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Abstract

Recent insights into the effects of light on human health call for a more human-
centric approach in automatic lighting control systems. We contribute to the
provisioning of lighting settings tailored to the needs of individuals by addressing
the challenge of predicting the response of an individual’s circadian rhythm to
light exposure. Existing models of the human circadian rhythm are not tailored
to individual physiological characteristics such as intrinsic circadian period, light
sensitivity and age. We propose to improve model accuracy by using Bayesian
statistical inference to estimate the values of model parameters that reflect these
physiological characteristics. We illustrate our generic method by applying to a
combination of two popular models of the circadian rhythm. By processing indi-
vidual light exposure- and actigraphy data recoded during a field trial with 20 hu-
man subjects with a Particle Filter, we estimate each subject’s intrinsic circadian
period. When correlating these to the subjects’ Munich Chronotype Question-
naire Midsleep on Free Days time, a significant relationship was found: r > 0.6
and p < 0.01. This shows the proposed method has good potential for improving
model accuracy.

1 Introduction

Humans have an internal circadian rhythm that regulates many of their biological
processes such as temperature, hormone secretion, and the sleep-wake cycle. The
timing of light exposure plays a major role in regulation of this circadian rhythm [1].
Determining the state of the circadian cycle has been a major subject in the field of
Chronobiology. Within this field several mathematical models of the circadian rhythm
have been proposed, often based on empirical observations gathered in clinical studies.
Commonly, the human circadian rhythm is modeled as a deterministic system with
certain inputs (light exposure, food intake, etc.) and outputs (body temperature, social
markers, etc.). However, as these models were often created by fitting mathematical
functions to the average of the collected data, their output will represent the average
response, not that of an individual. This could lead to misprediction, for example
were the model would indicate a circadian phase advance in response to certain light
exposure, while actually the individual’s circadian phase would be delayed.

We propose to improve model accuracy by using Bayesian statistical inference to
estimate the value of model parameters that reflect physiological characteristics such
as intrinsic circadian period, light sensitivity and age. Not only do these differ per
individual, but they are also not always fully known. By observing an individual’s
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responses to inputs, we can iteratively update the estimation of the parameter values.
This is schematically shown in figure 1.

Our target is to estimate parameter
values that best correspond to an indi-
vidual’s characteristics, in order to reduce
the modeling error for that individual. As
we want to implement our models in au-
tomatic lighting control systems, we do
not aim for a clinically accurate estimate,
but we need an estimate that is adequate
for choosing between different options for
light settings.

The use of Bayesian inference in this
context has already been suggested by
Mott, Dumont, Boivin, et al. [2]. They
showed how a Particle Filter, a Sequen- Figure 1: Schematic representation of the model
tial Monte Carlo method, can be used to parameter update l00p. Unisex symbol @Scott de Jonge
approximate the system state (circadian phase) by observing light exposure and body
temperature. We will extend on this method to estimate the models’ parameter values
using techniques developed by Liu and West [3].

2 Methods

2.1 Parameter search using a particle filter

We consider the circadian rhythm to be Markov process with transition density
p(Xk|xk_1,0) and observation density p(zi|xx, 8). We want to determine the probabil-
ity distribution of a (sub)set of fixed parameters in vector 0, given all observations z
up to now: p(0|zyy). Using Bayes’ theorem, the Chapman—Kolmogorov equation, and
by including the state variable x, the probability can be rewritten as an iterative algo-
rithm, where the current state x; and parameter estimation 0 depend on the previous,
according to

p(ék7Xk|Zl:k) X /p(ék|ék—17kazk)p(zk|ék—lyxk)

/p(xk|ék—17 Xk—l)p(ék—h Xk—1\Z1;k—1) dxp_q dék—la (1)

By defining the term p(ék|ék_1,xk7zk), where the new estimation of © only de-
pends on the previous -state, -observation, and parameter estimation and not on their
entire history, it is implied that © has a simple, known distribution. Liu and West
[3] suggest that this parameter density can be approximated using a weighted kernel
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density constructed by adding N multivariate Gaussian densities*

p(Oklxk, 7, O_1) Zw 'Naim(oy(0xm”, (1 — a®)Vy), (2)

which was further reduced to
é,(j) ~ Ndim(e)(m,(j), (1—a*)Vy), fori=1,2,...,N. (3)

‘Smoothed” Gaussian mean vector m in the previous equations is determined using a
mixture of the previous parameter estimate 0 and the posterior parameter mean ©

m,(f) :a,é,gl%—(l—a)ék, fori=1,2,...,N, (4)
where smoothing factor a (also in equation 2) is determined according to
30—1
— = - 5

for which we use a fixed discount factor 6 = 0.98. The posterior parameter mean 0 is
determined by

N
= i) A )
0= w0, (6)
i=1
The (normalized) particle weight w® is derived from the observation density, described
by
@ A®
; V/ 0
w) = 5( L ’(})’f—}()j) cfori=1,2,...,N. (7)
> iy Pzl 657)
Here, the mean value p of the state x is determined by determining the expected value
of the state equation (defined later-on in this paper) with

p,(j) =K [Xk‘xl(fll, é,(il] ,fori=1,2,..., N. (8)
The posterior covariance matrix of the parameter distribution V is described by

Zwk (61, — 0,0y, — 8" 9)

Equation 2 implies a point-mass representation can be used to approximate the
parameter density, which we realize using a particle filter [4]. Hence, in the equations
above, subscript (7) indicates the particle index and N represents the total number of
particles. As the total number of particles is limited, it is important that the majority
of particles provides an effective contribution to the point-mass representation. If the
weight of most particles is close to zero, then the accuracy of the estimated probability
distribution will be low. To prevent this from happening, a resampling step is used after
each iteration: particles with low weight are dropped and particles with high weight
are replicated [4]. The new indexes for resampling are sampled from a multinomial
distribution with parameters p; = w®, for i = 1,2,..., N. This will be shown in
pseudocode at the end of this paper.

*We use Np (x|, X) = (2m) P/~ 2exp (—3(x — u)TS ' (x — 1)) to denote the probability
density function of a D-variate Gaussian distribution with mean vector p and covariance matrix 3.
D =1 when omitted.
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2.2 Mathematical model of the circadian rhythm

We consider the Kronauer limit cycle oscillator model, a popular mathematical model
of the circadian pacemaker that estimates the response of the circadian pacemaker to
ambient light input, as a base for our work [5]. However, the output markers that
can be related to the state of that model, such as the time-of-minimum core body
temperature (CBT ) [5] or dim light melatonin onset (DLMO) [6], are impractical to
measure in daily situations: a subjects either need to wear an internal thermometer,
or lab analysis of saliva samples is required. Therefore, we combine the model with
the mathematical model of the homeostatic sleep drive by Phillips and Robinson [7]
that relates the circadian clock to the sleep-wake cycle, as its relatively easy to use
actigraphy to determine the sleep-wake state of an individual. In [8] and [9], it was
already suggested to combine these models. Furthermore, the model combination also
fits into the concept of the two-process model of sleep regulation [10].

We connect the models in a way that the system has an input vector u and an
output vector z, as shown schematically in figure 2.

Intrinsic
circadian (518 Age
period T

Circadian Homeostatic

u
- pacemaker - - sleep drive
' nght model Circadian model Sleep/wake
intensity 1 clock state S
time C'

Figure 2: Block diagram of the interconnected models.

We combine all the models’ system state variables in state vector
x £ [n x y V, Vi H}T. In this work only the parameter 7, representing the
period of the circadian pacemaker, is considered for estimation, as there are strong
indications that this parameter is the dominant source behind individual variation in
circadian phase [6]. We consider all other parameters fixed at their suggested value.
The dynamics of the system are then described by

] 60(a(1 —n) — 0.007n)
@ Z(y+0.13 (52 + 32° - 2047) + B)
y s 1 24
X = 5 = | 12 <§By - ((0.997297) + 0'553)) 2 f(x,I;7), (10)
v 360 (D, — V,, — 2.1Q,)
Vi 360 (1.3 — Vy, — 1.8Q,)
L] L (1 Qu — H) |

describing dynamics of the ratio of activated photoreceptors n, the circadian pace-
maker oscillator pair z and y, the mean cell body potential of the sleep-active ventro-
lateral preoptic (VLPO) area of the hypothalamus V,,, the mean cell body potential of
the wake-active ascending arousal system’s monoaminergic nuclei (MA) V,,, and the
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homeostatic sleep drive H. Supporting equations are

I I

=01y ——— 11
“ 9500 1 + 100’ (1)
B =37a(l —n)(1 —0.4x)(1 — 0.4y), (12)
C = 0.5(1 + 0.8z — 0.55y), (13)

100
i = ) ith ¢ € ) ) d 14
Q 1—|—exp(logvi) with ¢ € {v,m}, an (14)
Dy = H — v,.C —10.2, (15)

describing the photoreceptor activation rate « following light exposure I, the resulting
photic drive B, the circadian clock time C' (modified from [8] to fit the model from [5]),
the mean firing rate of the VLPO @, and MA @,,, and the drive on the VLPO mean cell
body potential D,. In the equations, homeostatic dampening factor puy and circadian
clock sensitivity v,. are related to the age of the modeled person [8]. We will suggest
values for these variables based on our data set in the Results section.

As output, only the sleep-wake state Sy, is considered, because it is relatively
easy to measure in ambulatory conditions as was explained at the beginning of this
subsection. It is derived from [7] as'

1(awake), if @, >1

) 16
O(sleeping), otherwise (16)

st éH(Qm_l) = {

However, the above equation is constant most of the time: every circadian cycle
(~ 24h) only one 0-to-1 transition (wake up) and one 1-to-0 transition (sleep onset)
occurst. The times in-between transitions do not give us much information. Therefore,
only the transitions are considered interesting for our parameter estimation. Thus,
we introduce observation set Z which contains all the times ¢ at which a 0-to-1 or
1-to-0 transition occurs in Sy, - that is, the transition times from sleep to wake or vice
versa. We then evaluate the system output z, € 7, for k = 1,2,...,2 x #days, i.e.
two events per day. Effectively, we evaluate the model until a @),, = 1 event occurs,
indicating either a sleep onset or a wake up time. We will then compare this estimated
time (denoted as 2) with the actual sleep onset or wake up time z observed with the
human subject. To support this, we define output function h which maps state x to
observation z by evaluating equations 14 and 16 and determining the time a transition
occurs.

As the above equations show, the models of the circadian pacemaker and the home-
ostatic sleep drive are described to be deterministic. However, real-life biological pro-
cesses are stochastic in nature. We introduce stochasticity into the existing model by
adding white Gaussian process noise and -measurement noise to the state respectively

0, =<0,
1, z>0

In reality the sleep cycle is much more complex and a person can actually wake up multiple times
during that cycle. But our simplified model only considers the initial sleep onset and the final wake
up time.

TWe use H(z) = to denote the unit-/Heaviside step function.
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the output. Following this, the state transition density and observation density are
described by

P (Xk|xp_1,0) = Ng (xx|Fr(xx_1, [;7), Xx) and (17)

with F; being the discrete-time approximation of the state equation 10. Since the mean
of additive white Gaussian noise is 0, only the covariance matrix of the process noise 3,
and the variance of the measurement noise >, appear in the equations. Determining
the process noise in covariance matrix ¥ is out of the scope of this work. For now we
assume a value of X, = (0.01)%Is. Next, we assume that the variance of the observation
noise X, is related to the variance in sleep-onset and wake-up times. Therefore, we
set X, equal to the variance of the sleep onset- and wake up times observed with the
human subject under evaluation.

With the state transition density and observation density defined, the particle filter
described in subsection 2.1 can be constructed [4]. Determining the optimal number
of particles is out of the scope of this research. Instead, N = 240 particles, suggested
by Mott, Dumont, Boivin, et al. [2], is used as it shows consistent results.

The particle filter was implemented in MATLAB. We approach F; numerically using
MATLAB’s ordinary differential equation solver "ode23s". A pseudo-code description
of the particle filter implementation can be found in Algorithm 1 at end of this paper.

3 Results

To illustrate our method, the particle filter algorithm was applied to data obtained in
a field study with 20 human subjects. However, 4 data sets had to be dropped because
of hardware issues and user errors. For the 16 data sets left, the average age of the
subjects was 70.9 £ 4.0 yr.

Each subject wore a Philips Actiwatch Spectrum Pro, measuring actigraphy, and a
Martin light-logger, measuring ambient light intensity, for a minimum of 168 h (7 days).
In parallel, each subject was asked to maintain a sleep dairy, indicating their "to
bed"- and "out of bed" times. As described by the Munich Chronotype Questionaire
(MCTQ) [11], this information can be used to determine the subjects’ sleep preference
(Chronotype). As the subjects are retired and don’t use alarm clocks, their sleep
preference (Chronotype) can be directly derived from their Midsleep on Free Days
time (MSF), as described by

MSF £ 0.5 (t41cep onset + twake up — 24 1) . (19)

By combining the sleep diary data with actigraphy data recorded by the Acti-
watches, each subject’s sleep onset and wake up times were estimated by hand to form
observation set Z. For example, for subject 17, the (partially shown) set is

Z:{01:15, 08:05, 26:05, 32:50, 49:40, ..., 152:00}. (20)

In [8], the values for age-related parameters v, and py are suggested to be v, ~
2.35mV and pgy ~ 3.95nMs for old age. However, analysis of the data showed that

6
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Figure 3: Particle filter output for subject 17 (male, 73 yr). The first graph shows the estimated
intrinsic circadian period 7 as a function of simulation time. The blue middle line shows the posterior
mean and the red lines show the posterior standard deviation. The graph shows that 7 converges
to 24.55h with an exponential curve. The second and third graphs show the circadian clock time C'
and homeostatic sleep drive H at day 7 of the collected data. Red dotted line: the original models
with their original parameters. Blue dashed line: a particle filter(PF) with proposed parameters
Vye = 29mV and pug = 4.0nMs, only estimating the state. Black solid line: the proposed PF,
estimating state and 7. The state-only PF estimates a small circadian phase delay of ~ 20 min, while
the proposed PF estimates a more significant delay of ~ 60 min. This is reflected in the homeostatic
sleep drive output: the estimated sleep onset/wake up times of the proposed PF are closer to the
actual times observed with this subject: sleep onset at 01:29 and wake up at 08:12.

Vpe = 29mV and pg = 4.0nMs best fit our data set, which we will use in our
experiments. Further analysis of the data showed that the average initial state Xq = |
0.25-0.9 -0.5 2.5 -12 13.8 |T.

The light data of each subject was individually processed by the particle filter,
using the sleep-wake times as observation input. To illustrate the results, the proposed
Particle Filter’s output for subject 17 is shown and compared to prior methods in
figure 3.

In [12], the MCTQ MSF has been associated with the intrinsic period of the circa-
dian pacemaker 7. Therefore, we correlate the resulting posterior mean of the intrinsic
period for each subject to that subject’s MSF time using linear regression analysis. The
results of two successive runs can be seen in figure 4. The Pearson correlation coefficient
shows significant correlation with strength r > 0.6 and significance p < 0.01, which
indicates that our proposed method can estimate the intrinsic period of the circadian
pacemaker.

4 Discussion and Future Work

Our proposed method utilizes both input- (light exposure) and output (observation)
data, which both contain information about the circadian rhythm of an individual. In
our study we specifically use the observation set Z that contains natural sleep onset
and wake up times of an individual from which we extract information indicating the
actual circadian phase for this individual. At the same time, we also use this data to
determine the subject’s MCT(Q MSF. This works well for our situation. However, the
natural sleep-wake rhythm is disrupted in the case an individual uses an alarm clock:
in that case we lose an important observation channel. In a test with a second dataset
where the subjects were using alarm clocks, we did not find a significant correlation,
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Figure 4: Two scatter plots showing the output of two sequential runs of the particle filter with the
data from the study. The estimated intrinsic circadian period 7 on the vertical axis is plotted against
the MCTQ MSF time on the horizontal axis. For each of the estimated values, the standard deviation
is shown as an error bar. The linear regression line is shown in red. The output of the sequential runs
show that the particle filter will give a different result every run. This is caused by the stochasticity
the underlying model. However, both runs show the correlation is significant: Pearson’s r = 0.66 with
p = 0.005 for the left plot and r = 0.62 with p = 0.0099 for the right plot.

which is intuitively appealing. It is a subject of our future research to find a suitable
alternative input or output parameter that provides information on the circadian phase.

Our study shows that one can get a good estimation of model parameters even
with a very limited number of particles. Adding more particles does not improve the
results. This is surprising because we consider relatively many variables: In Mott,
Dumont, Boivin, et al. [2] only the Kronauer model with 3 state variables is used.
By including the Phillips and Robinson model and searching for 7, we add 4 more
variables. This would suggest (240)7/3 ~ 360000 particles are needed. We believe that
we can work with fewer particles because our initial state is very close to the actual
state, because the homeostat model closely follows the circadian clock, and because
the process noise (in X) is chosen quite small. Hence, our particle filter barely has
to put effort in finding the state. Most effort goes into finding 7, which is feasible
with only a small number of particles. In further studies, we want to explore to what
extent increased process noise degrades the particle filter results, or could even cause
divergence. In such case more particles would be required.

Our tests revealed a statistical deviation of the parameters v,. and py from the age-
dependent model suggested by [8]. In fact, we saw difference between individuals of the
same age. This can explain the mismatch between estimated- and actual sleep-wake
times for instance shown in figure 3. Our results suggest that these parameters should
preferably also be estimated for each individual and therefore should be included in ©.

The average estimated intrinsic circadian period 7 for all participants in our pop-
ulation is around 24.4h. This is notably higher then the mean of 24.18 h determined
by Czeisler, Duffy, Shanahan, et al. [13] and comparable research. This can be coinci-
dently related to the selection of our participants.

The time interval At = 2, — 2z,_1 is not constant. As a result the process- and
observation noise covariance matrices X, and X, depend on k. However, because under
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normal conditions the expected time between two sleep onset or wake up times is 24
hours (E[z, — 2zx—2] = 24h), it is reasonable to assume the modeled noise is sufficiently
accurate.

5 Conclusion

Existing mathematical models of the circadian rhythm often model the average re-
sponse of physiological processes that control the human circadian rhythm, which does
not represent the response for an individual. This can result in a misprediction of an
individual’s circadian phase. We have shown how a Particle Filter can estimate values
for the model’s parameters to fit an individual’s physiological characteristics. We have
illustrated this by applying a Particle Filter to a combination of two existing models:
the Jewett, Forger, and Kronauer circadian pacemaker model and the Phillips and
Robinson homeostatic sleep drive model. By processing individual light exposure- and
actigraphy data from 16 human subjects with the proposed Particle Filter, we estimate
the parameter 7 representing the subject’s intrinsic circadian period. When correlat-
ing the estimated parameter values to the subjects” MCTQ MSF time, a significant
relationship was found: » > 0.6 and p < 0.01. This demonstrates that a Particle Filter
can estimate the intrinsic circadian period of an individual with reasonable accuracy,
which will allow us to make a more accurate prediction of the effect that a specific
lighting setting will have on the circadian rhythm of that individual.
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Algorithm 1 Particle Filter for Intrinsic Circadian Period Estimation

Input: Light history I and sleep-wake times Z
Output: Posterior parameter mean: 7 = Zfil fw,(j)f'(")
procedure PARTICLEFILTER:
for particle i =1,..., N do
Draw initial state: XE)Z) ~ Ng(Xo, Xy)
Draw initial theta: %éi) ~ N(24.18,(0.13)%) (values from [13])
end for
foreach successive observation z, € Z do
for particlei =1,..., N do
Estimate mean state progression: p,(;) — Fk(xl(ﬁl, I; %,5?1)
Estimate observation: 2’,(;) — h(ugf))
Determine weight: w,(f) — N(zk|2,gi), %)
end for
Normalize the weights: w}, + w} / Ejvzl w)
Estimate posterior parameter mean: 7 = Zf\il w,(j)f',gi_)l
Estimate posterior parameter covariance matrix: Vj, = Zfil w,(f) (%,5?1 — 7r)?
for particlet=1,..., N do

Sample new index j from Multiy (w,(:), 'w,(f), ... ,w,gN)>

Resample state: x,(j) ~ ./\/})»(u,gj), 3,)
Resample theta: 7. ~ N(a7| + (1 — a)7;, (1 — a)V})
end for
end for
end procedure
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