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Theorem 7 For any d :2: 1 and reliability set n , it holds that 

(20) 

where equality holds in the first inequality (and thus doE(d, R) equals {18) with J.L = 0) 

if d :::; 2 and n 2 {0, 1}, or d :2: 3 and d "¥- 1(4) and n 2 {1/2, 1}, or d :2: 3 and 

d: 1(4) and'R-2{1/3,2/3,1} . 

V Discussion 

Forney's original GMD decoder [2] achieves the full Hamming distanced of the code in 

(at most) f d/21 trials. Kovalev [3] has shown that when limiting the maximum number 

of trials, still a considerable fraction of the Hamming distance can be exploited. For 

single-trial decoding, as under consideration in this paper, this fraction is at least 2/3 

for the simple fixed and threshold erasing strategies, and at least 3/4 for the somewhat 

more complex optimized erasing strategy. Explicit expressions for the realizable dis

tance by single-trial GMD decoders for important classes of reliability sets have been 
provided in Sections II-IV. Due to lack of space, proofs have been omitted. These will 

appear in [5], as l = 1 cases of more general results on [-trial GMD decoding. For fixed 

erasing, the results from Theorems 1 and 2 can be extended to explicit expressions for 
any value of l [4]. 
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Turbo Decoding is part of the standard for 3rd generation mobile communica

tion. There are several different implementation techniques for the Soft-Input 

Soft-Output decoder of a Turbo Decoder. 
This paper explains four implementation techniques, their performances and 

implementation costs. 

INTRODUCTION 

The introduction of 'turbo codes' by Berrou et.al. [1] in 1993 opened up new per

spectives in channel coding theory. The outstanding bit error rate performances and 

the wide range of applications created a large interest in this coding scheme. Due to 

recent development of mobile communication and the continuing miniaturisation of 

integrated circuits it is possible to integrate a Turbo Decoder in mobile communication 

applications [4],[6]. 
For making this integration cost-effective we have to reduce the implementation costs. 

This reduction is investigated by exploring the design space between performance and 

implementation cost. Since the Soft-Input Soft-Output decoder is the scalable part .of 

a Turbo Decoder this will be the subject of investigation in this paper. We restnct 

ourselves to Turbo Decoding for 3GPP, which is explained in the next section. Imple

mentation techniques are explained and their performance and costs analysed in the 

succeeding sections. By costs we mean implementation costs in terms of silicon area 

and power dissipation. 
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TURBO CODING FOR 3GPP 

The Turbo coding scheme for 3rd Generation Partnership Project (3GPP)1 in Fre

quency Division Duplex (FDD) mode2 consists of two 8-state Recursive Systematic 

Coders (RSC). Figure I shows the structure of the encoder. The transfer function of 

both RSCs is stated in equation 1. The output of the Turbo Encoder consists of the orig

inal message (systematic output from RSC 1) and the parity output from both RSCs, 

resulting in a rate i code. This structure is known under the name Parallel Concate

nated Convolution Code (PCCC). 

(1) 

Figure 1: encoder 

The block-length of the message is determined by the interleaving length. In 3GPP 

this interleaving length is specified between 40 and 5114 symbols. The input symbols 

are written row wise into a matrix. After inter- and intra- row permutations the ma

trix is read column wise. For terminating an 8-state code 3 additional trellis-steps are 

required, resulting in 6 additional bits for terminating each RSC (3 systematic and 3 

parity bits). The total number of bits which are sent over the channel is 3*B+l2, where 

B is the block-length of the message. 

The 3GPP standard only specifies the encoder, resulting in some algorithmic free

dom for the decoder. In the next section several alternatives are used to implement an 

efficient Turbo Decoder. 

IMPLEMENTATION ISSUES OF TURBO DECODING 

The Turbo Decoder consists of two modules: the (de-)interleaver and the Soft

Input Soft-Output (SISO) module. In this article we focus on the SISO module, be

cause of the possibility to exchange performance with implementation cost. For SISO 

decoding there are two families: BCJR (named after its inventors Bah!, Cocke, Je

linek, and Raviv) and SOYA (Soft Output Viterbi Algorithm). BCJR-type algorithms 

are more expensive, have better performance and allow easy scalability. Due to these 

last two arguments we choose to exploit BCJR-type algorithms further. For example 
1 http://www.3GPP.org 
23GPP TSG RAN WGl:"TS 25.212 Multiplexing and Channel Coding (FDD) V3.1.1 (1999-12)" 
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The schedule of the second true BCJR-type algorithm, Efficient Implementation

BCJR (Figure 3) starts with the backward recursion, saving the state metric vectors at 

trellis-steps B, B-W, ... , W, further referred to as stakes. When the forward calculation 

reaches a stake, the backward recursion is initialised with the corresponding backward 

recursion stake. Soft output calculations start immediately after the calculation of the 

corresponding backward recursion state metric vector. This true BCJR-type algorithm 

is named for its efficient state metric vector memory, which is scaled by minimal the 

square root of the block-length against linear memory requirements of full block BCJR. 

Figure 4 shows the schedule 

of sliding window with training 

calculations, being the first non

true BCJR-type algorithm. In 

this technique, the backward re

cursion is not initialised with the 

exact state metric vector, but with 

an approximation. Several steps 

ahead in the trellis, the training 

recursion is started with an uni

training caJculation..X"' backward recursion 
(=backward recursion)"•. + 

• soft output calculation 
forwat:d 
recursto 

time 

form state metric vector. After Figure 4: Sliding window with training 

several training calculations the calculations 

state metric vector converges to 

an estimation of the correct state metric vector. When conducting S*K training cal

culations performance Joss is negligible for an AWGN channel. K is the constrain 

length of the code (for 3GPP K=4). For Rayleigh fading channel characteristics lO*K 

training calculations need to be calculated. Note that training calculations imply both 

more silicon area and power dissipation. 

The Next Iteration Initialisation (Nil) implementation technique [3] is shown in 

Figure 5. The backward recursions at the stakes are initialised with stakes from the 

previous iteration. Note that SISO 1 can only be initialised with stakes from SISO 1, 

resulting in twice the amount of stake memory, compared to EI-BCJR. In the first iter

ation of this technique, either EI-BCJR initialisation can be used, training calculation 

can be calculated, or an uniform state metric vector can be used for initialisation. 
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Figure 5: Sliding window Next Iteration Initialisation 

RESULTS 

We start with the reference simulation. Figure 6 shows the simulation results of 

the Max*-Jog-MAP algorithm using the full block implementation technique and the 

inter-leaver as explained before. 

1.E-02 ~~~~-~~ 
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1.E-06 
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Figure 6: BER versus Eb/No for different iterations 

Since EI-Max*-log-MAP has the same performance and the performance degra

dation of sliding window Max*-log-MAP with training calculations is negligible, they 

are not shown in this figure. All simulations are in floating point precision and use an 

AWGN channel model. MaX* operations use a 64 entry linear distributed [0, 0.1, ... , 6.3] 

lookup table, for their correction term ( maX* (x, Y) ~ ma.x(x, Y) + fc(lx- yl) ). 
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Figure 7: BER versus Eb/No showing performance degradation of Nil schedule 

Figure 7 shows the performance degradation of the Next Iteration Initialisation 

(Nil) algorithm. In the first iteration uniform state metric vectors are filled in at the 

stakes. The performance differences become negligible for higher iteration numbers. 

Figure 8 gives a clearer view of the performance differences in the first iterations. In 

the first iteration a large error is made. Every following half iteration the performance 

differences are reduced. Using initialisation schemes which have lower bit error rates 

in the first iteration is only interesting if the implementation costs are less than a quar

ter of the cost of an iteration. 
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Figure 8: BER versus Eb/No showing performance degradation in first iterations 

We implemented the basic SISO module used in the explained techniques: a slid

ing window Max-log-MAP decoding algorithm on a variable window-length. Each 

forward recursion stake is passed to the next window, while the backward recursion 

stakes are provided externally. From this basic architecture all explained implementa

tion techniques can be derived. 

About 40% of area costs of the basic SISO decoder consists of local memory. 

Local memory consists of temporary saved branch metrics, state metric vectors, and 

stakes. For memory we use static RAM. The memory costs for a Turbo Decoder are: 

costs basic solutions training calculations Nil 

LLR 

Branch metrics 

State metric vectors W*N*Psrare 

Stake vectors 

W*N*Psrate 

W*(Psys+Ppar) 

W*N*Psrate 

2*(BJW)*N*Psrate 

B =block-length(= 40 ... 5120) 

Psys =systematic LLR (= 7 bit) 

Psrare =state metric(= 8 bit) 

W =window-length(= 40) 

Ppar =parity LLR (= 4 bit) 

P a =A-priori information(= 6 bit) 

N = number of states ( = 8) P1 =intrinsic soft input(= 4 bit) 

Figure 9 shows the 

implementation costs of 

the SISO module and 

the LLR memories (in

trinsic and A-priori in

formation). The im

plementation costs of 

sliding windows with 

training steps is con

stant, Nil grows with 

the square root of the 

block-length and the 

--Next Ueration Initialisation 

·--Sliding window with training 
calculations, W"'40 
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Figure 9: Turbo Decoder implementation costs 

LLR memory costs on turbo decoding level grow approximately linear with the block

length. All implementation cost figures are for a 0.18pm CMOS technology. Imple-

mentation costs of the interleaving is not taken into account. 



DISCUSSION 

In this article several different implementation techniques are shown. Memories 

dominate the chip area. On a chip for 3GPP these memories might be reused for other 

functions. It is therefore not trivial to choose one implementation technique. Simula

tions show that increasing the window length in Nil results in higher performance in 

the first iterations. When it is possible to freely choose the window-length, a trade

off exist between the average number of iterations (influenced by the performance) 

and the latency of the SISO decoder (influenced by the window-length). Low latency 

might avoid expensive buffering in front of the Turbo Decoder and low average itera

tion numbers result in reduced power consumption. 
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The inputs and outputs of an a-posteriori probability ( AP P) decoder can be 

represented as log-likelihood ratios. The box-function is an explicit input

output relation of an APP decoder. We introduce the log-likelihood ratio 

property and verify that the box-function exhibits this property. Further

more, we study the effect of mismatched inputs to the box-function. 

1 INTRODUCTION 

The good performance of iterative decoding of Turbo Codes [1] has stimulated 

the research of parallel and serial concatenated coding schemes. Key elements in 

iterative decoders are the soft-input soft-output decoders and the interleaver. A 

symbol-by-symbol a-posteriori probability (APP) decoder is an optimal soft-input 

soft-output decoder. Such a decoder can work both in the probability domain 

(APP decoder) and in the log-likelihood ratio (LLR) domain (log-APP decoder). 

Working in the LLR domain, the soft outputs of an optimal decoder will 

be represented as LLR's, provided that the soft inputs are also represented as 

LLR's. Furthermore, in an iterative decoding scheme, the component decoders 

assume that the systematic input and the a-priori input (supplied by the other 

component decoder) are uncorrelated. Depending on the size of the interleaver 

and the spreading characteristics of the interleaver this assumption stands shorter 

or longer in the course of iterating. We have identified three reasons why an 

iterative decoder (e.g. working in the LLR domain) has inferior performance 

compared to an ideal iterative decoder : 

• the inputs do not correspond to LLR's. 

• the inputs are correlated. 
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