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Abstract: High throughput requirements on high-precision manufacturing systems lead to a
situation where the flexible dynamics hamper the performance at the positions of interest. Since
these points are typically not measured directly, high performance local control of measured
positions may lead to deteriorated performance due to internal deformations. A possible solution
is to employ a control strategy which ensures that the desired rigid body motion is achieved,
without exciting the parasitic flexible dynamics. In this paper, a feedforward controller design
procedure is developed that achieves this type of global performance, which in turn leads to
increased performance at the unmeasured positions of interest. The proposed method is applied
to an experimental wafer stage showing that the proposed approach indeed leads to superior
results with respect to the traditional local control approach.
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1. INTRODUCTION

Increasing accuracy and throughput requirements in high-
precision mechatronic systems lead to a situation where
the performance of unmeasured positions cannot be guar-
anteed by accurate control of measured positions (Oomen
et al., 2015). In the traditional situation, these systems
can be accurately approximated as a rigid body, which
leads to a static relation between the measured and un-
measured positions. Feedforward control is exploited to
achieve high tracking performance of the local positions,
whereas feedback control is used to account for unmod-
elled disturbances (van de Wal et al., 2002). Increasing
performance requirements and new designs lead to a situ-
ation where this traditional approach leads to undesirable
behaviour due to internal flexible deformations (Boeren
et al., 2015). Specifically since a dynamic relation now
exists between the location where the sensor is measuring
and the location where performance is desired. These dy-
namics need to be accurately modelled and explicitly taken
into account by the controller in order to guarantee sat-
isfactory performance. Moreover, the inferential dynamics
become position-dependent in case the performance loca-
tion changes during operation, as is shown in Figure 1
for a wafer stage. This results in a multivariable (MIMO),
position-dependent, inferential control problem that needs
to be adequately addressed to ensure the performance at
unmeasured locations.

The inferential control problem received significant atten-
tion in the fields of process control (Brosilow and Joseph,
2002) and control of mechatronic systems (Oomen et al.,
2015). This led to various control strategies including feed-
back and iterative learning control, Wallén et al. (2011),

Hoelzle and Barton (2016), Bolder and Oomen (2016).
In Oomen et al. (2015) a control-relevant identification
and feedback controller design approach is presented that
ensures the performance of the inferential variable. How-
ever, the presented technique is not directly applicable
to position-dependent performance variables, nor is it tai-
lored towards feedforward design. An alternative approach
is present in Moheimani et al. (2003), where the identifica-
tion and control of spatio-temporal systems is considered.
By suitable formulation of a global induced norm, a Linear
Time Invariant (LTI) controller can be synthesised that
achieves optimal global performance.

Although important developments have been made to
enhance the inferential performance of mechatronic sys-
tems through feedback, the optimal inferential feedforward
problem for spatio-temporal systems has not yet been fully
addressed. Therefore, the aim of this research is to develop
a global optimal feedforward controller synthesis approach
for these systems. This is achieved through the following
contributions.

C1 In Section 3, a class of spatio-temporal models is
introduced and a framework is outlined for the iden-
tification of these systems.

C2 In Section 4, a method is developed to synthesise
global optimal feedforward controllers for spatio-
temporal mechanical systems.

C3 In Section 5, the proposed identification- and feed-
forward controller synthesis methods are applied to
a prototype industrial wafer stage. The displayed su-
perior inferential performance validates the proposed
approach.
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Fig. 1. A flexible stage that moves with respect to stationary sensors
and illuminator results in a dynamic and position-dependent
relation between the outputs and the point of interest.
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Fig. 2. Schematic layout of the setup. The inputs and outputs are
indicated by ui and yi respectively. The performance variable
z(ρ) is the height of the stage at ρ, which varies over the wafer
D. The lower right corner shows the location of the additional
actuators × and sensors • as used for system identification.

Contribution C1 is related to modal analysis and fre-
quency domain system identification (Guillaume et al.,
2003), in combination with multi-dimensional spline-based
interpolation (Wahba and Wendelberger, 1980). In C2,
novel controller design guidelines are presented that aim
to optimize the inferential performance for systems which
perform tracking motions, thereby extending the work in
Moheimani et al. (2003). In the next section, the specific
control problem is further elucidated.

2. PROBLEM FORMULATION

In this section, the control problem is formulated by means
of the experimental case study. The latter serves as an il-
lustrative example of the general methods developed here.
To this end, the experimental case study is introduced first.

2.1 Experimental case study

The experimental setup, as is shown in Figure 2, serves
as a case-study platform for the development of next-
generation wafer stages. In this research, only the dynam-
ics that result in a displacement in the z-direction are
considered. The relevant inputs and outputs are indicated
by ui and yi respectively and their locations on the wafer-
stage are shown in Figure 2. On top of the stage, a wafer
is located whose surface D needs to be illuminated. The
point on the wafer that is to be illuminated is indicated
by ρ(t) ∈ D. To achieve the desired pattern, the surface
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Fig. 3. Standard plant formulation of the position-dependent global
feedforward control problem.

of the stage at ρ should levitate under the illuminator at
a predefined height rz. The actual height of the stage at
ρ is indicated by z(ρ), which is the position-dependent
performance variable that should track the reference rz.
This problem can be tackled using a local or a global
approach, as is discussed next.

2.2 Local and global inferential feedforward control

Inferential variables can be controlled using a global or
local feedforward approach. To show the difference, let
G(ρ) be a system with position-independent input u and
output y, and a position-dependent performance variable
z(ρ), then consider the following two problem statements.
Problem 1 (Local inferential feedforward).
For a given local reference rz(t), find an input u(t), such

that the local tracking error ez(t) , rz(t)−z(ρ(t)) is small.
Problem 2 (Global spatial inferential feedforward).
For a global reference rz(ρ, t), find an input u(t), such that

the tracking error ez(ρ, t) , rz(ρ, t)− z(ρ, t) is small.

In Problem 1, the performance is considered locally at a
certain point ρ(t) ∈ D. By considering this performance
location ρ(t) as a scheduling variable, Linear Parameter-
Varying techniques can be employed to solve this problem
Rugh and Shamma (2000), Hoffmann and Werner (2015),
de Rozario et al. (2017). In contrast, Problem 2 considers
the spatial behaviour of the entire system. This is reflected
by the spatial signal z(ρ, t), which is a mapping from
the time-axis to a function depending on ρ, which is a
coordinate variable instead of a scheduling signal. In this
paper, Problem 2 is considered, since it does not require
the real-time availability of the performance location ρ(t).
This makes the global approach more robust, since all
possible ρ ∈ D are considered simultaneously. Moreover, it
will be shown in Section 4 that Problem 2 can be reformu-
lated as an H∞-optimal LTI feedforward problem, which
can be efficiently solved using existing techniques. This
reformulation is schematically shown in Figure 3, which
requires that the involved signals are finite dimensional.
This requirement is satisfied by approximating the true
system by a finite finite-dimensional model G(ρ) and by

defining rz as rz(ρ, t) , L(ρ)rη(t), with L(ρ) a row vector
with spatial basis-functions and rη(t) is a column-vector
with temporal coefficients. The identification of such finite-
dimensional models G(ρ) is key to solving either Problem
1 or 2 and will therefore be treated first in the next section.

3. IDENTIFICATION OF MECHANICAL SYSTEMS
WITH SPATIO-TEMPORAL OUTPUTS

In this section, a framework is outlined for the identifica-
tion of position-dependent systems, which is considered
to be contribution C1. To this end, the relevant class
of models is defined first by means of a first-principle
approach in section 3.1. Then, a two-step identification



z(ρ)

ρ

wi(ρ)

D

Fig. 4. Approximation of the surface z(ρ) by basis functions wi(ρ)
on the domain D in one dimension.

procedure is introduced in section 3.2. This procedure is
applied to the experimental setup in section 5.1, which
results in a position-dependent model of the experimental
setup, that will be used in a model-based feedforward
design procedure in section 5.2.

3.1 Model structure from first-principle modelling

In general identification methods for position-dependent
or LPV systems, structure selection and model quality
assessment are difficult when the model parameters have
no physical interpretation. To overcome this, a first prin-
ciple analysis is performed in this section, which reveals
the grey-box structure of the relevant parametric model.
The benefit of this approach is that the parameters have
a physical interpretation, which significantly aids in esti-
mating accurate spatio-temporal models. The quantity of
interest is the surface of an unconstrained flexible single
body z(ρ, t). For the reasons of controller design and nu-
merical tractability, it is desired to have finite dimensional
description of z(ρ, t). The latter is therefore approximated
by a finite number of basis functions wi(ρ), as is shown in
Figure 4 in one dimension, and is generally given by,

z(ρ, t) = W (ρ)q(t), W (ρ) = [w1(ρ) . . . wnm(ρ)] ,

where q>(t) = [q1(t) . . . qnm(t)] is the vector of temporal
coefficients. Under the assumptions of linear strains and
small rotations, and linear elastic material properties, the
following equations of motion are obtained by applying
Galerkin-projection to the partial differential equations
of mass, momentum, and moment of momentum balance
Eringer (1975),

Mq̈(t) +Kq(t) = Qu(t). (1)

Here M = M> � 0 is the mass matrix, K = K> � 0
the stiffness matrix and Q the input distribution matrix.
The symmetry of the first two matrices is induced by the
Galerkin projection and this allows a decoupling by solving
the generalized eigenvalue problem [K − ω2

iM]φi = 0,
where ωi are the natural eigenfrequencies of the system
and φi are the corresponding undamped eigenmodes. Us-
ing mass-normalization and defining the natural coordi-
nates as η = Φ−1q(t), equation (1) can be written in modal
form after pre-multiplication by Φ>,

G(ρ) :

{
Iη̈(t) +Dmη̇(t) + Ω2η(t) = Ru(t) (2)

z(ρ, t) = L(ρ)η(t), (3)

where Ω2 , Φ>KΦ = diag(ω2
i ) ∈ Rnm×nm , R , Φ>Q ∈

Rnm×nu and L(ρ) ,W (ρ)Φ. The term Dmq̇(t) is added to
model the damping of the system, where Dm ∈ Rnm×nm
is full for general viscous damping and diagonal in the
case of modal damping. Equations (2) and (3) represent
the grey-box model that is to be estimated, where the

ρ

L(ρ)

D

L̂

ρ̄i

Fig. 5. The mode shapes are sampled on the fixed grid ρ̂ by adding
local outputs, such that they can be interpolated once these
samples are estimated.

unknown parameters are given by the matrices Ω2, R
and Dm and the vector of functions L(ρ). A two-step
procedure to estimate these parameters from measured
data is presented next.

3.2 A two-step identification procedure

First, the estimation of the continuous matrix function
L(ρ) is considered. To this end, it can readily be seen from
(3) that the entries of L(ρ) can be sampled by evaluating
the deflection z(ρ, t) on a set of coordinates ρ̂i ∈ D as
is shown in Figure 5. This corresponds to adding outputs
that measure the surface at the locations ρ̂i. By stacking
these frozen outputs in the vector ẑ as,

ẑ(t) =

 z(ρ̂1, t)
...

z(ρ̂nρ , t)

 = L̂η(t), L̂ =

 L(ρ̂1)
...

L(ρ̂nρ )

, (4)

then, the i-th row of L̂ contains a sample of each mode
at ρ̂i, whereas the j-th column of L̂ contains the samples
of the j-th mode on the entire grid ρ̂. Hence, once L̂ is
known, the mode shapes can be estimated by interpolating
these columns. Note that equations (2) and (4) constitute

a modal mechanical LTI system Ĝ in the input-output
variables u(t), ẑ(t) and the latent variables η(t). Hence,
the following procedure leads to an estimate of G(ρ).

I1 Add nρ sensors that measure the surface of the
system on a suitably chosen grid ρ̂. Then identify the
modal mechanical LTI model given by (2) and (4) by

estimating the parameters, L̂,Ω2, Dm,R.
I2 Complete the mode shapes on D by interpolating the

columns of L̂ on the grid ρ̂.

Step I1 can be performed using techniques from modal
analysis (Guillaume et al., 2003) or other system iden-
tification approaches that can handle structured models,
whereas I2 is a general regression problem. In this research,
a dedicated frequency domain identification approach is
developed to solve I1 that can handle large input-output
dimensions, enforce rigid body modes a priori and allows
the incorporation of various forms of damping. This is fol-
lowed by a smoothed thin plate splines regression approach
as presented in Wahba and Wendelberger (1980) or alter-
natively by multivariate regression using basis-functions
that represent the eigenmodes of a plate. This approach
is applied to estimate a model of the experimental setup
in Section 5. The algorithmic details are beyond the scope
of this paper and are to appear elsewhere. In the next
section, a method is developed compute a globally optimal
feedforward controller based on a model G(ρ).
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Fig. 6. Feedforward control scheme with K and Gη LTI systems and
L(ρ) the basis of continuous modes that result in the spatial
signals z(ρ) and rz(ρ).

4. GLOBAL FEEDFORWARD CONTROL OF
SPATIO-TEMPORAL MECHANICAL SYSTEMS

In this section, a method is proposed to synthesise feed-
forward controllers that achieve optimal global perfor-
mance of position-dependent mechanical systems that per-
form tracking tasks. This constitutes contribution C2 and
thereby solves Problem 2 as presented in Section 1. First in
Section 4.1, the global optimal feedforward control prob-
lem is stated in detail by introducing spatial signals and
their norms. Then in section 4.2, the equivalent H∞ prob-
lem is derived and suitable design guidelines are provided.
In section 5.2, the proposed approach is applied to the
wafer stage.

4.1 Optimal global feedforward control

In this section, the global optimal feedforward control
problem is posed. A discrete-time approach is taken here
since the systems under consideration are assumed to be
digitally controlled using a sample-and-hold implementa-
tion. This approach can be directly applied to the continu-
ous time models that are identified in the section 3 in case
a zero-order-hold implementation is used, since this leaves
the output equation unaltered (Chen and Francis, 2012).

In the global approach as presented in problem 2, rz(ρ)
and z(ρ) are spatial signals, where a spatial discrete time
signal s of dimension ns is defined as a mapping s : Z ×
D 7→ Rns . Recall that z(k, ρ), given by (3) is represented
by a finite sum of basis functions. To allow the same
finite dimensional description of the tracking error e(ρ),
it is assumed that rz(ρ) can be equivalently described as,
rz(ρ, k) = L(ρ)rη(k), with rη a modal reference signal.
This signal is fed to the feedforward controller, which leads
to the scheme as shown in Figure 6, where Gη is given by
equation (2) with output η(k). The feedforward control
problem can now be described as the effort of finding K
such that the transfer T (ρ) = L(ρ)(I −GηK) is small. To
quantify the magnitude of the transfer T (ρ), the weighted
spatial l2-norm of a spatial signal is defined as,

‖s‖2(DΛ) ,

√√√√ ∞∑
k=−∞

∫
D
s>(ρ, k)Λ(ρ)s(ρ, k)dρ,

with Λ(ρ) = λ(ρ)I, where λ(ρ) is a positive definite spatial
weighting function on D. Then, the control problem can
be formulated in terms of minimizing the induced-norm
‖T (ρ)‖2(DΛ),2, as follows,

K = arg min
K∈RH∞

sup
‖rz‖2=1

‖e(ρ)‖2(DΛ). (5)

This problem can be reduced to an H∞-problem as is
shown next.

K êηrη Gη

L̃z−τIP

uy L̃ WeWr

Fig. 7. The equivalent feedforward control scheme in standard plant
formulation, augmented with input-output weights Wr and We,
and a τ samples delay block which results in a controller K with
preview.

4.2 The equivalent H∞-problem

Problem 5 can be reduced to an H∞-problem by comput-
ing an equivalent system T̂ by extension of the approach
in Moheimani et al. (2003), as follows.
Lemma 1. Let T (ρ) = L(ρ)(I−GηK), then it holds that,

‖T (ρ)‖2(DΛ),2 = ‖T̃‖∞,
with T̃ = L̃(I −GηK), where for L̃ ∈ Rnm×nm holds that,

L̃>L̃ = Υ =

∫
D
L>(ρ)Λ(ρ)L(ρ)dρ. (6)

The proof is provided in Appendix A, where it is also
shown that Υ � 0 and hence a Cholesky decomposition
of Υ can be used to obtain L̃ in lower-triangular form.
Applying Lemma 1 to (5) and augmenting the problem
with input-and-output weights Wr and We respectively,
the following H∞ control problem is obtained,

K = arg min
K∈RH∞

‖Tw‖∞, Tw = WeT̃Wr. (7)

At first sight, it seems that I − GηK = 0 is the optimal
solution. However, this can generally not be achieved since
Gη non-square if more modes are modelled than there are
actuators, i.e. nm > nu. Consequently, this problem can
be viewed as obtaining a pseudo inverse K of Gη, such
that the weighted residue Tw is minimal in the H∞-norm.
The weights can be used to specify the importance of the
elements of T̃ . For example, if it is assumed that the system
G(ρ) should perform rigid body tracking motions, while
the flexible modes should be regulated, then the modal
reference signal has the following structure, r>η =

[
r>0 0>

]
,

with r0(k) ∈ Rn0 , with n0 the number of rigid body modes.

Hence, only the first n0 columns of T̃ are of importance,
which can be specified by taking for i = 1, ..., n0,

Wr =
[
Wr0 0

0 0

]
, Wr0 = diag{fi}, fi ∈ RH∞. (8)

Here Wr makes sure that the match between GηK and I
is accurate in the first n0 columns. Moreover, by taking
fi similar to the spectrum of r0, emphasis is placed in
the frequency region where suppression is crucial. Then
by taking We ∈ Rnm×nm , the matrix L̃ can be tuned
manually. In this way, the resulting controller deviates
from global optimality, but this allows the designer to
tune the relative contribution of different modes to z(ρ),
which may benefit certain applications. Problem (7) can be
solved using existing techniques as presented in Zhou et al.
(1996), where the required standard plant formulation can
be read from Figure 7, and is given by,

P :
[
rη
u

]
7→
[
ẽ
y

]
, P =

[
WeL̃z−τWr −WeGη

Wr 0

]
. (9)

Note that additional τ samples of shift are introduced
to obtain a finite preview feedforward controller as is



Fig. 8. A subset of the measured frequency response functions of the
wafer stage and the parametric modal model that is identified
in the frequency domain.
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Fig. 9. Continuous completion of the 2nd and the 6th estimated
flexible modes of the wafer stage.

discussed in Hazell and Limebeer (2008), which can lead
to significantly increased performance. In the next section,
the presented approach is applied to the wafer stage.

5. APPLICATION TO THE WAFER STAGE

In this section, the identification procedure as presented
in Section 3 is used to estimate a model of the wafer
stage as is shown in Figure 2. This model is then used
to synthesise an optimal global controller as presented
in section 4, whose superior performance is shown in
a simulation example. This application of the presented
methods constitutes contribution C3.

5.1 Spatio-temporal identification of the wafer stage

A spatio-temporal model G(ρ) of the wafer stage is es-
timated by completing steps I1 and I2 as presented in
Section 3. Following I1, additional surface sensors are
put into place to enable the estimation of the continuous
mode shapes. The augmented layout is shown in the lower
right corner of Figure 2, which also shows a number of
additional actuators which are used to optimally excite the
modes. It is remarked that the locations of the sensors are
selected based on mechanical constraints and such that the
first 6 flexible modes are suitably sampled for subsequent
interpolation. The LTI model Ĝ is estimated by fitting
a modal model, as given by equations (2) and (4), to
measured Frequency Response Function (FRF) data as is

shown in Figure 8. The columns of L̂ of the resulting Ĝ
are then interpolated using multivariate regression with
two-dimensional Euler-Bernoulli basis functions. Figure 9
shows the result for the 2nd and the 6th flexible modes.
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Fig. 10. Reference rz , and the x, y-coordinates of the point of
interest ρ over time.
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Fig. 11. Error at the local outputs yi as shown in Figure 2, are
smaller for the local controller, whereas the global controller al-
lows a larger local error to improve the inferential performance
as shown in Figure 12.
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Fig. 12. The inferential error at the point of interest ez of the
global controller is much smaller than for the local controller,
since the global controller explicitly takes the flexible dynamics
into account.

5.2 Optimal global feedforward control of the wafer stage

The obtained model G(ρ) is used to synthesise a global
feedforward controller for the wafer stage. As presented in
Section 1, the aim is to have the surface z(ρ) follow rz, at
the point-of-interest ρ. Here, rz is a fourth order point-to-
point motion as is shown in Figure 10. This represents
the tasks of bringing the stage into the focal plane of
the illuminator, where it needs to stay without vibrating.
The point-of-interest ρ(t), moves across the surface in a
back-and-fourth motion, as is shown there schematically.
To achieve this, the global approach as presented in the
previous section is applied to G(ρ).

To this end, the continuous time model is discretised
using zero-order-hold discretisation at a sample rate of 10
kHz. Note that this discretisation leaves L(ρ) unaltered so
that (6) can be directly evaluated. No additional spatial
weighting is used here, i.e., Λ(ρ) = I and the integral is ap-
proximated using a two-dimensional trapezoidal scheme.
The stage only has to perform a translation in the z-
direction, and hence, only the first entry of rη is taken to



be non-zero, since it corresponds to the translational rigid
body mode. For Wr in (8) this leads to Wn0 = f1, with
f1 a second order low-pass filter with a cut-off frequency
of 1 kHz. Moreover, We is taken as, We,ii = αi, with
αi = 20 for i = 1, . . . , 4 and αi = 1 for i > 4. Due to the
upper triangular form of L̃, this choice of We emphasises
the contribution of the first 4 modes. The H∞-optimal
controller K is obtained by solving (7) using the Matlab
routine hinfsyn.m, where the standard plant P is given
by (9). It is remarked here that at least τ ≥ 2 samples
of preview are required to obtain a solution, due to the
relative degree of G(ρ). Moreover, the sampling zeros at
the Nyquist frequency, as introduced by the discretisation,
should be cancelled in order to avoid undesirable intersam-
ple behaviour and to improve the numerical conditioning
of the optimisation problem.

The performance of the resulting global controller is com-
pared to that of a classical H∞-optimal controller that
controls the local outputs yi, whose locations ρ̄ are shown
in Figure 2. This controller is computed similarly, by
formulating the standard plant as is shown in Figure 7,
where L̃ is replaced by L̄ = L(ρ̄), Wr = fiI4 and We = I4.
For both controllers, τ = 5 samples of preview are used,
which results in the performance as shown in Figures 11
and 12. The first figure shows that at the local outputs
yi, the global controller allows a relatively large error,
compared to the local controller, which is designed to
achieve its performance there. By doing so, the global
controller achieves superior inferential performance w.r.t.
the local controller, as is shown in Figure 12. It is remarked
here that in addition to the feedforward controller, a sta-
bilising feedback is applied to the plant for both cases. The
bandwidth of this controller is approximately 100 Hz which
is such that its influence is negligible during the motion
task, but it does counteract the rigid body drifting due
to disturbances. This study shows that the traditional ap-
proach of controlling local outputs at the edges of a stage,
does not guarantee performance at any other point. Hence,
explicit modelling and controlling of the flexible dynamics
is key to achieving the desired inferential performance.

6. CONCLUSION

In this paper, a two-step identification method is proposed
to estimate spatio-temporal models of flexible mechanical
systems. This is followed by the formulation a global
feedforward design procedure to synthesise controllers that
lead to superior inferential performance, as is shown by
application to a wafer stage.
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Appendix A. PROOF OF LEMMA 1

Consider ‖e(ρ)‖2(D) =

√∑∞
k=−∞

∫
D e
>(ρ, k)Λ(ρ)e(ρ, k)dρ where

from Figure 6 it is clear that e(ρ) = L(ρ)eη with eη , (rη − η).
Hence, the spatial integral reads,∫
D
e>(ρ)Λ(ρ)e(ρ)dρ = e>η

∫
D
L>(ρ)Λ(ρ)L(ρ)dρeη = e>η Υeη ≥ 0,

with equality only if eη = 0 if non of the entries of L(ρ) are
identically zero. This implies Υ � 0 and hence Υ can be factorized
as Υ = L̃>L̃ using the Cholesky decomposition. Consequently,√∑∞

k=−∞

∫
D e
>(ρ, k)e(ρ, k)dρ =

√∑∞
k=−∞ ẽ>η ẽη = ‖ẽη‖2, with

ẽη = L̃eη and thus ‖e(ρ)‖2(D) = ‖ẽη‖2. This in turn implies that

‖T (ρ)‖2(D),2 = ‖T̃‖2,2 which is equal to the H∞ norm of T̃ .


