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On the generalizability of ECG-based obstructive sleep apnea
monitoring: merits and limitations of the Apnea-ECG database.

Gabriele B. Papini1,2,3, Pedro Fonseca1,2, Jenny Margarito2, Merel M. van Gilst1,3, Sebastiaan Overeem1,3,
Jan W.M. Bergmans1,2, Senior Member, IEEE, Rik Vullings1

Abstract— Obstructive sleep apnea syndrome (OSAS) is a
sleep disorder that affects a large part of the population and
the development of algorithms using cardiovascular features
for OSAS monitoring has been an extensively researched topic
in the last two decades. Several studies regarding automatic
apneic event classification using ECG derived features are based
on the public Apnea-ECG database available on PhysioNet.
Although this database is an excellent starting point for apnea
topic investigations, in our study we show that algorithms for
apneic-epochs classification that are successfully trained on this
database (sensitivity>85%, false detection rate<20%) perform
poorly (sensitivity<55%, false detection rate>40%) in other
databases which include patients with a broader spectrum of
apneic events and sleep disorders. The reduced performance can
be related to the complexity of breathing events, the increased
number of non-breathing related sleep events, and the presence
of non-OSAS sleep pathologies.

I. INTRODUCTION
Obstructive sleep apnea syndrome (OSAS) is a public

health issue that affects a significant fraction of the general
population (5-15%). OSAS influences both the quality and
the life expectancy of an untreated patient and often leads to
daytime sleepiness and an increased risk for cardiovascular
diseases. The gold standard used in the diagnosis of OSAS is
night-time polysomnography (PSG), a sleep test consisting
of an overnight measurement session during which several
physiological signals are recorded. The diagnostic power
of PSG is counterbalanced by several drawbacks such as
its cost, its obtrusiveness and the impossibility to use it
for long-term monitoring to better characterize OSAS. In
the last two decades, there has been a trend to replace or
complement PSG in OSAS monitoring with more portable
and cost-effective tests, e.g. respiratory polygraphic tests
replaced PSG in several European countries. The push to-
wards new sleep monitoring devices boosted recently with
the rise of wearable cardiac monitoring consumer devices,
such as ECG patch and PPG based smartwatch [1], [2].
Given the affordability and broad availability of these devices
and their relative convenience of use, research regarding
features and algorithms to automatically characterize OSAS
using solely cardiac signals has been promoted [3]–[7]. The
Computer in Cardiology Challenge of 2000 was one of
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the starters of this research trend. One of the tasks of the
competition was to identify one-minute epochs containing
apneic events in 70 overnight recordings using only the
ECG signal [3], [8]. The data used for the challenge were
organized in a public database on PhysioNet (”Apnea-ECG
database”), which, according to the citation index of the
paper describing it [3], have been used over 150 times.
Several papers regarding ECG-based apneic event detectors
are based on this database, and report accuracies ranging
from 80% to 90% in the classification of one-minute epochs
as apneic or not. The common principle behind all of them
is that the cardiac activity is affected by the presence of
apneic events [4]–[7]. However, these events are not the only
phenomena influencing cardiac activity during sleep [9]. For
instance, many parasomnia events, such as limb movements
and sleep terrors, are associated or followed by an arousal,
just as most apneic events [10]. Arousals associated with
non-apneic events can degrade the performance of apneic
event detection algorithms and hence their presence can
be crucial in databases used for development of apnea-
related algorithms and features. The Apnea-ECG database
does not have annotations for non-apneic events and the
control group is composed of healthy subjects, indicating that
patients suffering from other disorders are not included [3].
In addition to this, the Apnea-ECG database lacks more
complex apneic cases, such as subjects suffering from cen-
tral apnea, or other sleep-related disorders, or sleep co-
morbidities, such as insomnia. The absence of these cases can
limit the applicability of algorithms exclusively developed
on the Apnea-ECG database in real-world situations, e.g. for
screening. As a consequence, even though the Apnea-ECG
database has allowed a common testing ground to compare
the performance of different algorithms, its usage as the only
data source obscures the limitations and generalizability of
apneic epoch classification solutions. For instance, Lado et al.
showed that a threshold-based classification on a single HRV
feature (inter-beat-interval low-to-high frequency band power
ratio) produces unreliable results in case the training and
testing are performed between different databases [11]. These
differences could be related to the fact that a single feature
may be insufficient to describe such a complex phenomenon
as OSAS and the physiological differences between the
different types of apneas and hypopneas.

In this paper we report the effect of testing an apneic-
epoch classifier trained on the Apnea-ECG database on
two other databases, including patients with mixed sleep
disorders and a broad spectrum of events.



II. METHODOLOGY

A. Databases

The Apnea-ECG database consists of 70 recordings di-
vided into two equinumerous subsets, one for training and
one for testing apneic-epoch classifiers [3]. The data separa-
tion in the training and test set used during the challenge
is maintained in our study. Besides the ECG signal, the
database provides annotations for each one-minute epoch
of each recording indicating whether there is an obstructive
apnea, hypopnea or mixed apnea event.

In addition, we use the St. Vincent’s University Hos-
pital/University College of Dublin Sleep Apnea (UCD)
database [12] and the Sleep and OSA Measuring with
Non-Invasive Applications (SOMNIA) database. The UCD
database contains 25 overnight PSG recordings from adults
with suspected sleep breathing disorders. For this research,
the ECG modified lead V2 (128 Hz) and the respiratory
event annotations (obstructive apnea and hypopnea, central
apnea and hypopnea, and mixed apnea) are used. The av-
erage ± standard deviation apnea-hypopnea index (AHI)
is 24±20 (minimum 6). Central and obstructive hypopneas
are grouped in a single hypopnea class since their split
classification is still under investigation [13]. The UCD
database is more complex than the Apnea-ECG database
regarding apneic events because it also includes central apnea
and periodic breathing episodes.

The SOMNIA database stems from a currently ongo-
ing data collection in the Sleep Medicine Center Kempen-
haeghe, the Netherlands, and is planned to comprise 1000
overnight PSG recordings of patients undergoing PSG as
part of standard sleep diagnostic procedure. For our study,
a subset of 57 subjects (30 males) is selected from the
SOMNIA database. The subjects have an average age of
50±16 years, weight 82±21 kg, height 173±13 cm and
BMI 28±16 kg/m2. Each overnight recording includes ECG
modified lead II signal (512 Hz) and events annotated by a
single clinical annotator, including limb movements (single
and periodic limb movements); arousals; central, mixed,
obstructive apneas; obstructive hypopnea (no split between
obstructive and central) and snore. In addition, apneic events
are labeled as unsure respiratory event in case of uncer-
tainty. The SOMNIA subset used does not contain periodic
breathing events, such as Cheynes-Stokes breathing. The
patients in the SOMNIA subset predominately have an OSAS
diagnosis without any comorbidities (21), but there are also
subjects with OSAS comorbid with other (single or multiple)
pathologies (9). In addition to OSAS, the database includes
diagnosis—alone or as comorbid disorders—of parasomnias
(8), sleep movement disorders (12), insomnias (14), snoring
(1), undifferentiated somatoform disorder (1) and behavioral-
related sleep problems (3). Only one subject is not diagnosed
with any sleep disorder. The average AHI is 14±14 for
the complete subset and 22±14 for OSAS subjects. This
database is the most complex of the three because of the
combination of apneic events and other sleep disorders.

One-minute epoch annotations are derived for the UCD

and the SOMNIA databases by labeling them as apneic-
epochs if they include a breathing related event, with the
exception of snoring, similar to other research using the
Apnea-ECG database [6], [7].

B. Classification algorithm training and testing

Features based on heart rate variability (HRV) and sur-
rogate respiratory effort, based on ECG derived respiration
(EDR) are obtained from the ECG signals using previously
published algorithms for heart beat localization and EDR
extraction [14], [15]. All features are obtained for non-
overlapping windows of one minute in order to match
the Apnea-ECG database epoch annotations, except where
indicated (with ∗), where the same window size as described
in literature is used. A total of 51 HRV and 8 EDR features
are extracted, including: HRV time and frequency domain
(>0.15 Hz) [16], [17], Hilbert transform [4], Detrended
fluctuation analysis (DFA) (∗) [18], [19], and EDR time and
frequency domain (>0.15 Hz) [14]. Frequency related fea-
tures are calculated for only the spectrum above 0.15 Hz due
to the windows chosen size. The features are not normalized
per subject, but scaled by removing the median and dividing
for their 5th to 95th percentile (%ile) range. They are then
filtered using a centered moving average (size 7 epochs), as
proposed by de Chazal et al., in order to attenuate calculation
errors and to consider the effect of apneic events on adjacent
epochs [5].

The Apnea-ECG database training set is used for feature
and classifier selection via 10-fold cross-validation. The fea-
tures that best characterize apneic-epochs are selected by re-
cursive feature elimination (RFE) using a logistic regression
model (L1 penalty) as external estimator [20]. A selected
feature set is composed of the features recurring, after RFE,
in all the cross-validation splits. Two starting numbers of
features, 10 and 40, are chosen to determine two feature sets,
each of them used to train a separate apneic-epoch classifier.
The lowest starting number of features is used to boost the
generalizability of the algorithm developed [7]. The largest
is chosen to show the relation between the results and the
dimension of feature space. After feature selection, for each
feature space, a classifier is automatically chosen between
a linear, a quadratic, and a logistic regression classifier
as the one with the best average accuracy during cross-
validation. The final apneic-epoch classification algorithms,
each combining a feature set and a classifier type, are trained
on the entire Apnea-ECG training set and tested on the
Apnea-ECG test set, the UCD database, and the SOMNIA
database.

In order to evaluate the classification performance for
different types of events, each epoch in the SOMNIA dataset
is labeled with the most frequent occurring event, where each
event must last at least three seconds. In case multiple events
are present in the epoch, but none of them is longer than three
seconds, the epoch is labeled as unknown. In case no event
is detected, the epoch is labeled as normal. The epoch labels
are compared with the output of the apneic-epoch classifier
with the best performance over the three test sets.



TABLE I
TESTING RESULTS OF THE ALGORITHMS FOR THE DIFFERENT DATABASES (6-FEATURES - 24-FEATURES CLASSIFIERS)

# epochs (apneic%) Sensitivity Specificity Accuracy Cohen’s kappa False detection rate

Apnea-ECG test set 17254 (37.9%) 87.2% - 88.3% 87.0% - 88.3% 87.1% - 88.3% 0.73 - 0.75 19.6% - 17.9%
UCD 9843 (27.9%) 50.6% - 33.1% 84.0% - 88.7% 74.7% - 73.2% 0.35 - 0.25 45.0% - 46.9%

SOMNIA 29656 (16.2%) 36.6% - 14.6% 87.8% - 95.0% 79.5% - 82.0% 0.24 - 0.13 63.2% - 63.9%
OSAS∗ 15736 (25.8%) 38.0% - 16.0% 86.0% - 96.1% 73.6% - 75.4% 0.26 - 0.16 51.5% - 41.3%

Not OSAS† 13920 (5.4%) 28.9% - 7.4% 89.5% - 94.0% 86.2% - 89.3% 0.12 - 0.01 86.4% - 93.4%

∗SOMNIA subset with OSAS diagnosed patients (30); †SOMNIA subset with patients diagnosed with other or none sleep disorders (27).

III. RESULTS

A. Apnea-ECG database
The cross-validation on the Apnea-ECG training set gener-

ated two apneic-epoch classification algorithms. The smallest
feature set includes 6 features, namely:
• HRV time domain: IBI RMSSD, SDSD and pNN50.
• HRV frequency domain: normalized max power in the

respiration frequency band (0.15:0.40 Hz, HF).
• DFA: scaling exponent proposed by Peng et al. and the

one for short time scales by Penzel et al. [18], [19].
The largest feature set comprises 24 features which are, in
addition those of the smallest set:
• HRV time domain: IBI 10th, 90th and 95th %ile, and

minimum and standard deviation (SD); heart rate 10th

and 90th %ile; linearly detrended IBI median and 10th

%ile.
• HRV frequency domain: normalized HF band power and

the maximum power frequency in HF.
• Hilbert: SD of instantaneous frequency sequence and

average amplitude of the IBI Hilbert transform.
• EDR time domain: respiratory frequency (inverse of

average breath length) and breath-by-breath correlation.
• EDR frequency domain: band power, maximum power,

frequency at the maximum power and its SD (in the two
adjacent epochs) of the high frequency (0.15:0.5 Hz).

For both feature sets, the chosen classifier is a logistic regres-
sion (L1 penalty). The test set results are reported in Table I
in terms of sensitivity, specificity, accuracy, agreement to
the reference (Cohen’s kappa) and false detection rate (false
positive/total positive) on the total number of epochs.

B. UCD and SOMNIA databases
The results obtained for the UCD and SOMNIA databases

with the classifiers trained with the two feature sets are
reported in Table I. In addition, the table includes also the
results obtained for the subjects with and without OSAS
diagnosis in the SOMNIA database. Using the classifier
trained with the small feature set, the resulting classifications
for each epoch type are separately illustrated in Fig. 1.

IV. DISCUSSION

Both classifiers show an apneic-epoch classification per-
formance on the Apnea-ECG database with an accuracy
above 87% and a good balance between sensitivity and
specificity. The results are in line with most literature for
the Apnea-ECG database [4]–[7], although some studies
obtained an accuracy above 90% by employing a larger
number of features or more complex solutions [5]. Since

Epoch Classification

Apneic Non-Apneic

0% 20% 40% 60% 80% 100%

Unsure Respiratory Event 5

Arousal 32 8

Mixed Apnea 5640

Central Apnea 3978

Unknown 91348

Obstructive Apnea 703906

Obstructive Hypopnea 10711974

Snore 2142357

Limb Movement(s) 16215645

Normal 139913069

##

Fig. 1. Overview of the classification of epoch per event type in the
SOMNIA database using the 6-features classifier (% over the number of
epochs assigned to an event type). Within the bars the number of epochs
classified as apneic or non-apneic for each event.

the goal is to test the generalization power of algorithms
trained on a specific database, the results can be considered
representative of most results obtained on the topic.

Both classifiers have an overall accuracy drop of almost
15% when tested on the UCD and SOMNIA databases.
The decrease is not substantial because of the different
amount of apneic-epochs present in the databases (UCD and
SOMNIA databases having almost half of the percentage of
apneic-epochs as the Apnea-ECG database). The real number
of epochs belonging to the non-apneic class is principally
contributing to the accuracy in the UCD and SOMNIA
databases, leading to a diminished descriptive power of the
accuracy metric. In fact, as an example, even if the apneic-
epoch classifier with 6 features has an accuracy close to
80%, it tends to misclassify approximately 60% of the epochs
containing apneic events, regardless of their type (Fig. 1).

The classifier based on the larger feature set achieves better
performance than the classifier with fewer features on the
Apnea-ECG database (Table I). This is due to the additional
features being included, such as the EDR related features.
However, this increase in performance is not seen when the
classifiers are tested in the UCD and the SOMNIA databases.
Both sensitivity and Cohen’s kappa of the classifier trained
with the larger feature set are lower than the one with the
smaller feature set, indicating that the inclusion of new
features, among which some more related to respiratory
characteristics (i.e. EDR features), plays a detrimental role
in the discrimination between apneic and non-apneic epoch
in databases other than the Apnea-ECG database. This effect
is presumably caused by the overfitting of the algorithm to a
specific topology of the data in the Apnea-ECG database, and
this effect is magnified by the increased amount of features.
In addition to the over-characterization of the apneic-epochs
specific to the Apnea-ECG database, the additional features
do not bring any new non-apneic discriminative information



since the false detection rate remains on average unchanged.
Also the classifier based on 6 features shows low per-

formance when tested on databases other than the Apnea-
ECG database. The increase in sensitivity and Cohen’s
kappa of the 6-features classifier, in comparison to the 24-
features classifier, comes together with an almost unchanged
false detection rate. This suggests that, while decreasing
the feature set size improves the generalizability of apneic-
epoch classifier, at the same time it decreases the ability
of the classifier to capture the differences between apneic
and non-apneic phenomena. Therefore, the presence of non-
apneic events in the training set prior to feature selection
becomes paramount in order to decrease the number of false
positives. Interestingly, the sensitivity and Cohen’s kappa
obtained on the UCD database are better than those obtained
on the SOMNIA database. This can be explained by the
difference in complexity of the two databases: the SOMNIA
database is likely to include a broader spectrum of sleep
pathologies when compared with the UCD database, since
the first encompasses data from the general sleep center
population, while the second includes only data from subjects
with suspicion of sleep breathing disorders.

The increase in false detection rate can also be explained
by the difference in the characteristics of the patients in the
data sets. The more non-apneic events occur which have
similar feature characteristics as apneic events, the higher the
number of false positives will be. The SOMNIA database is
likely to include more non-apneic events, due to the higher
number of pathologies included (e.g. limb movement events
due to sleep movement disorders, etc.). Consequently, the
false detection rate for the SOMNIA is substantially higher
than for the UCD database (using the 6-features classifier).
The false detection rate does not match the one obtained
on the UCD database even in case only the subjects with
OSAS are considered, regardless of the improved balance
in apneic-epochs percentage. This result can be attributed to
other events occurring during sleep, such as limb movements,
or the occurrence of non-respiratory arousals since they can
influence the features in a similar manner to OSAS [9]. For
instance, over 20% of the epochs containing limb movements
are classified as apneic and, since they represent almost twice
the epochs than those with apneic related events, they play
a significant role in the presence of false positives (Fig. 1).

V. CONCLUSION

Our research shows that the performance of apnea de-
tection algorithms is strongly influenced by the choice of
the database used to train the classifier. Databases that do
not encompass the full complexity and variety of sleeping
and sleep pathologies are prone to generate solutions which
cannot be easily employed in more complex situations, for
instance in case of sleep comorbidities. Although the Apnea-
ECG database is of critical importance in the advancement
of ECG-based apnea detection research, our work suggests
that this database has to be considered as a starting point for
research in this area rather than as the definitive database
in the field. Therefore, we want to promote a new effort

for larger, more comprehensively annotated and multi-center
data collections.

REFERENCES
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