrum. We can also easily obtain further tradeoffs between the time
and space complexities, by setting the maximum available memory to be (slightly) larger
than the list size. It turns out that as the tuple size increases, this quickly does not lead to any
useful results: increasing the available memory hardly leads to an improvement in the time
complexity, if any. For small tuple sizes however we do obtain a significant improvement,
e.g. for k = 3 the best time complexity is obtained when the space is 20.2108d+o(d), with

Tuple size (k) 2 3 4 5 6 7 8 9 10

Space complexity 0.2075 0.1887 0.1724 0.1587 0.1473 0.1376 0.1293 0.1221 0.1158
Time complexity 0.3685 0.3588 0.3766 0.4159 0.4497 0.4834 0.5205 0.5510 0.5767

Table 1 Leading constants in the exponent of the time and space complexities of tuple lattice siev-
ing. For instance, the optimized quadruple sieve runs in time 20.3766d+o(d) and space 20.1724d+o(d),
improving upon the previous best time complexity of 20.4080d+o(d) of [18].



Thijs Laarhoven 11

●

●

■

■

■
■

■

■

■

■

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

▲

▲

▲

▲

▲

▲

▲

▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

● BLS'16 (naive)

■ BLS'16 (filtered)

◆ HK'17 (no ConfExt)

▲ HK'17 (with ConfExt)

▼ Our results

20.10d 20.15d 20.20d 20.25d 20.30d

20.30d

20.40d

20.50d

20.60d

→ Space

→
T
im
e

Figure 2 Tradeoffs between the time and space complexities for all tuple sizes. Dashed lines
are only present to highlight points corresponding to the same algorithm, whereas thick curves
represent actual achievable space-time tradeoffs using spherical filtering.

time complexity 20.3307d+o(d). When the space is equal to the list size for classical sieving
methods (20.2075d+o(d)), our best time complexity with spherical filtering is 20.3317d+o(d).

Figure 2 illustrates the non-trivial tradeoffs that can be obtained for tuples sizes k =
2, 3, 4. These tradeoffs, together with the optimized tuple sieving complexities of Table 1
(blue), are compared against the previous best tuple sieving complexities of [8, 18]. The
tradeoff for k = 2 overlaps with the best space-time tradeoff of [9] for sieving with pairwise
reductions. Note that the green points in Figure 2, corresponding to results from [18] without
using Configuration Extension, are equivalent to the complexities of tuple sieving with an
optimized configuration search, but textitwithout using any near neighbor techniques (i.e.
setting ρ(i)

u = 0 and ρ(i)
q = 1 in Theorem 6).

Large-k asymptotics. As described in Theorem 6, the time complexity for tuple sieving is
lower-bounded by the largest wi, and upper-bounded by the largest value of wi · ni (which
can be obtained with a linear search, with exponents ρ(i)

u = 0 and ρ(i)
q = 1). Since ni ≤ nk

approaches 0 for large k, and wi grows with k, it is clear that the effects of near neighbor
searching become less and less as k increases. This can also be observed in Figure 2: as k
increases and the space complexity decreases, the blue dashed “curve” using near neighbor
searching approaches the green “curve” based on an optimal configuration search, without
using any near neighbor techniques.

Practical estimates. To predict the practicability of our tuple sieving approach (in par-
ticular triple sieving), observe that while the time complexities are worse than the best
time-optimized double sieve (time and space 20.2925d+o(d) [9]), the space complexity is sig-
nificantly better. When using 20.2075d+o(d) memory for a triple sieve, we save a factor
20.0850d+o(d) on the space complexity, at the cost of 20.0392d+o(d) more time. Since sieving
with near neighbor searching is memory-bound [25, 27], the improvement in the memory
complexity will likely lead to a better time complexity as well. If we further compare this
triple sieve with the practical HashSieve [21, 26] with time and space 20.3366d+o(d), which was
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previously used to solve SVP in dimension 107 [1], we see that asymptotically we save even
more on the time complexity, while saving on the space complexity as well. If the hidden
order terms of triple sieving with near neighbor searching are not too large, one should also
be able to solve SVP in dimension 100 or higher with a triple sieve without too much effort.

Open questions for future work are whether the hidden order terms of triple sieving are
sufficiently small, and whether spherical LSF is the right choice in practice. Especially for
the inner loop, searching for near neighbors in a list of size n2 < 20.11d+o(d), the list will
be rather short and a more basic approach like hyperplane/hypercube LSH [13, 23], cross-
polytope LSH [41, 3], or even a linear search may lead to better complexities in practice.

The Nguyen-Vidick sieve and the GaussSieve. For the underlying lattice sieve of tuple
sieving, there are two different approaches: (1) the AKS-style Nguyen–Vidick sieve [2, 35],
where after generating a long initial list, the list size is reduced each step; and (2) Micciancio–
Voulgaris’ GaussSieve [32], where one starts with an initially empty list, and only adds new
vectors when no more progress can be made. Whereas numerous experimental works have
proven the practicality of the GaussSieve [34, 39, 40, 19, 29, 28, 16, 12, 43], no competitive
implementations of the Nguyen–Vidick sieve approach exist to date. Ideally, tuple sieving
should therefore also be based on the GaussSieve to be practical.

Tuple sieving can be based on either method, including the GaussSieve. To illustrate
how to do this with the triple sieve, recall that there is an outer list over triples, and an
inner search for pairs, given one vector of the tuple. To implement this method with the
GaussSieve, one first initializes a global data structure for the outer searches. Each time
a vector is chosen to be reduced against the list, the inner near neighbor data structure is
reinitialized for the shorter list, used to find good triples, and erased from memory again.
If a vector in the list must be updated, the outer near neighbor data structure needs to be
updated as well, which can fortunately be done quite efficiently.

Saving space with the Nguyen–Vidick sieve. For double sieving, an argument can be made
for the Nguyen–Vidick sieve when using near neighbor techniques, as one can theoretically
save on the space complexity by processing the near neighbor data structure sequentially
(for details, see [10, 21]). The same tricks however do not apply to tuple sieving. To see why,
note that processing the outer “hash tables” sequentially would mean that in the inner loop,
we process subsets L1,1, . . . , L1,T ⊂ L1 sequentially, with

⋃T
i=1 L1,i = L1. For the double

sieve, solutions in this inner loop are simply elements from these lists, and the union of the
“1-tuple solutions” of these smaller lists is the same as the solutions of the entire list L1.

The same however does not hold for the outer search in the triple sieve: the union of
2-tuple solutions in each L2,i is not the same as the 2-tuple solutions in L2, as the former
excludes all cases where the two vectors in this 2-tuple come from different sets L2,i, L2,j
with i 6= j. Only the inner loop can therefore (theoretically) be improved to use only linear
space, when using the Nguyen–Vidick sieve instead of the GaussSieve. However, for none of
the tuple sieves, the inner loop dominates the time complexity, and speeding up the inner
loop will not decrease the theoretical time complexity exponent.
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