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Abstract

In this work, the ATOM (intrinsic a‐Si:H/TiOx/low work function metal) structure is

investigated to realize high‐performance passivating electron‐selective contacts for

crystalline silicon solar cells. The absence of a highly doped Si region in this contact

structure is meant to reduce the optoelectrical losses. We show that a low contact

resistivity (ρc) can be obtained by the combined effect of a low work function metal,

such as calcium (Φ 2.9 eV), and Fermi‐level depinning in the metal‐insulator‐semicon-

ductor contact structure (where in our case TiOx acts as the insulator on the intrinsic

a‐Si:H passivating layer). TiOx grown by ALD is effective to achieve not only a low ρc

but also good passivation properties. As an electron contact in silicon heterojunction

solar cells, inserting interfacial TiOx at the i‐a‐Si:H/Ca interface significantly enhances

the solar cell conversion efficiency. Consequently, the champion solar cell with the

ATOM contact achieves a VOC of 711 mV, FF of 72.9%, JSC of 35.1 mA/cm2, and

an efficiency of 18.2%. The achievement of a high VOC and reasonable FF without

the need for a highly doped Si layer serves as a valuable proof of concept for future

developments on passivating electron‐selective contacts using this structure.

KEYWORDS

carrier‐selective, electron‐selective, heterojunction, passivating contact, TiOx, calcium, low work

function metal
1 | INTRODUCTION

Industrial crystalline silicon solar cells (eg, passivated emitter rear totally

diffused (PERT) cells, passivated emitter and rear contact (PERC) cells, or

silicon heterojunction solar (SHJ) cells) use highly doped silicon layers.1-4

Thehigh doping concentration of these n+ or p+ silicon layers is very effec-

tive to lower the contact resistivity (ρc). However, heavy doping can

induce parasitic absorption, Auger recombination, and Shockley‐Read‐

Hall recombination.5,6 Carrier‐selective contactswithout the use of highly

doped silicon layers are getting attention to avoid these disadvantages.7,8

However, a lowly doped silicon surface typically results in a high ρc.

Based on the Schottky‐Mott rule,9,10 when a metal work func-

tion is lower than the work function of a semiconductor, the band
wileyonlinelibrary.com/jo
of the semiconductor near the metal‐semiconductor (MS) interface

should move downwards (forming an accumulation contact for

electrons). Accordingly, many groups have aimed to reach a low ρc
for electron‐selective contacts on n‐type‐based c‐Si solar cells using

low work function metals either individually11,12 or in combination

with other materials such as alkaline earth metal fluorides.13,14 How-

ever, the main challenge of these approaches is that the penetration

of the metal wave function into the semiconductor overlaps with

surface states in the semiconductor energy band gap15 resulting

in metal Fermi‐level (E F ,metal) pinning.
16 Therefore, the promised gain

of the low work function is not fully realized, and a non‐negligible

Schottky energy barrier can still be formed at the interfaces with

c‐Si or a‐Si:H.17-19
Copyright © 2018 John Wiley & Sons, Ltd.urnal/pip 835
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As an alternative, a metal‐insulator‐semiconductor (MIS) contact

can mitigate the E F ,metal pinning due to the reduction of surface states

or dipoles at the interfaces of the contact.20-23 In addition, when using

low doping concentrations, it has been shown that an MIS contact can

outperform the contact resistivity of an MS contact.24,25 In the MIS

structure, the thickness of the insulator is a critical parameter to

obtain low ρc: the thicker the insulator layer is, the larger the reduction

in the E F ,metal pinning but also the larger the resistance for the carrier

transport through the insulator itself. The position of the energy bands

of the dielectric also plays an important role in this resistance. In this

respect, TiOx stands out as a good candidate because it has a suitable

band structure for electron‐selective contacts: a small EC offset and a

large EV offset relative to c‐Si.26

For the aforementioned reasons, MIS contacts including TiOx

layers with a typical thickness below 2 nm have been intensively stud-

ied in the field of CMOS24,25,27-29 to achieve the lowest possible ρc by

mitigating E F ,metal pinning. In silicon solar cells, solar cell efficiencies of

above 20% have been successfully shown based on a slightly thicker

TiOx layer of 3.5 nm which was subjected to a forming gas annealing

treatment at 350°C.30-32 When it is aimed to realize silicon solar cells

that do not include highly doped silicon regions, a low‐temperature

process at or below 200°C is still required to be compatible with the

fabrication of hole‐selective contacts based on high work function

transition metal oxides.33-39 Therefore, electron‐selective contacts

with an intrinsic a‐Si:H/TiOx stack have been researched because of

good chemical passivation of i‐a‐Si:H, but a high contact resistivity

for i‐a‐Si:H/TiOx likely limited the reported cell efficiencies.40,41 In

our previous work,42 we demonstrated the ATOM (intrinsic a‐Si:H/

TiOx/low work function metal) contact which achieves a reduction

of 2 orders of magnitudes in ρc by combining merits of a MIS contact

and a low work function metal. Furthermore, the process temperature

was below 200°C for the layers in the contact structure. However, the

experiments performed to quantify the recombination losses clearly

showed a higher dark saturation current density at the metalized area

(J0,metal) for the ATOM contacts adopting e‐beam evaporated TiOx

when compared to the contacts without TiOx. It is believed that the

a‐Si:H passivation quality was degraded by e‐beam radiation damages

during the evaporation.43,44

In this work, ATOM contacts involving TiOx layers fabricated by

atomic layer deposition (ALD) are evaluated in ρc and J0 to assess their

potential in a passivating electron‐selective contact. Finally, the

ATOM contact structure with TiOx is integrated in heterojunction

solar cells and compared to a classical SHJ solar cell.
2 | CHARACTERIZATION OF ATOM TEST
STRUCTURES

2.1 | Preparation of test structures

Mirror polished n‐type FZ‐Si wafers (3 Ω cm, 200‐μm thickness) were

used to evaluate ρc and the contact passivation quality. After HF:HCl

cleaning, 8‐nm‐thick intrinsic a‐Si:H (i‐a‐Si:H) layers were deposited

on both sides of the substrate by plasma‐enhanced chemical vapor

deposition (PECVD) at temperatures below 200°C in an AK1000 Inline
system of MicroSystems. Wafers were diced into squares of

54 × 54 mm2 (for the determination of J0) and 30 × 30 mm2 (for the

determination of ρc). After HF dip, on top of the i‐a‐Si:H layers, TiOx

layers of 2 nm were deposited on both sides of the substrate by

ALD (Oxford Instruments FlexAL, UK). For the ALD‐TiOx process, tita-

nium tetra‐isopropoxide (TTIP) and H2O were used asTi precursor and

oxidant, respectively, and the substrate temperature was set to 200°C.

For the measurement of J0, thin blanket layers of 4‐nm‐thick Ca

and 6‐nm‐thick Al were deposited by thermal evaporation (Angstrom

Engineering, USA) on the rear side of the substrate (see Figure 1A,

B). The metal layer thickness was monitored using a quartz sensor in

the evaporation tool. These metal layers were kept thin and were

deposited only on the rear side to allow a quasi‐steady‐state

photoconductance (QSSPC) measurement45 with illumination from

the front. The metal layer needs to be thin enough to achieve suffi-

ciently low conductivities for the QSSPC measurement while thick

enough to show metal‐induced effects on the passivation. The metal

thickness of a few Angstroms is sufficient to allow for a metal‐induced

effect to the band structure at the contact region.46 Moreover, to

avoid the nonconformal coating of metals and complete oxidation of

Al, a few nanometers can be adequate.47,48 A similar methodology to

extract J0,metal have been previously reported in the literature.49-51

The QSSPC measurement was carried out before and after the

thermal evaporation of the Ca/Al stack (see Figure 1A, B). This allowed

us to calculate the J0 of the complete ATOM stack based on implied

VOC with a JSC of 36 mA/cm2 (typical JSC of our SHJ solar cells), kT/

q = 25.9 mV, and J0,bulk = 0 fA/cm2 (high‐quality FZ‐Si wafers).

Before Ca/Al evaporation, J0,front is calculated based on the sym-

metry of the structures. After Ca/Al deposition (see Figure 1B), J0,rear

Ca/Al is determined by subtracting J0,front, which was already measured

before Ca/Al evaporation, from J0,total, after Ca/Al. Assuming the same J0,

front before and after Ca/Al evaporation is an acceptable approxima-

tion for these contact structures, as during Ca/Al thermal evaporation,

the wafer temperature does not exceed 40°C and no process damage

is generated because no plasma or e‐beam is used.

For the measurement of ρc, 100 nm Ca and 200 nm Al were ther-

mally evaporated through a shadow mask, yielding circular contacts

with different diameters (200‐600 μm) (see Figure 1C). The values of

ρc were extracted using the 2‐contact 2‐terminal method.42,52 Conse-

quently, the measured ρc includes the ρc contribution of all contact

layers, as well as the resistive contributions of the bulk of these layers

(i‐a‐Si:H/TiOx/Ca/Al).

Samples for additional analysis were prepared using the same

process as the ρc samples based on double side chemically polished

n‐type Cz‐Si wafers (3.7 Ω cm, 180‐μm thickness). The nanoscale

layer structure and the chemical distribution were further

investigated by means of transmission electron microscopy (TEM)

and energy‐dispersive X‐ray spectroscopy (EDX) measurements.
2.2 | Results of test structures

As shown in Table 1, no process damage of a‐Si:H is observed after

ALD‐TiOx deposition, in contrast to the e‐beam evaporated TiOx in

our previous study42 (note that all TiOx layer in this study were depos-

ited using ALD). J0 and J0,metal of the i‐a‐Si:H/TiOx structure exhibit



FIGURE 1 Schematic of the sample
structures to determine: (A) J0, (B) J0,metal, and
(C) ρc [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 J0 and contact resistivity comparison between contacts
with/without TiOx layer

Contact Structure
J0 (fA/
cm2)

ρc (average ± standard deviation)
(Ω cm2)

i‐a‐Si:H 12.6

i‐a‐Si:H/Ca/Al 17.4 8.2 ± 1.9

i‐a‐Si:H/ALD‐TiOx 12.6

i‐a‐Si:H/ALD‐TiOx/Ca/Al
(ATOM)

13.4 1.5 ± 0.4 × 10−2

CHO ET AL. 837
values similar to the structure without ALD‐TiOx, which means that

neither the deposition of the TiOx layer nor the subsequent metalliza-

tion results in significant damage to the passivation quality that is pro-

vided by the a‐Si:H layer. A significant reduction of about 2 orders of

magnitude in ρc was achieved by the interfacial TiOx, which illustrates

that the presence of aTiOx layer induces Fermi‐level depinning on the

a‐Si:H surface. As can be seen in Figure 2, the contact type is also

changed from a Schottky contact to an Ohmic contact.

The features of the ATOM contact structures with TiOx were

characterized by TEM and EDX and are shown in Figure 3. The rough

c‐Si/a‐Si:H interface is because of a phase transition region of a few
FIGURE 2 Dark IV curve comparison between i‐a‐Si:H/Ca/Al and
ATOM contact [Colour figure can be viewed at wileyonlinelibrary.com]
nanometers from crystalline to fully amorphous.53,54 The TiOx layer,

of which the thickness is around 2 nm, was deposited uniformly on

the i‐a‐Si:H surface, showing no isolated islands. A closed TiOx layer

is important to achieve E F ,metal depinning, and a uniform TiOx

layer thickness with an amorphous phase is required for homogeneous

surface passivation.55 Furthermore, an interfacial amorphous SiOx

layer can be found in the EDX image between the i‐a‐Si:H and the

TiOx layers (see Figure 3A). This interfacial SiOx may have a potentially

positive impact on the passivation properties of the ATOM

contact structure. According to Kita et al,56 a dipole can be generated

by oxygen movement resulting from a charge imbalance at the SiOx/

TiOx interface, which produces a downward band bending at the

contact (see Figure 4B) which is beneficial in passivating electron‐

selective contacts.

After Ca/Al evaporation, the a‐Si:H passivation layer preserves

the original amorphous phase in both cases with and without TiOx

in Figure 3C and in Supporting Information Figure S1. Moreover, Al

on Ca formed a stack with a clear interface between Ca and Al

(see Figure 3D).

Based on previous work,42,57 it can be speculated that Ca diffused

into the TiOx layer without any additional annealing. This in‐diffusion

of Ca within the TiOx layer may work as a dopant in the TiOx, which

results in lowering the conduction band of TiOx.
58 Alternatively, it

can be imagined that Ca also induces the formation of defects in the

TiOx layer, especially when Ca is not active as a dopant. This could

lead to enhanced trap‐assisted transport that also lowers ρc. Further-

more, oxygen vacancies can be generated by oxygen extraction from

the TiOx layer by Ca or Al metal.31,57,59 It implies that the oxygen

vacancies of TiOx, interfacial SiOx, and likely Ca in‐diffusion possibly

have a positive impact on increasing the major carrier conductivity

and thus a reduction in ρc.

The energy band structures of the i‐a‐Si:H/Ca/Al and ATOM con-

tact are illustrated in Figure 4. It is based on an effective Schottky

energy barrier height (ΦB,eff), the layer stacks depicted in Figure 3,

and the energy band of amorphous SiOx.
60 Additionally, the

movement of oxygen at the a‐SiOx/TiOx interface induces a

dipole (negatively charged at SiOx side and positively charged at TiOx

side from the interface).56

Allen et al calculated the ΦB,eff based on ρc using Equation (1) in

thermionic emission condition.11,61

ρc ¼ k=qA**T
� �

exp ϕB;eff=kT
� �

(1)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 3 TEM cross‐sectional images for ATOM contact structures using TiOx deposited by ALD. In particular, EDX images of Ti, Si, and O are
shown in (A), TEM images before Ca/Al evaporation in (B), and TEM images after Ca/Al evaporation with high magnification (C) and with low

magnification (D) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Schematic band diagram of i‐a‐Si:
H/Ca/Al and the ATOM contact structures
based on effective Schottky energy barrier
height, metal Fermi‐level pinning, and a dipole
at the SiOx/TiOx interface. A, Ca layer induces
upward band bending because of E F ,metal

pinning on the a‐Si:H layer. B, The ATOM
contact band structure includes an additional
TiOx layer that induces Fermi‐level depinning
and hence enables a lower Schottky energy
barrier [Colour figure can be viewed at
wileyonlinelibrary.com]
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where A** is the reduced effective Richardson constant (110 A/cm2/

K262), k is the Boltzmann constant, and ΦB,eff is the effective Schottky

energy barrier at the contact. When this methodology is applied, the

extracted ΦB,eff on the i‐a‐Si:H layer is 0.6 eV for Ca and 0.4 eV for

the ATOM contact. A significant change of the electron conductivity

at the contact is resulting from this difference in barrier height, and

ΦB,eff of the ATOM contact is comparable to that of a n‐Si/Ca/Al con-

tact.11 Temperature‐dependent ρc measurements could provide more

detailed information about the barrier height, although they were

not part of this study.
3 | SOLAR CELLS

3.1 | Solar cell preparation

Our ATOM contact was applied to 2‐side contacted SHJ cells. The

schematic cell structures are shown in Figure 5. All the cell structures

investigated had the same hole‐selective contact approach featuring

the stack i/p‐a‐Si:H/ITO/Ag on the front side. On the rear side, differ-

ent stacks were applied: i‐a‐Si:H/Ca/Al and i‐a‐Si:H/ALD‐TiOx/Ca/Al

as highly doped Si layer free electron‐selective passivating contact

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 5 Schematic cross‐sectional
structures for the different solar cells with
candidate electron‐selective contacts [Colour
figure can be viewed at wileyonlinelibrary.com]

CHO ET AL. 839
structures. As a reference contact, i/n‐a‐Si:H/ITO/Ag, which is com-

monly used in a classical SHJ cell, was applied.

To fabricate these solar cells, n‐type Cz‐Si wafers (3.2 Ω cm,

165‐μm thickness) with a textured front side and a chemically polished

rear side were used. After HF:HCl:O3 and HF:HCl cleaning,63 the i/p‐
FIGURE 6 Effect of candidate electron‐selective contact structures on th
in the box plot are the average external parameters of the solar cells in that
braces ({}) [Colour figure can be viewed at wileyonlinelibrary.com]
a‐Si:H stack was deposited on the textured front side. Subsequently,

after a short HF cleaning, i‐a‐Si:H and n‐a‐Si:H layers with thicknesses

of 4 and of 8 nm, respectively, were deposited by plasma‐enhanced

chemical vapor deposition (PECVD) for the reference sample, while

8 nm of i‐a‐Si:H was deposited on the other samples. For the SHJ cell,
e light IV parameters. A, JSC. B, VOC. C, FF. D, Efficiency. The numbers
group, while the sample quantity of each group is indicated in (A) with

http://wileyonlinelibrary.com
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FIGURE 7 EQE and reflectance for the best cells of the various
candidate electron‐selective contact structures [Colour figure can be
viewed at wileyonlinelibrary.com]
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a 4‐nm‐thick i‐a‐Si:H layer leads to the best cell results. For the other

cells, 8‐nm‐thick i‐a‐Si:H was applied as this resulted in the best pas-

sivation quality without n‐a‐Si:H, as has been demonstrated previ-

ously.42 After HF dip, the TiOx layer was deposited by ALD to obtain

a layer thickness of 2 nm for the samples with the i‐a‐Si:H/TiOx/Ca/

Al structure. After ITO sputtering, Ag fingers (100 μm wide, 17 μm

high) and full area Ag (thickness of 17 μm) were printed on the front

and rear sides of the reference cells, while this was only done on the

front side of the other samples. Next, a belt furnace annealing at

175°C was performed to sinter the Ag contacts. In all samples but

the reference SHJ cells, the rear metallization was completed with Al

evaporation which was directly performed after Ca evaporation with-

out breaking the vacuum. As the final step, the wafers were diced into

solar cells of 5 × 5 cm2.

Light IV characterization was conducted with an aperture opening

of the same size as the active cell area of 4 × 4 cm2 under calibrated

illumination (AM 1.5, 1000 W/m2 at 25°C). External quantum effi-

ciency (EQE) and reflectance were measured in the same tool (PV‐

Tools LOANA, Germany) using a large beam size of 1.5 × 1.5 cm2.

Therefore, the EQE and reflectance results include the shading and

reflecting effects of the metal grid.
3.2 | Solar cell results

The light IV parameters of the silicon solar cells with the different

candidates for electron‐selective contacts are shown in Figure 6 and

Table 2. The IV curves of champion cells are found in Supporting Infor-

mation Figure S2. The JSC values of all solar cells appear to be rather

low, most likely caused by parasitic absorption in the ITO and the i/

p‐a‐Si:H stack on the front side of the cells. More specifically, the

average JSC of the solar cells with and the cells without TiOx are sim-

ilar (see Figure 6A) while the reference cell shows a somewhat higher

JSC. VOC and FF are strongly dependent on the applied rear contact

structure. ATOM contact which includes TiOx, an average VOC

enhancement of 36 mV, and an average FF improvement of 2.3%abs

are achieved with respect to i‐a‐Si:H/Ca/Al contacted solar cells.

The champion cell is a device with a TiOx layer showing a VOC of

711 mV. However, all cell parameters are still higher for the reference

SHJ solar cells compared to the other cell structures, which will be

discussed further at the end of this section.

To improve the understanding of the differences in JSC, the EQE

and reflectance curves were measured. As can be seen in Figure 7,

much parasitic aborption in the front stack is inferred by low EQE

response in short wavelengths. Moreover, the solar cell with the

ATOM contact shows a similar EQE at longer wavelengths compared

to the other candidate electron‐selective contacts except for the
TABLE 2 Light IV parameters of the champion cells within the dif-
ferent contact groups

Candidate Electron‐Selective
Contact Structure JSC (mA/cm2)

VOC

(mV)
FF
(%)

η
(%)

i‐a‐Si:H/Ca/Al 35.2 666.3 70.9 16.6

i‐a‐Si:H/TiOx/Ca/Al (ATOM) 35.1 710.8 72.9 18.2

i/n‐a‐Si:H/ITO/Ag 36.0 734.0 76.4 20.2

The active area and the aperture opening area: 16 cm2.
reference SHJ contact. In comparison to the i‐a‐Si:H/Ca/Al contacted

solar cell, the lower JSC of the solar cell with the ATOM

contact structure is caused by a lower EQE at short wavelengths.

An unintentional variation in front ITO thickness seems to play a role,

which can be recognized by the peak shift of the reflectance at

shorter wavelengths.

At long wavelengths, there is virtually no difference between

the cell with the i‐a‐Si:H/Ca/Al contact and the cell with the i‐a‐Si:

H/TiOx/Ca/Al (ATOM) contact. This indicates that the amount of

parasitic absorption occurring in substoichiometric TiOx
64 is negligi-

ble. The differences with the other cells at long wavelengths can

be explained by the impact of the specific metal layout on the rear

reflectance (see Figure 7). According to Allen et al,11 the reflectance

of the Ca/Al stack is lower than that for both Al and Ag. Further-

more, as shown in Supporting Information Figure S3 and Table S1,

changing the metal from Ag to Ca/Al on i/n‐a‐Si:H/ITO reduces

EQE and reflectance in the long wavelength range, similar to the

result of the i‐a‐Si:H/Ca/Al contacted solar cell, while it does not

change VOC and FF. Although the high EQE at longer wavelengths

for the reference cell is partially because of the superior rear

surface passivation quality, most of the JSC improvement is caused

by the higher reflectance of Ag. For these reasons, strontium

(Sr) and ytterbium (Yb) can be good alternatives to calcium (Ca)

because of their superior reflectance properties, although still lower

than Al.65-67

To further assess the contact performance and the VOC values of

the solar cells, SunsVOC measurements have been conducted (see

Figure 8). For the solar cells with i‐a‐Si:H/Ca/Al rear contacts, a bend

(dashed circle areas in Figure 8) can be observed in the SunsVOC curve

above 1 sun illumination intensity. This phenomenon occurs when ρc
is high (typically >0.1 Ω cm2) based on the modified Ebers‐Moll

equivalent circuit analysis (see the circuit diagram in Figure 8).68,69

The measured ρc of Ca/Al was about 8 Ω cm2 (see, Table 1). In case of

a high ρc value corresponding to the Ca/Al contacts, therefore, the

overall cell output voltage is decreased because the voltage increase

at the rear contact (oppositely directed Schottky diode) is larger than

the voltage increase at the normal pn junction.

http://wileyonlinelibrary.com


FIGURE 8 SunsVOC measurements of the best solar cell in each
group. The corresponding circuit diagram is the modified Ebers‐Moll
equivalent circuit including a Schottky diode in the rear contact.68 The
bend in the curves measured for both Al and Ca/Al contact is marked
using a dashed circle [Colour figure can be viewed at
wileyonlinelibrary.com]
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Different a‐Si:H properties after annealing a‐Si:H with and

without TiOx on the rear side might induce a large difference in

VOC between the i‐a‐Si:H/Ca/Al contacted and the ATOM

contacted solar cells. However, similar hydrogen contents of i‐a‐Si:

H after belt furnace annealing at 175°C could be expected because

of the very low effusion rate of an i‐a‐Si:H layer at annealing

temperatures below 300°C.70-73 Furthermore, the similar J0 value

in Table 1, the comparable EQE edge at the long wavelength

range in Figure 7, and the overlapping SunsVOC curves at the

low injection level in Figure 8 support a similar contact passivation

quality of both the i‐a‐Si:H/Ca/Al and the ATOM contacts.
FIGURE 9 FF, FFJ01, ΔFFRs, and ΔFFJ02 comparison (A) and dependence
contact. The FFRs and FFJ02 losses are indicated in (A) [Colour figure can b
Therefore, it can be seen that the low ρc of the ATOM contact

leads to high external VOC.

On the other hand, the reference contact shows the highest VOC

among the test groups because of the lower J0,metal, typically below

10 fA/cm2, and a strong field effect passivation. More downward

band bending with a low ρc should be aimed for to improve the

electron‐selective contact performance, which will be discussed after

the FF analysis.

Because the performance of the various contact structures

investigated in this work is very different in their J0 and ρc values, it

is interesting to consider the FF losses in more detail as shown in

Figure 9A. The series resistance of the solar cells is characterized using

the Bowden method,74 and the FF loss is outlined using the Khana

method.75 Generally, the FF can be expressed as:

FF ¼ FFJ01−ΔFFRs−ΔFFRsh−ΔFFJ02 (5)

where FFJ01 is the maximum attainable FF for the particular cell

considering only J01 recombination, ΔFFRs is the FF loss related to

the series resistance of the solar cells as depicted in Figure 9B (includ-

ing a ρc), ΔFFJ02 is the FF loss resulting from J02 recombination (the

recombination in the space charge region), and ΔFFRsh is the FF loss

associated with the shunt resistance of the solar cells. In all these cells,

ΔFFRsh was only a very minor loss factor (0.01%‐0.02%), so it is not

considered in further detail here.

In the solar cells with i‐a‐Si:H/Ca/Al contacts, the sum of FFRs

and FF is already slightly higher (1%‐2%) than FFJ01 because of the

lower accuracy of the analysis in case of these solar cells because of

the low FF value. Therefore, the FFJ02 values for the solar cells with

i‐a‐Si:H/Ca/Al contacts are not mentioned in Figure 9A.

The very large ΔFFRs of 15% in the solar cell with an i‐a‐Si:H/Ca/

Al rear contact can be significantly reduced by inserting the interfacial

TiOx layer. The resulting performance of the ATOM contacts incorpo-

rating TiOx already yields a ΔFFRs below 10% and a Rs close to

2 Ω cm2, which approaches the values measured for the reference

SHJ contact (i/n‐a‐Si:H/ITO/Ag). This FF analysis underlines that an
of the total series resistance of solar cells (B) on the type of metal rear
e viewed at wileyonlinelibrary.com]
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TABLE 3 Benchmarking the solar cell results for different passivat-
ing electron‐selective contact structures

Electron
Contact
Structure

Hole
Contact
Structure

JSC
(mA/cm2)

VOC

(mV)
FF
(%)

η
(%)

i‐a‐Si:H/TiOx/Al
40 i/p‐a‐Si:H/ITO/

Ag
‐ 677 54.0 ‐

i‐a‐Si:H/TiOx/ITO/
Ag40

i/p‐a‐Si:H/ITO/
Ag

‐ 492 29.2 ‐

i‐a‐Si:H/TiOx/Al
78 Boron diffused

emitter/Cr/
Pd/Ag

40.5 570 57 13.2

i‐a‐Si:H/TiOx/Al/ITO/
Ag41

i/p‐a‐Si:H/ITO/
Ag

35.5 612 71.3 15.5

i‐a‐Si:H/TiOx/Ca/Al
(ATOM, this work)

i/p‐a‐Si:H/ITO/
Ag

35.1 711 72.9 18.2
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added TiOx layer is strongly beneficial when aiming to make a passiv-

ating electron‐selective contact based on a low work function metal to

finally obtain acceptably low values for both J0 and ρc.

However, the ATOM contact could not yet achieve higher perfor-

mance than the conventional SHJ contact (i/n‐a‐Si:H/ITO/Ag). As can

be seen in Figure 9A, the lower FF of the cells with the ATOM contact

when compared to the reference can be mainly attributed to the

higher Rs and the larger recombination (ΔFFJ02). Taking into account

that all cells have the same front structure, the Rs difference is caused

by the rear contacts. The higher Rs of the ATOM contacted cells com-

pared to the reference cell might come from a higher ρc resulting from

the absence of an n‐a‐Si:H layer, or be induced by the much thinner

rear metal than the printed Ag of the reference. In addition, without

n‐a‐Si:H, and even with the TiOx and the Ca, the band bending seems

to be reduced. Next to that, the thicker i‐a‐Si:H layer in the ATOM

contact (8 nm instead of 4 nm in the reference contact) increases

the probability of carrier recombination through the defect states in

this layer.

Overall, to improve the ATOM contact performance, it is required

to achieve a lower series resistance maintaining similar or lower J0,metal

by forming more downward band bending at the electron contacts.

The work of Matsui et al76 demonstrated that the band bending could

be tunable by the ALD TiOx growth conditions, likely because of the

presence of fixed charge. Therefore, TiOx material development to

control the fixed charge can be another alternative to enhance

the band bending. Additionally, replacing the Ca with a lower work

function metal could help to bend the bands further down to repel

minority carriers more effectively. Possible materials here are again

Sr or Yb (Φ = 2.4‐2.5 eV instead of 2.9 eV for Ca77). These results

are first cells demonstrating the ATOM contact, and there is room

for further improvement.

In Table 3, the IV parameters for the best ATOM contact cells

fabricated in this work are compared with previously reported

results.40,41,78 Especially, Ali et al78 tested a‐Si:H/TiOx/Al contact in

a boron diffused junction solar cell because of good contact passiv-

ation of a‐Si:H/TiOx with respect to SiOx/TiOx. However, the cell

performance was likely limited by a high contact resistivity and high

anneal temperature of 350°C. In the work of Sacchetto et al,41 a thin

Al layer between TiOx and ITO was applied to form additional oxygen

vacancies in theTiOx layer. However, it seems difficult to attain a good
carrier selectivity79 (a low ρc and a low J0,metal) by using TiOx with not

sufficiently low work function metals on an i‐a‐Si:H passivation layer.

As illustrated in this work, combining TiOx with a low work function

metal such as Ca is an efficient route to decrease the ρc and preserve

a low J0,metal, such that the VOC and FF values of the solar cells can be

increased. Additionally, the low‐temperature processing of the ATOM

contact structure is compatible with the fabrication of hole‐selective

contacts based on high work function transition metal oxides.33-39

Finally, it has been reported that the quality of the Ca/Al elec-

trode can be reduced because of the penetration of water through

the pinholes in the capping layers.80,81 Therefore, the stability

improvement of ATOM contacts should also be a point of interest

for future work.
4 | CONCLUSION

The ATOM contact structure including a TiOx layer and a low work

function metal on an a‐Si:H passivation layer was evaluated as a can-

didate for a passivating electron‐selective contact for c‐Si solar cells.

Applying ALD‐TiOx in the ATOM contact is an effective way to

obtain a contact structure that combines good passivation properties

with a low ρc. The integration of the ATOM contact into SHJ solar

cells was successfully demonstrated and the best cell with an ATOM

contact achieved a high VOC of 711 mV, a FF of 72.9%, JSC of

35.1 mA/cm2, and an efficiency of 18.2%. However, the absence

of a n‐a‐Si:H layer in the ATOM contact leads to losses in VOC and

FF possibly caused by a weaker field effect passivation. These chal-

lenges may be overcome by applying a metal with a lower work

function and possibly a higher reflectance than Ca, double side ran-

domly textured substrates, improved i‐a‐Si:H passivation with thinner

thickness, and the use of positively charged TiOx or extrinsically

doped TiOx.
82-87 Although the maximum efficiency of the ATOM

contacted solar cell was lower than the more optimized conventional

SHJ solar cell, the presented results indicate that the ATOM contact

can pave the way toward highly efficient silicon solar cells without

heavily doped Si layer.
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