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Abstract  The generalization of a two-dimensional spatial spectral volume integral equa-
tion to a three-dimensional spatial spectral integral equation formulation for electromag-
netic scattering from dielectric objects in a stratified dielectric medium is explained. In the 
spectral domain, the Green function, contrast current density, and scattered electric field 
are represented on a complex integration manifold that evades the poles and branch cuts 
that are present in the Green function. In the spatial domain, the field-material interac-
tions are reformulated by a normal-vector field approach, which obeys the Li factorization 
rules. Numerical evidence is shown that the computation time of this method scales as 
O(N logN) on the number of unknowns. The accuracy of the method for three numerical 
examples is compared to a finite element method reference.

Keywords  Integral equations · Spectral methods · Gabor frames · Electromagnetic 
scattering

1  Introduction

Efficient solvers for electromagnetic scattering in stratified media are important in e.g. 
metrology (Raymond 2001, Chapter 18), metamaterials (Nanfang et al. 2011; Jahani and 
Jacob 2016), and integrated optics (Wang et  al. 2012). Especially for three-dimensional 
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structures, where the number of unknowns is often very large, there is a demand for 
fast solvers, for which the computational complexity scales well for large numbers of 
unknowns. A good strategy to find a potentially efficient algorithm is to exploit symme-
tries. For stratified media such a symmetry is the translation symmetry in the layered back-
ground medium. This symmetry can be exploited through the use of a Fourier representa-
tion in a volume integral formulation.

In a stratified dielectric medium, an analytic expression exists for the Green function in 
the electromagnetic case, as a function of one spatial coordinate in the direction of strati-
fication and two spectral coordinates in the two directions perpendicular to the stratifica-
tion (Kong 1975; Felsen and Marcuvitz 1973; Chew 1995; Michalski and Mosig 1997). 
It is advantageous to use the stratified-medium Green function, since it incorporates the 
response of the multilayer medium analytically. Therefore, little computation time or mem-
ory is used for computing the scattered electromagnetic field throughout the entire layered 
stack, since the electric field on a domain slightly larger than the scattering object suf-
fices. It is possible, using Sommerfeld (1909) or Fourier integrals, to transform the Green 
function completely to the spatial domain and then use it in an integral equation method 
(Chew 1995, Chapter 8; Felsen and Marcuvitz 1973, Chapter 5; Kong 1975, Chapter 4; 
Wait 1970, Chapter 2). However, these Sommerfeld integrals are often tedious to compute, 
because of poles and branch cuts present in the Green function that can be located on or 
close to the integration path. Since the Green function has to be re-calculated for every 
modification in the multilayer medium, caching the Green function in a library is only 
advantageous when exactly the same multilayered medium is used many times.

It is also possible to use the Green function directly in the spectral domain, where it is 
known analytically. For a periodically repeating object, the Green function decomposes 
into a discrete set of modes as derived in for example (Beurden 2011, 2012). Problems 
with poles and oscillations along branch cuts in the Green function (Chew 1995; Felsen 
and Marcuvitz 1973) can be avoided on such a discrete set of modes since the modes and 
locations of the poles will most likely not coincide. However, for a finite scatterer the spec-
tral domain is continuous and now the poles and oscillations along the branch cuts are hard 
to discretize (Dilz and Beurden 2016, 2017). Deformations of the Sommerfeld integra-
tion path to a complex-plane path (Ruiter 1981; Newman and Forrai 1987; Hochman and 
Leviatan 2010; Michalski and Mosig 2016) can help to evade these poles and branch cuts. 
In Dilz and Beurden (2017) an algorithm for two-dimensional electromagnetic scattering 
with TE polarization in a multilayered medium is presented, where both contrast-current 
density and scattered field are represented on a path in the complex plane of the spectral 
domain. It is this path that allows for the use of Gohberg and Koltracht (1985) fast, flexible 
and recursive Green-function convolution in the stratification direction.

The first challenge in three dimensions is that, instead of one, now two directions per-
pendicular to the stratification direction need to be handled. The complex integration path 
is turned into a complex integration manifold and since the transformation from the spatial 
domain to the complex integration manifold is part of the core of the algorithm, transfor-
mations back and forth need to be computationally efficient. We show an integration plane 
consisting of nine regions of three distinct types and show transformations to and from the 
spatial domain that can be computed in O(N logN) time, where N is the number of spectral 
unknowns.

The second challenge is that the discontinuity of both the permittivity and the electric field 
at material interfaces leads to poor convergence in spectral formulations (Li and Haggans 
1993). This effect was also observed for a Gabor-frame based solver for TM-polarized scat-
tering (Dilz et al. 2017). For periodic scattering problems with a discrete spectral expansion a 
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reformulation of the field-material interactions corrects this poor rate of convergence (Granet 
and Guizal 1996; Lalanne and Morris 1996), which is explained in more detail in Li (1996) 
introducing the so-called Li-rules. In Dilz et al. (2017) it is shown that the same mechanism 
can also be used for a continuous spectral expansion and the algorithm of Dilz and Beur-
den (2017) is extended to efficiently deal with the discontinuous field-material interaction in a 
way that does abide these Li-rules. Here, we propose a generalization of this method to three 
dimensions. Inspired by Beurden and Setija (2017), we show that a normal-vector field for-
mulation (Popov and Nevire 2001) can be used for three-dimensional scattering to replace the 
field-material interaction.

We start by a short formulation of the volume integral equation. Subsequently, we give 
a more detailed explanation of the discretization, with emphasis on the complex-plane spec-
tral domain representation, followed by a short summary of the normal-vector field frame-
work. The applicability of the present algorithm is highlighted by three numerical examples, 
with numerical evidence that the computation time scales as O(N logN) with the number of 
unknowns and comparison against a finite-element reference calculation.

2 � The volume integral equation

Consider a stratified dielectric medium where layers with different relative permittivities 
are stacked in the z-direction. Layer n is located between zn and zn+1 and has relative per-
mittivity �rb,n . Index n = 0 coincides with the top half-space, z < 0 , and index n = NL with 
the half-space z > zNL+1

 below all layers, an example of which is also illustrated in Fig. 1. 
In layer i a three-dimensional dielectric object is contained within the simulation domain 
� = [−Wx,Wx] × [−Wy,Wy] × [zmin, zmax] , with zi ≤ zmin and zmax ≤ zi+1 . This dielectric 

Fig. 1   An illustration of a possible scattering setup
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object is characterised by a relative permittivity function �r(�) , with � = (x, y, z) , or more con-
veniently by the contrast function

which is nonzero only in the object.
An incident electromagnetic field originates from the upper half-space at arbitrary 

angles and polarization. The electric field in presence of the multilayered background 
medium �rb,n , but in absence of the dielectric object can be readily calculated (Chew 1995; 
van Kraaij 2011) and is denoted as �i(�) . The dielectric object generates a scattered field 
�s(�) that together with the incident field �i(�) adds up to the total electric field �(�) , i.e.

The scattered field �s(�) can be calculated via the multilayer Green tensor through

where the contrast current density �(�) is given by the field-material interaction

which is again nonzero only in the scattering object. Combining Eqs.  (2)–(4) yields the 
integral equation that we propose to solve

However, for an efficient numerical scheme several refinements have to be made.

3 � The spectral domain representation

3.1 � The Green function

The three-dimensional integral in Eq.  (3) yields, when implemented naively, an O(N2) 
matrix-vector product, with N the total number of unknowns and by employing an iterative 
solver. Analoguous to Dilz and Beurden (2016, 2017), Dilz et al. (2017), we represent the 
Green function, the contrast current density � , and scattered field �s in the spectral domain 
in the transverse xy-plane. We denote coordinates in the transverse plane as �T = (x, y) , and 
in the spectral domain as �T = (kx, ky) . We use a Fourier transformation defined as

where we distinguish functions in the spectral domain by arguments containing kx , ky and 
�T and in the spatial domain by the arguments x and y and �T.

In the spectral domain, a spatial convolution can be executed with O(NxNy) complexity, 
with N� the number of unknowns used in direction � . The transverse convolution in Eq. (5) 
can be carried out efficiently. The remaining integration in the z-direction can be calculated 
in O(Nz) time via the recursive algorithm proposed by Gohberg and Koltracht (1985).

(1)�(�) =
�r(�)

�rb,i
− 1,

(2)�(�) = �i(�) + �s(�).

(3)�s(�) = ∫
𝒟

d�� 𝒢(�|��) ⋅ �(��),

(4)�(�) = j��0�rb,i�(�)�(�),

(5)�i(�) = �(�) − ∫
𝒟

d�� 𝒢(�|��) ⋅ [j��0�rb,i�(��)�(��)
]
.

(6)f (k�) = ℱ�

[
f (�)

]
(k�) = ∫

∞

−∞

d� f (�)e−jk�� ,
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The multilayer Green tensor in Eq. (3), can be separated in a homogeneous-medium 
part yielding �s,h and reflected waves moving up, �u , and down, �d . The homogeneous-
medium part of the scattered field is given by

where the homogeneous-medium Green tensor is given in Cartesian components (x, y, z), 
respectively, as

Here, k0 is the wave number k0 = �
√
�0�0 and � is defined as � =

√
�2
T
− �rb,ik

2
0
 , where 

�T = (kx, ky, 0) so �2
T
= k2

x
+ k2

y
 . Note that the factor exp(−�|z − z�|) propagates the electric 

field over a distance |z − z�| , and will therefore be referred to as the propagation function.
Now the scattered field �s can found by adding reflected waves �u∕d from the layer inter-

faces to the homogeneous scattered field �s,h , where u and d refer to waves moving up or 
down respectively. Consequently, we have

with ℛ�,�(�T , z) the three-dimensional effective reflection coefficient that contains both h 
and e polarization, which can be calculated from the effective reflection coefficients for h 
polarization r�,�

h
(�T ) (Dilz and Beurden 2017), and for e polarization r�,�

e
(�T ) (Dilz et al. 

2017) as

This matrix projects the e and h polarized parts of the electric field to effective transmis-
sion coefficients r�,�

e
 and r�,�

h
 , respectively. The definition of these effective reflection coef-

ficients is given in Dilz and Beurden (2017), Dilz et al. (2017), which is based on the expo-
sitions about multilayer media in Kong (1975,  Chapter  4), (Wait 1970,  Chapter  2), van 
Kraaij (2011).

Since the field-material interaction in Eq.  (4) is calculated in the spatial domain and 
the Green-function operation in Eq. (9) in the spectral domain, we need a fast and efficient 
means of transforming the current density �(�T , z) to the spectral domain and the scattered 
field �s(�T , z) back to the spatial domain. We propose to use a two-dimensional Gabor-frame 
in the transverse plane, since a Gabor frame is efficient to represent the operation of Fourier 

(7)�s,h(�T , z) = ∫
zmax

zmin

dz� 𝒢h(�T , z|z�) ⋅ �(�T , z�),

(8)�
h(kx, ky, z�z�) =

⎛⎜⎜⎜⎝

�rb,ik
2
0
− k2

x
− kxky − kx�

−kxky �rb,ik
2
0
− k2

y
− ky�

−kx� − ky� �2 −
2�(z−z�)

�

⎞⎟⎟⎟⎠
e−��z−z��

2�
.

(9)

�s(�T , z) =�
s,h(�T , z)

+
(
ℛ

u,u(�T , z)�
s,h(�T , zmin) +ℛ

u,d(�T , z)�
s,h(�T , zmax)

)
e−�(z−zmin)

+
(
ℛ

d,u(�T , z)�
s,h(�T , zmin) +ℛ

d,d(�T , z)�
s,h(�T , zmax)

)
e−�(zmax−z)

(10)ℛ
�,� =

⎛
⎜⎜⎜⎜⎝

k2
x
r
�,�
e (�T )−k

2
y
r
�,�

h
(�T )

�2
T

kxky(r
�,�
e (�T )−r

�,�

h
(�T ))

�2
T

0

kykx(r
�,�
e (�T )−r

�,�

h
(�T ))

�2
T

k2
y
r
�,�
e (�T )−k

2
x
r
�,�

h
(�T )

�2
T

0

0 0 r�,�
e

(�T )

⎞
⎟⎟⎟⎟⎠
.
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transformation. It can be represented analytically by a mere transposition of the coefficient 
matrix in O(N) operations (Dilz and Beurden 2016).

3.2 � The Gabor frame

We use a Gabor frame with Gaussian window function

with width X in the x-direction and Y in the y-direction. This defines the oversampled two-
dimensional Gabor frame as

with two-dimensional indices � = (mx,my) and � = (nx, ny) . Here, the spectral spacing is 
Kx = 2�∕X and Ky = 2�∕Y  and oversampling 𝛼x𝛽x < 1 and 𝛼y𝛽y < 1 . The number of coef-
ficients in � and � is allowed for to be different in the two directions. Gabor coefficients 
can be calculated as

with dual frame

There is freedom of choice for the dual window function �(x) , but we choose the dual 
frame function calculated via the Moore Penrose inverse (Feichtinger and Strohmer 1998; 
Bastiaans 1995), since it is widely used and exhibits a convenient exponential decay in 
both the spatial and spectral domain.

We use the Fourier transformation of Eq.  (12) to discretize functions in the spectral 
domain. This has the advantage that the operation of Fourier transformation reduces to 
merely a tranposition of coefficients. Details on operations such as Fourier transforma-
tion and multiplication of Gabor-represented functions can be found in Dilz and Beurden 
(2016) for one dimension and the generalization to two dimensions is straightforward.

4 � A complex‑plane deformation of the integration manifold

In the z-direction, the integration with the Green tensor in Eq. (7) is discretized completely 
in the spatial domain. Since it was shown that a piecewise-linear approximation in the 
z-direction is effective (Dilz and Beurden 2016, 2017; Dilz et al. 2017), we propose to use 
it here again. In the z-direction, the basis functions are then defined as

with �z the discretization step in the z-direction.
For the discretization in the xy plane, a method similar to the two-dimensional cases 

in Dilz and Beurden (2017), Dilz et al. (2017) is proposed. The Green function contains 
poles due to the effective reflection coefficients and many oscillations along the branch cuts 

(11)g(x, y) = 2
1

2 exp

(
−�

x2

X2
− �

y2

Y2

)
,

(12)g��(x) = g(x − mx�X, y − my�Y)e
jnx�Kxx+jny�Kyy,

(13)f�� = ∫
∞

−∞

dx∫
∞

−∞

dy f (x, y)���(x, y),

(14)���(x, y) = �(x − mx�X)�(y − my�Y)e
jnx�Kxx+jny�Kyy.

(15)𝛬
�
(z) =

{
1 −

|z−�𝛥z−zmin|
𝛥z

if |z − �𝛥z − zmin| < 𝛥z

0 if |z − �𝛥z − zmin| > 𝛥z

,
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may occur. Both these poles and oscillations cannot be represented efficiently in a Gabor 
frame representation. In the two-dimensional case, these problems can be circumvented 
by representing the Green-function in the transverse direction in Eq. (9) on a path in the 
spectral complex plane. For three-dimensional problems, this path can be generalized to a 
two-dimensional integration manifold in the transverse �T coordinates on which the trans-
formation back to the spatial domain takes place. In the kx-direction, the complex spectral 
path is defined by the function �x(kx) , with kx ∈ ℝ and �x ∈ ℂ as

and similarly for �y(ky) with Ay defining the path along the ky-direction. Here, Ax and Ay are 
constants that can be chosen individually. Numerical experiments show that a choice such 
that AxWx and AyWy are in the range 2… 5 , yields optimal accuracy, with Wx and Wy as in 
Fig. 1. With the coordinate change from �T to �T , Eqs. (7) and (9) contain smooth func-
tions and these can be used in combination with the Gabor-frame discretization.

This complex spectral manifold divides the complex �T domain into nine regions as 
depicted in Fig. 2. All functions in the spectral domain will be represented on this �T manifold. 
Using Jordan’s lemma, the Fourier transformation to the spatial domain can be carried out 
over the �T manifold. Closing the contour at �T → ∞ is not needed, since the representation 
using Gabor frames converges to zero rapidly.

It should be noted that the complex integration path of (16) is not the only possible choice. 
For example, in Dilz and Beurden (2018) a different continuous path in one dimension is cho-
sen. The current choice for the path in (16) was made because the large horizontal stretches 
allow for fast transformations to and from the spectral domain. Different choices might not 
allow for such computational efficiency.

(16)𝜏x(kx) ∈

⎧⎪⎨⎪⎩

kx − jAx if kx < −Ax

(1 + j)kx if − Ax ≤ kx < Ax

kx + jAx if kx > Ax.

Fig. 2   The complex-plane integration domain in the spectral domain consisting of nine regions, of three 
types
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4.1 � Discretization in regions of type 1

Most information is contained in regions of Type 1, since Ax and Ay are relatively small com-
pared to the complete spectral range to be discretized. The contrast current density is trans-
formed to the complex spectral integration manifold via

for the northeast (NE) quadrant, i.e. kx ≥ Ax ∧ ky ≥ Ay , and similarly for the other regions 
of Type 1. Analogously, the transformation of the scattered field back to the spatial domain 
is obtained as

with the cut-off function cNE(�T ) equalling 1 on the NE region and zero elsewhere. The 
Fourier transformation can be performed in O(N) operations and the operation of multipi-
cation in O(N logN) operations, for functions represented by N Gabor coefficients. There-
fore, the total of these operations allows for an O(N logN) computational complexity.

All this means that the scattered electric field �s is represented by a five-dimensional array 
of coefficients �s,NE

�,�,l
 , with mx, nx and my, ny corresponding to the Gabor frame on the coordi-

nates, kx + jAx and ky + jAy respectively. The � index corresponds to a piecewise-linear (PWL) 
representation in the z-direction. The scattered electric field in region NE is then approximated 
as

The Green function consists of several parts, some of which are depending on the complex 
propagation constant �(�T ) =

√
−�rb,ik

2
0
+ �2

T
 . On the real kxky-plane �(�T ) touches, but 

does not cross, two branch cuts at �t = (0, 0) in the case of lossless media. For lossy media 
the branchcuts are located at some distance from the origin. For both cases, the � path 
passes just in between these two branchcuts. However, when a Type-1 region such as the 
NE-region is continued to the complete (kx + jAx, ky + jAy) plane, a branch cut is crossed 
just outside the NE region, as illustrated in Fig. 3. The branch cut is located on a straight 
line through �T = (0 + jAx, 0 + jAy) and direction of the line depends on the choice of Ax 
and Ay . The continuous nature of a Gabor-frame representation does not allow for an 
abrupt stop of the discretization domain at the borders of a Type-1 region. Therefore, such 
a Gabor-frame representation of the Green function exhibits significant Gibbs ringing from 
the branch cut that spreads into the Type-1 regions. For a two-dimensional case, this is 
described in Dilz and Beurden (2017), where a linear continuation of the Green function is 
proposed that suppresses strong Gibbs ringing.

In three dimensions, this issue can also be resolved by making a first-order continuation 
of the functions to eliminate the branch cut. Since the branch cut can be located close to 
the kx = 0 or ky = 0 axes, and the function values are needed at kx > Ax and ky > Ay , we 
start the continuation of the functions in the middle at kc

x
= Ax∕2 and kc

y
= Ay∕2 . Then the 

Gibbs phenomenon from the discontinuous second derivative will be at a short distance 
from kx = Ax and ky = Ay , where Region NE begins. For the continuation of a function 
f (kx, ky) along the ky-axis we choose

(17)�(kx + jAx, ky + jAy, z) = ℱ�T
[�(�T , z)e

xAx+yAy ](�T ),

(18)�s,NE(�T , z) = e−xAx−yAyℱ
−1
�T

[cNE(�T )�
s,NE(kx + jAx, ky + jAy, z)](�T ),

(19)�s,NE(kx + jAx, ky + jAy, z) ≈
∑
�,�

Nz∑
�=1

g�,�(kx, ky)��
(z)�s

�,�,�
.
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for kx < Ax∕2 and ky > Ay∕2 and similarly f c,y(kx, ky) can be constructed for kx > Ax∕2 and 
ky < Ay∕2 , which is illustrated in Fig. 3. The Gaussian factor is added to make the continu-
ation decay to zero slowly. The third part, kx < Ax∕2 , ky < Ay∕2 is a continuation of f c,y 
into

Note that this expression equals the expression obtained from continuing f c,x onto this 
domain. The derivative of the function f is calculated using a forward finite-difference 
method, with a difference of 10−4Ax or 10−4Ay for the x and y direction, respectively. For 
most functions, � = min(X2, Y2) is a good choice. However, for one part of the Green func-
tion, notably the propagation function e−��z , care has to be taken that its absolute value 
does not exceed one in the continuation. By increasing the value of � , this condition can 
always be satisfied. More details can be found in Dilz and Beurden (2017).

A general remark about the importance of this continuation is in place. In principle, the 
Gibbs phenomenon in a Gabor frame representation is not of much significance, unless two 
functions with discontinuities at the same position are multiplied. The Li-rules (1996) state 

(20)f c,x(�T ) =

[
f (
Ax

2
, ky) + (kx −

Ax

2
)�kx f (

Ax

2
, ky)

]
e−�(kx−Ax∕2)

2

,

(21)f c,xy(�T ) =

[
f c,y(

Ax

2
, ky) + (kx −

Ax

2
)�kx f

c,y(
Ax

2
, ky)

]
e−�(ky−Ay∕2)

2

.

Fig. 3   A function f represented in the NE regions on �(kx, ky) = (kx + jAx, ky + jAy) that depends on 
�(�(�T )) contains a branchcut on a straight line through the kx < 0 ∨ ky < 0 region. On the regions indicated 
with solid and striped grey the original function f is discretized and on regions indicated by fine lines the 
continuations f c,x , f c,xy and f c, y are discretized, the discontinuity of the branch cut is therefore avoided by 
the continuous functions
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that when two functions with spatial discontinuities at the same position are multiplied to 
form a convolution in the spectral domain, the convergence of this convolution is poor. The 
Li-rules also apply to Gabor frames (Dilz et  al. 2017) and since the spatial and spectral 
domain are both represented by a Gabor frame, a spatial version of the Li-rules is also 
applicable to the Gabor frame. These spatial Li-rules state that when two spectral functions 
with discontinuities are multiplied in a Gabor-frame representation, a poor convergence is 
observed. Now when the NE region of the electric field with its branch cut is multiplied by 
the cut-off function cNE(�T ) in Eq. (18), which is discontinuous at kx = Ax and at ky = Ay , 
functions are multiplied for which the locations of discontinuities almost touch each other. 
This leads to near-violation of the spatial Li-rules. Since the discontinuities are not exactly 
at the same location, a high sampling would in principle solve this issue. However, this 
would require an excessive sample density that is avoided by the continuation of the Green 
function parts proposed in Eqs. (20) and (21).

4.2 � Discretization in regions of type 2

First we will approximate the contrast current density in kx around kx = 0 with a Taylor expan-
sion that is found through a Vandermonde matrix. This Taylor expansion is then applied to 
find corresponding values of the contrast current density on the line Im(�x) = Re(�x) , on 
which a PWL basis is used as a discretization. This PWL basis consists of 2Ns + 1 sampling 
points, p(1 + j)A∕Ns , with p ∈ {−Ns,… ,Ns} . Afterwards, we give a means to directly Fou-
rier transform from the discretized N region to spatial-domain Gabor coefficients. We will 
only consider the northern (N) region of the complex spectral integration manifold since the 
E, W, and S region follow by analogy.

For the calculation of the current density in the N region, function values of �N are avail-
able at the lines �x = kx ± jAx , which were calculated via the Gabor representation in the NE 
and NW region. The analyticity of � allows to produce a Taylor expansion of � around kx = 0 
from values at the lines Im(�x) = ±Ax . Afterwards, this Taylor expansion is used to calculate 
values of the contrast current density at the line Re(�x) = Im(�x) , where they are needed for 
discretization in the N region, as is shown in Fig. 4. Close to kx = 0 , �N can be approximated 
as

(22)�N(kx, ky, z) ≈

4Nv+1∑
n=0

kn
x

n!
�n(ky, z),

Fig. 4   Illustration of the expansion for N� = 1 of the six known values (dark grey circles) from the NE and 
NW regions to values for the N region (light-gray circles)
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where �n(ky, z) = �n
kx
�N(kx, ky, z) , and 4Nv + 2 is the total number of terms in this Taylor 

expansion. Values for �N(kx ± jAx, ky) can be obtained from the results for the NE and NW 
region, by using a fast Gabor transform Dilz and Beurden (2016), Bastiaans (1995) that 
yields values at kx = n�kx

± jAx for n ∈ ℤ , with �kx
 the spectral sample spacing correspond-

ing to the Gabor frame. Values for �n can be found by solving a small Vandermonde system 
(Press et  al. 2007,  Chapter  2.8). By constructing the vector k of kx values as 
k = (−Nv�kx

− jAx,… ,Nv�kx
− jAx,−Nv�kx

+ jAx,… ,Nv�kx
+ jAx)

T , this Vandermonde 
system can be written as a matrix equation K ⋅ � = �(ky, z) = �N(k, ky, z) . The element K

mn
 

of the m’th row and n’th column of matrix K is given by K
mn

= (k
m
)n , the n-th power of 

element m in k . We solve this system using the inverse of K , i.e.

Now that it is possible to express the Taylor coefficients �n in terms of the 2N� + 1 samples 
on the NW-region, i.e. �(kx − jAx, ky + jAy, z) , and the 2N� + 1 samples in the NE-region, 
i.e. �(kx + jAx, ky + jAy, z) , they can be used to evaluate the Taylor expansion in Eq. (22) on 
the N-region, where Im(�x) = Re(�x) . We will write this as a matrix-vector product using 
the matrix T  . The matrix T  transforms from a Taylor series to an equidistant sampling on 

the line [−Ax − jAx,Ax + jAx] . The elements are T
pm

= ((1 + j)pAx∕Ns)
m , where 

p ∈ {−Ns,… ,Ns} and where m ∈ {0,… , 4N� + 1} , i.e.

We use the array of numbers �N
p,my,ny ,�

 to represent the current in the N region of the com-

plex integration domain. Index p ∈ {−Ns,Ns} points to the set of piecewise-linear basis 
functions that are used in the kx-direction on the line �x((1 + j)pA∕Ns) . In the ky-direction 
we use a Gabor frame, denoted here by indices my and ny , therefore the y dependence in 
Eq. (24) is replaced by this set of Gabor indices. Again, a set of Nz PWL functions is used 
in the z-direction denoted by the index �.

Having dealt with the transformation to the N region, we will now deal with the transfor-
mation from the N region back to its spatial-domain counterpart. After multiplication of the 
contrast current density �N

p,my,ny ,�
 with the Green function (see Sect. 3.1), the contribution of 

the North part of the scattered electric field yields �s,N

p,my,ny,�
 . From this array we can make an 

approximation on the N region of the scattered electric field

Here �sx ,p
 are piecewise-linear (PWL) basis functions

(23)�(ky, z) = K−1
⋅ �(ky, z).

(24)�N
p
(ky, z) = [T ⋅ �(ky, z)]p = [T ⋅ K−1

⋅ �(ky, z)]p.

(25)�s,N(kx + jkx, ky + jAy, z) ≈

Ns∑
p=−Ns

�sx ,p
(kx)

∑
ny ,my

gmy,ny
(ky)

Nz∑
�=1

�z,�(z)�
s,N

p,my,ny,�
.

(26)𝛬sx ,p
(k) =

{
1 −

|k−p𝛥kx
|

𝛥kx

if |k − p𝛥kx
| < 𝛥kx

0 if |k − p𝛥kx
| > 𝛥kx

,
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with width �kx
= Ax∕Ns in the kx-direction. To transform the N region of the scattered elec-

tric field �s,N

p,my,ny,�
 back to the spatial domain where it is discretized in the Gabor frame with 

coefficients �s,N

�,�,l
 , we use the Fourier transforms of the PWL functions in Eqs.  (26) and 

(25), i.e.

Since the x direction is discretized using Gabor coefficients in the spatial domain, the 
x-dependence of this function IN

p
(x) must be Gabor-transformed into Gabor coefficients 

IN
p,mx ,nx

 . These Gabor coefficients are calculated during initialization of the algorithm via 

e.g. Eq. (13) or a fast Gabor transform. Now the contribution of the N region to the scat-
tered electric field in the spatial domain is given by

where the dots indicate the contributions from the other eight regions to the scattered field.
Similar to regions of Type 1, some parts of the Green function are discretized using a 

continuation such as in Eq. (20), to avoid a branch cut. For example, for the N region the 
continuation is only needed in the y-direction, since a Gabor frame is employed in this 
direction only and a PWL discretization does not suffer from Gibbs ringing. The construc-
tion for a one-dimensional continuation is described in more detail in Dilz and Beurden 
(2017).

4.3 � Discretization in the region of type 3

For the middle (M) region, a two-dimensional version of the construction for the N region 
is used. Since the generalization is fairly straightforward, we will not write it down explic-
itly. The only difference here is that we use a total number of 2Nm + 1 PWL functions per 
direction. We use a different number of PWL functions in this region since, depending 
on the simulation parameters, the accuracy can depend significantly on the choice for Nm . 
Since the middle part contains information of waves with small �T , it contains information 
about waves traveling almost parallel to the z-direction. Especially for scatterers that are 
larger in the z-direction, a larger Nm is required.

An important remark on the use of Vandermonde matrices is that they are generally ill-
conditioned when a uniform sampling is used, such as is the case in the NE and NW 
regions. In principle, this could lead to a poor conditioning of the K matrix and therefore to 

an unstable inverse when the matrix is increased in size. However, the amount of informa-
tion on the interval �T ∈ [−Ax,Ax] × [−Ay,Ay] is so small that large matrices are not 
needed.

There are two reasons that a relatively large number of PWL basis functions (typically 
Nm > 10 and Ns > 10 ) is needed in regions of Type 2 and 3. The first is that a PWL basis is 
relatively inefficient compared to a Gabor frame. For the second reason we have to look at 
both the spatial and the spectral domain. Since the contrast current density � is confined to 
a finite region only, its Fourier transform is fairly smooth. However, the scattered electric 

(27)IN
p
(x) = ∫

Ax

−Ax

dkx �
�(kx)�p(kx)e

j�x(kx)x.

(28)�s
�,�,l

= ⋯ +

Ns∑
p=−Ns

�
s,N

p,my,ny,𝓁
IN
p,mx ,nx

,
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field �s is not confined to the simulation domain, and therefore its Fourier transform is 
much less smooth. On the Type-1 and Type-2 regions this lack of smoothness is compen-
sated by a representation on complex spectral coordinates � , where the Green function is 
much smoother. However, the Type-3 region is not shifted as far into the complex plane 
as the Type 1 and Type 2 regions, and therefore the Green function is less smooth in this 
region. Since the Green function is implemented recursively, for intermediate results, i.e. 
the scattered field in between zmin and zmax , this lack of smoothness should be represented 
accurately. Afterwards, when the transformation to the spatial domain is performed, this 
roughness on the M region corresponds to contributions outside the simulation domain, but 
ignoring the roughness is not an option since it leads to accumulating errors in the recur-
sive handling of the Green function. This is especially important when zmax − zmin is large 
compared to the wavelength.

4.4 � Correspondence between simulation parameters and accuracy

Since there are many simulation parameters, it is not trivial to find values for these param-
eters that produce both a good accuracy and short computation time. This list is intended 
to clarify which simulation parameters influence which part of the algorithm. This list is 
intended as a general guideline for optimal results.

1.	 Start with a Gabor frame with X = Y = � , the wavelength of the light-source, and 
� = � =

√
2∕3.

2.	 C h o o s e  mx > 3 +Wx∕𝛼X  a n d  s i m i l a r l y  my > 3 +Wy∕𝛼Y  .  C h o o s e 
nx = ny > 5maxx∈�(1 + 𝜒(x)) , which guarantees at least 11 unknowns per wavelength 
per direction. Test whether a function (e.g. a Gaussian with width X), can be represented 
with the required accuracy over the entire simulation domain � . When the accuracy 
is too low everywhere, increase � , when the accuracy is too low at the boundary of � 
only, increase �.

3.	 Start at Ax = 3∕Wx and Ay = 3∕Wy , Nv = 1 , Ns = 10 and Nm = 10 . Test whether a set of 
spatially and spectrally localized functions (e.g. modulated Gaussians that are shifted 
along the entire simulation domain) can be transformed to the complex spectral inte-
gration manifold and back again with the required accuracy. Note that the exponential 
function in Eq. (17) reduces the accuracy of the Gabor frame. Therefore, a simultaneous 
decrease of Ax and increase of � improves the accuracy in the transformation between 
the spatial and spectral domain. Especially when a high accuracy is needed, N� might 
need to be increased when the error in the N, E, S, W and M regions is too large. Also 
an increase in Ns and Nm can be considered when the error in the PWL interpolation is 
found to be too large.

4.	 The Green function (Eq. 8) contains a factor �−1 , that has a strongly peaked behavior 
around ��T � = √

�rb,ik0 . Test whether the function �−1 is represented accurately enough 
by the Gabor frame with the current parameters. Otherwise Ax can be increased (which 
decreases the accuracy in the previous step) or � can be increased (which increases the 
computation time, but leaves the accuracy in the previous step invariant).

5.	 Especially for large zmax − zmin , a lot of information is stored in the M region, which 
contains information about waves traveling in a narrow cone around the z axis. The main 
culprit here is the function e−�(zmax−zmin) in Eq. (8). Choose Nm such that this function can 
be well approximated in the M region.
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6.	 Another simulation can be run with lower � values. When both results agree well, con-
vergence in the spectral range � has been reached, otherwise � should be increased for 
higher accuracy.

5 � Efficient field‑material interaction

Formulating the field-material interaction as proposed in Eq. (4) yields poor convergence 
since it violates the Li-rules (1996). We propose to use a normal-vector field approach 
(Popov and Nevire 2001; Beurden and Setija 2017). In Dilz et al. (2017) it is shown that 
when the Li-rules are satisfied, good convergence is reached in a continuous spectral dis-
cretization in a formulation similar to the RCWA formulation by Granet and Guizal (1996). 
We follow the same approach as Popov and Nevire (2001), Beurden (2011, 2012), Beurden 
and Setija (2017), van Beurden (2013) in constructing normal-vector fields and the follow-
ing is intended as a short summary of that method.

When the permittivity is discontinuous at a material interface, it is observed that the 
electric field � normal to the surface is discontinuous, but the electric flux density � nor-
mal to such a surface is continuous. Therefore, in the field-material interaction in Eq. (4), 
both � and the normal component of � are discontinuous and multiplication of two discon-
tinuous functions represented by Gabor shows poor convergence (Dilz et al. 2017), since 
it violates the Li-rules (1996). An auxiliary field � is introduced that is composed of � in 
the direction normal to every surface of discontinuous � and � parallel to each of those 
surfaces. Since this fixes the choice of � only at the boundaries of dielectric objects, there 
is much freedom in choosing it away from the interfaces. Normal-vector fields (Popov and 
Nevire 2001; Rafler et al. 2008; Götz et al. 2008; Beurden and Setija 2017) can be a good 
tool to systematically construct an auxiliary field �.

Since we use Gabor coefficients only in the transverse plane, we apply the normal-vec-
tor field formulation only in the transverse plane. For objects with interfaces that are not 
aligned with the z or transverse plane, a staircasing approximation is needed. When �T (�) 
is a vector field of unit amplitude that is directed normal to the transverse part of all dis-
continuous surfaces in � and when �(�) is a scalar function that equals one at these discon-
tinuities, these functions can be used to construct the desired auxiliary field � as

The field-material interaction in Eq. (4) can be re-written as

and the electric field can be recovered from

where the Cartesian component i of the electric field due to the Cartesian component j of 
auxiliary field F is calculated by employing operator C� defined as

with �ij denoting the Kronecker delta and similarly

(29)�(�) = �(�) + �T (�)

[(
�(�)

�0�rb,i
�(�) − �(�)

)
⋅ �T (�)

]
.

(30)�(�T , z) = [�C�](�T , z)�(�T , z),

(31)�(�T , z) = [C�](�T , z)�(�T , z),

(32)[C�(�)]ij = �ij + �T ,i(�)�T ,j(�)

[
1

�(�)(1 + �(�))
− 1

]

(33)[�C�(�)]ij = �(�)[C�(�)]ij.
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Using this normal-vector field approach, there is a great freedom for the shape of the scat-
terer. Depending on the scatterer shape, a suitable �T and � must be chosen. It is pos-
sible to choose �T and � for basic geometric elements, such as rectangular blocks, trian-
gular prisms, or circular cylinders. More intricate objects can then be constructed from 

(a) (b)

(c)

Fig. 5   a The scattering setup for a small, low-contrast 100 nm cube embedded in a multilayered medium. 
b A cylinder, embedded in the same multilayered medium. c A finite grating consisting of six repeating 
blocks located on top of a substrate

Fig. 6   The electric field at the z = 100 nm plane for the scattering case in Fig. 5a. In Figure a |�| is plot-
ted for an incident plane wave with unit amplitude and in Figure b this is compared to the results obtained 
using JCMWave
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combinations of a variety of such objects. More details and examples of this construction 
can be found in Beurden and Setija (2017).

6 � Numerical results

We have chosen three testcases to validate the present algorithm. As a reference to validate 
our results we use the commercial FEM code JCMWave (Burger et al. 2013). Our goal is 
to achieve an accuracy of 10−3 , which is sufficient in our applications, e.g. due to meas-
urement noise or fabrication tolerances. To achieve high accuracy in the validation, we 
use a relatively small, low-contrast scatterer in the first testcase. A small dielectric cube is 
embedded in a dielectric medium as shown in Fig. 5a, together with the remaining details 
of the setup. The incident wave is characterized by a Cartesian wave vector with compo-
nents � = (−k0 sin(70

◦), 0, k0 cos(70
◦)) , with the electric field polarized in the xz-plane and 

with unit amplitude.
We choose a Gabor frame with X = Y = 80  nm, � = � =

√
2∕3 . For the high-

est accuracy we use a Gabor frame, Eq.  (12), restricted to mx,my ∈ {−7,… , 7} and 
nx, ny ∈ {−10,… , 10} , which equals one basis function per 3.1 nm. In the z-direction we 
use a step size of 2.5 nm. For the sampling of the regions of Type 2 and 3 we use N� = 2 , 
Ns = Nm = 15.

With these simulation parameters, the simulation domain in the xy-plane extends over a 
larger region than the scatterer itself, as is visible in Fig. 6a. In this figure, the norm of � is 
shown on the plane z = 100 nm. In Fig. 6b the absolute difference between results from the 
present algorithm and the JCMWave reference are shown. Over large regions of the simula-
tion domain the absolute difference is smaller than 10−5 . From y = −50 nm to y = 50 nm 
and close to the edges of the cube agreement between both simulations is not as good as 
on the rest of the simulation domain. This is caused by Gibbs-ringing at the discontinuities 
in the electric field, especially in the x-component. The field-material interaction operators 

Fig. 7   The far field for the case in Fig.  5a as a function of the transverse wavenumber �T∕k0 , scattered 
back into the half-space z < 0 . In a the modulus |�s| of the scattered electric field is shown. In b the differ-
ence between a JCMWave validation run and the present algorithm is shown. An average relative error of 
4 × 10−5 was observed. Since an interpolation of the reference data is used that is not accurate at the edge of 
the radiation circle, the far field data is truncated for large �T
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C� and �C� of Sect. 5 exhibit this Gibbs ringing because they are truncated in the spectral 
domain. This Gibbs ringing is therefore also present in the scattered electric field.

Since this Gibbs ringing has a very small spatial period, it does not radiate into the far 
field. Because the far field is the most interesting for the application, we use the far field 
as a reference for the accuracy of the method. As can be observed in Fig. 7, the error in 
the far field is much lower than in the near field, because the absence of the Gibbs ring-
ing. The average relative difference with an ℒ2-norm in the far field data equals 4 × 10−5 . 
Clearly, the far-field results agree much better than the near-field results. The small size of 
the scatterer and its low contrast results in a far field pattern that does not vary much with 
the angle. This example is therefore somewhat uninteresting, however, it has the advantage 
that the FEM reference could achieve a high accuracy in a multilayered scattering problem.

In Fig.  8, we show how both the accuracy and the computation time scale with the 
number of unknowns used in the calculation. The horizontal axis in Fig. 8a contains the 
sample density, which was lowered by decreasing the range of the �-index in Eq.  (12), 
where nx, ny ∈ {−r,… , r} from r = 10 down to r = 1 . This corresponds to a sample 
density 1∕�x = 1∕�y = (2r + 1)∕

√
�∕�X . The other simulation parameters were kept 

(a) (b)

Fig. 8   In Figure a both the computation time and the relative error in the far field, computed as the average 
of Fig. 7b for a range of nx and ny for the Gabor frame. In b the same is shown, but now for different sam-
pling �z in the z-direction

Fig. 9   The electric field in the plane z = 10 nm plane for the scattering case in Fig. 5b. In Figure a |�| is 
plotted for an incident plane wave with unit amplitude and in Figure b this is compared with the results 
obtained using JCMWave
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constant throughout this sweep. The results suggest that the computation time scales as 
O(1∕�x�y) = O(NxNy) . Since FFTs are used, we expect an O(NxNy log(NxNy)) behaviour, 
but the logarithms are apparently negligible compared to other parts of the algorithm at 
this simulation size. Fig. 8b shows a clear O(Nz) behaviour, which is expected from Goh-
berg and Koltracht’s recursion (1985).

The second example for which we provide computational data consists of a dielec-
tric cylinder embedded in a multilayered medium as is described in Fig.  5b. In Fig.  9, 
the electric field is shown at z = 10  nm for X = Y = 100  nm, � = � =

√
2∕3 and 

mx,my ∈ {−4,… , 4} and nx, ny ∈ {−7,… , 7} , which equals one basis function per 5.1 nm. 
In the z-direction, 41 basis functions are used with stepsize �z = 2.5 nm. For the sampling 
of the regions of Type 2 and 3 we use N� = 2 , Ns = Nm = 15 . From Fig. 9b it is clear that 
the difference in the result from the present algorithm compared to the JCMWave reference 
is somewhat larger than for the previous case. However, this is due to a less accurate refer-
ence that was calculated with a lower order p-refinement. A higher order p-refinement was 
not feasible with the available computational resources.

In Fig. 10, the absolute value of the far field reflected into the upper half-space is plot-
ted. The relative error for the simulation in the far field is 2.8 × 10−3 , which is significantly 
larger than for the cubic scatterer, because of the reference, with lower accuracy.

We have calculated the far field with a finer discretization, to show the convergence 
of the algorithm. We emphasize that the present algorithm does not excel at small com-
putational domains. However, for a small computational domain a more accurate vali-
dation result was feasible than for a very large computational domain. The reason that 
the present algorithm is relatively slow for small simulation domains is that a lower 
limit on the number of unknowns in the x and y-direction exist, since the Gabor frame 
(as we choose it) is inaccurate over a range of at least three window widths �X (see Eq. 
(12)) distance from the point at which the Gabor frame is truncated to zero. Therefore, 
at least seven windows are needed for an accuracy of 10−3 in the middle of the compu-
tational domain, both for the spatial index mx as well as for the spectral index nx in Eq. 
(12). Consequently, at least seven values for index mx and seven values for index nx are 
needed, which amounts to a total of 49 coefficients per direction at minimum. Since 

Fig. 10   The far field for the case in Fig. 5b as a function of the transverse wavenumber �T∕k0 , scattered 
back into the half-space z < 0 . In a the modulus |�s| of the scattered electric field is shown. In b the differ-
ence between a JCMWave validation run and the present algorithm is shown. An average relative error of 
2.8 × 10−3 was observed
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Fig. 11   The electric field in the plane z = 10 nm plane for the scattering setup in Fig. 5c. In Figure a |�| 
is plotted for a normally incident plane wave with unit amplitude and in Figure b this is compared with the 
results obtained using JCMWave

Fig. 12   The far field for the case in Fig. 5c as a function of the transverse wavenumber �T∕k0 , scattered 
back into the half-space z < 0 . In a the modulus |�s| of the scattered electric field is shown. In b the differ-
ence between a JCMWave validation run and the present algorithm is shown. An average relative error of 
2.5 × 10−3 was observed
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we use a Gabor frame in two dimensions, a minimum of 2401 unknowns is needed for 
a minimum simulation domain. Note that we assumed the use of a Gabor frame with 
� = � =

√
2∕3 and the Moore-Penrose inverse to calculate the dual window, where 

the accuracy increases exponentially with the distance to the truncated coefficients for 
this choice (Böcskei and Janssen 2003) for sufficiently smooth functions. This effect 
only exists for small simulation domains. For large simulation domains, the number of 
unknowns at the edge of the simulation domain is negligible.

The third and final example for which we computed the scattered electric field con-
sists of six dielectric blocks of 350 × 500 × 100 nm deposited on a slightly lossy dielec-
tric substrate as is shown in Fig. 5c. In Fig. 11, the electric field is shown at z = 10 nm 
for X = Y = 500  nm, � = � =

√
2∕3 and mx ∈ {−7,… , 7} , my ∈ {−4,… , 4} and 

nx, ny ∈ {−7,… , 7} , which equals one basis function per 27 nm. In the z-direction, 21 
basis functions are used with stepsize �z = 5  nm. For the sampling of the regions of 
Type 2 and 3 we use N� = 2 , Ns = Nm = 20 . Since the scatterer is larger than in the pre-
vious examples, it was efficient to choose larger window widths X and Y, which results a 
coarser sampling. From Fig. 11b it is clear that this coarser sampling generates a some-
what more pronounced Gibbs-ringing from the edges. However, in the far field, which 
is shown in Fig. 12, the average relative difference with the JCMWave reference calcu-
lation is similar to that for the cylinder case, i.e. 2.5 × 10−3 , where the estimated rela-
tive accuracy of the reference calculation was on the order 2 × 10−3 . Even though the 
scatterer extends much wider in the xy plane, the number of unknonws in the xy-plane 
was increased by only a factor 5 / 3, while the accuracy in the far field remained similar. 
This clearly shows that the present method performs better for scatterers larger than a 
wavelength in size.

7 � Conclusion

A volume integral equation for 3D scattering from finite dielectric objects embedded in 
a dielectric layered medium was presented in the mixed spatial and spectral domain and 
an algorithm based on Gabor frames was presented for the discretization. The algorithm 
employs a mixed spatial spectral formulation and Gabor frames for the discretization. A 
representation of the Green function, contrast current density, and scattered electric field 
on a complex integration manifold is employed in the spectral domain. A normal-vector 
field formulation in the transverse spatial domain is employed to improve the convergence 
in the field-material interaction.

The accuracy of the present algorithm was compared to a FEM algorithm. The results 
of both algorithms in the far field agree with each other up to the 4 × 10−5 in one small 
numerical example. In the other two examples an agreement up to 2.8 × 10−3 and 2.5 × 10−3 
were observed, because the FEM algorithm did not fully converge with the computational 
resources at hand. Numerical evidence was presented that the computational complexity of 
the present algorithm scales as O(N logN) with the number of unknowns.
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