

The design and implementation of an interface box supporting
SIP 1.0 commands
Citation for published version (APA):
Kouwenberg, R. F. W. M. (1991). The design and implementation of an interface box supporting SIP 1.0
commands. (IPO rapport; Vol. 835). Instituut voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 11/12/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/8b514700-a0c8-437a-9485-79d64bc5783d

Institute for Perception Research
P.O. Box 513 - 5600 MB Eindhoven

Rapport no. 835

11.12.1991

The desi~ and implementation of
an interface box supportin~
SIP 1.0 commands

R.F.W.M. Kouwenberg

summary

A new software protocol has been developed by the Institute for Perception Reserach
(IPO), which can be used to communicate between a host computer and an input-output
device by means of an rs232 channel: the Serial Interface Protocol. This protocol
[Eggen1991] describes a number of command tokens with which it is possible to send and
receive input-output control commands.

The inputs and outputs are controlled by a so called 'interface box', which executes
commands received from the central host computer, controls the outputs and monitors the
status of input devices. The input and output devices to be attached can range from simple
switches and leds to complex joggles.

This report describes a hardware and software test implementation of rudimentary Sip 1. 0
commands in an interface box to monitor and control up to 64 inputs and outputs. To
fully make use of the full sip 1.0 command protocol a software update is necessary.

Chapter

1

2

3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4
4.1
4.2
4.3

5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

6

Appendices:

Introduction

Design of the interface box

Sip 1.0 commands supported
Introduction
System _ Reset
Label Exclusive
Output_Set
Output_All_Set
Input_ Activate
Set_ Blinking_ Time
Input_On
Input_ Off
Data _Byte_ Error
Command _ Not_ Implemented

Hardware overview
Introduction
Processor circuitry
I/0 circuitry

Software overview
In troduction
Program layout
Hardware startup routine 'init'
Main program
Procedure keyscan
Interrupt timer 1
Interrupt serial port

Conclusions

Literature list

- 1 ORCAD circuitry drawing
- 2 Parts list
- 3 Connector connections

The design and implemcntation of an interface box supporting sip 1.0 commands

Page

2

3

4
4
4
5
5
5
6
6
6
6
6

7
7

10

12
12
13
14
14
16
17

20

21

1

1 Introduction

The research of the 'Instituut voor Perceptie Onderzoek' (IPO), is concerned with sensory
and cognitive information processing and communication by humans interacting with
flexible information systems.

A part of the research programme is occupied with the development of new consumer
electronics. As such it's goal is to improve the human tending of consumer electronics.

Many prototypes of possible future products have to be tested for their suitability for the
consumers. An important saving of time can be achieved by splitting the device in two
parts. One part is the front panel which contains input devices (e.g. switches) and output
devices (e.g. leds). The other part is the hardware machinery (e.g. the machinery of a
DAT recorder). The functions of the hardware machinery can be simulated on a
computer (e.g. a SUN). lf one wants to test a new device, then only the front panel will
have to be built for each different layout.

The front panel in the test facility will be controlled by a so called "interface box". This
interface box will control the output devices and monitor the operations of a test person
on the input devices of the front panel. The interface box will communicate with a host
computer which will simulate the commands programmed by the test person. Further will
the host computer send commands to the interface box to set the outputs of the interface
box, placed on the front panel, to the appropriate display function.

With this set-up it is possible to gather information of the use of the device and whether
e.g. the placement of an input at a different location on the front panel might improve the
ergonomics of the device, while only having to rebuild the front panel for this test.

The main purpose is to develop a new inteiface for the testing of ergonomics of consumer
electronics.

The interface box is to control a number of input and output devices. Possible input
devices can range from simple switches to complex joggles. Output devices can range
from leds to digital-analog converters.

The following chapters will describe the design and the layout of the software and
hardware of the interface box.

The design and implementation of an inlerface box supporting sip 1.0 conunands 2

2 Design of the interface box

Preceding the design of the interface box, a software command protocol had been
developed [Eggen 1991], to be used to communicate between the interface box and the
host computer. The specification of the serial communication link had also been written
[Eggen 1991].

The serial interface protocol (SIP 1.0) describes a set of commands to be supported. The
main goal of the research was to develop a software expandable implementation in
hardware of SIP 1.0. The commands to be supported are : System_Reset, Output_Set,
Input_On / Off, Input_Activate. In a future version further commands can be implemen
ted. At least 32 inputs and outputs should be supported, where the specific 'kind' of input
and output is to be easily interfaced with a minimum of extra hardware.
The interface box will be connected to a Sun computer; a specific serial connection is to
be provided. As the interface box will be used for test simulations, situations of a specific
action of the test person or a command sequence sent by the host computer, which would
cause programm crashes are to be evaded. The interface box itself should also be solid,
portable and (sofware) expandable.

The design and implementalion or an interface box supporting sip 1.0 conunands 3

3

3.1

Sip 1.0 commands supported

Introduction

The following paragraphs will describe the sip 1.0 commands that are supported by the
interface box. To fully understand 'what's happening inside', one should read the next
chapters.
Sip 1.0 commands consist of a command byte and a maximum of 2 databytes (the label
commands can be larger, but are not implemented in this version of the interface box
software).

A special provision is made in the software of the interface box to decrease the amount of
information which has to cross the serial interface link: the running status. Whenever a
valid command has been executed, the running status is set to the last executed command.
Subsequent databytes can be sent by the host computer without having to repeat the same
command byte. As such it is e.g. possible to set all 64 outputs to a specific value with 1
command byte and 128 databytes instead of 192 (64 times 1 command and 2 databytes)
bytes: a saving of 63 bytes.

3.2 System _ Reset

The system_reset command is invoked by sending #0FFH (255D) from the host
computer to the box. After receiving this commands, all software parameters are set up as
they were after a hardware (power on) reset. The software parameters are:

- all outputs off,
- all input transitions signalled,
- blinking time 640 ms,
- receive buffer empty.

3.3 Label Exclusive

The interface box can 't execute any label commands (= command bytes higher than
#0F0H); these commands cause 'command not implemented' errors.

A complete label command consists of a label command (the 'begin'), an unknown
number of bytes, not containing #OF0H (240D), followed by the end of label command
byte: #0F0H. The problem of this command is (besides that it is not imlemented), that
within the label command, all kinds of bytes might appear; the only restriction of the
label message is that is does not contain the ELE byte. It would be possible that the
interface box would interpret the bytes of the label command, resulting in unpredictable
errors. To overcome this problem the interface box just ignores everything coming after a
label command, untill it receives the ELE command byte, after which it sends a "Com
mand_ Not_Implemented" error to the host computer.

The design and implementation of an interface box supporting sip 1.0 commands 4

3.4 Output_Set

The command byte for output_set is #85H (133D), followed by 2 data bytes: first the
output number, then the desired function. The output number has to be in the range of
#0 .. 3FH (0 .. 63D), exceeding this range will result in a data byte error. The function
byte following the sip 1.0 protocol can be one of four bytes:

- 00000000B output off
- 00000001 B output on blinking
- 00000010B output on inverse blinking
- 0111111 lB output on continuous

No error checking is done on the function databyte; only the two righmost bits (LSB and
LSB-1) are used.
The blinking time is set after a reset to 640 ms, however it can be set under software
control to any lOms multiple.
The interface box is not able to determine which of the outputs are in fact connected. It is
however possible to adapt the software to accept only a smaller range of output numbers.

3.5 Output_ All_ Set

To set all the outputs at once one can use the Output_all_set command. The command
byte is #0C7H (199D) followed by a function byte. The same remarks as above apply,
except that this command sets all output to the desired function.

3.6 Input _Activate

After a hardware or software startup all the input transitions will be signalled. To change
this the host computer can issue the Input_Activate command (#0CAH, 202D), followed
by 2 databytes: inputnumber and function. The range for the inputnumber is #0 .. 3FH (
0 .. 63D); exceeding this range will result in a data byte error. The function byte
following the sip 1. 0 protocol can be one of four bytes:

- 00000000B input on/off transition not signalled,
- 00000001B only input on transition signalled,
- 00000010B only input off transition signalled,
- 01111 l 11B both input on and off signalled.

No error checking is done on the function databyte; only the two righmost bits (LSB and
LSB-1) are used.

This command is especially useful when the host computer is not interested in the status
of specific switches. To decrease the communication rate on the serial channel the
signalling of trivia! switches can be turned off or on.

The design and implementalion of an interface box supporting sip 1.0 commands 5

3.7 Set_ Blinking_ Time

After a soft or hardware reset the blinking time is set to #40H times lüms. With the
Set_blinking_Time command (#OClH / 193D), this time can be set by the host computer
to a 1 0ms multiple in the range 0 - 2550ms.

Two databytes accompany the command:

- OXXXXXXXB low blink time
- OYYYYYYXB MSB of blink time

3.8 lnput_On

The interface box can be used to monitor the status of up to 64 inputs. When an input
switch is pressed the interface box signals the transition off to on, using the command
byte #89H (137D, Input_on), together with 1 databyte: the inputnumber 0 .. 3FH (
0 .. 63D) to the host computer. The way in which the inputs are multiplexed is drawn in
appendix 3.
The host computer can set the status of the connected switches on or off so that not all
transitions are signalled (see input_Activate).

3.9 Input Off

When a switch is released the interface box generates the input off command (#88H/136D
Input_off+ 1 byte input 0 .. 3FH/63D), similar remarks can be made as the Input_On
command.

3.10 Data_Byte_Error

The interface box is only able to process commands in a given range. The output
commands can only be executed on a number of 0 .. 63D. Exceeding this range will
generate a Data_Byte_Error (#0ClH/193D).

3.11 Command_Not_Implemented

At this moment only the given above commands are implemented in the interface box.
Further commands listed in the SIP 1.0 protocol may be implemented in the future.
Commands not listed and label commands will generate a Command_Not_Implemented
message (#0CFH/ 197D) .
A command_Not_Implemented error will reset the running status of the interface box.

The design and implemcntation of an interface box supporting sip 1.0 commands 6

4 Hardware overview

4.1 Introduction

Within the lnstitute for Perception Research (IPO) many designs have been made with
the 803lµp [lntel 1985]. Numerous designs incorporated this µp, an input matrix and an
output matrix [e.g. Waterham 1989, Bierens 1989, Zelissen 1990], therefore a choice was
made to use this processor. A circuitry based on this microprocessor can be devided in a
processor part and an 1/0 circuitry part.

4.2 Processor circuitry

The processor circuitry is based on the 8031 µp which has the following specifications:

- 8-bit CPU
- On chip oscillator and clock circuitry
- 32 1/0 lines
- 64 Kbyte address space for extemal data memory
- 64 Kbyte address space for extemal program memory
- two 16 bit timers/counters
- five-source interrupt structure with two priority levels
- full duplex serial port
- boolean processor

The circuitry is built up with a low address latch, memory (ROM and RAM), serial and
1/0 circuitry.

1 non int 0
2nonW
3 non R
4 Vee (+ 5 Volt)
SADO
6AD1
7 AD2 ..
8AD3 ...
9AD4 "' "'
10AD5
11 AD6
12 AD7
13GND

B 14 non k sel
15 non I b "1
16 non I v tel

figure 4.2a processor print layout

The processor print (tig 4.2a) contains the microcontroller (lntel 8031), an address
latch buffer (Philips 74HCT573), a program memory (Signetics 27C256), a data
memory (Hitachi 6264) and a serial line buffer integrated circuit (Maxim MAX 232).

The design and irnplcmmution of an interface box supporting sip 1.0 commands 7

figure 4.2b clock circuitry

The microcontroller has an on chip clock oscillator. All that is needed extemally are two
capacitors and a crystal (fig 4.2b). A lot of different clock frequencies can be chosen,
however the µP genarates it's serial data by dividing the clock frequency with a constant.
For an accurate serial data rate of 19200 baud a crystal with a frequency of 11.059 MHz
is to be chosen [Intel 1985]. The reset pulse circuit is simple (fig. 4.2c).

RlB
10k0h,n

1
Cl

3
RESET

figure 4.2c reset circuitry

This combination of a diode, capacitor and resistor causes a hardware reset on the 8031
every time the power is restored after a power on, or a power failure. It is adapted from
the microcontroller data book [In tel 1985], with a diode added to discharge the capacitor
every time the power is removed, so that no negative source can damage the µP intemals
(the BAT85 is chosen for it's low voltage drop of 0.2V) .

. ~~:..
Tr '> IC:. IC 4

PO,O 01 Ql 1
AO P0,1 02 Q2 00 00 AO

C Xl Al 01 01 Al P0 , 2 03 Q3
2 P0,3 04 Q4

A2 02 02 A2
P0.4 os A3 03 03 A3

X2 PO,S
QS A4 04 04 A4

P0.6
06 Q6 AS os os AS 07 Q7 A6

~
P0,7 08 06 06 A6 QB A7 07 07 A7

09
1uF .1~ RESET

P2,0 ~
AB AB

,
BATB<: 11 C P2 . 1

C A9 A9
,

1 , INTO oc AlO ,
P2.2 AlO

~ INTl P2.3 '""'-' ,,,3 All All L

TO P2,4 .~ A12 A12
Tl P2 , S 4L A13

:>o

n

.,

P2,6 AU ~ non
~ ~ ... Pl.O P2,7 . 20

~ cff , .. Pl. 1 17 -
1 1

~ •d h • Pl.2 6i R ..i. .. r 1/PP LL -.J
•d V • Pl.3 " VLV~ - Pl.4

Ar:~
•~h - Pl.S ~· - Pl.6 TXO - TXD

-" Pl.7 RXO " : RXO

BOc311

figure 4.2d microprocessor print circuitry

The design and implerneotation of an interface box supporting sip 1.0 commands 8

The total circuitry of the microprocessor print is drawn in figure 4.2d. The lower address
lines (A0 .. 7) are multiplexed with the data lines (DO .. 7) as AD0 .. 7. An 8 bit latch (ic
2) buffers the address lines. The microprocessor pulls its ALE/nonP line high to make
the latch read a new low address combination. In a next clock cycle the high address line
and the databus appear correct on the ports. A program memory read is accompanied by
a low PSEN. A data memory selection is accompanied by a low nonR or a low non W
signal. The actual selection of the RAM ic has to be done by making the 'nonramsel' line
low. A selection of one of the 3 1/0 latches or the 1/0 buffer can be made by selecting
the appropriate control lines.

The program is placed in 32kbyte EPROM memory (ic 3), the data memory has an
8kbyte capacity (ic 4). The choice of a large memory space in proportion to the actual
program space needed has been made is partly on cost aspect ratio (price per kilobyte),
partly on future memory demands.

A complete microprocessor machine cycle consists of 12 clock cycles. This causes the
time for the execution of every line of program code (a processor cycle) to take about 1
µS. Some operations can be done in 1 cycle others take more machine cycles.

The 8031 µp generates it's serial signal on TIL level (+5 and 0 volts). In the definition
of RS-232-C1, a logic '1' is represented by a voltage from +5 to + 15 volt; a logic '0'
by a voltage from -15 to -5 Volt. A special line driver, ic 9 MAX 232, is used to convert
the +5 volts level to + lOvolts and 0 volts to -10 volts so that the serial output signal
corresponds with the RS-232-C [McNamara 1977] definition. This IC is chosen because
of it's capability of generating the positive and negative levels from a single 5 volts power
supply. Of this ic only one of the two possible in/out combinations is used (fig. 4.2e).

C17
221,1F

C16 22uf'

IC 9

... ~-··· DB 9
····t···· :; 1

232 ---····

~2uF

Cl'i
221,1F'

figure 4.2e RS-232-C interface

The databus, the 5 Volts and ground power supply, and 6 control lines are directed to
thel/O print. The pin connections are listed in the appendices (App. 3).

1 [Me Namara 1977]

The design and implemcntalion of an interface box supporting sip 1.0 commands 9

4.3 1/0 circuitry

A quad exclusive OR ic, 74HCT02 (icl 1), and a hex inverter, 74HCT04 (iclO) see to
the correct level signals of select lines of the 4 1/0 integrated circuits. The logic is
written in table 4.3.

table 4.2 select lines arguments

ic nr. argllllent

icS nonW XOR non led hor sel
ic6 nonW XOR non led ver sel
ic7 nonW XOR nonksel
ic8 NOT C nonksel XOR nonR)
nonintO NOT C sw.row1 OR sw.row2 OR ... OR sw.row 8)

The interface box can control up to 64 outputs. The outputs are multiplexed in a 8*8
matrix, that is one row (driven by ic 6) at a time is pulled low, after which 8 lines are
used to set the 8 selected outputs to the desired 'data' ('ON' equals a high level). The
program is written to switch each vertical line, containing 8 horizontal outputs, 'ON' for
approximately 1.25ms every lüms, resulting in a lOOHz 'flicker' for the display. At this
frequency it is hardly noticeable that the outputs are not on continuously. A resistor is
placed intemally to limit the current.

After a hard or a software reset, all outputs are off, that is the rows are still pulled low
one at a time, but the lines are all low ('data' = 0).

The input matrix consists of a latch (74hct573) and a buffer (74hct244). Information is
read by setting a latch row high and reading the information achieved by the buffer. A
provision is made for future expansion to read the input matrix by means of a interrupt
routine.

74hc
t573

74hc
t02

74hc
t244

16

74hc
t04

74hc
t573

The design and implcmcntation of an interface box aupporting sip 1.0 commands

74bc
t573

1-1n,o
2uonW
3 non R.
4 Va: (+ 5 Volt)
SAOO
6AD1
7AD2
IAD3
9AO.
lOA~
11 AD6
12AD7
13GND
14noa lr.ld
15 DOG 1 b Id
16 DOG 1 •Id

figure 4.3a l/0 print circuitry layout

10

IC ..
74HCT'l731

oc ,u .. e C e><270 o+,.,

DB 08

Il
D7 07
D6 06
D'I 0'5
D4 04
DJ 03
D2 02
Dl 01

!:!ti:::~X.:~~.;:l.
Dl 01
D2 02
D:11 03
D4 04
DS os
D6 06 :::::::::::] D7 07
D8 08

IC 6
C 74HCT'lö731 oc

figure 4.3b 1/0 circuitry

Mains switch Power supply

mains

Switch matrix

µ p circuitry

1/0 circuitry

27C256 Program

figure 4.3 exploded view of interface box

The case (fig. 4.3 , dimensions 14.0*20.5*7.5cm) houses besides the processor and 1/0
circuitry a single 5 Volts/1 Ampère short-circuit protected power supply. The external
connectors and circuitry are wired with flat cable. A connector is placed between the 1/0
and processor circuitry. This design is chosen to make the interface box more compact.
The program can be updated easily by exchanging the eprom on the top print. A parts list
and a circuit layout is provided in the appendices (App. 1,2).

The design and implementation of an interface box supporting sip 1.0 conm1A11ds 11

5 Software overview

5.1 Introduction

After having built the hardware circuitry, the program software had to be written. At
first the serial connection was tested by echoing bytes sent by a host computer back to the
host computer and placing these received bytes in a buffer. By use of a 8031 in-circuit
debugger the bytes in the buffer could be compared with the sent bytes. The serial routine
worked.
A next subroutine was written to display two groups (blinking and inverse blinking) of

64 outputs after one another. The outputs are multiplexed in an 8 by 8 matrix, which
means that only one line of 8 outputs can be displayed at a time. If all the outputs are
displayed consecutively with a high frequency, an observant will not notice the difference
between e.g. a led blinking with a frequency of 75Hz and a led that is on continuously.
For timing reasons a display frequency of lOOHz is chosen2, this results in an approxima
tely 1.25 ms 'ON' and a 8.75 ms 'OFF' period of each output (12.5% dutycycle).

5.2 Program layout

Having written and tested the serial input and output routine and the display routine, the
program was written. The program is built up with 3 routines (fig 5.2 a .. c).

init
hardwar e startup after reset

l
har d ware- star tup

l
softwat e startup

1
J,-

call keyscan

1

Figure 5.2a main programm

timer O interrupt routine
activated each 1.25 ms

di splay information
of next r ow

return fr om interrupt

Figure 5.2b Timer O routine

keyscan
(p rocedure to scan keym atr ix)

~ nd inpu t on / off commands

return to caller

Figure 5.2c Keyscan

2 The SIP 1. 0 defines time intervals
multiplex rate with a display 'flicker' of
ed regardless how small the time interval.

m multiples . of lOms. lf one
lOOHz then each output can

chooses a
be display-

The design and implementation of an interface box supporting sip 1.0 commands 12

The current program is built up with two interrupt routines: a serial in/out and a clock
interrupt. The clock interrupt is set to be activated each l .25ms, the serial interrupt will
be activated whenever a byte is received or a byte has been completely sent. A hardware
provision is made to make the reading of the input matrix on interrupt basis possible,
however it is not implemented in this program. The input matrix is read in a subroutine
which is called repeatedly from the main program.

table 5 .2.1 interrupt vector declaration

name 8031 address vector routine cal led

reset OH init
timrOint OBH do125ms
serint 23H serint

Memory layout

The 8031 µp can address 128 bytes of internal memory. Certain locations of this address
space is allocated to a specific part of the program. The remaining memory is used for
the stack (table 5.2.2).

5.3

table 5.2.2 memory layout from OH to 7FH

name of variable

register 0 .. 7
blink
blink2
com
CO!ll>lus1
CO!ll>lus2
countblink
countbl ink2
ledgr
tOibb
tOibib
ledgr1
ledgr2
input

rbuffer
ananatrix

begstack

address space description

8H internal 8031 register 0 .• 7
1H blinking frequency in 10 ms low byte
1H " " " "" high "
1H last running status conmand received
1H byte +1 of conmand
1H byte +2 of conmand
1H amount of scans done low byte
1H " " " " high "
1H blinkgroup current on matrix
1H timer O int row backup
1H timer O int line info pointer backup
8H line infos of blink group
8H 11

"
11 inverse blink group

18H input table
; 00 .• 07 newscan
; 08 •. 0F oldscan / just pressed
; 10 .. 17 just released

10H receive buffer
10H used for input_activate

; 00 .. 07 input_on status
; 08 .. 0F input_off status

17H Stack from 69H to 7FH

•

Hardware startup routine 'init'

A power on, or a restart after a power failure causes the execution of the program code
which is pointed to by the reset vector (table 5.2.1) . . The reset vector points to the

The design and implementation of an interface box supporting sip 1.0 commands 13

hardware startup routine (init). This routine executes a number of commands:

- set the mode of timers 0 and 1,
- set the baud rate using timer 1,
- set the mode of the serial port,
- start timers 0 and 1.

The hardware startup continues with the execution of the commands of the software
startup (init2) :

- set interrupt flags of timer 0,1,serial port ON,
- set begin of stack,
- clear 8031 internal RAM,
- set table input on/off to all input transitions signalled,
- set receive buffer pointer to no bytes buffered,
- set the blink rate,
- set the first line to be displayed,
- set normal blinking group as the group that is first displayed.

5.4 Main program

The main program consists of an endless loop in which the input scan routine (keyscan)
is called.

The bytes sent to the interface box are received through interrupt. A transmit ready
interrupt will free the serial channel so that a new byte can be sent to the host computer.
Commands parsed to the interface box are interpreted and executed within the interrupt
routine. With a baud rate of 19200 bps, approximately 570µs is available before the next
byte will have been arrived completely. In this time interval all implemented commands
can be interpreted and executed.

5.5 Subroutine keyscan

The subroutine keyscan uses 5 subroutines (loadscan, calcmatrix, pressed, released,
movekup). Loadscan reads the input matrix. If no changes are detected then keyscan will
return to caller (figure 5.5).

The design and implementation of an interface box supporting sip 1.0 commands 14

keyscan
(procedur e to scan keymatr ix)

load scan

calcmat rix

prcssed

rclused

m ovekup

rf' tu rn t o call rr

Calcmatrix is used to calculate the released
and pressed switches. The subroutines pressed
and released are used to signa! changes in the
status of the inputs to the host computer. A
move routine which replaces the old with the
new data completes the subroutine.

Subroutine loadscan

This subroutine reads the present status of the
input matrix. If the same data appears as the
last time the subroutine was called, then the
subroutine exits with a signa! that no change
has taken place.
If a change has been detected then the routine
tries to read n times the same result to avoid
noise caused by rumbling. If it fails in this
action, it tries to read the new scan n times,
etc. If all's well then the routine returns to the
caller.

Subroutine calcmatrix

This subroutine requires a new and an old scan
of the input matrix.
Using two formulae (table 5.5) it calculates
changes in the status of the inputs (released:
change from 'ON' to 'OFF' and pressed vice
versa).

Figure 5 .5 Keyscan subroutine

table 5.5 expressions to calculate input changes

Pressed = (old AND new) XRL new AND input_on table
Released = (old XRL new) AND old AND input_off table

The routines returns to caller with the pressed and released input table. The new scan
table has not been changed.

Subroutine pressed

Pressed walks through the pressed table, calculates the associated input number of set
bits, and signals (using sendbyte) these changes from 'OFF' to 'ON' of every input to

The design and implcmcntation of an interface box supporting sip 1.0 commands 15

the host computer by using the command byte Input_ On, followed by the input number.
No changes are made to the input tables.

Subroutine released

The same remarks as above app4Iy, except that the released table and the command 'In
put_ Off are used.

Subroutine movekup

This subroutine moves the newscan table to the oldscan location.

timer O interrupt rou tine
activated each 1.25 m s

reset interrupt time
backup a,c, rO,p l

cakulate line
get line info pointer

lncrease blink counter

reset blink counter
set pointer to blink group

reset line counter

load line info pointer
backup line counter

blank ouputs
load line info u sing pointer

put info on output line

restore a,c,rO,pl

return from interrupt

Subroutine sendbyte

This subroutine sends a byte via the rs232 link
to the host computer. The odd parity of the
byte to be sent (contained in the Accumulator)
is placed in the 9th bit register of the serial
port (TB8). An internal loop is executed as
long as a bit (ID) is set. This bit is set by
software to indicate that a byte is being sent.
F0 is reset after a serial send ready interrupt.
The serial buffer of the µp (SBUF) is filled
with the contents of the Ace and ID is set. A
return to caller completes the subroutine.

5.6 Subroutine interrupt timer 1

The timer 0 interrupt routine is restarted every
1.25 ms. It places the information of 8 outputs
(1 each row) on one line. The routine checks
if 8 lines have been displayed. If this is true,
then it increases a counter. The counter is
compared with the blink frequency. If they
match then the pointer to the current blink
group is inversed (from blinking to inverse
blinking and vice versa) . An output that is
continuously on will be 'ON' in the blinking
and the inverse blinking group (figure 5. 6) .

Figure 5. 6 Timer 1 interrupt ·

Tbc dcaip and implcmmtation of an interface box aupporting sip 1.0 cOOlDWlds 16

5.7 Interrupt serial port

The routine that is called after an interrupt (caused by the serial port), begins at the
vector address of 8031 serial interrupt. lf the send ready flag has been set by hardware, it
resets the f'O bit to signa! that the transmit channel is ready to send the next output byte.

The buffer of the serial input is set up as 16 bytes, with the first byte a pointer to the last
received byte. A value of the first byte equal to the address of the first byte indicates that
no bytes are buffered; a value equal to the start addres plus 16 indicates that the buffer is
full.

lf the receive flag has been set by hardware then the subroutine moves the received byte
from sbuf to a buffer ('rbuffer'), it increases the pointer of the number of bytes buffered
and calls the command handler to try to execute a command. After completing possible
commands it returns to the program in which the interrupt occured.

Subroutine command handler

The command handler is called from the serial interrupt routine every time a byte has
been received through the serial link. First the routine tries to find out if the first buffered
byte is a command byte (~ 80H), if so, it loads the command byte from the buffer,
else it tries to load the running status command.
A nonzero byte will indicate a command byte. Only 5 commands are supported: Sys
tem_Reset, Output_Set, Output_All_Set, Input_Activate, Set_Blinking_Time. The label
commands ([Eggen, 1991]) are not implemented but could cause progam errors (see §
5.7.3). The command handler will compare the command byte with each of these five
commands; if they match then the appropriate command is executed.

System _Reset command

The System _Reset command makes the interface box execute a software startup. The
software startup (init2) follows the hardware startup; the software startup restarts the
program (see paragraph 5. 3) .

Label Exclusive command

The Label_Exclusive command is NOT implemented in the current program for the
interface box. However, to make the interface box foolproof, provisions had to be made
to make sure that the program couldn 't execute any enclosed data of the label command.
The routine deletes all data coming after the label exclusive command, until it finds an
ELE (#OF0H / 240 D). After having found an ELE, it deletes the ELE and the
Label_Exclusive command. It ends with sending a Command_Not_Implemented by calling
sendbyte.

The design and implementation of an interface box supporting sip 1.0 commands 17

Output_ Set command

With the Output_Set command an output can be set to a function. 4 Different functions
are defined: off, blinking, inverse blinking and on continuously.
The routine sets a pointer to the blinking and inverse blinking output table, the running
status to the Output_Set command and calls bitop, apart of the Input_Activate routine.

Output_ AU_ Set command

The Output_All_Set command sets the output tables to the wanted bit function. The
{LSB} of the databyte is placed in all the bits of the normal blinking group, the {LSB-1}
of the databyte is placed in all the bits of the inverse blinking group. The running status is
set to the Output_All_Set command.

Input_ Activate command

With the Input_Activate command an input status can be set to a function. 4 Different
functions are defined: input on/off not signalled, only input on, only input off, and both
signalled. The routine sets the entry of an input in the input on/off table. The running
status is set to the Input_Activate command.
The entry is number is contained in the first databyte. A pointer is set to the address of
the associated en try in the input table (bitop) . A possible range error is signalled to the
host computer by sending a Data_Byte_Error command. The routine sets the entry in the
input table to the function, contained in the second databyte, wanted.

Set_ Blinking_ Time command

The Set_ Blinking_ Time command is accompanied by two databytes. The first databyte
contains the lower part of the blinking time, the second databyte contains the {MSB} of
the blinking time. The routine places the {LSB} of the second databyte in the {MSB} of
the first databyte. The result is placed in the memory location 'blink' to be used by the
interrupt timer 1 routine. The counters are reset.

Movedown routine

The commands called in the command handler read the received bytes on at a time. They
are deleted when a complete command or an errors occurs. The deleting of the received
bytes is done in the movedown routine. It erases the oldest byte received (FIFO), moves
down received bytes, if any, and sets the pointer to the address of the last received byte.

The design and implemcntation of an interface box supporting sip 1.0 commands 18

Label Exclusive command

The Label_Exclusive command is NOT implemented in the current program for the
interface box. However, to make the interface box foolproof, provisions had to be made
to make sure that the program couldn 't execute any enclosed data of the label command.
The routine deletes all data coming after the label exclusive command, until it finds an
ELE (#OF0H / 240 D). After having found an ELE, it deletes the ELE and the
Label_Exclusive command. It ends with sending a Command_Not_lmplemented by calling
sendbyte.

Output_ Set command

With the Output_Set command an output can be set to a function . 4 Different functions
are defined: off, blinking, inverse blinking and on continuously.
The routine sets a pointer to the blinking and inverse blinking output table, the running
status to the Output_Set command and calls bitop , apart of the Input_Activate routine.

Output All Set command

The Output_ All_ Set command sets the output tables to the wanted bit function. The
{LSB} of the databyte is placed in all the bits of the normal blinking group, the {LSB-1}
of the databyte is placed in all the bits of the inverse blinking group. The running status is
set to the Output_All_Set command.

Input_ Activate command

With the Input_Activate command an input status can be set to a function. 4 Different
functions are defined: input on/off not signalled, only input on, only input off, and both
signalled. The routine sets the entry of an input in the input on/off table. The running
status is set to the Input_Activate command.
The entry is number is contained in the first databyte. A pointer is set to the address of
the associated en try in the input tab Ie (bitop) . A possible range error is signalled to the
host computer by sending a Data_Byte_Error command. The routine sets the entry in the
input table to the function, contained in the second databyte, wanted.

Set_ Blinking_ Time command

The Set_ Blinking_ Time command is accompanied by two databytes. The first databyte
contains the lower part of the blinking time, the second databyte contains the {MSB} of
the blinking time. The routine places the {LSB} of the second databyte in the {MSB} of
the first databyte. The result is placed in the memory location 'blink' to be used by the
interrupt timer 1 routine. The counters are reset.

Movedown routine

The commands called in the command handler read the received bytes on at a time. They
are deleted when a complete command or an errors occurs. The deleting of the received

The design and implementation of an interface box supporting sip 1.0 con10W1ds 18

bytes is done in the movedown routine. It erases the oldest byte received (FIFO), moves
down received bytes, if any, and sets the pointer to the address of the last received byte.

The design and implement.ation of an interface box supporting sip 1.0 commands 19

6 Conclusions

During the research which was conducted from mid april till june 1991 a number of
problems occurred, each with a specific remedy: the timing of the serial port of the 8031
wasn't working properly (caused by a wrong crystal setting of the in-circuit debugger),
the Sun serial port setting was malfunctioning (System_Reset commands were continu
ously sent to the interface box !), the reset circuit wasn't working properly (high
impedance capacitor used), output lines were duplicated (wrong dip switch setting of the
debugger), registers were overwritten (wrong use of stack variables), etc., etc. To get
to know a microprocessor also takes a lot of time, many difficult (?) questions were
answered by two specialists.

However, the final product with rudimentary versions of sip 1.0 commands is in working
order. As the first goal was to implement less than the realized commands, simple
program expansion made it possible that a few extra commands were implemented. A
total of 64 input and 64 outputs can be monitored and controlled by the interface box.

The interface box hardware can be updated easily, a µP circuitry upgrade can be
accomplished by exchanging the upper print, an 1/0 update can be done by exchanging
the lower print. Hardware connections are described in the appendix (App. 1,3). The
data memory (8 Kb RAM) is reserved for future use.

Future versions of implementation of the sip protocol can be programmed and can replace
the current program (of the 32Kb ROM a large part is still unused).

The serial signal definition of SIP 1.0 (19200 baud, 8 data, 1 start, odd parity, 1 stop
bits), is a bit awkward; as no error protocol is defined (in case of a parity error), it also
can not be implemented. I would advise to choose a different protocol : 19200 baud, 8
data, 1 start, no parity, no stop bit. In this way the interface box can also be connected to
PC-like computers.

The interface in it's present can also be used for many things besides it's intentional goal:
burglar alarms (remote controlled), proces control (measuring of data), etc. !t's
universa! serial bus can be completed with a telephone modem to connect it to a phone
line. In this way the interface box can be placed far away from the host computer.

The design and implcmcntation of an interface box supporting sip 1.0 commands 20

Literature list

Me Namara, J.E. (1977)
Technica/ aspects of data communication
Bedford, U.S.A.: Digital Press

Intel. (1985)
Microcontroller handbook
data book

Philips. (1985)
High speed CMOS IC06N
data book

Bierens, E.J .J (1989)
Eén-toets bediening voor de Pocketstem.
IPO Report no. 709.

Maxim. (1989)
Integrated circuits
data book

Zelissen, M.L.M. (1990)
De gemoderniseerde Pocketstem.
IPO Report no. 767.

Waterham, R.P. (1989)
The "Pockets tem": an easy-to-use speech communication aid for the vocally handicapped.
Thesis, Technical University Eindhoven.

Deliege, R.J .H. (1989)
The "Tiepstem ": an experimental Dutch keyboard-to-speech system for the speech
impaired.
Thesis, Technical University Eindhoven.

Eggen, J.H. (1991)
The serial interface protocol (SIP)
Manual IPO 109

Kouwenberg, R.F.W.M. (1991)
The Sip Interface Box (SIR)
Manual IPO 112

The design and implcmentation of an interface box supporting sip 1.0 commands 21

Acknowledgements

I hereby wish to speak my gratitude to the people who helped me during the research, i.c.
in person Dr. Ir. R.P. Waterham, Dr. Ir. R.J.H. Deliege, Ing. J.G. Jonker, Ir. J.H.
Eggen, the secretary, the people at the workshop and many others.

October 1991, Rob F.W.M. Kouwenberg

The design and implementation of an intuface box supporting sip 1.0 commands 22

80c31

IC S
74HCTS73 --,

' • ...-rr ~c Rl..8
8K270 OhM

PO.O
P0.1~
P0.2
P0 . 3
P0 . 4
PO.S
P0.6
P0.7

P2 .0~ P2 . 1
P2.2
P2.3
P2.4
P2.S
P2 . 6
P2 . 7

li Ar~~
TXD
RXD 1 +Y 1

C16 22uF"

D8 08
D7 07
D6 06
OS QS
D4 Q4
D3 03
D2 02
D1 Ql

J' jl
. 4

L
•••••••••••• AA

IC 6
74HCTS73

:~ - ,--!A'-'..,._,AO
03 ,-~-.a.JA1
Q4 - AZ
Q$ A3

06~llê§l;~~~A4 07 AS
Q8 A6 A7

A8
A9 A10
A11 A12

" A13 A14
r--"+-1 ~

... ~
····i····

··- ····

VPP

DB 9
Hal•
RS 232

~2uF"

C1S
22uF

oog 01
02
03 . 04 os 06
0 7

DB 2S
Feenale
Sch•k•l•ar
Hatri><

l~:1:i:::~~:~:~.;:1

-6'
't:I
ID
::,
p. ,....
><
t--'
lll
0
11
0
Il>
p.

0 ,....
11
0
~ ,....
rt

~
p.
11

~
1-'•
::,

(J'Q

~
"t,
(D
::,
Q,
1-'·
><
~
t:r

'tl
0
t:
(D

11

1-'
1-'•
::,
(D
!Il

··-·· ··········
. KLAASSING NINI VOEDING

Vo•dl n9 I N : 220 Volt AC

UI T : ~ Volt OC

-------; NOOEL 534 SY 500~
··

CB
100nF

C11
100nF"

C3
lOOnF"

C&
lOOnF

~ -
"'CS
(l)
::s
Q,
><
....
0

en
0 ::r
(l)
s
I»
rt
0

Q,
I»
\Q
11
I»
s

.. ,,

.. --,

l

µ- CONTROLLER 1/1
power

source 80C31 N

data memory
8 Kbyte
6264

1 1

~ ~ ~ ~ ~ 7
program switch LED
memory 32Kb
27c256 matrix MATRIX

.. 1
C:
(,,

Appendix 2: Parts list

I.C's:
IC 1 80C31
IC 2 74HCT573
IC 3 27C256
IC 4 6264
IC 5 74HCT573
IC 6 74HCT573
IC 7 74HCT573
IC 8 74HCT244
IC 9 MAX232
IC 10 74HCT04
IC 11 74HCT02

Ic voetjes:
1 x 40 pens
2 x 28 pens
5 x 20 pens
1 x 16 pens
2 x 14 pens

Weerstanden :
R 1. .R 8 270 Ohm
R 9 .. R16 47 kühm
R17 10 kühm

Condensatoren :
C 1..Cll 100 nF
Cl2,Cl3 22 pF
C14 .. C17 22 uF

Connectoren:
2 x 20 pens dil
1 x 10 pens dil
2 x 25 pens d-sub
1 x 9 pens d-sub
220 volt connector

The design and implementation of an interface box supporting sip 1.0 commands

Diodes:
D1..D8
D9

Voeding:

BAYI0
BAT85

KRP model 442

Diversen:
Schakelaar 220 volt
Kastje
Experimenteerprint
9 + 25 polig lint
draad

