

Implementation issues of 3rd generation mobile
communication turbo decoding
Citation for published version (APA):
Dielissen, J. T. M. H., & Huisken, J. A. (2000). Implementation issues of 3rd generation mobile communication
turbo decoding. In Proceedings of the 21st Symposium on Information Theory in the Benelux, May 25-26, 2000,
Wassenaar, The Netherlands (pp. 9-16). Werkgemeenschap voor Informatie- en Communicatietheorie (WIC).

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/e6b44580-6488-42fb-bcb2-7e38b3d17108

Theorem 7 For any d :2: 1 and reliability set n , it holds that

(20)

where equality holds in the first inequality (and thus doE(d, R) equals {18) with J.L = 0)

if d :::; 2 and n 2 {0, 1}, or d :2: 3 and d "¥- 1(4) and n 2 {1/2, 1}, or d :2: 3 and

d: 1(4) and'R-2{1/3,2/3,1} .

V Discussion

Forney's original GMD decoder [2] achieves the full Hamming distanced of the code in

(at most) f d/21 trials. Kovalev [3] has shown that when limiting the maximum number

of trials, still a considerable fraction of the Hamming distance can be exploited. For

single-trial decoding, as under consideration in this paper, this fraction is at least 2/3

for the simple fixed and threshold erasing strategies, and at least 3/4 for the somewhat

more complex optimized erasing strategy. Explicit expressions for the realizable dis

tance by single-trial GMD decoders for important classes of reliability sets have been
provided in Sections II-IV. Due to lack of space, proofs have been omitted. These will

appear in [5], as l = 1 cases of more general results on [-trial GMD decoding. For fixed

erasing, the results from Theorems 1 and 2 can be extended to explicit expressions for
any value of l [4].

References

[1) I.M. Boyarinov, "Method of decoding direct sums of products of codes and its
applications," Problemy Peredachi Inform., vol. 17, no. 2, pp. 39-51, 1981.

[2) G.D. Forney, Jr., "Generalized minimum distance decoding," IEEE Trans. Inform.

Theory, vol. 12, pp. 125-131, April 1966.

[3) S.I. Kovalev, "Two classes of minimum generalized distance decoding algorithms,"

Problemy Peredachi Inform., vol. 22, no. 3, pp. 35-42, 1986.

[4) J .H. Weber and K.A.S. Abdel-Ghaffar, "Limited-trial generalized minimum dis
tance decoding with fixed erasing", to appear in Proceedings IEEE International

Symposium on Information Theory, Sorrento, Italy, June 25-30, 2000.

[5] J.H. Weber and K.A.S. Abdel-Ghaffar , "Limited-trial generalized minimum dis
tance decoding," in preparation, to be submitted to IEEE Trans. Inform. Theory.

[6) V.V. Zyablov, "Optimization of concatenated decoding algorithms," Problemy

Peredachi Inform., vol. 9, no. 1, pp. 26-32, 1973.

IMPLEMENTATION ISSUES OF 3RD GENERATION
MOBILE COMMUNICATION TURBO DECODING

J. Dielissen

Technical University Eindhoven,

Information and Communication

Systems, Department of Electrical

Engineering

J. Huisken

Embedded Systems Architectures

on Silicon (ESAS)

Philips Research Laboratories*

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

dielisse@natlab.research .philips.com, jos.huisken@philips.com

Turbo Decoding is part of the standard for 3rd generation mobile communica

tion. There are several different implementation techniques for the Soft-Input

Soft-Output decoder of a Turbo Decoder.
This paper explains four implementation techniques, their performances and

implementation costs.

INTRODUCTION

The introduction of 'turbo codes' by Berrou et.al. [1] in 1993 opened up new per

spectives in channel coding theory. The outstanding bit error rate performances and

the wide range of applications created a large interest in this coding scheme. Due to

recent development of mobile communication and the continuing miniaturisation of

integrated circuits it is possible to integrate a Turbo Decoder in mobile communication

applications [4],[6].
For making this integration cost-effective we have to reduce the implementation costs.

This reduction is investigated by exploring the design space between performance and

implementation cost. Since the Soft-Input Soft-Output decoder is the scalable part .of

a Turbo Decoder this will be the subject of investigation in this paper. We restnct

ourselves to Turbo Decoding for 3GPP, which is explained in the next section. Imple

mentation techniques are explained and their performance and costs analysed in the

succeeding sections. By costs we mean implementation costs in terms of silicon area

and power dissipation.

* corresponding address

TURBO CODING FOR 3GPP

The Turbo coding scheme for 3rd Generation Partnership Project (3GPP)1 in Fre

quency Division Duplex (FDD) mode2 consists of two 8-state Recursive Systematic

Coders (RSC). Figure I shows the structure of the encoder. The transfer function of

both RSCs is stated in equation 1. The output of the Turbo Encoder consists of the orig

inal message (systematic output from RSC 1) and the parity output from both RSCs,

resulting in a rate i code. This structure is known under the name Parallel Concate

nated Convolution Code (PCCC).

(1)

Figure 1: encoder

The block-length of the message is determined by the interleaving length. In 3GPP

this interleaving length is specified between 40 and 5114 symbols. The input symbols

are written row wise into a matrix. After inter- and intra- row permutations the ma

trix is read column wise. For terminating an 8-state code 3 additional trellis-steps are

required, resulting in 6 additional bits for terminating each RSC (3 systematic and 3

parity bits). The total number of bits which are sent over the channel is 3*B+l2, where

B is the block-length of the message.

The 3GPP standard only specifies the encoder, resulting in some algorithmic free

dom for the decoder. In the next section several alternatives are used to implement an

efficient Turbo Decoder.

IMPLEMENTATION ISSUES OF TURBO DECODING

The Turbo Decoder consists of two modules: the (de-)interleaver and the Soft

Input Soft-Output (SISO) module. In this article we focus on the SISO module, be

cause of the possibility to exchange performance with implementation cost. For SISO

decoding there are two families: BCJR (named after its inventors Bah!, Cocke, Je

linek, and Raviv) and SOYA (Soft Output Viterbi Algorithm). BCJR-type algorithms

are more expensive, have better performance and allow easy scalability. Due to these

last two arguments we choose to exploit BCJR-type algorithms further. For example
1 http://www.3GPP.org
23GPP TSG RAN WGl:"TS 25.212 Multiplexing and Channel Coding (FDD) V3.1.1 (1999-12)"

. a BCJR-type SISO module, which has better performance than SOVA-t~pe
when usmg duce the average number of iterations (6] resulting in lower 1m-
algorithms, we can re

plementation costs.

. . h BCJR family there are two interesting algorithms: Max-log-MAP and

Withi~~:p [5]. Max-log-MAP is a simplification of Max*-log-MAP with re-

Max.*-log . term which is applied in Max*-log-MAP. The performance gam
Pect to a correctiOn ,] b . M 1 g

s f rmation in the Max-log-MAP algorithm [2 ' nngs ax- o -
of scahng extnnsiC m o
MAP very close to Max*-log-MAP.

IMPLEMENTATION TECHNIQUES FOR BCJR-TYPE SISO DECODERS

1 different implementation techniques for the BCJR-type algo-
There are severa . h fi t t h-

. [3] In this section the main four techniques are explamed. T e rst wo ec
nthms · · f f these

. ue BCJR-type algorithms, the last two represent approxima Ions o
mque.s :re trFor each implementation technique numerous different calculation orders

algont mbsl. For the basic calculation order we can start at the beginning of the trellis,
are posst e. f h 11"
at the end of the trellis , or simultaneously at the beginning and end o t e tre IS.

h · It's schedule is visu-
We first start with a full block implementation tee mque.

. . F. 2 Forward and backward recursion are earned out over the full block
ahsed m 1gure · · Th soft

d . . s started after the last forward recursiOn. e
of data. The backwar recurswn I . k-

1 1
. tarts immediately after the calculation of the correspondmg bac

output ca cu atton s d. f d state
ward state metric vector in the backward recursion. The correspon mg o;war d

. . . d from the memory in which it was saved dunng orwar re-
metnc vector ts retneve

cursion.

t
.\<l

'&
E- forward

recursion

backward recursion
+

soft output calculation

Figure 2: Full block BCJR

··············· ······ ··· ··· ··

~ 1~· / ;~;::~calculation
/: ~ •••• ~backward recursiOn)

!~~~gat ··········

stakes

forward
recurslo

·· ············ ... >('
...... Initialising recursion

··········· -.:~ lth stored metrics

backward recursion

soft out;ut calculation
. ~ ume

Figure 3: Efficient Implementation-BCJR

The schedule of the second true BCJR-type algorithm, Efficient Implementation

BCJR (Figure 3) starts with the backward recursion, saving the state metric vectors at

trellis-steps B, B-W, ... , W, further referred to as stakes. When the forward calculation

reaches a stake, the backward recursion is initialised with the corresponding backward

recursion stake. Soft output calculations start immediately after the calculation of the

corresponding backward recursion state metric vector. This true BCJR-type algorithm

is named for its efficient state metric vector memory, which is scaled by minimal the

square root of the block-length against linear memory requirements of full block BCJR.

Figure 4 shows the schedule

of sliding window with training

calculations, being the first non

true BCJR-type algorithm. In

this technique, the backward re

cursion is not initialised with the

exact state metric vector, but with

an approximation. Several steps

ahead in the trellis, the training

recursion is started with an uni

training caJculation..X"' backward recursion
(=backward recursion)"•. +

• soft output calculation
forwat:d
recursto

time

form state metric vector. After Figure 4: Sliding window with training

several training calculations the calculations

state metric vector converges to

an estimation of the correct state metric vector. When conducting S*K training cal

culations performance Joss is negligible for an AWGN channel. K is the constrain

length of the code (for 3GPP K=4). For Rayleigh fading channel characteristics lO*K

training calculations need to be calculated. Note that training calculations imply both

more silicon area and power dissipation.

The Next Iteration Initialisation (Nil) implementation technique [3] is shown in

Figure 5. The backward recursions at the stakes are initialised with stakes from the

previous iteration. Note that SISO 1 can only be initialised with stakes from SISO 1,

resulting in twice the amount of stake memory, compared to EI-BCJR. In the first iter

ation of this technique, either EI-BCJR initialisation can be used, training calculation

can be calculated, or an uniform state metric vector can be used for initialisation.

lleration #N+ I"'

Trellislsteps Iteration #~J.~?"~················· A;~t~;;;~~::;::on
........... ../~ ~.... Initialising ~ ~

Storing backward recursion

~:··············~~-if§~
L-------(.<?-' ------c()(~------((l------time

Figure 5: Sliding window Next Iteration Initialisation

RESULTS

We start with the reference simulation. Figure 6 shows the simulation results of

the Max*-Jog-MAP algorithm using the full block implementation technique and the

inter-leaver as explained before.

1.E-02 ~~~~-~~
~ 1.E-03 l~~! ~"•" ~~~~-~~~~~!~~F-~~~~~ iter2 ~

iter3 i

iter4

1.E-06
Eb/No [dB]

Figure 6: BER versus Eb/No for different iterations

Since EI-Max*-log-MAP has the same performance and the performance degra

dation of sliding window Max*-log-MAP with training calculations is negligible, they

are not shown in this figure. All simulations are in floating point precision and use an

AWGN channel model. MaX* operations use a 64 entry linear distributed [0, 0.1, ... , 6.3]

lookup table, for their correction term (maX* (x, Y) ~ ma.x(x, Y) + fc(lx- yl)).

Nil MAX•-Iog-MAP, 8=320, W=40

1.E-04

1.E-05 Nil, iter3

1.E-06 •==•"=-=:~=r: ___ j~==-=--±-==---;~-====_i ___ J=----
Eb/No [dB]

Figure 7: BER versus Eb/No showing performance degradation of Nil schedule

Figure 7 shows the performance degradation of the Next Iteration Initialisation

(Nil) algorithm. In the first iteration uniform state metric vectors are filled in at the

stakes. The performance differences become negligible for higher iteration numbers.

Figure 8 gives a clearer view of the performance differences in the first iterations. In

the first iteration a large error is made. Every following half iteration the performance

differences are reduced. Using initialisation schemes which have lower bit error rates

in the first iteration is only interesting if the implementation costs are less than a quar

ter of the cost of an iteration.

1.E-01 - """' I . ___L L______]

Eb/No [dB]

Figure 8: BER versus Eb/No showing performance degradation in first iterations

We implemented the basic SISO module used in the explained techniques: a slid

ing window Max-log-MAP decoding algorithm on a variable window-length. Each

forward recursion stake is passed to the next window, while the backward recursion

stakes are provided externally. From this basic architecture all explained implementa

tion techniques can be derived.

About 40% of area costs of the basic SISO decoder consists of local memory.

Local memory consists of temporary saved branch metrics, state metric vectors, and

stakes. For memory we use static RAM. The memory costs for a Turbo Decoder are:

costs basic solutions training calculations Nil

LLR

Branch metrics

State metric vectors W*N*Psrare

Stake vectors

W*N*Psrate

W*(Psys+Ppar)

W*N*Psrate

2*(BJW)*N*Psrate

B =block-length(= 40 ... 5120)

Psys =systematic LLR (= 7 bit)

Psrare =state metric(= 8 bit)

W =window-length(= 40)

Ppar =parity LLR (= 4 bit)

P a =A-priori information(= 6 bit)

N = number of states (= 8) P1 =intrinsic soft input(= 4 bit)

Figure 9 shows the

implementation costs of

the SISO module and

the LLR memories (in

trinsic and A-priori in

formation). The im

plementation costs of

sliding windows with

training steps is con

stant, Nil grows with

the square root of the

block-length and the

--Next Ueration Initialisation

·--Sliding window with training
calculations, W"'40

32 48 64 80 96 112 128 144 160 176 192 208
128 288 512 BOO 1152 1568 2048 2592 3200 3872 4608 5408

#addresses and maximum block length

Figure 9: Turbo Decoder implementation costs

LLR memory costs on turbo decoding level grow approximately linear with the block

length. All implementation cost figures are for a 0.18pm CMOS technology. Imple-

mentation costs of the interleaving is not taken into account.

DISCUSSION

In this article several different implementation techniques are shown. Memories

dominate the chip area. On a chip for 3GPP these memories might be reused for other

functions. It is therefore not trivial to choose one implementation technique. Simula

tions show that increasing the window length in Nil results in higher performance in

the first iterations. When it is possible to freely choose the window-length, a trade

off exist between the average number of iterations (influenced by the performance)

and the latency of the SISO decoder (influenced by the window-length). Low latency

might avoid expensive buffering in front of the Turbo Decoder and low average itera

tion numbers result in reduced power consumption.

REFERENCES

[1] C. Berrou, A. Glavieux, and P Thitimajshima. Near shannon limit error-correcting

coding and decoding: Turbo codes. In IEEE Proceedings of ICC '93, pages 1064-

1070, May 1993.

[2] S. Crozier, Ken Gracie, and Andrew Hunt. Efficient turbo decoding techniques.

Technical report, Communications research Centre, 3701 Carling Avenue, P.O.

Box 11490, Station H Ottawa, Ontario, 1999.

[3] A. Dingninou, F. Raouafi, and C. Berrou. Organisation de Ia memoire dans un

turbo decodeur utilisant !'algorithm sub-map. In Proceedings ofGretsi, pages 71-

74, September 1999. France.

[4] G. Masera, G. Piccinini, M. Ruo Roch, and M. Zamboni. VLSI architectures for

turbo codes. IEEE Transactions on VLSI Systems, 7(3):369-378, September 1999.

[5] P. Robertson, E. Villebrun, and P. Hoeher. A comparison of optimal and subop

timal map decoding algoritms operating in the log domain. In Proceedings 1995

International Conference on Communications, pages 1009-1013, 1995.

[6] Z. Wang, H. Suzuki, and K. K. Parhi. VLSI implementation issues of turbo de

coder design for wireless applications. In IEEE Workshop on Signal Processing

Systems, pages 503-512, 1999.

BOX-FUNCTIONS AND MISMATCHED lOG-liKELIHOOD
RATIOS

A.J.E.M. Janssen & A.G.C. Koppelaar*

Philips Research Laboratories WY-81,82

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

Email : { a.j.e.m.janssen,arie.koppelaar }©philips.com

The inputs and outputs of an a-posteriori probability (AP P) decoder can be

represented as log-likelihood ratios. The box-function is an explicit input

output relation of an APP decoder. We introduce the log-likelihood ratio

property and verify that the box-function exhibits this property. Further

more, we study the effect of mismatched inputs to the box-function.

1 INTRODUCTION

The good performance of iterative decoding of Turbo Codes [1] has stimulated

the research of parallel and serial concatenated coding schemes. Key elements in

iterative decoders are the soft-input soft-output decoders and the interleaver. A

symbol-by-symbol a-posteriori probability (APP) decoder is an optimal soft-input

soft-output decoder. Such a decoder can work both in the probability domain

(APP decoder) and in the log-likelihood ratio (LLR) domain (log-APP decoder).

Working in the LLR domain, the soft outputs of an optimal decoder will

be represented as LLR's, provided that the soft inputs are also represented as

LLR's. Furthermore, in an iterative decoding scheme, the component decoders

assume that the systematic input and the a-priori input (supplied by the other

component decoder) are uncorrelated. Depending on the size of the interleaver

and the spreading characteristics of the interleaver this assumption stands shorter

or longer in the course of iterating. We have identified three reasons why an

iterative decoder (e.g. working in the LLR domain) has inferior performance

compared to an ideal iterative decoder :

• the inputs do not correspond to LLR's.

• the inputs are correlated.

* Communicating author

