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In this article we solve the inverse reflector problem for a light source emitting a parallel 
light bundle and a target in the far-field of the reflector by use of a least-squares method. 
We derive the Monge–Ampère equation, expressing conservation of energy, while assuming 
an arbitrary coordinate system. We generalize a Cartesian coordinate least-squares method 
presented earlier by Prins et al. [13] to arbitrary orthogonal coordinate systems. This 
generalized least-squares method provides us the freedom to choose a coordinate system 
suitable for the shape of the light source. This results in significantly increased numerical 
accuracy. Decrease of errors by factors up to 104 is reported. We present the generalized 
least-squares method and compare its numerical results with the Cartesian version for 
a disk-shaped light source.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the last decades LED lighting technology rapidly developed. The costs of LED lighting constantly decrease, as is ex-
pressed by Haitz’ law which states that the cost per lumen (power perceived by the human eye) falls by a factor of 10 every 
decade [1]. Furthermore, LED lighting surpasses traditional lighting in efficacy (lumen per Watt) [2]. As a result, LED lighting 
systems, viz., LEDs integrated in optical systems for illumination, are used in illumination optics ever more frequently.

Two classes of methods are used to design these optical systems: forward methods and inverse methods. In forward meth-
ods the optimal optical system is determined through a process of trial and error. A given optical system is tested, the 
light output of the system is determined by Monte-Carlo ray tracing [3] and subsequent adjustments are made to improve 
the system. This process then iterates to a more or less satisfactory solution, of which the quality depends to a large ex-
tent on the skill of the designer. This method is widely applicable and straightforward, but time consuming. By contrast, 
in inverse methods, for given light source and desired light output, a partial differential equation can be derived relating 
these to the geometry of the optical system. The solution of this partial differential equation then gives the shape of the 
optical elements. Inverse methods are less straightforward to apply but lead to far more accurate results and are time effi-
cient. Moreover, with inverse methods a diversity of new designs are possible that, due to their complexity, are completely 
unattainable by forward methods.

The rise of LED lighting has increased the interest in inverse methods because LED lighting operates at much lower 
temperatures than conventional lighting. This clears the path for the use of easy to mold transparent plastics instead of 
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glass. The optimal shape of these plastic elements can be exactly determined by the inverse method. Moreover, due to 
active development in diamond turning techniques the arbitrarily shaped elements can be fabricated with increasingly high 
precision [4].

In this paper we consider an optical system consisting of an incoming parallel bundle of light and a reflecting surface. 
This optical system is relevant, because parallel bundles can be easily formed in LED lighting systems by placing a converging 
lens above divergently emitting LEDs. Given the intensity distribution of the incoming parallel bundle and a desired output 
distribution, a partial differential equation can be derived for the reflector surface. This partial differential equation is an 
equation of the Monge–Ampère type.

Monge–Ampère type equations also arise in the context of optimal mass transport (OMT). Inverse reflector problems and 
OMT problems are closely related [5]. OMT concerns, roughly speaking, the problem of filling a hole with a heap of sand 
from another location. The goal is to do this while minimizing a transportation cost. In inverse optical problems we do not 
consider a hole and heap of sand, but instead a light source with an emittance and a target with a desired light intensity 
distribution. It was shown that this problem can be viewed as an OMT problem [6].

Numerical methods for solving OMT problems and Monge–Ampère type equations have been scarce until recently. Ben-
amou and Brenier introduced an augmented Lagrangian method to solve the OMT problem [7]. This approach was further 
developed by Haber et al. [8]. A numerical method for the Monge–Ampère equation using finite differences was introduced 
by Froese et al. [9,10]. This method is robust, but requires a convex target set. Brix et al. [11] solved the inverse reflec-
tor problem for a point source by using a collocation method with a tensor-product B-spline basis. For a comprehensive 
overview of the literature on numerical methods for the inverse reflector problem we refer to the thesis of Prins [12] and 
the aforementioned article by Brix et al.

In a recent publication, Prins et al. [13] introduced a least-squares method (LS method) to solve the OMT problem 
related to an inverse reflector problem. This method is based on a least-squares method for the Monge–Ampère equation 
with Dirichlet boundary conditions by Caboussat et al. [14]. The LS method solves the inverse reflector problem, i.e., the 
problem of finding the reflector surface that reflects a parallel bundle of light such that a prescribed luminous intensity 
pattern is achieved on a projection screen in the far-field of the reflector. The method can handle very complicated source 
and target intensities. It was used, for example, to determine the reflector surface that reflects a parallel bundle of light 
to form the luminous intensity pattern corresponding to a gray-scale image of a famous painting by the Dutch painter 
Johannes Vermeer.

The LS method determines the shape of the reflector surface by covering the light source with a rectangular grid and 
computing the height of the reflector in each grid point. This works fine for rectangular light sources, however, for differently 
shaped light sources the rectangular grid also contains grid points outside of the light source. For these grid points the 
emittance of the light source is taken to be zero. This approach to non-rectangular light sources is far from optimal and 
gives results much less satisfying than obtained for rectangular light sources. Most importantly, the boundary condition, 
which states that the boundary of the source must be mapped to the boundary of the target, is at places very badly satisfied 
and this makes the method troublesome for non-rectangular sources. This poses a severe restriction on the applicability of 
the method in illumination optics. The parallel bundles encountered in illumination optics often result from a converging 
lens and frequently have disk-shaped cross sections, therefore a numerical method that can handle disk-shaped light sources 
in a satisfactory way is highly desirable.

The goal of this paper is to present an improved generalized version of the LS method (GLS method) that is applicable 
to arbitrarily shaped light sources emitting a parallel bundle. We use some concepts from tensor calculus to derive the 
Monge–Ampère equation in coordinate-free form and generalize the LS method to arbitrary orthogonal coordinate systems. 
The GLS method like the LS method is an iterative method in which each iteration consists of three minimization steps. 
In one of these minimization steps a pair of boundary value problems is solved. For the LS method, these problems are 
decoupled because it uses Cartesian coordinates. However, in the GLS method they are coupled. We present how to deal 
with this issue. Furthermore, we compare the LS method from [13] with the GLS method presented in this paper. We show 
that for disk-shaped light sources the GLS method in polar coordinates outperforms the LS method significantly.

This paper is structured as follows. In Section 2 we derive the Monge–Ampère equation describing the reflector sur-
face and formulate the reflector problem for an arbitrary coordinate system. In Section 3 we introduce the GLS method by 
generalizing the LS method to arbitrary orthogonal coordinate systems. We shed light on the different minimization steps 
in this method and show how they are different from the Cartesian version of the method. In Section 4 we compare the 
LS and GLS methods. We will consider three test cases. In all cases we will take a disk-shaped light source and there-
fore choose polar coordinates as the orthogonal coordinate system for the GLS method. In the first test the light source 
is mapped to a square gradient set, in the second test a Gaussian source emittance is used and in the third test we con-
sider a target distribution corresponding to a lithograph by the artist M.C. Escher (Fig. 1). In Section 5 we summarize and 
discuss the results. This paper contains some appendices. In Appendix A we introduce some concepts from Tensor calcu-
lus needed in this paper, and give pointers to classical literature on these matters. In Appendix B one can find a proof 
of a result used in the main text. The reading of this proof should not be necessary for understanding the rest of the 
paper.
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Fig. 1. Lithograph Relativity (1953) by the Dutch artist M.C. Escher who was frequently inspired by mathematics [15]. This lithograph, with its great detail, 
will serve as the ultimate test.

2. Monge–Ampère equation and inverse reflector problem

We introduce in this section the optical system and derive the corresponding Monge–Ampère equation. This formulation 
is not new (cf. the overview in [11] for earlier derivations), but it allows us to introduce our notation and reformulate the 
problem in the specific form that we will solve in Section 3.

The optical system consists of a light source and a reflector surface. We embed our optical system in three dimensional 
Euclidean space. We describe the light source by a set E ⊂ R

2 × {−a}, a subset of a plane below and parallel to the 
x-y plane at a distance a > 0. For now, we assume a Cartesian coordinate system on E with coordinates x and y, and, 
corresponding basis vectors ex and e y . Let (·, ·) denote the Euclidean inner product on the ambient space R3 and let ‖ · ‖ be 
the corresponding norm. We assume that the light source emits a parallel bundle of light along the z-axis. The emittance 
of the light source at a point x = (x, y) ∈ E is given in luminous flux per area by E(x, y) [lm/m2], where E : E → (0, ∞)

is the emittance function, which we assume to be continuous. E(x, y)dxdy expresses the light flux through an infinitesimal 
area element on E . For details on photometric quantities, see for example [16]. The light rays leaving the source will all hit 
upon the reflector surface. We describe the reflector surface by a function u : E → (−a, ∞). A ray leaving from the point 
x ∈ E will travel a distance a + u(x) in the z-direction before hitting upon the reflector surface. The function u is the Monge 
parameterization of the reflector surface [17]. Note that by definition u > −a, because the reflector surface is situated above 
the source and not allowed to intersect with the source. In what follows we need the function u to be strictly convex and 
twice continuously differentiable. We will see, as a consequence of upcoming Lemma 1 and Lemma 2, that strict convexity 
of u implies that a pair of rays leaving E from different points will be reflected in different directions. We assume the 
target to be positioned in the far-field of the reflector. Thus, we assume the rays after reflection to be all originating from 
one point and we discard the size of the reflector in this respect. In our embedding of the reflector system we let this point 
coincide with the origin of R3.

The direction of reflection is given by the law of reflection, which in vector form is given by [3, p. 132]

r = i − 2(i,n)n, (1)

where i is the direction of the incoming ray, n is the direction of the normal on the reflector surface and r is the direction 
of the ray after reflection. These vectors all have unit length. The direction of an incoming ray will not depend on the point 
x ∈ E at which it leaves the source, however, the normal n on the reflector surface does depend on x. The vector i is the 
unit vector normal to the light source directed at the reflector. We denote this vector by the unit vector ez . This vector 
complements the two-dimensional bases on E to a three-dimensional basis for R3. The unit normal on the reflector surface 
pointing down towards the light source can be expressed in terms of the gradient of u and ez and when we substitute this 
in (1), we obtain

r(x) = ez + 2
∇u(x) − ez

‖∇u(x) − ez‖2
. (2)

For all x ∈ E the vector r(x) is of unit length and by the far-field approximation we may furthermore assume it to have its 
initial point at the origin. This implies that the vectors r(x) lie on the unit sphere, S 2. We can therefore interpret the map 
given by x 	→ r(x) to be mapping a point on the light source to a point on the unit sphere. We will denote this mapping by 
r : E → S 2. The optical system is depicted in Fig. 2.

The reflected light will shine in a set of directions G ⊂ S 2. We assume a spherical coordinate system on G with 
φ ∈ [0, π ] the zenith angle between r and ez , and, θ ∈ [0, 2π) the azimuth angle between ex and the projection of r on 
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Fig. 2. The set-up of the reflector problem. A light ray from a point x ∈ E is emitted in the direction i = ez . Subsequently, the ray is reflected at the point 
u(x)ez according to the law of reflection (1) in the direction r. This direction corresponds to a point r(x) ∈ G . The set G (in green) is a subset of the unit 
sphere S 2. Note the unit vectors and unit sphere are not drawn in proportion. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Fig. 3. The mappings and sets involved in the inverse reflector problem.

the x-y plane. Let us describe the luminous intensity in the directions G by a continuous function G : G → (0, ∞). The 
luminous intensity is the luminous flux per solid angle [lm/sr]. The luminous flux through an infinitesimal surface area 
element on G is given by G(φ, θ) sin(φ)dφdθ . In practice the couple G and G will be such that a desired intensity pattern 
is projected on a screen in the far-field of the reflector. As long as G is confined to one half of S 2 there is a one-to-one 
correspondence between the couple G and G on the one hand and the intensity pattern in the far-field on the other hand. 
Details can be found in [12]. We call G the target set.

The problem we want to solve is informally stated as follows. Given a light source E with emittance function E, determine the 
shape of the reflector such that, after reflection, the intensity pattern in the far-field is given by the target set G with luminous intensity 
function G. This problem is known as the inverse reflector problem. Before we will state this problem more formally, we will 
first, under the assumption u ∈ C2(E ), derive a partial differential equation from the principle of conservation of luminous 
flux. The luminous flux through U ⊂ E results in a luminous flux through the set r(U ) ⊂ S 2. By conservation of luminous 
flux these two fluxes must be equal and therefore we have∫

U

E(x, y)dxdy =
∫

r(U )

G(φ, θ) sin(φ)dφdθ, (3)

for every Lebesgue measurable set U ⊂ E . We can use (3) to derive the partial differential equation. To see this we must 
closely examine the map r : E → S 2. From (2) it can be seen that r(x) only depends on the gradient of u at the point x. 
We can therefore interpret r as the composition s ◦ ∇u, i.e., the composition of ∇u and another map which we will denote 
by s. The relation between ∇u, s and r is depicted in Fig. 3. By the far-field approximation r has its initial point at the 
origin. This implies that we should interpret ∇u also as a vector with its initial point at the origin. The vector ∇u is by 
definition parallel to E and because it has its initial point in the origin it lies in the plane R2 × {0}. From relation (2) we 
see that s maps a vector v in this plane to the unit sphere according to

v 	→ ez + 2
v − ez

‖v − ez‖2
. (4)

Closer inspection reveals that this map is the inverse of the stereographic projection pictured in Fig. 4 [18, p. 26]. It is the 
bijection between S 2\ez , i.e., the unit-sphere without its north pole, and R2 × {0}, the plane intersecting the equator of 
S 2\ez . To substantiate this claim, consider a point on the unit sphere given by ξex + ηe y + ζ ez , ξ2 + η2 + ζ 2 = 1. The 
stereographic projection maps ξex + ηe y + ζ ez to the point p(ξ, η, ζ )ex + q(ξ, η, ζ )e y , with

p(ξ,η, ζ ) = ξ

1 − ζ
, q(ξ,η, ζ ) = η

1 − ζ
. (5)

We can easily verify that the inversion of these equations is given by
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Fig. 4. The inverse stereographic projection maps the surface element dxdy on R
2 × {0} to the surface element sin(φ)dφdθ on S 2\ez .

ξ(p,q) = 2p

p2 + q2 + 1
, η(p,q) = 2q

p2 + q2 + 1
, ζ(p,q) = p2 + q2 − 1

p2 + q2 + 1
.

We now see from (4) that s : pex + qe y 	→ ξ(p, q)ex + η(p, q)e y + ζ(p, q)ez , which implies that s is indeed the inverse of 
the stereographic projection as defined in (5).

We proceed with examining the map r : E → S 2 in order to derive the sought partial differential equation. When we 
identify the vector ∇u(x) with its endpoint, we can interpret ∇u(E ) as a subset of R2 × {0}. We will present bijectivity of 
∇u in the following lemma.

Lemma 1. Let u ∈ C2(E ) be strictly convex and let us define

p := ∂u

∂x
and q := ∂u

∂ y
.

The map ∇u : E → ∇u(E ) is a continuously differentiable bijection, with Jacobian

∂(p,q)

∂(x, y)
= det

⎛
⎜⎜⎝

∂2u

∂x2

∂2u

∂x∂ y

∂2u

∂x∂ y

∂2u

∂ y2

⎞
⎟⎟⎠ , (6)

i.e., the Jacobian of the map ∇u is the determinant of the Hessian tensor.

Proof. u ∈ C2(E ) implies that ∇u is continuously differentiable. The bijectivity of ∇u follows from the strict convexity of u. 
∇u is surjective by definition. To show injectivity, we argue by contradiction and will use a reasoning presented in [12, 
p. 93]. Suppose x, x′ ∈ E , such that x �= x′ and ∇u(x) = ∇u(x′). Due to strict convexity u lies above its tangent planes, i.e., 
u(x′) > u(x) + (∇u(x), x′ − x) and similarly u(x) > u(x′) + (∇u(x′), x − x′). Adding these two inequalities and subtracting 
u(x) + u(x′) from both sides we obtain 0 > (∇u(x′) − ∇u(x), x − x′), which is contradicting the assumption ∇u(x′) = ∇u(x). 
We have shown that ∇u is a continuously differentiable bijection. The fact that the Jacobian is the determinant of the 
Hessian follows directly from the definition of the Cartesian coordinates p and q on ∇u(E ). �

Note that the fact that u is convex implies that the Hessian is positive semi-definite and this again implies that the 
determinant of the Hesssian is nonnegative. For the inverse of the stereographic projection, s, we have the following similar 
result.

Lemma 2. The inverse of the stereographic projection s : R2 × {0} → S 2\ez is continuously differentiable and hence s : ∇u(E ) →
s(∇u(E )) is a continuously differentiable bijection. Let us denote by the Cartesian coordinates (p, q) the points in ∇u(E ) and let 
(φ, θ) = (φ(p, q), θ(p, q)) be the image of (p, q) under s represented in spherical coordinates. For the Jacobian of s we have

sin(φ)
∂(φ, θ)

∂(p,q)
= 4

(1 + p2 + q2)2
. (7)

Proof. We first prove injectivity. Suppose we have two distinct v, v ′ ∈R
2 × {0} such that s(v) = s(v ′). This implies that

v − ez

‖v − ez‖2
= v ′ − ez

‖v ′ − ez‖2
.
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Using the fact that ez is orthogonal to both v and v ′ we find that ‖v − ez‖2 = ‖v ′ − ez‖2 and this in turn implies that 
v = v ′ .

The map is also surjective from R2 × {0} to S 2\ez . For (φ, θ) ∈ (0, π ] × [0, 2π) we have [12, p. 77]

p(φ, θ) = sin(φ) cos(θ)

1 − cos(φ)
, q(φ, θ) = sin(φ) sin(θ)

1 − cos(φ)
,

indicating surjectivity of s. Conversely,

θ(p,q) = tan−1 (p,q) , φ(p,q) = arccos

(
p2 + q2 − 1

p2 + q2 + 1

)
,

where θ(p, q) = tan−1(p, q) is the four-quadrant variant of arctan(q/p) [12, p. 77]. By direct calculation we find

∂(φ, θ)

∂(p,q)
= 1√

p2 + q2

2

p2 + q2 + 1
.

Furthermore, we have

sin(φ) = sin

(
arccos

(
p2 + q2 − 1

p2 + q2 + 1

))
= 2

√
p2 + q2

p2 + q2 + 1
,

where we have used the fact that sin(φ) ≥ 0 and the identity sin(arccos(x)) = √
1 − x2. Combining the two relations we 

find (7). �
Consequently, s ◦ ∇u is a bijection implying that rays with different locations at the source are reflected in different 

directions.
We can use the results of the preceding two lemmas to derive the differential equation expressing conservation of energy. 

This is stated in the following theorem.

Theorem 1. Assume E ⊂ R
2 × {−a} is convex, closed and bounded, u ∈ C2(E ) strictly convex and r = s ◦ ∇u, where s is the inverse 

of the stereographic projection. Let E and G be continuous, strictly positive and bounded functions. Furthermore, assume we have a 
coordinate system on E with metric ei j and e = det(ei j), and let hij(u) be the coefficients of the Hessian tensor (given in Appendix A, 
equation (A.6)) in the basis of this coordinate system. Then the function u satisfies the Monge–Ampère type differential equation

4 det(hij(u(x)))

e(x)(1 + ‖∇u(x)‖2)2
= E(x)

G(r(x))
, (8)

for every x ∈ E .

Proof. We first derive an equation in the Cartesian coordinate system on E and then generalize this equation to arbitrary 
coordinate systems on E .

Both s and ∇u are continuously differentiable injections, therefore we can apply integration by substitution [19, 
Thm. 7.26]. For every Lebesgue measurable open subset U ⊂ E we have∫

r(U )

G(φ, θ) sin(φ)dφdθ =
∫
U

G(φ(x, y), θ(x, y)) sin(φ)
∂(φ, θ)

∂(p,q)

∂(p,q)

∂(x, y)
dxdy,

where no absolute values appear because both Jacobian determinants are nonnegative. Using identity (3) we find∫
U

E(x, y)dxdy =
∫
U

G(φ(x, y), θ(x, y)) sin(φ)
∂(φ, θ)

∂(p,q)

∂(p,q)

∂(x, y)
dxdy,

for every Lebesgue measurable U ⊂ E . The continuity of the functions E , G , r, the Jacobians and the sine function, Lemma 1
and Lemma 2 and the fact that the determinant of the Hessian of a convex function is positive imply that

4 det(hij(u(x, y)))

(1 + ‖∇u(x, y)‖2)2
= E(x, y)

G(φ(x, y), θ(x, y))
∀(x, y) ∈ E .

This equation is the Cartesian coordinate expression of (8), because in the Cartesian coordinate system e = 1 and the Hessian 
is just the matrix with the second order partial derivatives.

The left hand side of (8) is a scalar and hence independent of the choice of coordinate system and basis. The term 
4/(1 + ‖∇u(x)‖2)2 is also independent of the coordinate system and basis in use as it only involves the norm of a vector. 
To see that this also holds for det(hij(u(x)))/(e(x)), we consider a basis transformation ai ei = ē j , where e1, e2 are the old 
j
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basis vectors and ē1, ̄e2 are the new basis vectors. Let B = (bi
j) be the inverse of A = (ai

j). The Hessian and the metric 
are both tensors, as such they transform according to the tensor transformation law [20, p. 204], i.e., we have h̄i j = bk

i bl
jhkl

and ēi j = bk
i bl

jekl . From this it follows that det(h̄i j) = (det(B))2 det(hij) and ē = (det(B))2e for the determinants of the 
metrics, which implies det(h̄i j)/ē = det(hij)/e. Thus we see that (8) is indeed independent of the choice of coordinate 
system on E . �

We are now in the position to state the inverse reflector problem in more formal terms. Given a convex, closed and bounded 
light source E with strictly positive and bounded emittance E ∈ C(E ) and a closed target set G ⊂ S 2 with desired strictly positive 
and bounded luminous intensity G ∈ C(G ) such that∫

E

E(x, y)dxdy =
∫
G

G(φ, θ) sin(φ)dφdθ, (9)

find a function u ∈ C2(E ) that satisfies r(E ) = G and the Monge–Ampère type equation (8).
The condition r(E ) = G needs to be satisfied for equation (8) to have meaning. Alternatively, we can use the continuously 

differentiable bijection s to reformulate the problem in terms of a gradient set F and a function F on this set instead of 
the target set G and the luminous intensity G . Using the fact that s−1 exists, we define F := s−1(G ), and, using the 
differentiability of s, we define

F (y) = 4G(s(y))

(1 + ‖y‖2)2
,

for all y ∈ F . Note that F ∈ C(F ). Furthermore, using integration by substitution we see that (9) implies∫
E

E(x, y)dxdy =
∫
F

F (p,q)dpdq. (10)

The conditions r(E ) = G translates in the condition ∇u(E ) = F . These definitions allow us to reformulate the inverse 
reflector problem.

Inverse Reflector Problem. Given a convex, closed and bounded light source E with strictly positive and bounded emittance E ∈
C(E ) and a closed gradient set F with strictly positive, bounded and bounded away from zero, function F ∈ C(F ) that satisfy (10), 
find a function u ∈ C2(E ) that satisfies ∇u(∂E ) = ∂F , ei jhi j(u) > 0 and the Monge–Ampère type equation

det(hij(u(x)))

e(x)
= E(x)

F (∇u(x))
. (11)

Note that we replaced the implicit boundary condition ∇u(E ) = F with the more explicit boundary condition ∇u(∂E ) =
∂F . The explicit boundary condition is better manageable numerically. We will show in Appendix B that for strictly con-
vex u these two conditions are equivalent. The reason that we demand F to be bounded away from zero, is to be able 
to show this equivalence. Furthermore, we added the earlier absent constraint ei jhi j(u) = hi

i(u) > 0, demanding the trace 
(cf. Appendix (A.2)) of the Hessian to be strictly positive. The fraction E/F is by definition strictly positive, hence the de-
terminant of the Hessian is strictly positive too. From this it follows that the Hessian matrix is strictly positive definite or 
strictly negative definite, corresponding to either a convex or concave solution, respectively. By demanding the trace of the 
Hessian to be positive we make sure that only a convex reflector surface is admitted. Thus, we conclude that a solution to 
the Inverse Reflector Problem as stated above and the same problem but with ∇u(∂E ) = ∂F replaced by ∇u(E ) = F are 
truly equivalent as they both only admit strictly convex solutions and the boundary conditions are equivalent for strictly 
convex u.

In this paper we restrict ourselves to this convex solution, however, the algorithm can be easily adapted to find the 
concave solution instead. In [12, pp. 96–98] it is described how one can easily find the concave solution from the convex 
solution and vice versa.

A theorem by Brenier [5, p. 66] states that a weak formulation of the Inverse Reflector Problem admits a unique convex 
solution. It is, however, not clear that, for all pairs (E , E) and (F , F ), the unique weak solution of Brenier’s theorem is 
twice continuously differentiable. Regularity of the solution for the Monge–Ampère equation (11) is a complicated matter 
and beyond the scope of this paper. For u to be C2(E ), certainly continuity of E and F seems to be required (see for 
example [5]). However, even this requirement will not be met in all the numerical experiments we present in Section 4. 
Though also in these cases good numerical approximations are found.
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3. Least-squares method in arbitrary orthogonal coordinates

In [13] Prins et al. proposed the LS method to solve the Inverse Reflector Problem in Cartesian coordinates. We introduce 
in this section the GLS method, i.e., the generalization of the LS method by Prins et al. [13] to arbitrary orthogonal coordinate 
systems. We remind the reader that a brief explanation of the notions of tensor calculus used can be found in Appendix A.

We assume an arbitrary coordinate system on the source E with orthogonal coordinates x1, x2, local orthogonal basis 
vectors e1, e2 and a metric ei j = (ei, e j) with corresponding norm ‖ · ‖. The orthogonality of the basis vectors imply ei j = 0
for i �= j. We will not try to solve the Inverse Reflector Problem directly for u, but instead look for a mapping m : E → F
representing ∇u such that:

(i) m solves the following boundary value problem

det(∇m̂(x))

e(x)
= E(x)

F (m(x))
, x ∈ E ,

m(∂E ) = ∂F ,

where m̂ = miei = ei jmie j and m = miei ,
(ii) m should be such that there exists a strictly convex u ∈ C2(E ) such that m = ∇u.

From this mapping we will eventually find u. If m satisfies (ii), then m̂ = du and hence the tensor

∇m̂ := ∇e j (m̂) ⊗ e j = (∇e j mi − 	k
i jmk)ei ⊗ e j

must be, by definition (Appendix A.3), the Hessian of some function and therefore needs to be symmetric (Appendix A.3). 
This condition is actually enough to ensure that m equals the gradient of some function. The symmetry of ∇m̂ implies 
∇ × m = 0. To see this let us interpret m as a vector in R3. The component m3 = 0 and hence the curl is given by [21, 
p. 170]

∇ × m = 1√
e

((∇e2m1 − 	i
12mi

) − (∇e1m2 − 	i
21mi

))
ez.

From this we see that ∇ × m vanishes if and only if ∇m̂ is symmetric. A vector field with zero curl is called conservative. 
A conservative field on a simply connected domain always equals the gradient of some function, see for example [23, 
p. 551]. Thus we conclude that m equals the gradient of some function u ∈ C2(E ) if and only if ∇m̂ is symmetric.

However, this condition alone will not suffice for our goals, because we also need u to be strictly convex. The function 
u ∈ C2(E ) is convex if and only if E is convex and the Hessian tensor H (u) is positive semi-definite, see for example [24, 
p. 71]. The Hessian tensor is positive semi-definite if and only if for every x = xiei we have H(u)(x, x) ≥ 0, where

H(u)(x, x) = hijx
i x j = xkekihi jx

j = xT (
ekihi j

)
x.

From this we see that H(u) is positive semi-definite if and only if the matrix 
(
ekihi j

)
is positive semi-definite. For our 

orthogonal basis the metric is diagonal and therefore

(
ekihi j

) =
(

e11h11 e11h12

e22h21 e22h22

)
.

Unfortunately, we can not demand positive definiteness, because, although every u ∈ C2(E ) with positive definite Hessian 
tensor is strictly convex, not every strictly convex u ∈ C2(E ) has a positive definite Hessian tensor.1 Thus asking for more 
than ∇m̂ to be positive semi-definite would be too restrictive. The numerical method that we will introduce solves the 
following boundary value problem (BVP):

Transport BVP. Find a continuously differentiable map m : E → F that satisfies

det(∇m̂(x))

e(x)
= E(x)

F (m(x))
, x ∈ E , (12a)

m(∂E ) = ∂F , (12b)

and for which ∇m̂ is a symmetric positive semi-definite tensor. In this problem the functions E and F are strictly positive and bounded 
on E and F , respectively, such that (10) is satisfied and F is bounded away from zero.

1 Consider for example the strictly convex function f (x) = x4 on the real line. Although f is strictly convex, the Hessian tensor, i.e. f ′′ , is zero for x = 0
and hence not positive definite.
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If u is a solution to the Inverse Reflector Problem, then u is strictly convex and m = ∇u will be a solution to the 
Transport BVP. The reverse statement is not necessarily true because a solution m of the Transport BVP may be such that u
satisfying m = ∇u is convex but not strictly convex. The Transport BVP thus admits for a slightly larger solution class.

We numerically solve the Transport BVP by starting with an initial guess m0 and improve this initial guess in an iterative 
manner. One iteration consists of three stages. These three stages together give an improved mapping mn+1 from the current 
mapping mn . We now explain these three stages.

First, we approximate ∇m̂ by a symmetric positive semi-definite tensor P by minimizing the functional

J I(m, P ) := 1

2

∫
E

‖∇m̂ − P‖2 dA, (13a)

over the space

P(m) :=
{

P ∈ T 0
2(E )C1 | det(pij(x)) = e(x)E(x)

F (m(x))
, P (x) is spsd

}
, (13b)

where “spsd” stands for symmetric positive semi-definite and P = pijei ⊗ e j . Furthermore, we use T 0
2(E )C1 to denote the 

space of continuously differentiable tensor fields of contravariant rank 0 and covariant rank 2 (Appendix A.2). It seems as if 
we demand more smoothness than necessary, because Transport BVP and (13a) suggest that P only needs to be continuous 
for continuous E and F . However, in one of the minimization procedures that follows we need ∇m̂ to be continuously 
differentiable and therefore we also need P to be continuously differentiable.

The norm in functional (13a) is defined in the following way. Let A, B ∈ T 0
2(E ), where A = aijei ⊗ e j and B = bijei ⊗ e j , 

then

A : B := eike jlai jbkl = aijbi j, (14)

defines an inner product on T 0
2(E ). This inner product on T 0

2(E ) is induced by the metric. The fact that this is indeed an 
inner product follows from the symmetry, linearity and positivity of the metric e. Let ‖ · ‖ be the norm associated with this 
inner product.2 It is clear that if J I = 0, m will satisfy (12a) and ∇m̂ will be symmetric positive semi-definite.

Secondly, we approximate the boundary value of m at ∂E by a vector field b that exactly satisfies the boundary condi-
tion (12b). This is done by minimizing

JB(m,b) := 1

2

∫
∂E

‖m − b‖2ds, (15a)

over the space

B :=
{

b = b̄
∣∣
∂E

∣∣ b̄ ∈ T 1
0(R

2)C ,b(x) ∈ ∂F
}

, (15b)

for an arc-length parameterization of the boundary. Analogously to the functional J I we notice that if JB = 0, m satis-
fies (12b).

Finally, to find the improved mapping mn+1 we minimize J I and JB simultaneously. To do so we define a third functional:

J (m, P ,b) := α J I(m, P ) + (1 − α) JB(m,b) (16)

with α ∈ (0, 1). We minimize this functional for m over the space M := T 1
0(E )C2 . Thus, to determine mn+1 three stages are 

performed subsequently:

bn+1 = argmin
b∈B

JB(mn,b), (17a)

P n+1 = argmin
P∈P(mn)

J I(m
n, P ), (17b)

mn+1 = argmin
m∈M

J (m, P n+1,bn+1). (17c)

To solve these minimization problems we will cover our light source with a grid. The grid will be an orthogonal curvilinear 
grid with as grid lines a finite set of the coordinate lines. The minimization problems (17c) will then be translated to 
discrete problems on this grid.

The first minimization step, step (17a), can be performed in an efficient point-wise way as discussed in [13]. No changes 
are made to this minimization step and therefore we do not further discuss it here. The minimization step (17b) is discussed 

2 We use the same notation as for the vector norm, but this is not very likely to cause confusion because it will be clear from the argument which norm 
we mean.
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quite extensively. A new geometrical interpretation of this minimization is presented, which provides increased insight and 
clarifies the intricate expressions of [13]. This allows us to algebraically determine the minimizer for this problem. Also 
minimization problem (17c) is covered in great detail, because this minimization problem becomes substantially more 
involved for arbitrary coordinate systems. We start with minimization problem (17b).

3.1. Minimization of J I

The integrand of J I does not contain derivatives of P , therefore we can carry out the minimization for each grid point 
x ∈ E individually. For each grid point x ∈ E we want to minimize ‖∇m̂(x) − P (x)‖2/2. Let us denote by δei m j the central 
difference approximation of ∇ei m j , i.e., the difference of the value in two neighboring grid points in the ei direction divided 
by the distance between those two points. The tensor ∇m̂ will then be approximated by D = dijei ⊗ e j , where dij :=
δe j mi − 	k

i jmk . Assuming this approximation of ∇m̂, we will minimize

1

2
‖D − P‖2 = 1

2
eike jl(dij − pij

)(
dkl − pkl

)
= 1

2e

(
e11e22

(
d11 − p11

)2 + (
d12 − p12

)2 + (
d21 − p12

)2 + e22e11
(
d22 − p22

)2
)

,

where we used the fact that the basis {e1, e2} is orthogonal and hence (ei j) is diagonal. The tensor P (x) is positive 
semi-definite if and only if the matrix 

(
ei j p jk

)
is positive semi-definite. Recall that symmetric 2 × 2 matrices are pos-

itive semi-definite if and only if their trace and determinant are both nonnegative. However, the matrix (ei j p jk) is not 
symmetric, because

(
eij p jk

) =
(

e11 p11 e11 p12

e22 p12 e22 p22

)
, (18)

where we used that p21 = p12. Let the transformation matrix T be given by T = diag
(√

e11, 
√

e22
)
. We use this transforma-

tion to make 
(
ei j p jk

)
symmetric:

T
(
eij p jk

)
T −1 =

(
e11 p11 p12/

√
e

p12/
√

e e22 p22

)
. (19)

A quick calculation shows that the eigenvalues of the matrix 
(
ei j p jk

)
, and hence also of the matrix T

(
ei j p jk

)
T −1, are given 

by

μ± = 1

2e

(
e22 p11 + e11 p22 ±

√(
e22 p11 + e11 p22

)2 − 4e det
(

pij
))

, (20)

which are both real since the matrix T
(
ei j p jk

)
T −1 is symmetric. It is a familiar result that a matrix is positive semi-definite 

if and only if its eigenvalues are nonnegative. The matrix 
(
ei j p jk

)
is positive semi-definite if and only if the matrix in (19)

is positive semi-definite. The matrix in (19) is symmetric, hence we can conclude that P (x) is positive semi-definite if and 
only if the trace and determinant of the matrix in (19) are nonnegative, i.e., if and only if e11 p11 +e22 p22 ≥ 0 and (p11 p22 −
p2

12)/e ≥ 0. The metric ei j is derived from an ordinary Pythagorean inner product hence we have e > 0 and therefore we 
can simplify the last requirement to det(pij) ≥ 0.

The determinant of (pij) needs to equal eE/F . This quotient is positive by definition and hence det(pij) > 0 is always 
satisfied. Let us now, to get rid of the metric altogether, introduce the variables

p̄11 := e11 p11, p̄12 := p12/
√

e, p̄22 := e22 p22, (21a)

d̄11 := e11d11, d̄22 := e22d22, d̄12 := (d12 + d21)/(2
√

e). (21b)

We can give a more convenient reformulation of the minimization problem in terms of these variables. Moreover, we also 
drop the constant term (d12 −d21)

2/(4e) from the function to minimize. We may do this as it does not effect the minimizers. 
The reformulated problem then reads as follows.

Minimization Problem. Given the symmetric matrix

D̄ =
(

d̄11 d̄12

d̄12 d̄22

)
,

with d̄11 , d̄12 and d̄22 as defined in (21b), find the symmetric matrix
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P̄ =
(

p̄11 p̄12
p̄12 p̄22

)
,

that minimizes the function

H( P̄ ) := 1

2
‖D̄ − P̄‖2

F , (22)

under the constraints det( P̄ ) = E/F and tr( P̄ ) ≥ 0, where the norm used in (22) is the Frobenius norm for matrices, defined as 
‖A‖F =

√∑
i, j a2

i j for a matrix A = (aij).

From the relations (21a) the minimizer (p11, p12, p22) can be found once the minimizer (p̄11, p̄12, p̄22) of Minimization 
Problem has been found. Furthermore, we have H( P̄ ) = ‖D − P‖2/2 − (d12 − d21)

2/(4e). We solve Minimization Problem
algebraically by using the method of Lagrange multipliers. Besides this we give a graphical representation of this problem. 
This serves to get more intuition for the problem and also provides a convenient way to verify the algebraically found 
solutions.

3.1.1. Lagrange minimizers and their geometric representation
We find the minimizers of Minimization Problem with the help of the Lagrange function

�( P̄ ;λ) = H( P̄ ) + λ

(
det P̄ − E

F

)
. (23)

In a minimum of this function all the partial derivatives have to equal zero, hence we find the following set of equations,

p̄11 + λp̄22 = d̄11, (24a)

λp̄11 + p̄22 = d̄22, (24b)

(1 − λ)p̄12 = d̄12, (24c)

p̄11 p̄22 − p̄2
12 = E/F . (24d)

In the Lagrange function (23) the condition tr( P̄ ) ≥ 0 has not been taken into account, hence a solution of (24a)–(24d)
might have tr( P̄ ) < 0. In what follows, we will show that there always exists a solution to (24a)–(24d) such that tr( P̄ ) ≥ 0.

Let us now give a geometric interpretation of the minimizers of the Lagrange function. The minimizers correspond to a 
joint tangent plane of a hyperboloid and an ellipsoid. We introduce the iso-surfaces H( P̄ ) = C H . By definition C H ≥ 0. Every 
value of C H corresponds to an iso-surface of the function H . By definition of H we have(

p̄11 − d̄11√
2C H

)2

+
(

p̄12 − d̄12√
C H

)2

+
(

p̄22 − d̄22√
2C H

)2

= 1. (25)

Equation (25) describes an ellipsoid in R3 with center (d̄11, ̄d12, ̄d22) and semi-axes 
√

2C H , 
√

C H and 
√

2C H . Thus the 
iso-surfaces of H can be interpreted as ellipsoids in R3.

The constraint det( P̄ ) = E/F describes an hyperboloid in R3 with symmetry axes given by p̄11 = p̄22 and p̄12 = 0. To 
see this we will rotate our coordinate system to align the symmetry axes with the new coordinate axes. We perform the 
rotation given by

p1 := (p̄11 − p̄22)/
√

2, p2 := tr( P̄ )/
√

2, p3 := p̄12,

d1 := (d̄11 − d̄22)/
√

2, d2 := tr(D̄)/
√

2, d3 := d̄12.

Using this transformation, the constraint det( P̄ ) = E/F can be rewritten as(
p1√

2E/F

)2

−
(

p2√
2E/F

)2

+
(

p3√
E/F

)2

= −1. (26)

This equation describes a hyperboloid of two separate sheets. One sheet is located in the half-space p2 > 0 and the other 
one is located in the half-space p2 < 0. The distance from the origin to the extremum of the sheet with tr( P̄ ) > 0 and the 
extremum of the sheet with tr( P̄ ) < 0 is both 

√
2E/F . Equation (25) transforms to(

p1 − d1√
2C H

)2

+
(

p2 − d2√
2C H

)2

+
(

p3 − d3√
C H

)2

= 1.

We see (Fig. 5) that the principal axes of both the ellipsoids and the hyperboloids are such that the p1- and p2-principal axis 
are equally long and 

√
2 times the length of the p3-principal axis. This fact will play a role in the minimization problem.
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Fig. 5. An example of an ellipsoidal iso-surface of H and a hyperboloid are shown from two different perspectives for two instances of D̄. We see that the 
principal p1- and p3-axis have the same proportion for the hyperboloid and the ellipsoid.

Fig. 6. On the left side the two sheets of the hyperboloid and the dividing plane p2 = tr( P̄ )/
√

2 = 0 are shown. On the right side an example of an ellipsoid 
which is tangent to the hyperboloid with tr( P̄ ) > 0 is shown. Some red of the ellipsoid can be seen through the hyperboloid. This point is the minimizer.

The local minimizers of the Lagrange function (23) are exactly the points where an iso-surface of H is tangent to the 
hyperboloid. The plane p2 = tr( P̄ )/

√
2 = 0 lies precisely between the two sheets of the hyperboloid. Thus, only the points 

where an iso-surface of H is tangent to the sheet of the hyperboloid with tr( P̄ ) > 0 are actual minimizers of Minimization 
Problem. In Fig. 6 this is illustrated. The global minimizer corresponds to the smallest ellipsoid that is tangent to the upper 
sheet of the hyperboloid.

In the remaining part of this section we will algebraically solve the system (24). We will verify the algebraic solutions 
that we find by these graphical representations. This allows us to get more intuition for the problem and visualize symme-
tries that are not directly apparent from (24a)–(24d).

3.1.2. Determining the minimizers
We will show that for each given D̄ we can find P̄ that is the solution of Minimization Problem. If λ �= ±1, we can 

invert (24a)–(24c). Doing this we obtain

p̄11 = λd̄22 − d̄11

λ2 − 1
, p̄12 = d̄12

1 − λ
, p̄22 = λd̄11 − d̄22

λ2 − 1
. (27)
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However, these equations only hold if λ �= ±1. From (24a)–(24c) we have the following immediate logical implications:

λ = 1 =⇒ (d̄11 = d̄22 ∧ d̄12 = 0), λ = −1 =⇒ (d̄11 = −d̄22).

From these implications we see there are only two situations that have to be dealt with separately, namely the cases 
(d̄11 = d̄22 ∧ d̄12 = 0) and (d̄11 = −d̄22). When we are not in one of these two cases, the solution (27) holds. We will now 
treat the three different cases in turn, starting out with the general case.

Lemma 3. If (d̄11 �= d̄22 ∨ d̄12 �= 0) and (d̄11 �= −d̄22), the global minimizer to Minimization Problem is given by (27), where λ is given 
by one of the following expressions:

λi = −
√

y

2
+ (−1)i

√
− y

2
− a2

2a4
+ a1

2a4
√

2y
, i = 1,2,

λi =
√

y

2
+ (−1)i

√
− y

2
− a2

2a4
− a1

2a4
√

2y
, i = 3,4.

(28)

In (28) y is given by the following two sets of equations:

y = A + Q

A
− b2

3
, A = − sgn(R)

(|A| +
√

R2 − Q 3
)1/3

,

R = 2b3
2 − 9b1b2 + 27b0

54
, Q = b3

2 − 3b1

9
,

(29)

and

a4 = E

F
, a2 = −2a4 − det(D̄), a1 = ‖D̄‖2,a0 = a4 − det(D̄),

b0 = − a2
1

8a2
4

, b1 = a2
2 − 4a0a4

4a2
4

, b2 = a2

a4
.

(30)

At least one of the four choices for λ is such that the requirement tr( P̄ ) > 0 is satisfied by (27).

Proof. Substituting the expressions (27) in (24d) we obtain the following quartic equation �(λ) := a4λ
4 +a2λ

2 +a1λ +a0 =
0, where the coefficients are as given in (30). In [13] it is shown that this polynomial admits the four solutions (28). Since 
a4 = E/F > 0 we have limλ→±∞ �(λ) = ∞. Furthermore, we can rewrite �(λ) as

�(λ) = a4(λ
2 − 1)2 − (a0 − a4)(λ

2 + 1) + a1λ.

From this we see that �(−1) = −(d̄11 + d̄22)
2. By assumption d̄11 �= −d̄22, hence �(−1) < 0. From this inequality combined 

with the fact that �(λ) → +∞ for λ → ±∞ it follows by the Intermediate Value Theorem that � must have at least two 
real roots, one smaller than −1 and one larger than −1. From (24) it follows that tr( P̄ ) = tr(D̄)/(1 + λ). This shows that for 
one of the two real roots tr( P̄ ) > 0, while for the other real root tr( P̄ ) < 0.

We now have established the fact that one of the four roots λ in (28) gives the minimum of the Lagrange function such 
that tr( P̄ ) > 0, thereby it follows that a global minimizer exists. Moreover, the minimizer is given by (27), with λ given by 
one of the real roots of (28). The global minimizer will be found by checking for which of the four λi (i = 1, . . . , 4) the 
function H is minimal. �

Now that we have dealt with the general case we will turn our attention to the cases (d̄11 = d̄22 ∧ d̄12 = 0) and (d̄11 =
−d̄22). We first handle (d̄11 = −d̄22).

Lemma 4. When d̄11 = −d̄22 , the global minimizer to Minimization Problem is given by

p̄11 = 1

2

(
d̄11 +

√
d̄2

11 + 4E/F + d̄2
12

)
, p̄12 = d̄12

2
, p̄22 = p̄11 − d̄11. (31)

Proof. When d̄11 = −d̄22, the Lagrange conditions (24a) and (24b) imply that (λ +1)(p̄11 + p̄22) = 0. From this it follows that 
we have either λ = −1 or p̄11 = −p̄22, or both. When p̄11 = −p̄22, it follows from (24d) that −p̄2

11 − p̄2
12 = E/F . However, 

this situation cannot occur because E/F > 0. We conclude that λ = −1 must hold. The Lagrange conditions (24a)–(24d) now 
simplify to

p̄11 − p̄22 = d̄11, 2p̄12 = d̄12, p̄11 p̄22 = E

F
+ d̄2

12

4
.
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Fig. 7. These figures correspond to Lemma 4. The ellipsoid is centered around the same point (d1 = (d̄11 − d̄22)/
√

2 = √
2d̄11, d2 = (d̄11 + d̄22)/

√
2 = 0,

d3 = d̄12) in both figures. This results in two local minima with the same function value for H . In the figure on the left we see the minimum on the 
hyperboloid sheet with tr( P̄ ) < 0, which has to be discarded, and in the figure on the right we see the minimum on the sheet with tr( P̄ ) > 0.

Combining the first and third of these equations gives us

p̄2
11 − d̄11 p̄11 − E

F
− d̄2

12

4
= 0.

This polynomial has for any d̄11 and d̄12 always two real solutions, which are given by p̄11 = (d̄11 ±
√

d̄2
11 + 4E/F + d̄2

12)/2. 

However, if the minus sign holds we see that tr( P̄ ) = −
√

d̄2
11 + 4E/F + d̄2

12 < 0. Thus, when d̄11 = −d̄22, the global mini-
mizer to Minimization Problem is (31). In Fig. 7 these findings are illustrated. �

Now we still have to deal with the case (d̄11 = d̄22 ∧ d̄12 = 0).

Lemma 5. Suppose d̄11 = d̄22 and d̄12 = 0. When d̄11 < 2
√

E/F , the solution to Minimization Problem is the global minimum given 
by

p̄11 = √
E/F , p̄12 = 0, p̄22 = √

E/F , (32)

otherwise, when d̄11 ≥ 2
√

E/F , the solution is a continuum of global minimizers given by

p̄11 ∈
[

d̄11 − l

2
,

d̄11 + l

2

]
, p̄12 = ±

√
d̄11 p̄11 − p̄2

11 − E

F
, p̄22 = d̄11 − p̄11, (33)

where l =
√

d̄2
11 − 4E/F .

Proof. In the case that d̄11 = d̄22 and d̄12 = 0, Lagrange conditions (24a) and (24b) imply that (1 − λ)(p̄11 − p̄22) = 0. From 
this it follows that we must either have λ = 1, or, λ �= 1 and p̄11 = p̄22. Let us first deal with the case λ �= 1. When λ �= 1, 
the Lagrange conditions (24c) and (24d) read

(1 − λ)p̄12 = d̄12 = 0, p̄2
11 − p̄2

12 = E/F .

As λ �= 1, the first of these equations implies that p̄12 = 0. This fact combined with the second equation implies that 
p̄11 = p̄22 = ±√

E/F . The condition tr( P̄ ) > 0 is only satisfied when the plus sign holds, hence we find the minimizer given 
by (32).

Now suppose that λ = 1. Lagrange condition (24a) implies p̄22 = d̄11 − p̄11 and from Lagrange condition (24d) we obtain 
p̄12 = ±√

p̄11 p̄22 − E/F . Substituting the former expression in the latter gives us p̄12 = ±
√

d̄11 p̄11 − p̄2
11 − E/F , which is 

only real if p̄2 − d̄11 p̄11 + E/F ≤ 0, that is, when p̄11 ∈ [(d̄11 − l)/2, (d̄11 + l)/2], where l =
√

d̄2 − 4E/F . This gives us 
11 11
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Fig. 8. These figures correspond to the minimizers in Lemma 5. The ellipsoid is located behind the hyperboloid. We see the sheet of the hyperboloid with 
tr( P̄ ) > 0 on the left. The ellipsoid is centered around the point (d1 = (d̄11 − d̄22)/

√
2 = 0,d2 = (d̄11 + d̄22)/

√
2 = √

2d̄11,d3 = d̄12 = 0). In the figure on the 
left d2 < 2

√
2E/F and we find the extremum of the hyperboloid as minimizer. In the figure on the right d2 ≥ 2

√
2E/F and we find an elliptical continuum 

of minimizers.

the continuum of minimizers (33). However, p̄11 is only real if |d̄11| ≥ 2
√

E/F . Moreover, because tr( P̄ ) = d̄11, we see that 
tr( P̄ ) > 0 is only satisfied when d̄11 > 0. From this it follows that the continuum of minimizers can only be a solution to 
Minimization Problem when d̄11 ≥ 2

√
E/F . Thus, when d̄11 < 2

√
E/F , the global minimizer is given by (32). To decide for 

d̄11 ≥ 2
√

E/F whether the global minimizer is given by (32) or by an element of the continuum (33), we must compare the 
values of the function being minimized, i.e. H , for the local minimizers.

H( P̄ ) has the same value for every element of the continuum of minimizers, because otherwise not all the elements of 
the continuum would have been local minima. For the value of H( P̄ ) in the continuum we have

Hcont = 1

2

∥∥∥∥∥∥∥
⎛
⎜⎝ d̄11 − p̄11

√
d̄11 p̄11 − p̄2

11 − E/F√
d̄11 p̄11 − p̄2

11 − E/F p̄11

⎞
⎟⎠

∥∥∥∥∥∥∥
2

= d̄2
11

2
− E

F
.

On the other hand, for the local minimizer at the extremum of the hyperboloid, given by (32), we have

Hext = 1

2

∥∥∥∥∥
(

d̄11 − √
E/F 0

0 d̄11 − √
E/F

)∥∥∥∥∥
2

= d̄2
11 − 2d̄11

√
E

F
+ E

F
.

This implies that Hcont − Hext = −d̄2
11/2 + 2d̄11

√
E/F − 2E/F . This polynomial in d̄11 has its maximal value in d̄11 = 2

√
E/F

where it equals 0, therefore it is negative for every d̄11 > 2
√

E/F . This implies that if d̄11 ≥ 2
√

E/F , the solution to Mini-
mization Problem is given by the continuum of minimizers (33). �

In Fig. 8 examples of the results from Lemma 5 are shown. Recall that the extrema of the two sheets of the hyperboloid 
are located at

(p1, p2, p3) = ±((p̄11 − p̄22)/
√

2, (p̄11 + p̄22)/
√

2, p̄12) = ±(0,
√

2E/F ,0).

Thus Lemma 5 implies the following.

• The point (p1, p2, p3) = (0, 
√

2E/F , 0) is the global minimizer when d̄2 < 2
√

2E/F , d̄11 = d̄22 and d̄12 = 0, i.e., when 
the center of the ellipsoid is located in (0, p2, 0), where p̄2 = √

2d̄11 < 2
√

2E/F , in other words, if the distance from 
the center of the ellipsoid to the origin is less that two times the distance to the extremum of the sheet with tr( P̄ ) > 0, 
or if the center of the ellipsoid is located beneath the plane p2 = tr( P̄ )/

√
2 = 0, then the global minimizer is given by 

the extremum of the upper sheet of the hyperboloid. This is depicted in the graph on the left in Fig. 8.
• If d̄11 = d̄22, d̄12 = 0, the center of the ellipsoid is located above the plane given by p2 = tr( P̄ )/

√
2 = 0 and its distance 

to the origin is more than twice the distance from the extremum to the origin, then we have the continuum of global 
minimizers. This case is depicted in the graph on the right in Fig. 8.
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Summarizing, we have proved the following theorem.

Theorem 2. Minimization Problem, can be solved algebraically. In the general case, when (d̄11 �= d̄22 ∨ d̄12 �= 0) and (d̄11 �= −d̄22), 
the solution to Minimization Problem is given by (27), with λ given by one of the four possibilities in (28). At least two of the λ’s 
in (28) are real. Explicit calculation of the function value H( P̄) shows which of the real λ’s gives the global minimizer. In the case that 
(d̄11 = −d̄22), there is a unique solution to Minimization Problem given by (31). Finally, in the case that (d̄11 = d̄22 ∧ d̄12 = 0), there 
is unique solution to Minimization Problem if d̄11 < 2

√
E/F and it is given by (32). If d̄11 ≥ 2

√
E/F , there is a whole continuum of 

solutions to Minimization Problem given by (33).

3.2. Minimization of J

In this section we focus on the last step of the least-squares method, i.e. (17c). We will minimize the functional J , 
defined in (16), for m ∈ M , while keeping P and b constant. Again we do this for an arbitrary coordinate system on E with 
basis vectors e1, e2 and corresponding metric e = ei jei ⊗ e j . We derive a coordinate-independent boundary value problem 
for the mapping m and subsequently derive from this the boundary value problem in Cartesian and polar coordinates. We 
will see that in the Cartesian case we end up with the same boundary value problem for m as derived in [12, pp. 142–144].

3.2.1. Derivation of the boundary value problem for the mapping
We will use Calculus of Variations to determine the minimizer m for J . For a minimum to be attained the Gâteaux 

derivative of the J must be 0 in every direction, i.e.,

δ J (m, P ,b;η) := lim
ε→0

1

ε
( J (m + εη, P ,b) − J (m, P ,b)) = 0,

for every direction η ∈ M . δ J I and δ JB are defined analogously. By linearity of the Gâteaux derivative we have

δ J (m, P ,b;η) = αδ J I(m, P ,b;η) + (1 − α)δ JB(m, P ,b;η).

We first determine δ J I(m, P , b; η). By linearity of the derivative we find

δ J I(m, P ,b;η) = lim
ε→0

1

2ε

∫
E

(
‖ε∇η̂ + ∇m̂ − P‖2 − ‖∇m̂ − P‖2

)
dA.

We will now need the following convenient property of inner product on T 0
2(E ) as defined in (14). Let A, B ∈ T 0

2(E ), then 
we have

‖A + B‖2 = eike jl(aij + bij)(akl + bkl) = ‖A‖2 + 2A : B + ‖B‖2.

Applying this property to ‖ε∇η̂ + ∇m̂ − P‖2, with A = ε∇η̂ and B = ∇m̂ − P , we obtain

δ J I(m, P ,b;η) = lim
ε→0

1

2ε

∫
E

(
ε2‖∇η̂‖2 + 2ε∇η̂ : (∇m̂ − P )

)
dA =

∫
E

∇η̂ : (∇m̂ − P )dA.

In the same fashion, using the fact that

‖εη + m − b‖2 − ‖m − b‖2 = ε2‖η‖2 + 2ε(η,m − b), (34)

we find the Gâteaux derivative of JB to be

δ JB(m, P ,b;η) =
∫
∂E

(η,m − b) ds.

Combining the results for J I and JB we find that

∀η ∈ M : α

∫
E

∇η̂ : (∇m̂ − P )dA + (1 − α)

∫
∂E

(η,m − b)ds = 0. (35)

In order to proceed we will rewrite the integrands in terms of their components. For the first integrand in (35) we have 
by (14)

∇η̂ : (∇m̂ − P ) = D jηi(D jmi − pij),

where D jηi are the components of the covariant derivative of η̂ (Appendix A.3), D j = ei j Di and we used bijection (A.1). The 
product rule implies
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D jηi(D jmi − pij) = D j
(
ηi(D jmi − pij)

) − ηi D j
(

D jmi − pij).
If we integrate the first term and apply the Green’s Theorem [22, p. 135] we find∫

E

D j
(
ηi(D jmi − pij)

)
dA =

∫
∂E

(D jmi − pij)ηin jds,

where n j are the covariant components of the outward unit normal vector on the boundary ∂E and the orientation on ∂E
is the one induced by E [22, p. 119]. It follows that∫

E

∇η̂ : (∇m̂ − P )dA =
∫
∂E

(D jmi − pij)ηin jds −
∫
E

D j(D jmi − pij)ηidA.

Combining this result with identity (35) we obtain

0 =
∫
∂E

[
α(D jmi − pij)n j + (1 − α)(mi − bi)

]
ηi ds − α

∫
E

D j(D jmi − pij)ηidA,

for all η ∈ M . Invoking the Fundamental Lemma of Calculus of Variations [25, p. 185] we find from this the boundary value 
problem

D j D jmi = D j pij in E , (36a)

α(D jmi)n j + (1 − α)mi = αpijn j + (1 − α)bi on ∂E . (36b)

The solution of boundary value problem (36b) will minimize J for given P and b. Note that (36b) are vector equations. 
The term D j D jmi is the so-called vector Laplacian [26, p. 91], which can be written in terms of vector calculus operators 
as ∇(∇ ·m) − ∇ × (∇ × m). In Cartesian coordinates D j D jmi = (∂2

1 + ∂2
2 )mi , thus, in Cartesian coordinates the Laplacian of 

a vector amounts to just taking the Laplacian component-wise. However, in different coordinate systems this is not true, 
because nonzero Christoffel symbols imply that [D j D jmi]i=1,2 depend both on both m1 and m2. This results for an arbitrary 
coordinate system in two coupled equations, while for a Cartesian coordinate system these two decouple. This will become 
more apparent when we derive the coordinate specific boundary value problem for Cartesian and polar coordinates.

3.2.2. The boundary value problem in specific coordinate systems
In Cartesian coordinates the partial differential equations in (36b) decouple. Let us denote the standard Cartesian basis 

vectors by ex and e y , define

px =
(

pxx

pxy

)
=

(
p11

p12

)
and p y =

(
pxy

p yy

)
=

(
p12

p22

)
,

and write m = mxex + mye y . With the use of this definition we can rewrite (D j pij)i=1 as ∇ · px and (D j pij)i=2 as ∇ · p y . 
From this we see that in Cartesian coordinates (36b) reduces to the decoupled set of equations

�mx = ∇ · px in E ,

α(∇mx,n) + (1 − α)mx = α(px,n) + (1 − α)bx on ∂E ,
(37a)

�my = ∇ · p y in E ,

α(∇my,n) + (1 − α)my = α(p y,n) + (1 − α)by on ∂E .
(37b)

The boundary value problems (37a) and (37b) are exactly the same as in [12, p. 143].
In polar coordinates the equations do not decouple. Notice that the coordinate specific boundary value problem that we 

deduce from (36b) does depend on the choice of basis for polar coordinates, because (36b) is a vector equation. Thus, we 
find for an anholonomic basis different expressions than for a holonomic basis (Appendix A.2).

To derive the boundary value problem in polar coordinates, let us first elaborate the components of the covariant deriva-
tives appearing in (36b). We start with the vector Laplacian. By the fact that Di(e jk) = 0 (Appendix A.3) it follows by (A.5c)
that D j D jmi = e jk

(∇e j (Dkmi) − 	l
kj Dlmi + 	i

l j Dkml
)

and by (A.4a) that Dkmi = ∇ek mi + 	i
lkml , hence

D j D jmi = e jk(∇e j ∇ekmi + ∇e j (	
i
lk)m

l + 	i
lk∇e j m

l − 	l
kj∇el m

i − 	l
kj	

i
slm

s + 	i
l j∇ek ml + 	i

l j	
l
skms). (38)

Doing the same derivation for the divergence of P we obtain3

3 Note, that due to the symmetry of P it is clear what we mean when we speak of the divergence of P . It does not matter if we contract Dk with the 
first or second index of pij , the result is the same.
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D j pij = ∇e j pi j + 	i
l j plj + 	

j
l j pil. (39)

Similarly, we find for the normal derivative of m in (36b)

(D jmi)n j = e jk(Dkmi)n j = e jk(∇ekmi + 	i
lkml)n j . (40)

We use (38)–(40) to expand the boundary value problem (36b) in polar coordinates. We consider the anholonomic or-
thonormal basis (ei j = δi j), because this is the basis we used in the implementation. The only nonzero Christoffel symbols 
in the anholonomic basis are 	r

θθ = −r−1 and 	θ
rθ = r−1 [20, p. 218]. After doing the tedious calculations of determining 

the coordinate system specific expressions of the various terms in (38) we find

(D j D jmi)i=r = ∂2mr

∂r2
+ 1

r

∂mr

∂r
+ 1

r2

∂2mr

∂θ2
− mr

r2
− 2

r2

∂mθ

∂θ
,

(D j D jmi)i=θ = ∂2mθ

∂r2
+ 1

r

∂mθ

∂r
+ 1

r2

∂2mθ

∂θ2
− mθ

r2
+ 2

r2

∂mr

∂θ
.

In the same way we calculate the expressions for the divergence of P and obtain

(D j pij)i=r = ∂ prr

∂r
+ 1

r

∂ prθ

∂θ
+ prr − pθθ

r
,

(D j pij)i=θ = ∂ prθ

∂r
+ 1

r

∂ pθθ

∂θ
+ 2prθ

r
.

Finally, we determine the expressions for the normal derivative of m from (40) and find

((D jmi)n j)i=r = ∂mr

∂r
nr + ∂mr

∂θ

nθ

r
− mθnθ

r
,

((D jmi)n j)i=θ = ∂mθ

∂r
nr + ∂mθ

∂θ

nθ

r
+ mθnθ

r
.

We define

pr =
(

prr

prθ

)
and pθ =

(
prθ

pθθ

)
, (41)

and collect all the different terms and find that for polar coordinates with an orthonormal basis (36b) is given by

�mr − 1

r2

(
mr + 2

∂mθ

∂θ

)
= ∇ · pr − 1

r
pθθ in E ,

α(∇mr,n) − α
mθnθ

r
+ (1 − α)mr = α(pr,n) + (1 − α)br on ∂E ,

(42)

and

�mθ − 1

r2

(
mθ − 2

∂mr

∂θ

)
= ∇ · pθ + 1

r
prθ in E ,

α(∇mθ ,n) + α
mrnθ

r
+ (1 − α)mθ = α(pθ ,n) + (1 − α)bθ on ∂E ,

(43)

where �, ∇· and ∇ are the familiar Laplace, divergence and gradient operator in polar coordinates with orthonormal 
basis [23, pp. 542–543]. The equations (42) and (43) are coupled.

In the implementation of the GLS method we solve these two boundary value problems by using the standard second 
order central difference discretization. This provides us with a linear system, the matrix of which does not change during 
an entire run of the GLS method. This allows us to determine the LU-decomposition before the start of the algorithm and 
we can use this to solve the linear system when necessary.

To deal with the fact that, in polar coordinates, (42) and (43) are coupled, we will iterate between the two. Starting 
with (42) we keep mθ fixed and solve for mr . Next we keep mr fixed and solve (43) for mθ . We stop this iterative procedure 
when J (n+1,i) < c J (n) , where n is the outer iteration count of (17c) and i is the inner iteration count, or, when the number 
of inner iterations is larger than a specified value d, i.e., i > d.

The optimal choice for these values are problem specific and if the number of inner iterations is increased by demanding 
more precision in (17c), the outer iterative procedure might converge faster. However, demanding far more precision in (17c)
than is achieved by the outer iterative procedure up to that point is a waste of time. A maximum on the number of iterations 
is introduced to make sure that the method does not stall when J (n+1,i) < c J (n) is a too severe requirement. This will come 
into play in the final part of the iteration sequence. We have no proof of convergence, but in practice this procedure always 
converged in a few iterations, because the mapping mn provides a very good initial guess for (17c). In practice we took 
c = 0.9 and d = 5 and these values seem to be a good choice for the problems tested so far. Alternatively, the complete 
coupled system can be solved at once. However, this is likely to be more expensive.
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Fig. 9. The resulting mapping: on the left for Cartesian coordinates and on the right for polar coordinates. For both a 500 × 500 grid is used and α = 0.2. 
We see the grid as it is mapped on FS . Grid points that initially had the same distance to the center of E have the same color. Bright yellow corresponds 
to points in the center of E and dark blue corresponds to points on ∂E .

3.3. Determining the reflector surface from the mapping

To determine the reflector surface from the mapping m we generalize the derivation given by Prins et al. [13] to arbitrary 
coordinate systems. We remarked earlier that m equals the gradient of u if and only if ∇m̂ is symmetric. However, in the 
GLS method J I is minimized in the L2-norm and hence ∇m̂ is not exactly symmetric. We can therefore only search for a 
function u : E → (0, ∞) with gradient equal to m in an L2-sense, hence we will search for u that minimizes

I(u) :=
∫
E

‖∇u − m‖2dA.

After a derivation very similar to the one by which we arrived at boundary value problem (36b), which we leave out for 
brevity, we obtain the Poisson problem

�u = ∇ ·m in E ,

(∇u,n) = (m,n) on ∂E .

It is this problem that we solve to find the reflector surface for the problems presented in the next section. We discretize 
this Poisson problem using second order central differences, giving us a linear system. The solution of this linear system 
gives us the reflector surface.

4. Numerical results

We show the performance of the least-squares method in polar coordinates on the basis of three test cases. In the first 
test case we compare the method in polar coordinates with the method in Cartesian coordinates as presented in [13], in 
the second test case we test the performance of the method for a source with non-uniform emittance and in the third test 
case we investigate the performance of the method in polar coordinates for a complex problem with a desired light output 
with a lot of contrast.

For all test cases we take as source domain E the unit disk. In the first and last test case we use a source with uniform 
emittance EU and in the second test case we use a Gaussian emittance EG. We choose these sources, because they frequently 
occur in lighting systems. For the first and second test case we take as the target FS = [−1, 1] × [−1, 1] with a uniform 
intensity function FS. For the third test we have determined the pair (FE, FE) such that an intensity pattern corresponding 
to the lithograph by M. C. Escher (Fig. 1) is projected on a screen in the far-field. We normalize the source emittances and 
target intensities such that (10) holds.

4.1. From a circle to a square: uniform emittance

For the first test the mapping is presented in Fig. 9. In this figure we see that near the boundary ∂FS the method 
in Cartesian coordinates has great difficulties. This results from the implementation where as actual source the smallest 
bounding box of E is used with emittance zero in the points outside E (see [13] for details). In the polar coordinate 
method the grid perfectly aligns with ∂E . In Fig. 9 it can be seen that now all the difficulties at ∂FS are resolved.

Fig. 10 shows the convergence history of the method for different values of α. The value of α determines approximately 
the ratio between J I and JB. In general, for values of α close to 1 the method finds a reflector that closely satisfies (11), 
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Fig. 10. For the first test case the interior functional J I and the boundary functional JB are shown as function of the number of iterations for different α’s, 
on the left for the method in Cartesian coordinates and on the right for the method in polar coordinates. In both cases a 100 × 100 grid was used.

Fig. 11. The convergence history for Cartesian and polar coordinates is compared for the first test case. In the left plot a 500 × 500 grid is used and the 
different error components are shown. In the right plot Nr,θ refers tot the number of grid points that is used in both the radial and angular directions and 
Nx,y has an analogous meaning. An improvement by a factor 104 is observed when using polar instead of Cartesian coordinates. On the right J is shown 
for different grids. For both plots we used α = 0.2.

but might possibly be less accurate concerning the boundary condition of the Inverse Reflector Problem, and vice versa for 
α close to 0. For smoother (E , E) and (F , F ) the solution found by the method seems less dependable on the choice of α. 
However, in cases where for example ∂F is not differentiable, as in the current test case, the boundary condition and (11)
seem to be conflicting goals. For such problems they cannot be satisfied exactly and simultaneously. In order to clarify and 
quantify this alleged conflict further study has to be done. Nonetheless, the freedom in α provides the user of the GLS 
method with an opportunity to choose the best balance of relative weight given to the boundary condition and (11) for the 
specific application at hand. Moreover, it can be seen that due to better handling of the boundary ∂EU the gap between J I
and JB is far smaller for the method in polar coordinates for all choices of α.

Fig. 11 shows that the method in polar coordinates significantly outperforms its Cartesian counterpart. In the figure on 
the left it is seen that for a 500 × 500 grid the convergence of the Cartesian method stalls after approximately 75 iterations. 
The convergence of the polar method proceeds for another 300 iterations and this eventually leads to a value for J I that 
is 104 times as small as the J I found with the Cartesian method. In the figure on the right it is seen that the use of 
increasingly finer grids has more effect for the polar method. However, even for the polar method, the final value for J I
seems not to convergence to zero when ever finer grids are used.

In Fig. 12 the convergence of the method as a function of the number of variables is analyzed. It is seen that the conver-
gence rate is approximately second order for the method in polar coordinates. In Cartesian coordinates only a convergence 
rate of approximately first order is achieved. This is probably a result of the boundary issue alluded to above.

4.2. From a circle to a square: Gaussian emittance

As a second test we analyze the performance of the method for a source with non-uniform intensity. We again take E
to be the unit disk, but now take the intensity function to be a (radial-symmetric) Gaussian:
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Fig. 12. The final errors J I , JB and J are shown as a function of the total number of variables N for the method applied to first test case. Left: Cartesian 
coordinates with 

√
N = Nx = N y . Right: polar coordinates with 

√
N = Nr = Nθ .

Fig. 13. Left: Emittance function EG. Right: mapping for Nr = Nθ = 400 and α = 0.2.

EG(r) = a exp

(
− r2

2σ 2

)
,

where a is chosen such that the integral of EG over E is 1 and we taken the standard deviation σ = 0.25. The source 
intensity at ∂E is equal to

EG(1) = 1

2πσ 2

(
exp

(
1

2σ 2

)
− 1

)−1

≈ 8.5454 · 10−4.

As a result the ratio between the maximum and minimum intensity approximately equals EG(0)/EG(1) ≈ 2.9786 · 103.
In Fig. 13 the emittance function EG and the resulting mapping are shown for the method in polar coordinates. For this 

test case the method in Cartesian coordinates does not even converge. We again expect this to be a result of the boundary 
issue discussed before in the first paragraph of Section 4.1. Moreover, for the current test EG is close to 0 near ∂E which 
the Cartesian method cannot deal with.

The convergence of the spatial discretization for this test case as a function of the number of variables is shown in 
Fig. 14. The order of convergence for this problem is at least 4. It is not entirely clear to us why the convergence for this 
test case is more than fourth order while it was only approximately second order for the test case with uniform emittance.

4.3. From a circle to an Escher lithograph in the far-field

In the final test case we calculate the reflector for the target intensity (FE, FE) corresponding to the lithograph by Escher. 
We take the projection screen at a distance 100 times the radius of the source and we take (FE, FE) such that width and 
height of the projection are 4.3 times the radius of the source. To avoid division by zero in (12a), we increased the minimum 
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Fig. 14. The final errors J I , JB and J are shown as a function of the total number of variables N for the method applied to second test case with √
N = Nr = Nθ .

Fig. 15. The mapping and corresponding reflector are shown for the Escher test case.

intensity of the lithograph to be 5% of the maximum intensity. For this very demanding test case a 1400 × 1400 grid was 
used and α = 0.1.

Fig. 15 shows the results of applying the method in polar coordinates. The elliptic shaped reflector is globally close to 
flat but locally contains great detail. The integrands of the final errors J I and JB are shown in Fig. 16. It is seen that the 
errors are small for this fine mesh.

Subsequently, the reflector was simulated by using a ray trace method [3]. The result can be seen in Fig. 17. The ray 
trace result closely resembles the original picture, although there is some decrease in contrast. In the algorithm the reflec-
tor surface is in the class of twice continuously differentiable functions. This naturally results in smoothing of the, often 
discontinuous, intensity function of the original picture. Nonetheless the resolution obtained is high enough to carry over 
all the minute details of the original picture.

5. Summary and concluding remarks

In Section 2 we derived the Monge–Ampère equation, describing the reflector surface, for an arbitrary coordinate system. 
We found the map r, which maps a point on the source E to the direction of the reflected ray, to be the composition of 
the gradient of the reflector surface, ∇u, and the inverse of the stereographic projection, s. Furthermore, we formulated the 
Inverse Reflector Problem in terms of the source and emittance (E , E) and the gradient set and intensity function (F , F ).

In Section 3 we introduced the GLS method by generalizing the LS method, earlier introduced in [13], to general coor-
dinate systems. Moreover, we gave a new geometric interpretation to the minimization problem for the functional J I and 
found that the minimization problem for the total functional J consists of two Poisson problems which, contrary to the 
Cartesian case, are coupled in general coordinate systems.
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Fig. 16. Left: The interior error ‖∇m̂ − P‖2/2 as a function of x ∈ E . Right: The boundary error ‖m − b‖2/2 as a function of x ∈ ∂E .

Fig. 17. The image projected on the screen by the reflector of Fig. 15 is determined by ray tracing about 4 million rays, with uniform fixed spacing, that 
leave E . The original is shown on the left and the ray trace result is shown on the right.

In Section 4 we showed that the GLS method has far wider applicability than the LS method. We showed that for a 
disk-shaped source the GLS method in polar coordinates gave a significant improvement over the LS method, decreasing the 
error by four orders of magnitude. It was seen that for problems with non-smooth desired output intensity the final ratio 
between J I and JB depends on the value of α in (16). Further research and literature study into this relation should be 
done. It would be for example important to know for which combination of source pair (E , E) and target pair (F , F ) the 
solution of the method depends on α and to quantify to what extend.

Lastly, the method was applied to a very challenging problem concerning a detailed piece of art and still the method 
obtained a high resolution preserving the details of the original picture. This gives confidence in the wide applicability of 
the method in an industrial context.

Appendix A. Tensor Calculus on Rn in a nutshell

A.1. Tensors

Consider the space of linear functionals from the n-dimensional vector space V to the real numbers: L (V ; R). This 
space is called the dual space of V and we will denote it by V ∗ := L (V ; R). Suppose v ∈ V and v = viei , where vi are 
the components with respect to a basis (ei)

n
i=1 of the vector space V and we employ the Einstein summation convention. 

Furthermore, let ŵ ∈ V ∗ , where we use a hat on w to indicate that its from V ∗ and not from V . By linearity of ŵ it 
follows that ŵ(v) = vi ŵ(ei). This shows that a linear mapping v̂ is completely determined by specifying its action on the 
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basis elements of V . We can define in this way a set of elements of V ∗ , denoted by (ei)n
i=1, according to ei(e j) = δi

j . The 
elements (ei)n

i=1 form a basis for V ∗ . They span V ∗ , because we have

ŵ(v) = vi ŵ(ei) = ei(v)ŵ(ei) = wie
i(v),

where wi := ŵ(ei). Furthermore, suppose ŵ = wiei = 0 then

0 = ŵ(e j) = wie
i(e j) = wiδ

i
j = w j,

which indicates that w j = 0 for 1 ≤ j ≤ n, implying that (ei)n
i=1 are linearly independent. The basis (ei)n

i=1 is called the dual 
basis and elements of V ∗ are also called covectors.

The double dual V ∗∗ := L (V ∗; R) can be identified with V . This follows because when we define the double dual basis 
( f i)

n
i=1 according to f j(ei) = δi

j , the identification of f i with ei gives an isomorphism between V and V ∗∗ . This shows that 
we can equally well consider V to be the dual to V ∗ and write v(ŵ) := ŵ(v). Similar to wi := ŵ(ei) = ei(ŵ), we define 
vi := ei(v) = v(ei).

The space L (V , V ∗; R) is the space of multilinear functionals (mappings linear in each argument) from V × V ∗ to R. 
We will denote this space by T 1

1(V ). An example of a functional in V × V ∗ to R is ei ⊗ e j which is defined as

ei ⊗ e j(v, ŵ) = ei(v)e j(ŵ) = vi w j.

This element of T 1
1(V ) is called the tensor product of ei and e j . It can be shown that (ei ⊗ e j)

n
i, j=1 is actually a basis for 

T 1
1(V ) [27, p. 25]. For an element T ∈ T 1

1(V ) we define its coefficients as T i
j = T (e j, ei) and have T = T i

je
j ⊗ ei . By linearity 

it follows that for a vector v and covector ŵ we have

T (v, ŵ) = T i
j v j wi .

Analogously we can define the spaces T 2
0(V ) and T 0

2(V ), with bases (ei ⊗ e j)
n
i, j=1 and (ei ⊗ e j)n

i, j=1, respectively. Or, 
more generally, we can define the space T p

q (V ) and its corresponding basis, formed by taking consecutive tensor products 
between basis elements of V and V ∗ . The elements of the space T p

q (V ) are called tensors of contravariant rank p and 
covariant rank q. The spaces V and V ∗ are denoted by T 1

0(V ) and T 0
1(V ), respectively.

An example of a tensor of covariant rank 2 is given by the inner product (·, ·) : V × V → R. This tensor is known as the 
metric tensor or simply the metric. We denote the coefficients of the metric by ei j = (ei, e j). It follows that the metric can 
also be written as e = ei jei ⊗ e j . The inner product also provides us with a bijection between V and V ∗ . This bijection is 
given by the map

v 	→ (v, ·). (A.1)

In terms of the components of v this is given by viei 	→ viei je j . The inverse of this bijection is given by the inverse of the 
matrix (ei j), whose components we denote by (ei j). Using this matrix we can express the inverse of (A.1) as vi ei 	→ v jei jei . 
It is conventional to write v j = viei j and vi = v jei j . We will follow this convention in this paper. The symmetry of the inner 
product implies that the matrices (ei j) and (ei j) are symmetric as well.

For tensors T ∈ T 2
0(V ), S ∈ T 1

1(V ) and R ∈ T 0
2(V ) we can define the trace as

tr(T ) := T ijei j, tr(S) := Si
i, tr(R) := Rije

i j . (A.2)

This definition as a contraction involves only the tensor itself and possibly the metric tensor and therefore independent 
of the choice of coordinate system [20, p. 82]. For an orthonormal coordinate system the traces of all three are just the 
ordinary traces of their coefficient matrix.

A.2. Tensor fields and coordinate systems on Rn

We restrict the discussion now to n = 2, the dimension of the source E . Just as we have vector fields on R2, which 
assign to each point x ∈ R

2 a vector in V = R
2, we can define a tensor field, which assigns to each point x ∈ R

n a tensor in 
T p

q (V ) = T p
q (R2). It is important to note that the basis, with respect to which a tensor in this tensor field can be expressed 

in a certain point x ∈ R
2, in general depends on this point. For the basis vectors of a Cartesian coordinate system this is 

not the case, but for polar coordinates the basis vectors do depend on position. We will denote the space of tensor fields of 
contravariant rank p and covariant rank q on some subset U of R2 by T p

q (U ).
In principle the basis in each point x can be chosen independently of the coordinate system used to represent the points 

in R2. However, a logical choice is to use the vectors found by taking the tangent vectors to the coordinate lines. For 
Cartesian coordinates this gives the usual Cartesian basis {ex, e y} and for polar coordinates we find



R. Beltman et al. / Journal of Computational Physics 367 (2018) 347–373 371
er := ∂

∂r

(
r cos(θ)ex + r sin(θ)e y

) = cos(θ)ex + sin(θ)e y, (A.3a)

eθ := ∂

∂θ

(
r cos(θ)ex + r sin(θ)e y

) = −r sin(θ)ex + r cos(θ)e y . (A.3b)

A basis defined by taking the tangent vectors to the coordinate lines is called a coordinate basis or holonomic basis. It is 
clear that not for every choice of basis vector fields there exists a coordinate system to which these basis vector fields are 
the tangent vector fields. An often used example of such a choice of basis is the orthonormal polar coordinate basis, which 
is found by rescaling (A.3b) to unit length. Such a type of basis is called anholonomic.

A.3. Covariant derivative of tensor fields

We now introduce the covariant derivative on R2. On Euclidean spaces the covariant derivative is nothing more than the 
directional derivative. Suppose f ∈ C1(R2) then the directional derivative of f in the direction of the vector v ∈ T 1

0(R
2) at 

x ∈ R
2 is defined as

∇v f (x) := d

dt
( f ◦ γv) (t)

∣∣∣∣
t=0

,

where γv is a curve such that γv(0) = x and dγv (t)/dt|t=0 = v . When ei is a coordinate basis vector then we have ∇ei f =
∂ f
∂xi , where xi is the coordinate corresponding to ei . The differential of f is the covector given by d f := (∇ei f )ei . The vector 
corresponding to this covector by bijection (A.1) is ∇ f = ei j(∇ei f )e j and called the gradient of f .

When we take the directional derivatives of vectors, covectors and general tensors we have to take care of the fact that 
the basis vectors might also change in the direction of the derivative. The directional derivatives of vectors in R2 are itself 
vectors in R2 and therefore there exist coefficients 	k

ji such that ∇ei (e j) = 	k
jiek . These coefficients are called Christoffel 

symbols. Using these we can determine the directional derivative of contravariant tensors. For v ∈ T 1
0 (R2), T ∈ T 2

0 (R2), we 
have by the product rule

∇ei v = ∇ei (v j)e j + v j∇ei (e j) = (∇ei (v j) + vk	
j
ki

)
e j, (A.4a)

∇ei T = ∇ei (T jk)e j ⊗ ek + T jk(∇ei e j) ⊗ ek + T jke j ⊗ (∇ei ek) = (∇ei (T jk) + T lk	
j
li + T jl	k

li

)
e j ⊗ ek. (A.4b)

We will sometimes use the notation Di v j = ∇ei (v j) + vk	
j
ki and Di T jk = ∇ei (T jk) + T lk	

j
li + T jl	k

li . Furthermore, we will 
use the notational convention Di = ei j D j . Using the fact that the inner product and hence the corresponding metric tensor 
e does not change with position [20, p. 215] we have Dk(ei j) = 0 from which it follows that ∇ek (ei j) = −	

j
lkeil − 	i

lkelj

by (A.4b). Using this it follows from calculating Dk(vi) = Dk(ei j v j) and Dm(Sij) = Dm(eike jl Skl) that we have for v̂ ∈
T 0

1 (R2), S ∈ T 0
2 (R2), R ∈ T 1

1 (R2) that

∇ei v̂ = Di(v j)e j = (∇ei (v j) − vk	
k
ji

)
e j, (A.5a)

∇ei S = Di(S jk)e j ⊗ ek = (∇ei (S jk) − Slk	
l
ji − S jl	

l
ki

)
e j ⊗ ek. (A.5b)

∇ei R = Di(R j
k)e j ⊗ ek = (∇ei (R j

k) + Rl
k	

j
li − R j

l 	
l
ki

)
e j ⊗ ek. (A.5c)

A tensor of special interest in this paper is found by again differentiating the differential of a function. This tensor is the 
Hessian tensor and defined as [26, p. 172]

H(v) := ∇e j (dv) ⊗ e j = D j(∇ei v)ei ⊗ e j = (∇e j (∇ei v) − 	k
i j∇ek v

)
ei ⊗ e j . (A.6)

The covariant directional derivative as introduced above can be generalized to Riemannian manifolds and is in that context 
called a Levi-Civita connection [26, p. 160]. For a Levi-Civita connection the Hessian matrix is symmetric [28, p. 4], hence 
the Hessian matrix will always be symmetric in this paper. Note that in Cartesian coordinates (hij(v)), the coefficient matrix 
of H(v), is the matrix with second derivatives of v .

Appendix B. Equivalence of boundary conditions for a strictly convex reflector surface

In this appendix we show that the Inverse Reflector Problem as stated on page 353 is equivalent to this same problem 
but with the boundary condition ∇u(∂E ) = ∂F replaced by ∇u(E ) = F . When doing this we need to make use of the fact 
that ∇u is an open map, i.e., a map that maps open sets to open sets. This we show in the following lemma.

Lemma 6. Suppose that u ∈ C2(E ) is the strictly convex solution to the Inverse Reflector Problem with either ∇u(E ) = F or 
∇u(∂E ) = ∂F as boundary condition. Then the map ∇u is open, i.e., for each open subset A ⊂ E the image ∇u(A) is an open 
subset of F .
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Proof. In Lemma 1 we saw that for the strictly convex solution u ∈ C2(E ), ∇u is a bijection. Moreover, because u is twice 
continuously differentiable, the mapping ∇u is a continuously differentiable mapping. In Cartesian coordinates, the matrix 
(hij) is also the Jacobian matrix of ∇u. The fact that det(hij) > 0 therefore implies that the Jacobian of ∇u is always strictly 
positive. This implies that the conditions for the inverse function theorem [29] are satisfied. The inverse function theorem 
states, among other things, that for every open subset A of E and x ∈ A, there exists an open set Ux in A containing x, and 
an open set V x in F containing ∇u(x) such that ∇u is a bijection from Ux to V x and the inverse (∇u)−1 is continuously 
differentiable on V x .

From this it follows that ∇u is open. To see this, suppose A is some open set in E . By the inverse function theorem 
there exists for every x ∈ E open sets Ux and V x such that x ∈ Ux , ∇u(x) ∈ V x and Ux ⊂ A. ∇u(Ux) = V x is open for every 
x ∈ A. Notice that ∪x∈A Ux = A and that ∇u(A) = ∪x∈A∇u(Ux) = ∪x∈A V x . Thus ∇u is an open map. �

The map ∇u is a homeomorphism from E to F , because it is a continuous bijection which is open and hence also has 
continuous inverse. We will use this convenient property of ∇u in the following lemma.

Lemma 7. Let u ∈ C2(E ) be the strictly convex solution to the Inverse Reflector Problem with ∇u(E ) = F instead of ∇u(∂E ) = ∂F . 
Then also ∇u(∂E ) = ∂F .

Proof. The map ∇u is a homeomorphism and therefore it links every open set in E with an open set in F and vice 
versa. Let us denote by int(A) the interior of a set A. Suppose A ⊂ E . We have ∇u(int(A)) ⊂ ∇u(A) and because 
∇u is an open map ∇u(int(A)) is also open. The largest open subset of ∇u(A) is the interior int(∇u(A)), therefore 
∇u(int(A)) ⊂ int(∇u(A)). If ∇u : E → F is a homeomorphism, then (∇u)−1 : F → E is a homeomorphism also, hence 
(∇u)−1(int(B)) ⊂ int((∇u)−1(B)) for all B ⊂ F . From this it follows that we have both ∇u(int(E )) ⊂ int(∇u(E )) = int(F )

and (∇u)−1(int(F )) ⊂ int(∇u)−1(F )) = int(E ). Using this we see that

int(F ) = ∇u
(
(∇u)−1(int(F ))

) ⊂ ∇u (int(E )) ⊂ int(F ).

Thus, we see that ∇u (int(E )) = int(F ). Now, because ∇u is a bijection this implies that we must have ∇u(∂E ) = ∂F . �
Thus the strictly convex solution of the Inverse Reflector Problem with boundary condition ∇u(E ) = F is also a solution 

to the Inverse Reflector Problem with boundary condition ∇u(∂E ) = ∂F . Now the following lemma states the converse.

Lemma 8. Let u ∈ C2(E ) be a strictly convex solution to Inverse Reflector Problem. Then ∇u(E ) = F .

Proof. The map ∇u is a homeomorphism from E to ∇u(E ) ⊂ R
2. The set E is convex and hence simply connected. The 

set ∂E is a simple and closed curve, i.e., a Jordan curve. The map ∇u is continuous and injective and hence ∇u(∂E ) = ∂F
is also a Jordan curve. Now the Jordan curve theorem [30, p. 198] states that the complement R2\∂F has two connected 
components one of which is bounded and one of which is not, namely the interior and the exterior of the curve, and the 
boundary of both these sets is ∂F . The set E is simply connected, therefore ∇u(E ) is simply connected also. The interior 
and exterior to the curve ∇u(∂E ) = ∂F are the only two subsets of R2 with ∂F as boundary. The fact that ∇u is a 
homeomorphism implies ∇u(∂E ) = ∂(∇u(E )), because ∇u(int(E )) = int(∇u(E )) as we showed in the proof of Lemma 7. 
The fact that ∂F = ∇u(∂E ) = ∂(∇u(E )) implies that int(∇u(E )) is one of two sets of the Jordan curve theorem. The 
exterior set is clearly not simply connected, while ∇u(E ) is, therefore int(∇u(E )) is the interior set in the Jordan curve 
theorem. The fact that E is bounded, that the functions E and F are strictly positive and bounded and that F is bounded 
away from zero implies by (10) that the set F is bounded also. This implies that int(F ) needs to be the interior set also 
and hence we find that ∇u(E ) = F . �

We have established that u is a strictly convex solution to the Inverse Reflector Problem with boundary conditions 
∇u(E ) = F if and only if it is a strictly convex solution to the Inverse Reflector Problem with boundary condition ∇u(∂E ) =
∂F . Thus the two boundary conditions are equivalent.
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