

Plasma-assisted catalysis for air purification

Citation for published version (APA):

Chirumamilla, V. R. (2018). *Plasma-assisted catalysis for air purification*. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date: Published: 23/04/2018

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

 The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Plasma-assisted catalysis for air purification

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen door het College voor Promoties, in het openbaar te verdedigen op maandag 23 april 2018 om 11.00 uur

door

Vindhya Rani Chirumamilla

geboren te Guntur, India

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotiecommissie is als volgt:

voorzitter:	prof.dr.ir. A.B. Smolders
promotor:	prof.dr.ing. A.J.M. Pemen
copromotor:	dr.ir. T. Huiskamp
leden:	prof.dr. Christopher Whitehead (University of Manchester)
	prof.dr. Crisitina Paradisi (University of Padova)
	prof.dr. Volker Hessel
adviseur:	dr.ir. W.L.F.M. Hoeben

dr. R.A.H. Engeln neemt plaats als reservelid

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

This work has been supported by the Eniac JU project 324284 Environmental Sensors for Energy Efficiency (ESEE), coordinated by Infineon.

Printed by Ipskamp Drukkers, Enschede.

ISBN: 978-94-028-1006-6

A catalogue record is available from the Eindhoven University of Technology library.

Copyright © 2018 by V.R. Chirumamilla.

All right reserved. No part of the material protected by this copyright notice may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the prior permission of the author.

To my husband and to my daughter.

Contents

Contents

Su	Summary i				
1	Intr	oduction	1		
	1.1	Research goals	4		
	1.2	Organisation of the thesis	4		
2	Exp	erimental setup	7		
	2.1	Reactor configuration	7		
		2.1.1 DBD reactor	7		
	2.2	Catalyst preparation	8		
	2.3	Power modulator topology	10		
		2.3.1 Microsecond (μ s) pulse source	10		
		2.3.2 Nanosecond (ns) pulse source	12		
		2.3.3 Electrical measurements	13		
	2.4	Gas concentration measurements	15		
	2.5	Impedance measurements	17		
3	Inve	stigation on the effect of electrical parameters on NO_x removal	21		
	3.1	Introduction	21		
	3.2	Effect of applied peak-voltage	22		
		3.2.1 Plasma-alone configuration	22		
		3.2.2 In-plasma configuration	26		
		3.2.3 Post-plasma configuration	30		
	3.3	Effect of pulse polarity	33		
		3.3.1 Plasma-alone configuration	34		

CONTENTS

		3.3.2 In-plasma configuration	34
		3.3.3 Post-plasma configuration	38
	3.4	Effect of pulse rise-time	38
		3.4.1 Plasma-alone configuration	40
		3.4.2 In-plasma configuration	42
		3.4.3 Post-plasma configuration	44
	3.5	Summary and conclusions	45
4	Inve	stigation on the effect of operational parameters for \mathbf{NO}_{x} removal	51
	4.1	Introduction	51
	4.2	Effect of NO input concentration	52
		4.2.1 Plasma-alone configuration	52
		4.2.2 In-plasma configuration	55
		4.2.3 Post-plasma configuration	59
	4.3	Effect of flow rate	61
		4.3.1 Plasma-alone configuration	62
		4.3.2 In-plasma configuration	64
		4.3.3 Post-plasma configuration	66
	4.4	Effect of temperature	70
		4.4.1 In-plasma configuration	71
		4.4.2 Post-plasma configuration	74
	4.5	Summary and conclusions	77
5	Scre	ening of catalytic materials for NO_x removal	79
	5.1	Introduction	79
	5.2	In-plasma catalytic configuration	81
		5.2.1 Effect of catalytic support	81
		5.2.2 Effect of wt% of metal-oxide loading	87
	5.3	Post-plasma catalytic configuration	90
		5.3.1 Effect of catalytic support	90
		5.3.2 Effect of wt% of metal-oxide loading	93
	5.4	Conclusions	94
6	SDB	D reactor for on-demand air purification	99
	6.1	Introduction	99
	6.2	Experimental setup	100
		6.2.1 Design of SDBD plate	101
		6.2.2 Synthesizing the catalyst plate	101
	6.3	Electrical characterization	106
		6.3.1 Power modulator Topolgy	106
		6.3.2 Modulator specifications	106
	6.4	Chemical characterization	107
		6.4.1 NO removal in the pulsed-SDBD reactor	107

CONTENTS

		6.4.2 Ethylene removal in the pulsed-SDBD reactor	113
	6.5	Conclusions	116
7	Con	clusions and Recommendations	119
	7.1	Research goals	119
	7.2	Investigation on the effect of electrical parameters on NO_x removal	121
	7.3	Investigation on the effect of operational parameters on NO_x removal	122
	7.4	Screening of catalytic materials for NO_x removal $\ldots \ldots \ldots \ldots \ldots$	123
	7.5	SDBD reactor for on-demand air purification	124
	7.6	Recommendations for future work	125
Ap	pend	lix	127
•	A1.	Supplementary data for the experimental setup	127
		Characterization of catalytic materials	127
		FTIR spectra and calibration	130
	A2.	Effect of the NO input concentration	133
	A3.	SDBD reactor for on-demand air purification	136
	A4.	Plasma-catalytic interactions: Effect of dielectric constant	137
		Introduction	137
		Experimental setup	137
		Effect of applied peak-voltage on discharge intensity in plasma reactor	138
		Discharge behaviour in DBD-plasma reactor packed with TiO_2	140
		Conclusions	147
Bi	bliog	raphy	149
Lis	st of j	publications	163
Ac	know	vledgement	167
Cu	irricu	ılum Vitae	169

SUMMARY

This thesis focusses on combining non-thermal plasma (NTP) technology and catalysts for air purification applications. NTP technology has been researched for the past few decades for environmental remediation, bio-medical and surface engineering applications. For the NTP technology, to get commercialize, it should be made energy efficient at low cost with minimum size requirements. Recent studies have indicated that combining the plasma reactor with catalytic materials can improve the energy efficiency and product selectivity. There have been various arrangements proposed in the literature to combine the plasma reactor with catalysts: namely the in-plasma configuration (IPC) and the post-plasma configuration (PPC). In practical applications, the exhaust gases contains various pollutants at different concentrations and under various conditions (such as temperature, humidity, flow rate, hydrocarbons and so on). In order to improve the performance efficiency of a DBD reactor, one has to understand the effect of the various parameters and choose an appropriate catalytic material depending on the type of the pollutants. Thus, one of the main purpose of this work is to identify the influence of various parameters on the NO_x removal efficiency and screening for various suitable catalytic materials.

The thesis can be divided in to three main parts. The first part is to understand the effect of various electrical and operational parameters on the performance of the DBD reactor. The second part is to look at various catalytic materials and understand the interaction between the plasma and the catalytic materials. The third part is to develop an SDBD based plasma-catalytic reactor which could easily be scaled-up and scaled-down for industrial applications.

In the first part of the study, to investigate the influence of electrical and operational parameters, we have used a pulsed DBD-plasma reactor and combined this with various commonly used support materials such as Al_2O_3 , TiO_2 , zeolites and SiO_2 . We performed a systematic study using the three reactor configurations: plasma-alone, IPC and PPC configurations. From the study on the effect of electrical parameters on NO_x removal, we observed that the NO_x removal efficiency depends more on the energy density than on the applied peakvoltage. With increasing energy density, the conversions and the formation of by-products increases. With increase in applied peak-voltage, the energy costs increases. The optimal performance in terms of conversion, by-products formation and energy costs is delivered at low applied peak-voltages. With increase in the applied peak-voltage, the energy deposition per pulse increases. This high energy deposition leads to the increased microdischarges but on the other hand also leads to the increased energy losses due to heating up of the gas. All the three reactor configurations that we have tested showed the similar results.

Irrespective of the reactor arrangement configurations, positive polarity pulses show better NO and NO_x conversion. The reason for the increased conversion with positive pulses might be due to increased reactive species production with positive pulses as compared to the negative pulses. Few studies have indicated that the negative polarity pulses produces less streamer volume. The formation of by-products are not significantly effected by the pulse polarity. The study on the effect of rise time of the pulses shows that the short risetime pulses perform better with respect to NO conversion but at the expense of increased by-products formation. Short rise-time pulses generates the high energetic electrons leading to increased radicals production. The better performance of the short rise-time pulses for NO conversion is observed in all the three tested reactor configurations.

The NO_x conversion decreases with increasing input concentrations due to the reduced availability of active species. This is applicable to all the three configurations that we have tested. The effect of flow rate on NO_x removal efficiency depends on the reactor configuration. With increasing flow rate, the NO conversion decrease for the plasma-alone and for the PPC configuration. The IPC configuration does not show significant dependance up to a certain flow rate and above that flow rate lower NO conversions are observed. This is probably due to transport limitations of the catalytic reactions. The higher conversions at lower gas flow rates comes at the expense of higher N₂O and O₃ concentrations. With increase in temperature, the by-products formation can be suppressed. PPC configuration showed a similar behaviour to that of the conventional thermal catalysis which means, higher conversions can be achieved at higher temperatures. The IPC configuration show reduced NO conversion with increase in temperature which could be due to the favourable conditions for the back reaction of NO₂ to NO in the presence of atomic oxygen. The addition of additives such as hydrocarbons, ammonia may enhance the performance of the DBD reactor at higher temperatures.

In the second part of the study, we performed screening of catalytic materials for NO_x removal. We did this by loading various metal oxides on TiO_2 and Al_2O_3 supports and by using them in a IPC and in a PPC configuration in combination with a pulsed DBD reactor. The effect of metal loading on the support materials is studied by loading various amounts of metal oxides on TiO_2 and Al_2O_3 supports. We studied the role of catalytic material in changing the plasma discharge characteristics. We did this by considering the voltage-current waveforms and correlating them to the corresponding dielectric constant of the catalytic materials. We showed that the discharge activity is changed significantly with introduction of the catalytic material inside the plasma reactor. For the plasma-alone

reactor, the capacitance of the reactor is low, resulting in a higher discharge current and more discharge activity. The microdischarge activity is much lower when the reactor is packed with TiO_2 as compared to the Al_2O_3 packing. These differences in microdischarge activity can be explained by the different capacitances due to the different dielectric constants of the two materials. The intense microdischarge activity of the plasma-alone configuration might have led to the increased NO conversions, NO_2 and by-products concentrations. The by-products were greatly reduced with the catalytic materials in both the IPC and the PPC configurations.

In the third part of the study, as a part of the environmental sensors for energy efficiency (ESEE)- EU project, we have developed a modular plasma-catalytic surface-dielectricbarrier-discharge (SDBD) reactor to handle large flows which could be scaled-up and scaleddown easily. We have evaluated the performance of the SDBD reactor for NO_x and VOC removal. We have used ethylene as a model compound for VOC due to its interest in the food and floral industry. In general, DBD performed better than SDBD with respect to NO and NO_x conversions. This probably might be due to the high energy deposition per pulse by the SDBD modulator. We have observed in our parametric study that high energy deposition per pulse leads to high energy losses and thus high energy costs. To reduce the by-products formation, we used TiO₂ coated Al₂O₃ plates as a catalyst in parallel to the SDBD plates (electrode plates). With the use of the catalytic plates the NO and C_2H_4 conversions, CO and CO₂ selectivities have been marginally improved. The by-products formation have been slightly reduced by combining the SDBD plates with catalytic plates. Although, we observed better performance of the SDBD reactor with the catalytic plates, it is not clear whether the catalytic plates acts more like a catalyst to increase the product selectivity or behave like walls to quench the reactions. Probably, if we can increase the thickness of TiO_2 coating from 60 nm to few μ m thickness then we can understand the role of these catalytic plates.

Chapter 1

INTRODUCTION

One of the main sources of air pollution is the transportation sector. Motor vehicles emissions include unburned hydrocarbons (UHCs), carbon monoxide (CO), carbon dioxide (CO₂), nitrogen oxides (NO and NO₂), sulfur oxides (SO_x) and particulate matter (PM). According to the European Environment Agency 2017 data (EEA-32), the transportation sector contributes around 41%, 49%, 12% and 20% of NO_x, SO_x, PM_{2.5} and PM₁₀ emissions respectively [1]. These emissions are significant as they have a negative impact on human health. With increasing concerns about these impacts, the introduction of emission control standards has been started. With increasingly stringent regulations, the lower limits of the emissions standards can be reached by applying gas purification techniques for the efficient reduction of UHCs, NO_x, SO_x, and PMs coming from the exhaust.

Non-thermal plasma appears to be a promising technology for decomposition of gaseous pollutants with relatively low energy consumption [2–9]. The high energy electrons produced in non-thermal plasma collide with the gas molecules to generate radicals such as reactive oxygen species, metastables and ions by electron-impact dissociation and ionization. The mentioned reactive oxygen species induce oxidative degradation of the pollutants.

In this thesis we aim to combine non-thermal plasma (NTP) technology and catalysts and screening for various suitable catalytic materials for NO_x removal. Non-thermal plasma is able to oxidize NO to NO₂ which is further converted to HNO₃ and HNO₂ in the presence of water vapor [10–13]. Without the help of a catalyst, NO_x cannot be reduced to N₂ just with electrical discharges. From literature, it is understood that using a catalyst with a plasma reactor can enhance the product selectivity and the energy efficiency [14–18]. Yamamoto *et al.* concluded that the operating cost of a plasma-chemical hybrid system is approximately 15 times more economical compared to the conventional selective catalytic reduction process [19]. Hence, plasma-assisted catalysis is a promising way for improved pollutant removal efficiency and selectivity. Also, the production of unwanted by-products can be minimized. Non-thermal plasma can be generated at atmospheric pressure and at ambient temperature with various techniques such as with corona discharges, pulsedcorona discharges, dielectric barrier discharges (DBDs), microwave and radio frequency discharges [20–22]. DBDs are widely used for VOCs and NO_x reduction [23–32].

We believe that there are two main approaches to improve the performance efficiency of a DBD reactor for the purpose of NO_x removal. The first approach would be to optimize the discharge characteristics. The second approach is to combine the plasma reactor with catalysts. The first approach includes optimizing the reactor configuration and the power source. The major parameters of the power source that should be tuned to improve the efficiency of the plasma are the frequency, applied peak-voltage, waveform of the voltage, polarity, pulse rise-time and the pulse duration. Puchkarev *et al.* stated in their study on energy-efficient plasma processing of gaseous emission that the efficiency of NO_x reduction is a complex function of parameters as the pulse width, pulse polarity, current density, repetition rate, and reactor design. Careful optimization of all these parameters is required to reach cost effective NO_x reduction [33].

The second approach is to combine plasma with appropriate catalysts. Combining a plasma reactor with a catalytic reactor can help in reducing the NO and NO₂ to molecular nitrogen with minimum by-products if the plasma operating conditions are selected carefully [34, 35]. There have been various arrangements proposed in the literature to combine a plasma reactor with a catalytic reactor such as a one-stage configuration, or in-plasma catalytic configuration (IPC), and a two-stage configuration, or post-plasma catalytic configuration (PPC) [36–38]. In both of these configurations, different catalysts have been tested and an overview of the published papers on NO_x removal is presented in table 1.1. From this table, we can see that γ - Al₂O₃ [34, 39], TiO₂ [40], Al₂O₃ loaded with different metals such as Ag [41], Pd [40], and In [42], TiO₂ loaded with BaTiO₃ [43] and V_2O_5 -WO₃ [44] and zeolites [45] are among the various catalysts that have been tested with non-thermal plasma. Although, there happens to be a lot of work done on NO_x removal using plasma and plasma-catalytic configuration explaining the effect of operating conditions, a systematic parametric study on NO_x removal using similar reactor configuration operating under similar conditions is never performed. Such a study is needed to get more insights on how these parameters influence the performance efficiency so that we can obtain the optimum performance of the reactor.

In this thesis, we have applied these two approaches to optimize the performance of the DBD reactor in a systematic manner. We have used a pulsed non-thermal DBD reactor at atmospheric pressure. We have studied the effect of applied peak-voltage, polarity and the pulse waveform of the voltage by varying pulse repetition rate (we used this as a factor to vary the energy density). The pulsed DBD reactor is combined with catalysts such as TiO_2 , Al_2O_3 and metal-oxides loaded on TiO_2 , Al_2O_3 to study the synergy between the plasma and the catalysts in terms of removal efficiency and energy efficiency. These two approaches led us to formulate the following research goals and also enabled us to achieve a systematic study using the commonly used support materials with the configurations.

Reactor con-	Conditions	Catalyst	NO _x Conversion	Energy	Ref
figuration				density	
DBD	T: 773 K	Indium doped γ - Al ₂ O ₃	Approx. 60% @ 473 K	700 J/L	[42]
	V: 3-16 kV	1 , 2 5	>90% @ 623 K	100 J/L	
	Addition of primary alcohols		> 80% @ 773 K	100 J/L	
SDBD	Wet gas	γ- Al ₂ O ₂	Approx 60%	133 J/L	[39]
0000	Initial NO cone: 100 ppm	1 11203	rippion do to	1000/12	[27]
Packed DBD	60 Hz AC power supply	BaTiOa	Approx 96%	55.5 1/1	[3/1]
I acked DDD	Initial NO cone: 200 ppm	Darios	Applox 90 %	55.5 J/L	[54]
Dealrad DDD	Initial NO cone: 200 ppin	AL O	A mmmory 660	140 1/1	[42]
Packed DBD	500 mm	7- Al2O3	Approx 00%	140 J/L	[45]
	NO 15 to 50 mm	$P_0T_iO \rightarrow \alpha Al O (1.5 motio)$	600	140 1/1	
	NO2 : 13 to 50 ppm	$Ba1103 + \gamma - A1203 (1.5 fatto)$	00%	140 J/L	
	frequency: 300-350 pulses	γ - Al ₂ O ₃ + HO ₂ (1:1 ratio)	21%	140 J/L	
	per sec	0.701/5	200	60.1/1	
	Addition of methanol as addi-	Co- ZSM-5 post-piasma	/8%	60 J/L	
	m 150.0G				
	T: 150°C				
Packed DBD	Initial NO conc: 570 ppm				[46]
	frequency: 900 Hz pulse per	Degussa P-25	80%		
	sec @ 9 kV				
	Gas flow rate: 5 L/min	PCVD method	58%		
	T: 298 K				
DBD	Initial NO conc: 500 ppm	V ₂ O ₅ -WO ₃ /TiO ₂	55% @ 100°C	80 J/L	[44]
	NH ₃ : 500 ppm	Ethene as additive	70% @ 100°C		
	Gas flow rate: 25 L/min				
	T: 100–250 °C				
DBD	Initial NO conc: 500 ppm	Al ₂ O ₃	60% @ 300 °C		[40]
	Propene: 0-2000 ppm	TiO ₂	15% @ 350°C		
	Gas flow rate: 1 L/min	ZrO2	55% @ 300°C		
		Alumosilicate	20% @ 300°C		
		Pd/Al ₂ O ₂	10% @ 230 °C		
		Ag/mordenite	30% @ 325 °C		
Cylindrical	T: 250 °C	Cu-ZSM-5	Approx 40% @ 273 K	3 5 W	[47]
DBD	1.250 C	Cu Zohi 5	rippiox. 40 % @ 275 K	5.5 11	[47]
DDD	Initial NO cone: 400 ppm		Approx 25% @ 473 K	3.5 W	
Coordal truno	Initial NO cone: 400 ppm	w Fe O	Approx. 25 % @ 475 K	501/1	[49]
DPD	mitial NO cone: 500 ppm	7-Fe2O3	Approx. 44%	30 J/L	[40]
עפט	T. 110°C				
DDD	1. 110 C	A - (A1 - O	50% @ 250.00	(0.1/1	[41]
DBD	Initial NO cone: 1200 ppm	Ag/ Al ₂ O ₃	> 50% @ 250°C	60 J/L	[41]
			> 74% @ 250°C	180 J/L	
			> 90% @ 350°C	60 J/L	
DBD	Initial NO conc:245 ppm	NaY	59% @ 200°C	10 J/L	[49]
	C ₃ H ₆ : 520 ppm	5% NH ₃ loaded on NaY	68%@ 200°C		
	Gas flow rate: 2.1 L/min	40%NH ₃ loaded on NaY	80% @ 200°C		
		80%NH ₃ loaded on NaY	82% @ 200°C		
DBD	Initial NO conc: 400 ppm	V ₂ O ₅ -WO ₃ /TiO ₂	Approx. 68%	40 J/L	[50]
	T: 220 °C				
DBD	Initial NO conc:200 ppm	V ₂ O ₅ /TiO ₂	Approx. 90%	40 J/L	[51]
	Initial NO conc:300 ppm		Approx. 85%		
	Initial NO conc:400 ppm		Approx. 80%		
DBD	Initial NO _x conc:300 ppm	V ₂ O ₅ /TiO ₂	Approx. 85%	50 J/L	[52]
	T: 220 °C	Cr ₂ O ₃ /TiO ₂	Approx. 42%	60 J/L	
DBD	Initial NO _x conc:241 ppm	Ba-Y	Approx. 90%	15 J/L	[53]
	T: 170 °C				
	Gas flow rate: 2 L/min				
DBD	Initial NO _x conc:550 ppm	V2Os/TiO2	Approx. 90% @ 200 °C	98.J/L	[54]
	CO: 720 ppm	. 2 - 3, 2	Approx 80% @ 200°C		[4.1]
	NO ₂ : 80 ppm		Approx. 71% @ 200°C		
	Aldehydes: 80 ppm				
	THC: 1700 ppm				
DBD	Initial NO _x conc ⁵ 00 ppm	Co-HZSM-5	Approx 94%	144 I/I	[55]
200	T: 300 °C		Approx. 24 /0	177 5/12	[55]
	Gas flow rate: 520 L/min				
DPD	Initial NO congr550 pre-	NeV	Approx 50% @ 200°C	08.1/1	[56]
עפט	Gos flow roto: 2.11 /min	Po No V(20%)	Approx 65% @ 200°C	90 J/L	[30]
	Gas now rate: 2.1 L/min	Da-1Na-1(20%) Da Na V(40%)	Approx. 05% @ 200°C		
		Da-INA-I (40%)	Approx. 70% @ 200°C		
		Ba-Na-Y (60%)	Approx. 70% @ 200°C		
		Ba-INA-Y (80%)	Approx. 72% @ 200°C		
DDD		Ba-Y	Approx. 78% @ 200°C	702.17	1000
DBD	Initial NO _x conc:445 ppm	Ag/Al ₂ O ₃	Approx. 90% @ 200 °C	/03 J/L	[57]
	$C_2H_4:6000 \text{ ppm}$				
	Gas flow rate: 500 mL/min	1	1	1	1

Table 1.1 – Literature review on NO_x removal with plasma-catalysis.

1.1 Research goals

In this thesis, we investigated the combination of non-thermal plasma (NTP) technology and catalysts for air purification applications and the effect of various parameters on the plasma and plasma-catalytic processing efficiency. NO_x have been taken as target pollutant and the effect of various parameters on its removal efficiency have been researched using a pulsed-DBD and SDBD reactor. The main goals of this research were:

- To systematically study the effect of various electrical and operational parameters on NO_x removal and to optimize the performance of our DBD configuration.
- To understand the plasma-catalytic interactions by studying the physical interaction of the plasma with the catalyst and to correlate this interaction with the chemical processing efficiency.
- To develop an on-demand air purifier which could be scaled-up and scaled-down easily by using plasma-catalytic technology.

1.2 Organisation of the thesis

Chapter 2 In this chapter, we describe the experimental setup that we have used in major parts of our research study. Over the course of time, we have adapted the experimental setup for some particular series of experiments and the details will be presented in the related chapters.

Chapter 3 In this chapter, we investigated the optimization of electrical parameters to obtain energy efficient NO_x remediation. We have varied the electrical parameters such as applied peak voltage, pulse polarity and pulse rise-time to study the degree of removal of NO and NO_x , by-products formation and energy consumption in the DBD reactor. We have used all the three configurations: plasma-alone, in-plasma catalytic configuration(IPC) and post-plasma catalytic configuration (PPC). Commonly used catalyst support materials such as TiO₂, Al₂O₃, zeolites and SiO₂ have been used in the IPC and the PPC configuration.

Chapter 4 In this chapter, we analyzed the influence of various operational parameters such as input NO concentrations, gas flow-rate, and temperature on the efficiency of NO_x removal. We have evaluated the performance by considering the increase in the NO_x removal and decrease in the by-products formation. First, we have studied the effect of operational parameters with the plasma-alone configuration and then we have packed the reactor with the catalytic materials to use it in the IPC and the PPC configurations to investigate the efficiency of NO_x removal with minimum by-products formation. Commonly used catalyst support materials such as TiO_2 , Al_2O_3 , zeolites and SiO_2 have been used in the IPC and the PPC configuration.

Chapter 5 In this chapter, we have studied NO_x removal by loading various metal oxides on TiO₂ and Al₂O₃ using a pulsed DBD reactor. The metal-oxides that we have used in this

study are NiO, MnO, CuO, Fe₃O₄, Co₃O₄. To understand the effect of support material, we have loaded 3% of these metal oxides both on TiO₂ and Al₂O₃ and looked into the NO conversion, NO_x concentration and by-products formation using both the in-plasma configuration (IPC) and post-plasma configuration (PPC). It is followed by the study on the effect of metal loading where we have compared the performance of 3 wt% and 5 wt% of these metal oxides loaded on TiO₂ and Al₂O₃ with both the IPC and PPC. We have attempted to study the role of catalytic material in changing the plasma discharge characteristics by looking into the voltage-current waveforms and measuring the dielectric constants of these materials to correlate them to the discharge characteristics.

Chapter 7 In this chapter, we have developed a modular plasma-catalytic surfacedielectric-barrier-discharge (SDBD) reactor to handle large flows which could be scaled-up and scaled-down easily. A SDBD power modulator was developed to generate 7-kV highvoltage pulses with microsecond duration that can power two SDBD reactor plates at a maximum of 5 kHz pulse repetition rate. The developed reactor can accommodate up to 20 SDBD plates and thus 10 such SDBD driver units are needed to deliver high power to treat larger flows. The electrical and chemical characterization of this developed SDBD reactor is done and discussed in detail in this chapter. The operational efficiency of the developed SDBD has been investigated by studying the removal of NO_x and ethylene. Finally, we combined the SDBD plasma reactor with catalyst by placing the Al₂O₃ plates without TiO₂ coating and with TiO₂ coating alternatively to the SDBD plates in a parallel arrangement.

Chapter 8 In this chapter, we present the conclusions and recommendations for future work.

Chapter 2

EXPERIMENTAL SETUP

The description of the entire experimental setup is presented in this chapter. We present the complete description of the catalytic materials, reactor and reactor configurations, chemical and electrical diagnostics, and pulsed power supply that we have used. The experimental setup can be explained in four main parts. The DBD reactor, the gas feeding system, the electrical part (pulse source and electrical measurements) and the gas diagnostics as shown in Fig. 2.1.

2.1 Reactor configuration

2.1.1 DBD reactor

The DBD-plasma reactor is made of quartz glass with a diameter of approximately 14 mm and with a wall thickness of 2 mm. The reactor consists of two electrodes, a high-voltage electrode and a grounded electrode. The high-voltage electrode which is connected to the high-voltage power source is made up of a stainless-steel rod with a diameter of 1.5 mm and is mounted at the center of the reactor. The steel mesh around the reactor acts as the grounded electrode. We have used two DBD reactors in this study. The difference between these two reactors are the length of the reactor. The short reactor measures 220 mm in length and the long reactor measures 300 mm in length. The material of construction, thickness, inside and outside diameter are kept the same. We use a short reactor in most part of our study due to the ease in synthesizing less catalytic materials. The cross-sectional view along with the detailed dimensions of both the DBD reactors operating at ambient temperature and atmospheric pressure are shown in the Fig. 2.2. We have used the long reactor only in the study on the effect of the rise time in the Chapter 3. This reactor is designed and developed in our group by dr.ir. F.J.C.M. Beckers and dr.ir. W.F.L.M. Hoeben.

Figure 2.1 – Schematic overview of the experimental setup with pulsed DBD reactor for NO_x removal.

Throughout our study, we have used two configurations for placing the catalytic materials: The in-plasma configuration (IPC) and the post-plasma configuration (PPC). The IPC and the PPC configurations of the DBD reactor used in the experiments are shown in the Fig. 2.3.

2.2 Catalyst preparation

The most commonly used catalyst support materials such as TiO₂, Al₂O₃, zeolites (NaY) and silica have been used in this study to compare the various electrical and operational parameters. Despite many studies on NO_x removal using these support materials, a systematic study where these support materials are compared under the similar conditions such as reactor geometry, operating conditions and gas concentrations, has never been reported. In this thesis, we report on a systematic study on these commonly used support materials to study the effect of various parameters on removal. We have observed that silica is not a suitable support as the NO_x concentration remains high despite high NO conversions. Thus, we have loaded metal-oxides on TiO₂ and Al₂O₃ supports and studied the effect of various metal-oxides on NO_x removal.

Catalysts precursors were obtained from Sigma-Aldrich: cobalt nitrate hexahydrate $(Co(NO_3)_2.6H_2O)$, copper nitrate trihydrate $(CuN_2O_6.3H_2O)$, manganese nitrate tetrahydrate $(MnN_2O_6.4H_2O)$, iron(III) nitrate nonahydrate $(Fe(NO_3)_3.9H_2O)$, nickel nitrate hexahydrate $(Ni(NO_3)_2.6H_2O)$. A series of TiO₂ (Degussa P-25) and Al₂O₃ based catalysts with different metals were prepared by using wet impregnation method. The desired amount

(b) Long reactor

Figure 2.2 – Cross-sectional view of the cylindrical quartz tube DBD reactor operating at ambient temperature and atmospheric pressure. Short reactor is used in most parts of our study. We have used the long reactor only in the study on the effect of rise time on NO_x removal.

of metal nitrates and CeZrO₄ were dissolved in deionized water and stirred for 2 hours. Then water was removed by means of a rotary evaporator. The catalysts were dried at 110 °C in air and then calcined at 350 °C. The specifications of the various catalytic materials that are being used in this study are given in table 2.1. The crystalline structure of the catalysts was confirmed by recording X-ray diffraction (XRD) patterns with a Bruker D4 Endeavor diffractometer using Cu-K α -radiation in the 2 θ range of 10–80 °C with a step length of 0.01 ° and step time of 0.2 s. The XRD of the catalytic materials is presented in Appendix 7.6 in Fig. A.1 and Fig. A.2. To determine how well the metal particles are dispersed on the support surface, we performed Transmission electron microscopy (TEM) imaging for the selected catalytic materials, which are presented in Appendix 7.6 in Fig. A.3. From the TEM images and XRD patterns, we can say that the metal particles are very well dispersed on the Al₂O₃ support. On TiO₂ support material, we have observed little peaks of TiO₂ on the Fe₃O₄ and CuO loaded on TiO₂ in XRD pattern which means that the metal particles may not be completely dispersed.

Figure 2.3 – Schematic overview of the plasma alone configuration and the two plasma-catalytic configurations that are used in the experiments of this paper. (note: in (c), the catalytic reactor is not powered)

2.3 Power modulator topology

2.3.1 Microsecond (μ s) pulse source

The schematic representation of the MOSFET-based solid state microsecond pulse power source is shown in Fig. 2.4. The buffer capacitor C_1 of the circuit is directly charged to 250 V via a 1:1 transformer and a rectifier. Capacitor C_2 will be continuously charged to approximately 300 V via C_1 - L_1 - D_1 . A pulse cycle starts by closing MOSFET M_1 . Now a linearly increasing current flows via C_2 and the primary winding L_{pri} of the pulse transformer. When the MOSFET is now closed, this current is interrupted in a very short time dt (depending of the switch off time of the MOSFET which is around 10 ns). Consequently, this very fast dI/dt results in the induction of a voltage pulse at the secondary side of the transformer. The magnitude of this high-voltage pulse depends on the dI/dt and is set to 17 kV. The duration of this high-voltage pulse depends on the dI and is set to 2 μ s. The pulse rise time is 0.9 μ s. The maximum repetition rate (f) of the source is 1000 pulses per second. The typical voltage and discharge current for the microsecond pulse source is shown in Fig. 2.5a and the power and energy per pulse is shown in Fig. 2.5b respectively.

Catalyst	size (mm)	BET surface area (m^2/g)	Composition
TiO ₂	1.5	50	75% anatase
CuO-MnO ₂ -TiO ₂	1.5	50	3wt% CuO, 6.8wt% MnO ₂
CuO-MnO ₂ -Al ₂ O ₃	2	80	30wt% Cu-/mn-oxide
TiO ₂ (p-25)	1-2	50	75% anatase
NiO-TiO ₂	1-2	50	3wt% Ni-Oxide
MnO-TiO ₂	1-2	50	3wt% mn-oxide
Fe ₃ O ₄ -TiO ₂	1-2	50	3wt% Fe-oxide
CuO-TiO ₂	1-2	50	3wt% Cu-oxide
Co ₃ O ₄ -TiO ₂	1-2	50	3wt% Co-oxide
Al ₂ O ₃	1.5	120	
NiO-Al ₂ O ₃	1-2	120	3wt% Ni-Oxide
Fe ₃ O ₄ -Al ₂ O ₃	1-2	120	3wt% Fe-oxide
CuO-Al ₂ O ₃	1-2	120	3wt% Cu-oxide
Co ₃ O ₄ -Al ₂ O ₃	1-2	120	3wt% Co-oxide
NiO-TiO ₂	1-2	50	5wt% Ni-Oxide
MnO-TiO ₂	1-2	50	5wt% mn-oxide
Fe ₃ O ₄ -TiO ₂	1-2	50	5wt% Fe-oxide
CuO-TiO ₂	1-2	50	5wt% Cu-oxide
Co ₃ O ₄ -TiO ₂	1-2	50	5wt% Co-oxide
SiO ₂	1-2	200	
zeolites	1-2	1700	$2.6 \text{ mol}\% \text{SiO}_2/\text{mol}\% \text{Al}_2\text{O}_3$

Table 2.1 – Specifications of the catalysts that are used in the experiments of this study.

Figure 2.4 – Schematic overview of the MOSFET based solid state microsecond pulse power source. This power source has been designed and developed by dr.ir. F.J.C.M. Beckers.

Figure 2.5 – Typical waveforms in the DBD reactor with the μ s pulse source: (a) Applied voltage and discharge current (b) Power and energy deposited per pulse.

2.3.2 Nanosecond (ns) pulse source

The schematic of the spark-gap based high-voltage nanosecond pulse circuit is shown in Fig. 2.6. Pulse generation is realized by first charging capacitor C_1 in less than 10 ms by a 60-kV DC power supply. Resistor R_1 limits the charging current and prevents a near short circuit of the power supply output when the spark gap fires. The spark gap is a multiple-gap spark gap consisting of three disc-shaped electrodes (two gaps) [58]. A trigger unit applies a 30-kV trigger pulse (μ s rise-time) to the center electrode which causes the right pair of electrodes to fire. The current path of the trigger discharge is via $D_1-R_2-SG-R_3$. The full

voltage on C₁ will now be over the left and the center electrode causing the full spark-gap to fire. Capacitor C₁ will be rapidly discharged (in less than 100 ns) into the 50 Ω coaxial cable, creating the high-voltage pulse on the output of the cable. R₂ is added to protect the trigger unit from transient voltages and possible voltage reversal on C₁. The energy transfer to the reactor stops after the plasma in the reactor quenches after the pulse voltage has dropped below the plasma extinction voltage. The spark gap remains conducting until all energy remaining in the circuit is consumed. The spark-gap channel and resistor R₃ dissipate the remaining energy in the circuit, including the energy due to reflections of the pulse voltage due to improper impedance matching between the reactor and the coaxial cable. Resistor R₃ has a high impedance (R₃ \gg Z_{cable}) and consumes only a small amount of energy during the pulse generation. The maximum repetition rate of the pulse source is 100 pulses per second. The typical voltage and discharge current for the nanosecond pulse source is shown in Fig. 2.7a and the power and energy per pulse is shown in Fig. 2.7b respectively. Both the μ s pulse source and the ns pulse source was developed by dr.ir. F.J.C.M. Beckers.

Figure 2.6 – Schematic overview of the spark-gap based high-voltage nanosecond pulse circuit. This power source has been designed and developed by dr.ir. F.J.C.M. Beckers.

2.3.3 Electrical measurements

A Northstar PVM-5 high-voltage probe and a Pearson 6600 current probe were used to measure the voltage over the reactor and the discharge current respectively. These two probes were connected to a Lecroy Wavesurfer 454 oscilloscope to record the signals and to calculate the power and the energy of a pulse.

For all experiments, the magnitude of the high voltage pulse was kept constant (unless otherwise mentioned). For both pulse sources, the pulse repetition rate was varied for the energy density. The pulse repetition rate for the μ s pulse-source and ns pulse-source can be

Figure 2.7 – Typical waveforms in the DBD reactor with the ns pulse source: (a) Applied voltage and discharge current (b) Power and energy deposited per pulse.

varied from 1 Hz–1 kHz and 1 Hz–100 Hz respectively . The energy per pulse (E_p , [J]) is calculated by using equation (2.1).

$$E_{\rm p} = \int_{pulse} V(t)I(t)dt \tag{2.1}$$

V(t) and I(t) in equation (2.1) represent the measured pulse-voltage and current respectively. The energy measurements were taken after the voltage and current reach a stable end value. It can be observed in Fig. 2.7a that oscillations occur in the nanosecond voltage and current waveforms. These oscillations and reflections might occur due to the mismatch between the output impedance of the power source (which is 50 ohm) and the reactor impedance (which is expected to be a few hundred ohm).

The plasma energy density (ε , [J/L]) was used as the main parameter to compare the efficiency of treatment with different plasma-catalytic configurations and at varying electrical

and operational parameters. The plasma energy density is defined as the energy deposited into the gas per unit volume and can be calculated by using equation (2.2). F in equation (2.2) is the volumetric gas flow through the reactor (L/s), E_p is the energy-per-pulse [J] and f is the pulse repetition rate [Hz].

$$\varepsilon = \frac{fE_{\rm p}}{F} \tag{2.2}$$

The energy yield for removing one molecule of NO is represented by the W-value in eV/NO molecule and the removal efficiency of NO is represented by G-value in mol/J. These parameters are determined by equations (2.3) and (2.4) respectively.

$$Energycost(W - value) = \frac{V_{\rm m} \times \varepsilon}{\Delta[NO] \times 10^{-6} \times N_{\rm a} \times e} \quad (eV/NOmolecule)$$
(2.3)

$$Energyyield(G-value) = \frac{\Delta[NO] \times 10^{-6}}{V_{\rm m} \times \varepsilon} \quad (mol/J)$$
(2.4)

where Δ [NO] is the amount of NO removed in ppm. V_m is the molar volume which is 24.48 L/mol at 20 °C and 1 atm. N_a is the Avagadro number and e is the charge of the electron.

2.4 Gas concentration measurements

The gas used in our experiments consists of a mixture of synthetic air with NO in N₂ (1% of NO in N₂ base), or of a mixture of synthetic air with C₂H₄ (1% of C₂H₄ in N₂ base). We have used ethylene (C₂H₄) as a model compound for testing the removal of VOCs with our developed SDBD reactor in Chapter 6. The 1% NO in N₂ mixture is diluted with synthetic air (less than 3 ppm of H₂O content), using mass flow controllers to get the desired initial concentrations for the experiments. All experiments were done at room temperature and atmospheric pressure. The initial composition of the gas is tested with a Testo 350 XL flue gas analyser and the flow was controlled by mass flow controllers. The Testo 350 XL flue gas analyser is calibrated periodically and is used only when the plasma is turned off to determine the input concentration of NO and NO₂ and to calibrate the FTIR. The treated gas from the DBD reactor was sampled out to a Fourier Transform Infrared Spectrometer (FTIR, BRUKER Tensor 27) with a 20-cm optical path gas cell to measure the exit gas concentration.

For quantitative measurements, the FTIR was calibrated for NO, NO₂, N₂O, O₃, C₂H₄, CO and CO₂. NO and NO₂ calibration was done by varying the respective input concentrations and measuring the absorbance area of the FTIR at each concentration. A calibration factor can be obtained by plotting the absorbance area versus concentration. This calibration factor can be multiplied with the absorbance area to calculate the unknown concentrations

of NO and NO₂. Similarly, N₂O calibration was done by using a calibration gas-mixture of 1% N₂O in N₂. CO and CO₂ calibration was done by means of 1% CO-CO₂ in N₂ calibration gas mixture. The typical FTIR calibration curves for various gases is given in the Appendix. A.6. The typical FTIR spectra for plasma-off and plasma-on for NO_x removal experiments and C₂H₄ experiments is presented in Appendix 7.6 in the figures A.4 and A.5. The measured compositions in our experiments falls in the linearity range. For O₃ calibration, we used UV-absorption spectrometry to calibrate the FTIR spectrometer. For UV absorption measurements, we have used a 11-mm optical path cell and the optic fibers connect this path cell with the UV source and the spectrometer. We have used Micropack D-2000 as UV source and Ocean Optics HR2000 spectrometer. The detailed description of the UV-absorption spectrometry can be seen in the thesis of Winands, Huiskamp and Beckers [59–61].

The resulting spectra from the FTIR are used to determine the reactor-outlet concentrations of NO, NO₂, O₃ and N₂O. With these concentrations, the removal efficiency of the DBD reactor could be calculated. The conversions of NO, NO_x and C_2H_4 are determined with:

NO conversion[%] =
$$\frac{[NO]_i - [NO]_o}{[NO]_i} \times 100$$
(2.5)

$$NO_{x} \text{ conversion}[\%] = \frac{[NO_{x}]_{i} - [NO_{x}]_{o}}{[NO_{x}]_{i}} \times 100$$
(2.6)

$$C_{2}H_{4} \text{ conversion}[\%] = \frac{[C_{2}H_{4}]_{i} - [C_{2}H_{4}]_{o}}{[C_{2}H_{4}]_{i}} \times 100$$
(2.7)

where $[NO]_i$ and $[NO]_o$ are the reactor-inlet concentration of NO and the reactor-outlet concentration of NO respectively. $[NO_x]_i$ and $[NO_x]_o$ are the inlet concentration of NO_x and the outlet concentration of NO_x respectively. $[C_2H_4]_i$ and $[C_2H_4]_o$ are the inlet concentration of C_2H_4 and the outlet concentration of C_2H_4 respectively.

The selectivity towards CO and CO₂ is defined as the percentage of the total amount of C_2H_4 that is being converted to CO and CO₂ respectively. The selectivity towards CO and CO₂ in C_2H_4 measurements are determined with :

$$S_{CO}[\%] = \frac{[CO]_o}{2 \times [[C_2H_4]_i - [C_2H_4]_o]} \times 100$$
(2.8)

$$S_{CO_2}[\%] = \frac{[CO_2]_o}{2 \times [[C_2H_4]_i - [C_2H_4]_o]} \times 100$$
(2.9)

where $[CO]_o$ and $[NO_2]_o$ are the outlet concentrations of CO and CO_2 from the reactor respectively.

2.5 Impedance measurements

One of the parameters that is expected to influence the discharge behaviour is the dielectric constant of the catalytic material that is packed in the discharge reactor. Therefore, in this section we measure the dielectric constants of the various catalytic materials that we have used. Also, it is analyzed if the dielectric constant of the catalyst varies with the type and amount of the metal oxide loading on both the TiO_2 and the Al_2O_3 supports. The dielectric constants have been measured by means of a Keysight 16451B Dielectric Test Fixture [62]. This instrument can measure the permittivity in the frequency range of 100 Hz - 10 MHz [123]. The test kit consists of a test cell having parallel electrodes with a diameter of 5 mm and the distance between the two electrodes can be varied up to 10 mm. The capacitance of the test kit, filled with a catalytic material, is measured by the HIOKI 3532-50 LCR HiTESTER which can measure impedances in the frequency range from 42 Hz - 5 MHz [63].

Figure 2.8 – Dielectric constant of reference materials as a function of frequency measured at ambient temperature.

The synthesis and characterization of the catalytic materials are mentioned in section 2.2. The catalytic materials were made into pellets of diameter 5 mm with a known thickness varying from 2-3 mm. After pelletizing, the catalytic materials were kept in oven at 400 $^{\circ}$ C overnight to avoid moisture content. Moisture content in the samples may vary their dielectric properties. Every sample was taken from the oven and immediately tested for its dielectric property, thus avoiding moisture content in the sample as much as possible just as in the

experiments with the IPC and the PPC configurations. All the measurements were repeated 5-times to check for the reproducibility. It is observed that the error is high at low frequencies up to 1 kHz. As this probe is a parallel plate probe, the dielectric constant can be calculated by the formula :

$$\varepsilon_{\rm r} = \frac{d \times C_{\rm p}}{A \times \varepsilon_{\rm o}} \tag{2.10}$$

where ε_r is the relative dielectric constant (permittivity) of the material of interest, d is the thickness of test material [m], C_p is the capacitance of the parallel plate [F], A is the area of the electrode [m²] and ε_o is the vacuum permittivity which is 8.854×10^{-12} [F/m].

Figure 2.9 – Dielectric constant of TiO_2 and metal oxides loaded on TiO_2 as a function of frequency measured at ambient temperature.

Before testing our catalytic materials, we have tested reference materials to check the performance of the probe. We have used glass (microscopic slide) and teflon as reference materials as their dielectric constants are well known, do not vary with frequency (atleast until the tested frequency of 1 GHz) and have much lower loss factor. The measured dielectric constants of the glass and Teflon as a function of frequency are shown in the Fig. 2.8. It can be seen that the dielectric constants are almost constant for both the materials over the

Figure 2.10 – Dielectric constant of Al_2O_3 and metal oxides loaded on Al_2O_3 measured at ambient temperature.

tested frequency range. Also the measured values are in agreement with reference values as reported in literature [64–66].

The measured dielectric constant as a function of frequency for TiO₂, with and without metal oxides loaded on the TiO₂, is shown in Fig. 2.9. The results for Al_2O_3 , with and without metal-oxides loaded on Al₂O₃ are shown in Fig. 2.10. As the rise-time of the pulses in most of our experiments is $0.9 \,\mu$ s, the frequency that is more important for our pulses is upto 0.4 MHz. It can be seen from Fig. 2.9 that the dielectric constant of TiO_2 decreases when metal-oxides were loaded on this material. In literature, it is reported that different phases of TiO₂ have different dielectric constants [67]. 3% MnO/TiO₂ showed a slightly higher dielectric constant than unloaded TiO2 at low frequencies. At low frequencies, the error bars are also quite high and so at this point it is unclear to comment whether 3% MnO/TiO₂ shows a higher dielectric constant or not. When comparing the dielectric constants of 3% MnO/TiO₂ with the values for 5% MnO/TiO₂, It can be seen that 3% MnO/TiO₂ showed higher dielectric constant values than 5% MnO/TiO₂ at all frequencies. Thus, we may say that with increase in the metal-oxide loading, the dielectric constant decreases. Gafoor et al., in their study on AC conductivity and diffuse reflectance studies of Ag-TiO₂ nanoparticles, investigated the effect of Ag nanoparticles on dielectric constant of TiO_2 as function of frequency [68]. They observed that an increasing metal loading resulted in a decrease of the dielectric constant. They attributed this decrease in dielectric constant to the increase in thickness of grain boundaries in case that a metal loading is present. The thicker the grain boundary the less polarized the material becomes and hence resulting in lower dielectric constants.

The dielectric constant as a function of frequency for Al_2O_3 showed a different dependence on the metal oxides as compared to the results for TiO₂. The measured dielectric constants for Al_2O_3 increase when the Al_2O_3 is loaded with metal-oxides. The difference in the values of the dielectric constants was reducing from 10 kHz and above 100 kHz. For all the metal oxides on Al_2O_3 , the dielectric constant converged to a value of 2.5-3.0. A similar trend for dielectric constants of Al_2O_3 loaded with ZrO₂ were observed in [69]. The difference in the behaviourial trend of the dielectric constant for metal-oxides loaded on TiO₂ and Al_2O_3 needs further understanding of material chemistry.

Chapter 3

Investigation on the effect of electrical parameters on NO_x removal

3.1 Introduction

During plasma treatment, highly active radicals and ions are produced by energetic electrons which initiate the chemical reactions to decompose pollutants. To obtain efficient remediation these active radicals and ions should be utilized in a effective way to improve the selectivity and to reduce the by-products formation. For this, careful optimization of electrical parameters and operational parameters is required to obtain energy efficient NO_x remediation irrespective of using a plasma-alone configuration or plasma combined with catalysts. In this chapter, we have varied the electrical parameters such as applied peak voltage, pulse polarity and pulse rise-time to study the degree of removal of NO_x (sum of NO and NO_2), by-products formation and energy consumption in the DBD reactor. By varying the electrical parameters, the energy cost and yield change considerably. A useful parameter to optimize the energy consumption and removal efficiency in the NTP reactor is the energy cost [7,70] which is defined as the energy transferred to the plasma per mol of NO or NO_x removed from the gas stream. By varying the applied-voltage, energy deposition per pulse in the reactor changes which in turn effects the energy costs. To study the effect of the electrical parameters all the three configurations that were discussed in Chapter 2: plasma-alone, in-plasma catalytic configuration(IPC) and post-plasma catalytic configuration (PPC) were used. Commonly used support materials such as TiO₂, Al₂O₃, NaY and SiO₂ have been used in the IPC and the PPC configuration.

Figure 3.1 – Energy deposited per pulse in the DBD reactor for different applied peak-voltages.

3.2 Effect of applied peak-voltage

In this section, we studied the effect of applied peak-voltage on the NO and NO_x removal efficiency and by-products formation. The main by-products that we have reported here are N₂O and O₃, although also N₂O₅ was observed at high energy densities. We varied the applied peak-voltage from 15 kV to 19 kV with an interval of 1 kV. Below 15 kV, there is no plasma generation in our DBD reactor. By increasing the applied peak-voltage, the energy deposition per pulse in the reactor increases from 8 mJ to 24 mJ, as seen in Fig. 3.1. For each input voltage, the pulse repetition rate was varied to vary the energy density. The input NO concentration is 200 ppm diluted in 5 slm of dry synthetic air. Experiments were conducted at atmospheric pressure and room temperature. All the experiments in this chapter were performed for 4 times and are reproducible within +/- 5% error margin.

3.2.1 Plasma-alone configuration

Figure 3.2 shows the effect of applied-voltage on the NO and NO₂ concentrations at various energy densities. It can be observed that with increasing energy density, NO concentration reduces to below 6 ppm for all the applied voltages. Thus we can say that the NO conversion does not depend on the applied peak-voltage but is a function of energy density. Few other researchers also reported the same [71–73]. The NO₂ concentration keeps increasing up to 40 J/L and then starts to reduce. The amount of radicals production scales linearly with energy density which in turn leads to higher density of radicals and in this case, production of more O and N atoms as shown in equation (3.1) and (3.3). Thus the produced atomic oxygen and atomic nitrogen react with O₂ and NO₂ to produce O₃ and N₂O respectively as shown in the equation (3.4) to (3.7). NO₃ is a transient species and reacts with NO₂ to form N₂O₅ by the reaction (3.10). Although NO⁺, H₃O⁺ ions are major ions in air plasmas, the ion densities are relatively small and are not chemically active in the NO_x removal process [74]. Therefore, we have not considered ions in our reaction pathways.

 NO_2

Figure 3.2 – NO and NO₂ concentrations as a function of energy densities for various applied voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min.

$$\begin{array}{cccc} e + N_2 \rightarrow e + N + N & (3.1) \\ N + N + M \rightarrow N_2 + M & (3.2) \\ e + O_2 \rightarrow e + O + O & (3.3) \\ O + O_2 \rightarrow O_3 & (3.4) \\ NO + N \rightarrow N_2 + O & (3.5) \\ NO + O \rightarrow NO_2 & (3.6) \\ NO + O_3 \rightarrow NO_2 + O_2 & (3.7) \\ NO_2 + N \rightarrow N_2O + O & (3.8) \\ NO_2 + O_3 \rightarrow NO_3 + O_2 & (3.9) \\ + NO_3 + M \rightarrow N_2O_5 + M & (3.10) \\ \end{array}$$

With increasing energy densities, the collisions between the electrons and the neutrals are more frequent which leads to the production of more O and N atoms as shown in equation (3.1) and (3.3) which leads to increasing removal efficiency but also increases the by-products formation. Increasing the energy densities also increases energy costs; i.e. the energy needed to remove one mol of NO or NO_x .

When the energy cost for NO and NO_x is plotted as a function of applied voltage at various energy densities as shown in Fig. 3.4a and Fig. 3.4b , it is observed that with increasing applied voltage the energy cost first decreases to a minimum at 16 kV and then

Figure 3.3 – N_2O and O_3 concentrations as a function of energy densities for various applied voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min.

Figure 3.4 – Energy cost for NO and NO_x removed as a function of energy density for various applied voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min in a plasmaalone configuration.

increases for all energy densities. A similar trend is observed when energy cost for NO_x molecule is plotted as a function of applied voltage. The energy costs for NO_x molecule first decreases to a minimum at 16 kV and then increases at 17 kV and above this applied peak-voltage, the energy costs decreases again. We observed high energy costs at 17 kV upto an energy density of 20 J/L. This is probably due to high energy deposition per pulse at 17 kV as compared to 16 kV leading to high energy density and higher NO conversions. But this applied energy density is just enough to convert NO to NO_2 giving rise to lower NO_x removal. This lower NO_x removal and high energy per pulse might have lead to higher

energy costs below 20 J/L. Above 20 J/L, the NO conversions are high and the produced NO₂ is consumed to form N₂O and N₂O₅ resulting in higher NO_x removal and leading to low energy costs at energy densities of 30 J/L and 40 J/L for applied voltage of 17 kV. For applied voltages of 18 kV and 19 kV, the energy cost for NO_x removal is observed to be low. This is because, at this energy density, NO₂ is being consumed to form N₂O₅.

Figure 3.5 – NO and NO_x removal yield as a function of NO and NO_x removal efficiency respectively for various applied voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min in a plasma-alone configuration.

When the removal yields for NO and NO_x are plotted as a function of NO and NO_x conversion respectively, it is observed that the removal yields (i.e. the mol of NO removed per Joule) increase with increasing applied voltage at lower energy densities which can be seen in Fig. 3.5. With increasing energy density as the NO is removed significantly, the removal yields are almost the same irrespective of the increase in applied voltage. At such high energy densities, NO is already consumed and gets converted to NO₂. The term NO_x conversion was used here to illustrate the yields with respect to the sum of NO and NO_2 concentrations for the convenience despite mixing the fact that NO_2 is present in small amounts (in the range of 5-10 ppm) in the input gas concentration. This small concentrations of NO₂ is due to mixing with synthetic air and subsequent NO-NO₂ equilibrium. The removal yield for NO_x at 15 kV is far less than that of the removal yields at other applied voltages as seen in the Fig. 3.5. At this applied-voltage, the rate of NO conversion is low as the input energy per pulse is low and thus NO₂ concentration gradually increases. On the other hand, this energy per pulse is not enough to convert NO2 to N2O and thus we can see lesser concentrations of N₂O and O₃ compared to higher applied voltages. With the increasing removal of NO_x, the removal yield first decreased and then increased for all the applied voltages and again starts to decrease at higher NO_x removal. Higher NO_x removal rates are obtained at an applied voltage of 16 kV. The removal yield for an applied voltage of 16 kV started to reduce from 34 nmol/J to 28 nmol/J until the NO_x conversion reaches 13% and after this 13% NO_x removal, the NO_x removal yields started to increase and reaches a maximum of 38%. The trend is same for all the other applied peak-voltages. In the study on the effect of electrode shape in dielectric barrier discharge plasma reactor for NO_x removal by Koichi Takaki *et al.* [72], suggests that with the increase in applied peak-voltage, the number of microdischarges and capacitive current increases. This increase in capacitive current leads to the increased energy losses in the dielectric barrier which in turn reduces the energy efficiency.

3.2.2 In-plasma configuration

The effect of the plasma combined with catalyst in an in-plasma (IPC) configuration for NO and NO_x removal as a function of energy density for various applied peak-voltages is shown in Fig. 3.6 and Fig. 3.7 respectively. For plasma-alone, NO conversion reaches 99% at an energy density of around 30 J/L for all the applied peak-voltages whereas when the catalyst materials are introduced in to the plasma reactor, the NO removal rate is lower than that of the plasma-alone configuration which was also observed by Jeon *et al.* [75]. 99% conversion of NO is achieved above 40 J/L for all the materials that are used here. The plasma-alone configuration showed that the NO conversion does not depend much on the applied peak-voltages but depends mainly on the energy densities whereas in the IPC configuration, NO removal is function of both applied peak-voltages as well as the energy density. For TiO₂, the maximum NO conversion is achieved at 35 J/L for an applied peak-voltage of 16 kV. With increasing applied peak-voltage, NO conversion started to slightly decrease. All the other materials showed the same trend except the clear distinction of NO removal at 16 kV.

As shown in Fig. 3.7, the maximum NO_x removal with TiO₂ and Al₂O₃ was also achieved at 16 kV but at different energy densities. For TiO₂ and Al₂O₃, 38% NO_x removal was obtained at 47 J/L and 80 J/L respectively. There appeared to be a clear distinction in the NO_x removal at this applied peak-voltage with TiO₂ and Al₂O₃ whereas the NaY and SiO₂ does not show a big difference with varied applied peak-voltage. With increasing applied peak-voltage, NaY showed negative NO_x conversion at 18 kV and 19 kV applied peak-voltage as NO_x is produced intrinsically. SiO₂ showed increasing NO_x conversion with increasing applied-voltage. The maximum NO_x conversion achieved was 46% at 69 J/L.

Thus different materials reacted differently to the applied peak-voltage but what is the impact of the applied peak-voltage on by-products formation? Do all the materials follow same trend or do they perform differently? To answer that, N₂O concentration and O₃ concentrations as a function of energy density for various applied peak-voltages have been plotted as shown in Fig. 3.8. Al₂O₃ showed higher by-products formation at applied peak voltage of 16 kV despite its high NO and NO_x removal at this voltage. For TiO₂, NaY and silica, it is observed that with increasing applied peak-voltage the amount of by-products formation increased. But this increase in by-products may be due to high energy densities that are applied at higher applied peak-voltages. With increasing applied peak-voltage, at low energy densities, the N₂O concentrations are low but increase with increasing energy density. Whereas O₃ concentration showed the opposite trend. O₃ concentration tend to increase with increasing applied peak-voltage and energy densities.

Figure 3.6 – NO conversion as a function of energy density for various applied voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min in an IPC configuration.

When looking at the energy costs as a function of applied peak-voltages for plasma-alone and plasma combined with catalyst in the IPC configuration, it can be seen from Fig. 3.9 that the energy cost for NO removal is less for plasma-alone configuration at all applied peakvoltages. This comparison of energy costs was done at an energy density of 30 J/L as at least 80% conversion of the NO has been reached before 30 J/L for all the materials. The energy cost for NO removal at 16 kV is almost the same for TiO₂, Al₂O₃ and NaY and it is lower compared to other peak-voltages. At an applied peak-voltage of 15 kV to 16 kV, there is a dip in energy cost as more NO is converted to NO₂ and from 16 kV to 17 kV, the energy cost seems to rise because of the slight intrinsic production of NO and above 17 kV, the conversion

Figure 3.7 – NO_x conversion as a function of energy density for various applied peak-voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min in an IPC configuration.

of NO₂ to N₂O₅ dominates thus reducing the energy costs again. But when looking at the energy costs for NO_x removal, plasma-alone configuration has higher costs compared to all the tested IPC-configurations. To summarize, the energy costs for NO removal using the IPC configuration are in the order of plasma-alone < NaY (up to 17 kV) < Al₂O₃ < Silica < TiO₂ and the energy costs for NO_x removal using the IPC configuration are in the order of NaY < Al₂O₃ = TiO₂ < Silica < Plasma-alone. The plasma-alone configuration showed lower energy costs for NO removal because of its efficiency to convert NO to NO₂ at low energy density while the IPC configuration requires slightly higher energy densities for complete conversion of NO.

Figure 3.8 – By-products formation as a function of energy density for various applied peak-voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min in an IPC configuration.

Previously, we have shown that with increase in the applied peak-voltage, the energy deposition per pulse increases. This increases the plasma energy density which in turn increases the radicals production. Gentile *et al.* in their study on the reaction chemistry and optimization of plasma remediation of N_xO_y [74] have stated that the rates of majority of remediation reactions (such as reactions 3.5 and 3.6) scale linearly with radical concentrations and the rate of radical recombination reactions (such as reaction 3.2) scale non-linear with the radical concentrations. At low energy densities, the radicals will be more utilized in the remediation reactions and less in radical recombination reactions. The more the radicals utilized in the remediation reactions, the more efficient will be the remediation process. Thus, the low applied peak-voltages provide better remediation due to less energy deposition per pulse. As an applied peak-voltage of 16 kV showed better results with respect to removal efficiency, energy costs and by-products formation, the rest of the experiments

Figure 3.9 – Energy costs for NO and NO_x removal as a function of applied peak-voltages in an IPC configuration for input NO concentration of 200 ppm with gas flow rate of 5 L/min and at an energy density of 30 J/L.

were conducted at this peak-voltage unless otherwise mentioned.

3.2.3 Post-plasma configuration

The effect of plasma combined with catalyst in a post-plasma (PPC) configuration for NO and NO_x removal as a function of energy density for various applied peak-voltages is shown in Fig. 3.10 and Fig. 3.11. As observed in the plasma-alone configuration and in the IPC configuration, the PPC configuration also shows that the NO conversion does not depend much on the applied peak-voltages but depends only on the energy densities. To obtain 90% NO conversion, energy densities higher than 50 J/L are required for all the materials that are used here whereas plasma-alone configuration achieved 99% conversion at 35 J/L. Thus for higher NO conversions, PPC configurations requires more than 1.5 times of higher energy densities compared to the plasma-alone configuration.

When looking into the NO_x conversion for various applied peak-voltages as a function of energy density, PPC configurations performed better than the plasma-alone configuration. The PPC configuration with NaY showed higher NO_x removal at 19 kV as compared with plasma-alone, IPC configurations and to other materials that have been used in the PPC configuration. NaY achieved 71% NO_x removal at approximately 70 J/L for the applied peakvoltage of 19 kV. Ogata *et al.* [76] also observed that the formation of NO_x was suppressed by combining the plasma reactor with NaY. Adelman *et al.* [76] made a temperatureprogrammed desorption (TPD) study on the adsorption capacity of NO_x on different zeolites and have reported that in the presence of O₂ much of the NO_x can be adsorbed on the NaY zeolites. The zeolites are also able to convert NO to N₂O and N₂O₃ which is called as a disproportionation reaction as is reported in [77].

When the N2O and O3 concentrations are plotted as a function of energy density as in

Figure 3.10 – NO conversion as a function of energy density for various applied voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min in a PPC configuration.

Fig. 3.12, it can be seen that Al_2O_3 and NaY produced higher N_2O concentrations than TiO_2 and silica. On the other hand, O_3 formation was less for NaY compared with Al_2O_3 , TiO_2 and silica at all applied peak-voltages. In the PPC configuration, the by-products formation does not depend on applied peak-voltage but varied significantly with varying energy densities which follows the same trend as the NO-removal. In general, the by-products formation is less for PPC configurations compared to IPC and plasma-alone configurations especially with regard to O_3 concentrations.

The energy costs for NO and NO_x removal as a function of the applied peak-voltages for the PPC configuration can be seen in Fig. 3.13. The energy cost for NO removal is less for plasma-alone configuration at all applied peak-voltages than with the plasma-combined with catalysts which has the same trend as seen in the IPC configurations. The increase

Figure 3.11 – NO_x conversion as a function of energy density for various applied voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min in a PPC configuration.

and decrease of energy costs at various applied peak-voltages followed the same trend as mentioned earlier for the IPC configuration. When a comparison is made between the energy cost for NO_x removal using the plasma-alone and the PPC configurations, it can be seen that the energy costs per mol of NO_x removal is much higher for the plasma-alone configuration as the NO₂ concentrations are higher. To summarize, the energy costs for NO removal using the PPC configuration are in the order of plasma-alone < NaY < Silica < TiO₂ < Al₂O₃ and the energy costs for NO_x removal using the PPC configuration are in the order of NaY < Al₂O₃ < TiO₂ < Silica < Plasma-alone.

Figure 3.12 – By-products formation as a function of energy density for various applied voltages for input NO concentration of 200 ppm and gas flow rate of 5 L/min in a PPC configuration.

3.3 Effect of pulse polarity

From the literature, it can be found that the plasma processing depends on the polarity of the applied high-voltage pulses [60, 78, 79]. In the study on control of NO_x by positive and negative pulsed corona discharges by Masuda *et al.* [78], they stated that positive pulsing produces more reactive species as compared to the negative pulsed corona. In the study by Huiskamp *et al.* [73, 80], study was done on the streamer development and propagation with positive and negative polarity pulses. The positive and negative streamers were studied by ICCD fast imaging. He observed that the negative pulses produced less streamer volume compared to positive pulses and hence less O_3 . Muaffaq *et al.* [79] also reported that for dielectric barrier discharges, positive pulses lead to a formation of large number of positive streamers with a high electric field region at their heads. They also observed that

Figure 3.13 – Energy costs for NO and NO_x removal as a function of applied peak-voltages in PPC configuration for input NO concentration of 200 ppm with gas flow rate of 5 L/min and at an energy density of 30 J/L.

the NO_x removal is higher with positive pulses than with negative pulses. Thus, different configurations showed different effects with positive and negative pulses and it will be interesting to see how the pulse polarity affects the NO_x removal in our configuration. In this section, we have investigated the effect of polarity on NO_x removal in the dielectric barrier discharge reactor. The experiments were conducted at applied peak-voltage of 16 kV and an initial NO concentration of 200 ppm. The pulse repetition rate was varied from 10 Hz–1 kHz to vary the energy density. We have used TiO₂, Al₂O₃, NaY, and SiO₂ in the IPC and the PPC configurations.

3.3.1 Plasma-alone configuration

The effect of pulse-polarity on the NO and NO_x removal as function of energy density is shown in Fig. 3.14. The negative polarity pulses showed slightly better NO conversion whereas the positive polarity pulses showed a bit better NO_x conversion. The NO_2 concentrations are observed to be higher with negative polarity which resulted in lower NO_x conversions. Similar results were obtained in [81] where the authors have studied the effect of polarity on NO_x removal in a coaxial corona discharge reactor and they have also observed that at higher temperatures, the negative polarity resulted in higher NO_x removal. There happens to be no significant difference in the by-products formation with the positive polarity pulses and negative polarity as seen in Fig. 3.15.

3.3.2 In-plasma configuration

The effect of pulse-polarity on the plasma combined with catalyst in a IPC for NO and NO_x conversion as a function of energy density is shown in Fig. 3.16. The positive pulses show

Figure 3.14 – NO and NO_x conversion as a function of energy density for the positive polarity pulses and the negative polarity pulses for input NO concentration of 200 ppm and gas flow rate of 5 L/min in a plasma-alone configuration.

Figure 3.15 – N_2O and O_3 concentrations as a function of energy density for the positive polarity pulses and the negative polarity pulses for input NO concentration of 200 ppm and gas flow rate of 5 L/min in a plasma-alone configuration.

better conversion especially with regard to NO_x for TiO₂, Al₂O₃, and NaY. It is interesting to see the effect of polarity on NO_x conversion with NaY as the difference between positive and negative pulses is quite obvious above 20 J/L. The maximum NO_x conversion for NaY with negative pulse is approximately 17% whereas a conversion of approximately 45% is achieved with positive pulses which is around 2.5 times higher than that for the negative pulses. This behaviour is also observed with TiO₂ and Al₂O₃. For TiO₂, the NO_x conversion was approximately 39% with positive pulses but only 11% with negative pulses. For Al₂O₃, 38% of NO_x conversion was achieved with positive pulses and 15% with negative pulses. It can be seen that for both Al₂O₃ and TiO₂, the NO_x conversion started to increase above 40 J/L. This is due to the consumption of NO₂ to form N₂O₅. In contrast, silica showed better NO_x conversion with negative pulses than positive pulses above 15 J/L.

36

Figure 3.16 – NO and NO_x conversion as a function of energy density for the positive polarity pulses and the negative polarity pulses in the IPC configuration for input NO concentration of 200 ppm and gas flow rate of 5 L/min.

The effect of polarity on by-products formation is shown in the Fig. 3.17. It can be observed that TiO_2 does not show any significant difference of N_2O concentrations with polarity but showed higher O_3 concentrations with positive pulses and no O_3 formation was observed for negative pulses. On the other hand, Al_2O_3 did not exhibit any considerable difference in both N_2O and O_3 concentrations with change in the polarity. For NaY, the

change in polarity does not appear to effect the N₂O concentration but a small concentration of O₃ (7 ppm) can be noticed with negative pulses. The performance of silica is in-line with NaY where the polarity did not show significant effect on N₂O concentrations but positive pulses give better results with respect to O₃ concentrations. As mentioned earlier, in the study by Huiskamp [73, 80], lesser O₃ yields were observed with negative pulses and in our case it is in-line with performance of TiO₂ and contradicts with NaY and silica. Though there is no clear evidence on why these materials behaved differently with change in polarity, an in-depth study on the amount of micro-discharges formed with different materials for different polarities with ICCD imaging or optical spectrum measurements to investigate the electron energies with streamer for positive pulses and negative pulses may give a clue for this difference in the performance.

Figure 3.17 – By-products formation as a function of energy density for the positive polarity pulses and the negative polarity pulses in the IPC configuration for input NO concentration of 200 ppm and gas flow rate of 5 L/min.

3.3.3 Post-plasma configuration

Figure 3.18 shows the effect of polarity of the pulses when the plasma is combined with catalysts in a PPC configuration. With TiO₂, the negative pulses show higher NO conversion whereas a higher conversion for NO_x was obtained with the positive pulses. For the negative pulses, NO_x conversion started to fall above 25 J/L. Al₂O₃ showed slightly higher NO conversion with the negative pulses above 15 J/L but again the positive pulses showed better NO_x conversion similar to the behaviour of TiO₂. A maximum NO_x conversion of 11% is achieved with the negative pulses whereas the positive pulses achieved a maximum of 23% for Al₂O₃. NaY showed better NO and NO_x conversions with the positive pulses whereas silica achieved better NO conversion with positive pulses. Higher NO_x conversion for silica was achieved with positive pulses up to 15 J/L and above 34 J/L and in between 15-34 J/L, the negative pulses performed better in terms of NO_x removal. When the IPC and PPC configurations are compared with respect to NO and NO_x conversions, regardless of the polarities, the NO conversion achieved by the PPC configuration is less than that of the plasma-alone and IPC configuration. Whereas the NO_x conversions are better in the PPC configuration than the plasma-alone configuration but bit lower compared to the IPC configurations.

The effect of pulse-polarity on the by-products formation is shown in Fig. 3.19. Regardless of the polarities, O_3 formation has been suppressed in the PPC configuration and in general the N₂O concentrations were less with PPC configurations with all the materials that have been used in this study. For TiO₂, N₂O concentration is observed to be higher for negative pulses especially above the energy density of 20 J/L. No ozone was observed with TiO₂ for both the positive pulses and the negative pulses. Al₂O₃ exhibited the similar behaviour as in the IPC configuration which means that no significant difference was observed for both the N₂O concentrations and O₃ concentrations. N₂O concentrations are appeared to be higher with positive pulses for NaY. 5 ppm of O₃ was observed with negative pulses for NaY which is was also the approximate O₃ concentration that was observed in IPC configuration with the negative pulses. Similar to the behaviour of NaY, silica also exhibited higher N₂O concentrations with positive pulses. O₃ concentrations was observed to be higher with positive pulses for silica.

3.4 Effect of pulse rise-time

In this section, the effect of pulse rise-time was studied by using a microsecond pulse source with 0.9- μ s rise time and 2- μ s pulse width (referred to as μ s pulse) and a nanosecond pulse source with 10-ns rise time and 16-ns pulse width (referred to as ns pulse). So the

The contents of this section have been published previously as [9]:

V.R. Chirumamilla, W.F.L.M. Hoeben, F.J.C.M. Beckers, T. Huiskamp, E.J.M. Van Heesch, and A.J.M. Pemen, "Experimental investigation on the effect of a microsecond pulse and a nanosecond pulse on NO removal using a pulsed DBD with catalytic materials," *Plasma Chemistry and Plasma Processing*, vol.36(2), pp. 487-510, Mar 2016.

Figure 3.18 – NO and NO_x conversion as a function of energy density for the positive polarity pulses and the negative polarity pulses in the PPC configuration for input NO concentration of 200 ppm and gas flow rate of 5 L/min.

rise-times and the pulse-width of the two pulses varied by about 2 orders of magnitude. A pulsed non-thermal DBD reactor is combined with TiO_2 , CuO-MnO₂- TiO_2 , CuO-MnO₂- Al_2O_3 to study the effect of rise-time on the NO removal efficiency, energy efficiency and the by-products formation for plasma-alone, in-plasma (IPC) and post-plasma (PPC) configurations. The characteristics of the catalytic materials are mentioned in Chapter 2. The reactor that has been used in this section is slightly longer than that of the reactor that has been used previously and is explained in the Chapter 2 in the Fig. 2.2b. The microsecond pulse power source that has been used here is as described in the Chapter 2 in the Fig. 2.4 and the schematic overview of the nano-second pulse-power source that has been used in the Fig. 2.6. The typical applied voltage and discharge current and the subsequent energy per pulse and power for the nanosecond source are shown in the Fig. 2.7 and and for the microsecond pulse power source these parameters were shown in the

Figure 3.19 – By-products formation as a function of energy density for the positive polarity pulses and the negative polarity pulses in the PPC configuration for input NO concentration of 200 ppm and gas flow rate of 5 L/min.

Fig. 2.5. The voltage was kept constant (17 kV for the μ s pulse source and 40 kV for the ns pulse source) and the pulse repetition rate was used as the operating parameter to vary the energy densities.

3.4.1 Plasma-alone configuration

Figure 3.20 shows the effect of the microsecond and nanosecond pulse energization on the NO conversion. It can be seen that for the ns-pulse the NO conversion is near 100% at much lower energy densities as compared to the μ s-pulse. An energy density of approximately 60 J/L and 130 J/L were required for 100% NO conversion using the ns and the μ s-pulse respectively. This 100% conversion of NO by the ns-pulse at low energy densities is due to the ability of the short rise times to produce high E/N values, where E is the electric field

Figure 3.20 – NO conversion as a function of the energy density with the nanosecond-pulse source and the microsecond-pulse source.

Figure 3.21 – W-value and G-value as a function of energy density with the nanosecond-pulse source and the microsecond-pulse source.

and N is the density of the gas in the reactor [82].

The Energy cost W-value (i.e. the energy required to remove one mol of NO) are 90 and 184 eV/NO molecule respectively for the ns-pulse and the μ s-pulse and the energy yield G-value (i.e. the amount of NO removed per Joule of energy supplied) are 100 and 200 nmol/J at 25 J/L as seen in Fig. 3.21. The results of Fig. 3.21 also show that with increasing energy density, the W-value increases and keeps increasing even after 100% NO removal while the G-value decreases to a minimum of 50 nmol/J at an energy density of 50 J/L and then remains almost constant. The increase in the W-value even after 100% NO conversion is due to the fact that there is no NO left for further conversion and the energy input to the reactor is used in other reactions such as the production of O₃, N₂O and other unwanted by-products formation. The input energy is also dissipated in the form of light and heat.

Figure $3.22 - N_2O$ and O_3 formation as a function of the energy density with the nanosecondpulse source and the microsecond-pulse source.

The effect of the energy density on the by-products formation such as O_3 and N_2O are studied with respect to the rise time as shown in Fig. 3.22. With increasing energy density, the by-products formation increases with both the μ s-pulse and ns-pulse. The production of by-products is more pronounced with the ns-pulse rise time compared to the μ s-pulse. It is observed that for 100% NO conversion, approximately 6 ppm and 14 ppm of N_2O and O_3 is generated respectively for the ns-pulse. Whereas for the μ s-pulse, N_2O and O_3 formation is 3 ppm and 2 ppm respectively. The ns-pulse is efficient in converting 100% NO at low energy densities but at the expense of higher by-products formation. This is due to the possibility of generating the plasma at a much higher voltage with a ns-pulse. This leads to higher energy densities which in turn leads to the production of more O and N atoms consequently producing more O_3 and N_2O as described in sec. 3.2

3.4.2 In-plasma configuration

42

A pulsed DBD reactor is combined with catalysts such as TiO_2 , $CuO-MnO_2-TiO_2$ and $CuO-MnO_2-Al_2O_3$ to study the a possible benefit from combining plasma with catalysts in terms of the NO removal efficiency and its energy efficiency. From Fig. 3.23, NO conversion as a function of the energy density, it can be seen that $CuO-MnO_2-TiO_2$ catalyst is capable of removing 100% NO at low energy densities as compared to $CuO-MnO_2-Al_2O_3$ and TiO_2 . The ns-pulse shows better removal efficiency with both the plasma alone configuration and for the IPC. But, as mentioned earlier, higher NO conversion at lower energy densities is at the expense of higher by-products formation which can be observed in the Fig. 3.24.

Figure 3.24a and Fig. 3.24b show the production of N_2O and O_3 respectively as a function of the energy density. It can be noticed that the by-products formation is reduced with an IPC configuration as compared to the plasma-alone configuration irrespective of the μ spulse or a ns-pulse input. However, the ns-pulse produces higher amounts of N_2O and O_3

Figure 3.23 – NO conversion as a function of energy density for various catalysts with in-plasma catalytic configuration with the nanosecond-pulse source and the microsecond-pulse source.

compared to the μ s-pulse. The trend is slightly different for TiO₂ and CuO-MnO₂-Al₂O₃ as these catalysts produced higher amounts of N₂O and O₃ with the μ s pulse for 100% NO conversion compared with the ns-pulse. It is also observed that TiO₂ produced higher amounts of O₃ compared to the plasma alone configuration, CuO-MnO₂-TiO₂, CuO-MnO₂-Al₂O₃ catalysts.

The MnOx-based catalysts showed better performance with respect to ozone decomposition as compared to the other materials. This may be due to the in-situ decomposition of ozone into atomic oxygen on the surface, where this atomic oxygen will be present on the MnO_x surface in the form of O (³P). This in turn might oxidize NO to NO₂ which might be the possible reason for the better performance of the MnO_x -based catalysts with respect to ozone decomposition. As mentioned in [83], the better performance of CuO-MnO₂-TiO₂ can be attributed to the synergy between the plasma excitation and the photocatalytic behaviour of TiO₂. Even though MnO_x-based catalysts proved to be efficient in ozone decomposition, it is also observed from the results of this study that CuO-MnO₂-Al₂O₃, at higher densities failed to decompose ozone. This may be due to the difference in the support materials. With a change in the dielectric constant of the support material, there could be a change in the plasma distribution or plasma discharges or in the adsorption-desorption effects of the molecules. The effect of catalyst support was studied in [84] where the authors investigated the effect of the catalyst support in the degradation of odorous compounds by the plasma and found out that there were differences in the electric behaviour and the space development of the plasma with different supports.

(a) N_2O formation as a function of energy density for various catalysts with the nanosecond-pulse source and the microsecond-pulse source.

(b) O_3 formation as a function of energy density for various catalysts with the nanosecond-pulse source and the microsecond-pulse source.

Figure 3.24 – By-products formation as a function of energy density for various catalysts with in-plasma catalytic configuration with the nanosecond-pulse source and the microsecond-pulse source.

3.4.3 Post-plasma configuration

The effect of the energy density on the removal efficiency for the PPC configuration is shown in Fig. 3.25. It is observed that, the CuO-MnO₂-TiO₂ catalyst showed better performance with both the IPC and the PPC configurations with respect to both NO removal efficiency

Figure 3.25 – NO conversion as a function of energy density for various catalysts with post-plasma catalytic configuration with the nanosecond-pulse source and the microsecond-pulse source.

and by-products formation. CuO-MnO₂-TiO₂ catalyst is capable of removing 100% NO at low energy densities with both the μ s and the ns pulses compared with CuO-MnO₂-Al₂O₃ and TiO₂. Nanosecond-pulses showed better performance with the PPC configuration with respect to removal efficiency but at the expense of by-products formation which showed the same trend as with the IPC configuration. Figure 3.26a and Fig. 3.26b shows the effect of energy density on by-products formation. Nanosecond-pulse showed higher N₂O and O₃ formation than the μ s-pulse. TiO₂ showed higher amounts of N₂O formation with the IPC compared to the PPC with both the μ s and the ns-pulses whereas CuO-MnO₂- Al₂O₃ showed higher N₂O formation with the PPC with the ns-pulse only. In general, the PPC performed better with both the μ s and the ns-pulse with respect to the by-products formation irrespective of the catalysts used.

3.5 Summary and conclusions

To obtain efficient remediation of NO_x , careful optimization of electrical parameters and operational parameters is required. In this chapter we have studied the effect of electrical parameters on the NO and NO_x removal, and the by-products formation using a pulsed dielectric-barrier-discharge reactor. The electrical parameters that are varied in this study are the applied peak-voltage, pulse polarity and pulse rise-time. To study the effect of the electrical parameters, we have used three plasma reactor configurations: plasma-alone, in-plasma catalytic configuration (IPC) and post-plasma catalytic configuration (PPC). Commonly used support materials such as TiO₂, Al₂O₃, NaY and SiO₂ have been used in both the IPC and the PPC configuration. The main by-products that we have reported here are N₂O and O₃ although N₂O₅ was only observed at high energy densities.

46

(a) N_2O formation as a function of energy density for various catalysts with the nanosecond-pulse source and the microsecond-pulse source.

(b) O_3 formation as a function of energy density for various catalysts with the nanosecond-pulse source and the microsecond-pulse source.

Figure 3.26 – By-products formation as a function of energy density for various catalysts with post-plasma catalytic configuration with the nanosecond-pulse source and the microsecond-pulse source.

Effect of applied peak-voltage We varied the applied peak-voltage from 15 kV to 19 kV with an interval of 1 kV. It is observed that the conversions and by-products formation depend more on energy density than on applied peak-voltage. The lower applied peak-voltages show better removal efficiency because of low energy density. At low energy densities, the radicals will be more utilized in the remediation reactions and less in radical recombination

Figure 3.27 – Comparison of energy costs for NO and NO_x removal in plasma-alone, In-plasma and post-plasma configurations at the applied peak-voltage of 16 kV and at an energy density of 30 J/L.

reactions. The more the radicals utilized in the remediation reactions, the more efficient the NO_x removal. Thus, the low applied peak-voltages provide better remediation due to the low energy per pulse deposition thus providing the low plasma energy density. As an applied peak-voltage of 16 kV showed better results with respect to removal efficiency, energy costs and by-products formation, the rest of the experiments were conducted at this peak-voltage unless otherwise mentioned.

By varying the applied peak-voltage, the energy cost and the yield changes considerably. A useful parameter to optimize the energy consumption and removal efficiency in the NTP reactor is the energy cost which is defined as the energy transferred to the plasma per mol of NO or NO_x removed from the gas stream. An overview of the energy costs for NO and NO_x removal in the plasma-alone, IPC and the PPC configurations at an applied peak-voltage of 16 kV and energy density of 30 J/L (as more than 80% conversion is obtained for all the three configuration at this energy density) is shown in Fig. 3.27. It can be seen that the energy costs for NO_x removal remains almost the same for all the three configurations and the energy costs for NO_x removal followed by silica in IPC configuration. Al₂O₃ in IPC configuration showed low energy costs for NO_x removal followed by NaY in PPC configuration.

Configuration	NO conversion	NO _x conversion	N ₂ O formation	O ₃ formation
Plasma-alone	+	-	0	0
IPC-TiO ₂	0	-	0	+
PPC-TiO ₂	0	0	-	0
IPC-Al ₂ O ₃	-	-	+	+
PPC-Al ₂ O ₃	-	-	0	0
IPC-NaY	-	-	-	-
PPC-NaY	+/-	+/-	+	-
IPC-SiO ₂	+	+	0	-
PPC-SiO ₂	-	+/-	+	+

Table 3.1 – Performance of negative-pulse polarity as compared to the positive-pulse polarity on NO and NO_x removal and the by-products formation with all the three configurations. The symbols indicates that the negative-pulse polarity showed increased performance (+), decreased performance (-), no significant effect (\circ) and may have positive or negative effect (+/-).

Effect of pulse polarity From the literature, we studied that different discharge configurations showed different effects on NO and NO_x removal with positive and negative pulses which triggered us to investigate how this polarity effects the NO_x removal in our configuration. In summary, the performance of negative-pulse polarity as compared to the positive-pulse polarity on NO and NO_x removal and the by-products formation with all the three configurations is shown in table 3.1. The symbols in table 3.1 indicates that compared to the positive pulse polarity, the negative pulse polarity showed increased performance (+), decreased performance (-), no significant effect (\circ) and may have positive or negative effect (+/-).

In general, positive pulses performed better than negative pulses with respect to NO_x which could be due to increased reactive species production with positive pulses as compared to the negative pulses. The positive pulses also showed better NO_x conversions for TiO₂, Al_2O_3 and NaY with both the IPC and the PPC configurations. There is no significant difference observed in the N₂O formation for the plasma-alone and the IPC configuration with both the positive pulses whereas the negative pulses showed low O₃ concentrations. This decrease in O₃ concentrations can be attributed to the less streamer volume with negative pulses as compared to the positive pulses. The positive polarity pulses have been chosen for further experiments.

Effect of pulse rise-time A μ s-pulse with a rise time of 0.9- μ s and width of 2- μ s and a ns-pulse source with a rise time of 10-ns and width of 16-ns were used to study the effect of pulse parameters on the NO conversion and the by-products formation. A comparison has been made between different plasma-catalytic configurations such as an in-plasma catalytic configuration and a post-plasma catalytic configuration as shown in table 3.2. Where the symbols in table 3.2 indicates that the specific configuration showed best performance (++),

Configuration	NO _x removal		O ₃ concentration [ppm]		N ₂ O concentration [ppm]	
Conngulation	μs	ns	μs	ns	μs	ns
Plasma-alone	0	+	-	-	-	-
IPC-TiO ₂	0	++	-	-	+	-
IPC-CuO-MnO ₂ -TiO ₂	-	++	++	++	++	+
IPC-CuO-MnO ₂ -Al ₂ O ₃	-	+	+	+	+	-
PPC-TiO ₂	+	-	++	++	0	-
PPC-CuO-MnO ₂ -TiO ₂	++	+	++	++	+	+
PPC-CuO-MnO ₂ -Al ₂ O ₃	+	+	+	-	0	-

Table 3.2 – Comparison between different plasma-catalytic configurations on NO_x removal and by-products formation with the nanosecond pulse source and the microsecond pulse source at 90% NO conversion. The symbols in the table indicates that the specific configuration showed best performance (++), + (good performance), satisfactory performance (+/-) and poor performance (-).

+ (good performance), satisfactory performance (+/-) and poor performance (-).

With regard to the μ s-pulse and ns-pulse energization, we have observed that the ns pulse showed higher conversions but at the expense of higher by-products formation for the given energy density. The high conversions and the increased by-products formation with the ns-pulse energization is possibly due to the plasma generation at much higher voltages as compared to the μ s-pulse energization. To conclude, the short duration pulses are efficient for NO conversion but produces more by-products. This by-products formation can be reduced by placing an appropriate catalyst either in the IPC configuration or in the PPC configuration. We have observed that MnO_x-based catalyst showed reduced O₃ concentrations with both the IPC and the PPC which might be due to the insitu decomposition of ozone into atomic oxygen on the surface of the catalyst.

The optimum electrical parameters that we have observed for our configuration with the given power modulator topologies is to use μ s-pulse energization with 16 kV applied peak-voltage with positive polarity pulses. Nevertheless, there is a slight variation in the performance of the system with the catalytic materials in the IPC and the PPC configurations.

Chapter 4

Investigation on the effect of operational parameters for NO_x removal

4.1 Introduction

The efficiency of NO_x removal depends on both the electrical parameters and operational parameters. By optimizing the electrical parameters, the discharge activity is tuned to obtain optimum removal efficiency. In the previous chapter, we have discussed how electrical parameters (the applied peak-voltage, the pulse-polarity and the rise time of the applied high-voltage pulse) affects the energy efficiency of NO conversion with a pulsed DBD reactor with and with-out catalytic materials.

In this chapter, we analyze the influence of various operational parameters, such as the input NO concentrations, the gas flow-rate, and the gas temperature, on the efficiency of NO_x removal. We have evaluated the performance of the NO_x removal process by considering the increase in energy efficiency and the decrease in by-products formation. First, we have studied the effect of operational parameters with the plasma-alone configuration. Next, we also studied two combined plasma/catalytic combinations, namely a IPC and a PPC configuration, and their effect on the efficiency of NO_x removal and the formation of by-products. The performance of the three configurations is assessed by means of the following two parameters: the energy yield and the energy cost, both as a function of the energy density. The energy yield and energy costs are calculated by equations 2.3 and 2.4 respectively.

Various studies are available to evaluate the performance of NTP systems by means of the parameters energy cost and energy yield, reporting results for various materials under different conditions [85–89]. With change in the reactor conditions, these performance parameters vary considerably. This makes it difficult to compare the efficiency of NO_x removal

with our reactor configuration with the results from these studies. Thus we have performed a systematic performance evaluation of our DBD reactor, combined with TiO_2 , Al_2O_3 , NaY and SiO_2 at various operating conditions, while keeping the electrical parameters unchanged. The pulse repetition rate was varied in order to vary the plasma energy density. The detailed characterization of these catalytic materials is presented in Chapter 2. All the experiments in this chapter were performed for 4 times and are reproducible within +/- 5% error margin.

4.2 Effect of NO input concentration

In this section, we have studied the effect of NO input concentrations on NO_x removal by varying the input concentrations from 100 ppm to 300 ppm, for three reactor configurations: a DBD plasma-alone, a IPC configuration and a PPC configurations. The applied-peak voltage was kept constant at 16 kV and positive-polarity pulses have been used. The reason for choosing this voltage and polarity have been discussed in Chapter 3. The pulse repetition rate was varied (from 10 Hz to 600 Hz) to vary the plasma energy density from 0 to 110 J/L, for 5 slm gas flow rate). The gas flow-rate was kept constant at 5 slm and the reactor was operated at ambient conditions.

4.2.1 Plasma-alone configuration

The effect of the input NO concentrations on the NO conversion and the formation of byproducts is examined here. Figure 4.1 shows the NO conversion as a function of energy density for various input NO concentrations. It can be observed that the NO conversion increased with increasing energy density, irrespective of the input NO concentrations. However, with increasing input concentrations, the conversion is found to decrease significantly. The same trend has also been observed in [73, 89, 90]. At lower input concentrations, complete conversion requires low energy densities, while with increasing input concentrations, the required energy density for complete conversion increases. For an input NO concentration of 300 ppm, we could not obtain 100% conversion.

To study the kinetics, the pollutant concentration is expressed as an exponential function of the energy density applied to the DBD reactor, as shown in Eq. (4.1) and as stated by many researchers [89–93].

$$\frac{[C]}{[C]_0} = e^{-K_E E_d}$$
(4.1)

In this equation, C_0 is the input concentration in ppm and C is the output concentration in ppm. The energy constant K_E is defined as $1/E_0$, where E_0 is the specific applied plasma energy density, and has the unit L/J. The specific energy E_0 (or sometimes referred to as β) [91,94], is defined as the amount of energy required to remove 63% of the NO.

Figure 4.1 – NO conversion as a function of energy density for various input NO concentrations for the plasma-alone configuration at a gas flow-rate of 5 slm.

The conversion X is defined as:

$$X = 1 - \frac{C}{C_0} \tag{4.2}$$

By combining equations 4.1 and 4.2, we can write

$$ln(\frac{C}{C_0}) = ln(1-X) = -K_E E_d$$
(4.3)

Thus when we plot a graph for ln(1-X) as a function of the energy density, the slope of this graph represents the energy constant.

A graph of $\ln(1-X)$ as a function of energy density for various concentrations can be seen in Fig. 4.2a. This graph is shown only for the lower energy densities where $\ln(1-X)$ linearly depends on the energy density. At higher energy densities, the slope is not any more linear and becomes more steep [95]. Interestingly, this linear relationship was observed until the NO conversion was approximately 70% which is in line with the definition of K_E being a constant of an exponential function. It can be noted that the energy constant values decrease with increasing input concentrations. Which, from our definition means that the energy efficiency of the NO conversion process is higher for low input concentrations. When the energy constant is plotted as a function of the input NO concentration, we can notice that the energy constant decreases exponentially with concentration as seen in Fig. 4.2b. This indicates that more energy is required to remove higher input NO concentrations.

Figure 4.2 – First order kinetic plot to understand the effect of the input NO concentration on the removal efficiency by calculating the energy constants for plasma-alone configuration. K_E values obtained from (a) are plotted against concentration in (b) to study the effect of the input concentration on the energy constant for plasma-alone configuration at a gas flow-rate of 5slm and at ambient temperature.

Figure 4.3 – By-products formation as a function of energy density for various input NO concentrations for the plasma-alone configuration at a gas flow-rate of 5 slm.

The effect of the initial concentration on the by-products formation can be seen in Fig. 4.3. At increasing energy density, both the N_2O and the O_3 concentration increase as well. At lower energy densities, the NO conversion is lower and thus we have more NO available. In this case, the atomic oxygen will primarily react with NO to form NO_2 rather than forming O_3 . Whereas at higher energy densities, as most of the NO is converted (at least 70%), the amount of NO available to react with atomic oxygen is less and thus

remaining atomic oxygen combine with O_2 to form O_3 as mentioned in the reaction 3.4. At further higher energy densities, the dissociation of N_2 to atomic N also increases resulting in converting NO₂ to N₂O and releasing further some more atomic oxygen as per reaction 3.7. Also these atomic oxygen will further aid the formation of O_3 , which eventually reacts with NO₂ to form N₂O₅ as per reactions 3.9 and 3.10. Therefore, for the lower NO input concentrations, O₃ formation starts already at lower energy densities as compared to higher input concentrations. Formation of O₃ decreases with increasing input NO concentration. For an input concentration of 300 ppm, no O₃ can be observed for the energy densities applied in these experiments, since complete conversion of NO has not been reached yet. On the other hand, N₂O concentration keeps increasing linearly with energy density for all the input NO concentrations because of the availability of NO₂.

4.2.2 In-plasma configuration

In this section, we have studied the effect of input concentration on NO removal by placing catalytic materials inside the plasma reactor; an in-plasma or an IPC configuration. We have packed the DBD reactor with the following catalytic materials: TiO_2 , Al_2O_3 , zeolites (NaY) and SiO_2 . During the experiments, the energy density has been varied by varying the pulse repetition rate. The other parameters have been kept constant: the gas flow rate and applied peak-voltage were 5 slm and 16 kV respectively.

The effect of input NO concentration as a function of energy density for various input NO concentrations for the various catalytic materials is shown in Fig. 4.4. As already observed in the previous section for the plasma-alone configuration, also for the IPC configuration, the NO conversion decreases with increasing NO input concentrations for all the catalytic materials. Higher NO input concentrations require higher energy densities to obtain complete NO conversion. It also can be observed that with all the catalytic materials, complete conversion for all the input NO concentrations can be achieved. An exception are the results obtained with Al_2O_3 catalyst. In the case of Al_2O_3 , for an input NO concentration of 300 ppm, a maximum NO conversion of 80% could be realized even at high energy density of 90 J /L.

The decrease in the NO concentration and increase in the NO_2 concentration as a function of the energy density for all the catalytic materials can be found in Appendix 7.6 in Fig. A.7.

Observing Fig. 4.4, it can be seen that the NO removal vs energy density graphs for IPC follow a exponential relation and thus the NO removal process follows first order kinetics behaviour for all the catalytic materials. Thus, we can obtain the characteristic energy for the IPC configuration and for all the catalytic materials by plotting the parameter ln(1-X) versus the energy density, in the same manner as mentioned in the previous section for the plasma-alone configuration. The graphs of ln(1-X) as a function of energy density for various initial NO concentrations and for the various catalytic materials are given in Appendix 7.6 in Fig. A.8. As observed for the plasma-alone configuration, also for the IPC configuration the slopes of these curves are linear at least up to 75% conversion. This shows that the effect of energy density on the characteristic energy is limited and that the characteristic energy is mainly influenced by the NO input concentrations. For all the catalytic materials the slope

56

Figure 4.4 – NO conversion as a function of energy density for various NO input concentrations at a gas flow-rate of 5 slm for an IPC configuration.

becomes steeper at low input concentrations and the slope reduces as the concentration increases.

Figure 4.5 shows a comparison of the effect of the input concentrations on the energy constant for the plasma-alone configuration and for the IPC configuration experiments with all the catalytic materials that we have used in this study. All values of the energy constants are given in table 4.1. It can be seen that the energy constant depends exponentially on the NO input concentration for all the catalytic materials. The plasma-alone configuration shows higher energy constants up to 200 ppm as compared to the IPC configuration. This is because, the plasma-alone configuration is efficient in converting NO to NO₂ at low energy density resulting in complete NO conversions. On the other hand, the IPC configuration needs a bit higher energy density to obtain complete NO conversion as compared to plasma-alone configuration.

Figure 4.5 – Comparison of the effect of energy constant on the input concentration for all the catalytic materials that we have used in this study for IPC configuration at a gas flow-rate of 5 slm and at ambient temperature.

are slightly lower than that of plasma-alone configuration at low NO input concentrations. The energy constants significantly depend on the type of the catalytic material, however for higher input concentrations, e.g. at 300 ppm, there is no significant difference in the energy constant values irrespective of the catalysts or the configuration. Plasma-alone and IPC configurations showed approximately the same energy constant values. Which means that even the plasma-alone configuration requires a bit higher energy density to convert NO to NO₂ for high NO input concentrations. Therefore, the performance of the plasma-alone configuration and the IPC configuration is almost the same with respect to NO conversions for high NO input concentrations.

Configuration	NO concentration [ppm]						
Configuration	100	150	200	250	300		
Plasma-alone	0.15	0.09	0.05	0.04	0.02		
TiO ₂	0.01	0.07	0.04	0.03	0.02		
Al_2O_3	0.09	0.06	0.04	0.023	0.02		
NaY	0.09	0.06	0.04	0.03	0.03		
SiO ₂	0.11	0.08	0.05	0.03			

Table 4.1 – Summary of the values of energy constants [L/J] for all the catalytic materials that we have used in this study at various input concentrations.

The other important criteria for performance analysis is the by-product formation. N_2O and O_3 formation as function of energy density for all the catalytic materials that we have used is shown in the Fig. 4.6. With increasing energy density, both the N_2O and O_3

Figure 4.6 – By-products formation as a function of energy density for various NO input concentrations at a gas flow-rate of 5 slm for IPC configuration.

formation increases. It can be seen that N_2O concentrations does not significantly depend on the NO input concentration, and mainly depend on energy density. On the other hand, the O_3 formation does strongly depend on both the input concentration as well as on the energy density. This is because, at low input concentration, the NO is completely converted already at low energy density, resulting in excess atomic oxygen that will be utilized for O_3 formation. At high initial NO concentrations, the complete NO conversions requires higher energy densities, leaving less excess atomic oxygen for O_3 formation. That is the reason, O_3 is not observed for 250 and 300 ppm for all the catalysts.

Comparing the results at an energy density of 50 J/L, the highest concentration of N₂O is observed for the plasma-alone configuration. By order of N₂O formation at 50 J/L, the order of the performance of the various catalytic materials is as follows: plasma-alone > NaY > SiO₂ > TiO₂ > Al₂O₃. In the same manner, the order for O₃ formation is as follows: plasma-alone > NaY > TiO₂ > Al₂O₃ > SiO₂.

To summarize, the plasma-alone configuration showed better results for NO removal but at the cost of maximum by-products formation. The by-products formation can be reduced by applying an IPC configuration, but at the cost of higher energy requirements for the NO removal. For the IPC configurations tested, SiO₂ showed better results for both NO conversion and for reducing O₃ formation but produced higher N₂O concentrations. Al₂O₃ and TiO₂ showed optimum performance for NO removal with minimum by-products formation.

4.2.3 Post-plasma configuration

In this section, we have studied the effect of the input concentration on NO removal for a configuration where a catalytic reactor is positioned downstream of the plasma reactor: a so called post-plasma configuration (PPC). We have packed the catalytic reactor with TiO_2 , Al_2O_3 , zeolites (NaY) and SiO_2 . We have varied the input NO concentrations between 100 ppm and 250 ppm keeping all the other operational parameters constant. Under these conditions, we studied the effect on the NO removal and the formation of by-products as a function of the applied plasma energy density. The energy density was varied by varying the pulse repetition rate.

Figure 4.7 shows the effect of the NO input concentrations on the NO conversion as a function of the energy density. As can be seen, for input concentrations higher than 150 ppm, for none of the catalytic materials complete NO conversion could be achieved, even at high energy densities. The curves of all graphs seems to flatten at high energy densities, indicating that complete NO conversion is apparently not possible with the PPC configurations tested in this work.

Comparing the achieved conversions with the results of the IPC configuration as discussed in the previous section, significant difference can be observed between the performance of TiO₂ and Al₂O₃ for the PPC configuration as compared to the IPC configuration. For both materials, only 67% of NO conversion was achieved at an energy density of 48 J/L for the PPC configuration, while complete conversion was observed for the IPC configuration at approximately 60 J/L. On the contrary, NaY showed better NO conversion and lower NO₂ concentrations for the PPC configuration as compared to the IPC configuration. Also, SiO₂ showed better conversions up to 200 ppm of input concentration, as compared to the IPC results. But despite the better NO conversion, SiO₂ showed higher NO₂ concentrations which means higher NO_x concentrations.

The measured NO and NO₂ concentrations as a function of energy density for various NO input concentrations and for all the catalytic materials can be found in Appendix 7.6 in Fig. A.9. In general, the IPC configuration showed better performance with regard to NO conversion as compared to PPC. But on the other hand, the PPC configuration showed lower NO₂ concentrations and in turn lower NO_x concentrations than with the IPC configuration.

The effect of the input NO concentration on the by-products formation as a function of energy density for TiO_2 , Al_2O_3 , zeolites (NaY), SiO_2 is shown in Fig. 4.8. In general, less by-products are formed for the PPC configuration as compared to the IPC configuration. At a given energy density, there is not a notable difference in the concentration of N_2O for various

Figure 4.7 – NO conversion as a function of energy density for various NO input concentrations at a gas flow-rate of 5 slm for the PPC configuration.

NO input concentrations. N_2O concentrations mainly depend on the energy density, which is also the case for the IPC configuration. In comparison to the IPC configuration, the O_3 concentrations for the PPC configurations are nearly two time less. In the PPC configuration, the plasma and catalyst are separated from each other and there is no interaction between the plasma and the catalyst. The composition of the gas is modified in the plasma reactor and the outlet gas from the plasma reactor along with long lived species enter the catalytic reactor for further decomposition. From the plasma reactor, as seen in the plasma-alone configuration, we obtain higher NO₂ concentrations but when this gas with high NO₂ concentration is fed to the catalytic reactor in the PPC configuration, we observed less NO₂ concentrations which suggests that adsorption plays an important role in the PPC configuration.

To summarize, higher NO conversions are obtained with the plasma-alone configuration

but at the expense of high NO_x, N₂O and O₃ concentrations. On the other hand, the PPC configurations show exactly the opposite behaviour. The PPC configuration showed lower NO conversions but also less NO_x, N₂O and O₃ concentrations. The performance of the IPC configuration lies somewhere in between the performance of the plasma-alone and the PPC configurations. The IPC configuration showed higher NO conversions with moderate NO_x, N₂O and O₃ concentrations.

Figure 4.8 – By-products formation as a function of energy density for various NO input concentrations at a gas flow-rate of 5 slm for PPC configuration.

4.3 Effect of flow rate

Gas flow rate is an important parameter for the performance of the reactor as it varies the residence time. By varying the residence time, the decomposition rates of various pollutants can vary, which in turn can effect the removal efficiency and by-products formation. In

particular for a catalytic reactor, the pollutant molecule must spend a certain time in the reactor to interact with the catalytic surface and to obtain optimum conversion and lesser by-products formation. In this section, we have studied the effect of gas flow rate on NO_x removal and by-products formation by varying the gas flow rate from 3 slm to 6 slm for the three configurations: the plasma-alone, a IPC configuration and the PPC configuration. The applied flow rates of 3 slm, 4 slm, 5 slm and 6 slm correspond to the reactor residence times of 0.5 s, 0.375 s, 0.3 s and 0.25 s respectively. All the experiments were done at input NO concentration of 200 ppm.

4.3.1 Plasma-alone configuration

Figure 4.9 shows the effect of the gas flow rate on the NO conversion and on the NO_2 concentration for gas flow rates of 3 slm, 4 slm, 5 slm and 6 slm, for the plasma-alone configuration, and for an input NO concentration of 200 ppm. It can be observed from Fig. 4.9a that the NO conversion increases with increasing energy density for all the gas flow rates. Also the NO conversion slightly depends on the gas flow rate: at a certain energy density, the NO conversion slightly decreases with increasing the gas flow rate. The same trend was also observed by [26,96].

Figure 4.9 – NO conversion and NO₂ concentration as a function of energy density at various flow rates for the input NO concentration of 200 ppm and at ambient temperature for the plasma-alone configuration.

When the gas flow rate increases, the residence time in the reactor decreases. In other words, the time spent by a NO molecule in the reactor decreases. Increasing the residence time increases the probability of collisions between the electrons and the gas molecules will likely result in a higher generation of N and atomic oxygen at a given energy density. With more atomic oxygen and atomic nitrogen, the NO conversion increases according to

Figure 4.10 – By-products formation as a function of energy density at various flow rates for the input NO concentration of 200 ppm and at ambient temperature for the plasma-alone configuration.

Figure 4.11 – Energy cost per mol of NO removed and NO-removal yield as a function of energy density at various flow rates for the input NO concentration of 200 ppm and at ambient temperature for the plasma-alone configuration. The closed markers represent energy cost and the open markers represent NO-removal yield.

eq. 3.7. But on the other hand, also the formation of N_2O and O_3 increases according to equations. 3.8 and 3.9 .

Figure 4.9b shows that lower gas flow rates result in slightly higher NO_2 concentrations. For lower gas flow rates, a bit lower energy density is needed to obtain the same conversion rate as compared to a higher gas flow rate. As the NO is completely converted at low flow rates, the NO_2 , N_2O and O_3 concentrations are higher for low gas flow rates. The by-products formation as a function of energy density for various gas flow rates and for an input NO concentration of 200 ppm is shown in Fig. 4.10. With increasing energy density, the by-products formation increases as well for all the gas flow rates. The formed N₂O concentration increases nearly linearly with the applied energy density. The formation of O₃ at low energy densities is only observed for lower gas flow rates (3 slm), for other flow rates atleast 30 J/L is needed to have some O₃ formation. The concentration of O₃ is higher for lower gas flow rates. So lower gas flow rates result into higher concentrations of N₂O and O₃. As mentioned before, this might be due to the increased number of collisions between electrons and N₂ and O₂ molecules resulting in more atomic oxygen and atomic nitrogen which in turn affect the by-products formation. Thus, in summary, though the effects of flow rates are small, we observe that at low gas flow rate results in higher NO conversion and removal yields at lower energy densities but at the expense of increased by-products formation.

When considering the energy cost and the energy yield for NO removal for various gas flow rates, it can be observed from Fig. 4.11 that the energy cost decreases and that the energy yield increases with energy density for all the gas flow rates. With increasing gas flow rate, the energy cost per mol of NO removed increases and the NO removal yield decreases.

4.3.2 In-plasma configuration

The influence of the gas flow rate on the NO conversion and on the by-products formation as a function of energy density is studied in this section by packing the plasma reactor with the following catalytic materials: TiO_2 , Al_2O_3 , NaY and SiO_2 , such a configuration referred to as an in-plasma configuration (IPC). The effect of gas flow rate on the NO conversion for various flow rates on the NO conversion obtained with the IPC configuration for an input NO concentration of 200 ppm is shown in the Fig. 4.12. It can be observed that the NO conversion depends on the applied plasma energy density and to a much lesser extent on the gas flow rate. At higher energy densities, the NO conversions obtained with all the catalytic materials are almost the same for all the adjusted flow rates. At least up to a flow rate of 5 slm, the effect on the NO conversion is very small for all the catalytic materials, while for flow rates above 5 slm (i.e, at 6 slm), a bit lower NO conversions are observed.

When comparing the NO conversion obtained with the IPC configuration with the results for plasma-alone configuration, a slightly different trend can be observed. The plasmaalone configuration showed higher NO conversion rates at lower flow rates whereas for the IPC configuration, the NO conversion remained almost constant up to 5 slm and above 5 slm, the NO conversion starts to slightly decrease. A similar trend has been observed by [50, 51, 97, 98].

For conventional thermal catalysis, the conversions are strongly affected by the gas residence time whereas in the results on plasma-catalysis as obtained in this section, it is interesting to note that the NO conversion is not influenced significantly by the residence time at a given energy density. This is probably due to the strong dependance of the generation of radicals and atomic species on the applied plasma energy density. The higher the energy density the more generation of radicals and atomic species are generated. These radicals

Figure 4.12 – NO conversion as a function of energy density at various flow rates for the input NO concentration of 200 ppm and at ambient temperature for an in-plasma configuration.

and atomic species have a very short life time and quickly terminate. Consequently, the flow rate is expected not to have a strong effect on the conversion as long as the energy density is kept constant. The decrease of the NO conversion at the higher flow rate of 6 slm could be due to transport limitations of the catalytic reactions as mentioned in [97].

Thus, when we plot the NO conversion at a given energy density as a function of the flow rate as shown in Fig. 4.13, the NO conversion falls is almost constant up to a flow rate of 5 slm, while above 5 slm, the NO conversion drops.

Figure 4.13 summarizes the results of the NO conversion for various flow rates at an energy density of 20 J/L for all the catalytic materials that we have used in this part of the study and for the plasma-alone configuration. It is interesting to see that the NO conversion as a function of flow rate for SiO₂ closely follows the results for the plasma-alone configuration. This probably could be due to comparable energy constant values of SiO₂ with plasma-alone

Figure 4.13 – NO conversion as a function of the residence time for the input NO concentration of 200 ppm, at ambient temperature and at an energy density of 20 J/L for an IPC configuration which is packed with TiO_2 , Al_2O_3 , NaY and SiO_2 .

configuration as discussed in sec. 4.2.2.

The by-products formation as a function of energy density for various flow rates at an input concentration of 200 ppm for the IPC configuration is shown in Fig. 4.14. The N₂O and O₃ concentrations show a similar trend as that of the NO conversion as a function of energy density for various flow rates. The N₂O concentration increases with increasing energy density for all the flow rates. The difference in the N₂O concentration is less pronounced for flow rates from 3 slm to 5 slm, while at 6 slm, the difference is more pronounced. This could be due to the low NO conversion at 6 slm which is attributed to the transport limitations of the catalytic reactions. Low NO conversion means low NO₂ concentrations which will impact the N₂O concentrations, since they depend on the NO₂ and on the nitrogen radicals concentrations. The same explanation also holds for the O₃ concentrations as function of energy density for various flow rates.

4.3.3 Post-plasma configuration

This section describes the results for a post-plasma configuration (PPC) on the effect of the gas flow rate on the NO conversion and on the by-products formation as a function of energy density for gas flow rates of 3 slm, 4 slm, 5 slm and 6 slm. For this configuration, the catalytic reactor is packed with TiO₂, Al₂O₃, NaY and SiO₂ catalysts. The input NO concentration was maintained at 200 ppm for all the adjusted flow rates. The effect of the gas flow rate on the NO conversion for various flow rates for an input NO concentration of 200 ppm is shown in Fig. 4.15.

In Chapter 3 and in the previous section 4.2, we have seen that with the PPC configuration NO conversion rates can be realized up to maximum of 90% conversion. For the experiments

Figure 4.14 – By-products formation as a function of energy density at various flow rates for the input NO concentration of 200 ppm and at ambient temperature for an in-plasma configuration.

described in this section, conversions obtained at a flow rate below 3 slm are larger than 95% or all the catalytic materials. In conventional catalysis, usually, the conversion rate increases with increasing residence time and thus at lower flow rates. This behaviour can also be observed for the PPC configuration. As mentioned earlier, the NO conversion strongly depends on the plasma energy density. With increasing energy density the NO conversion increases for all the flow rates and for all the catalytic materials.

When comparing the results with the results obtained with the IPC configuration, at higher energy densities the conversions obtained with the IPC configuration were similar for all the catalytic materials and for all the flow rates. However, for the PPC configuration the results are different since NO conversions now do depend on the flow rate. The NO conversion decreases with increasing flow rate for all the catalytic materials. This behaviour is similar to the behaviour of the plasma-alone configuration. The NO conversions obtained

Figure 4.15 – NO conversion as a function of energy density at various flow rates for the input NO concentration of 200 ppm and at ambient temperature for the post-plasma configuration.

with the PPC configuration at higher energy densities for a flow rate of 6 slm for TiO_2 , Al_2O_3 , NaY and SiO_2 are 80%, 69%, 83%, and 81% respectively.

The by-products formation as a function of energy density for various flow rates at an input concentration of 200 ppm for the PPC configuration is shown in Fig. 4.16. In general, the PPC configuration showed slightly lower N_2O concentrations as compared to the IPC configuration at low gas flow rates. The N_2O and O_3 concentrations increase linearly with energy density for all the flow rates and for all the catalytic materials. The maximum N_2O concentrations for 3 slm of gas flow rate obtained by TiO₂, Al₂O₃, NaY and SiO₂ were 48 ppm, 67 ppm, 49 ppm and 65 ppm respectively. For the higher flow rate of 6 slm, these concentrations are 20 ppm, 20 ppm, 17 ppm and 36 ppm respectively. With increasing flow rate the N_2O concentration is observed to decrease for all the catalytic materials.

When looking to the O₃ concentrations, the PPC configuration showed almost no for-

Figure 4.16 – By-products formation as a function of energy density at various flow rates for the input NO concentration of 200 ppm for the post-plasma configuration.

mation of ozone, except when using the SiO₂ catalyst. Nevertheless, the O₃ concentrations produced with the SiO₂ catalyst in the PPC configuration is less than in the IPC configuration. So, clearly the O₃ formation is almost suppressed by the catalytic materials in the PPC configuration. This can be explained by the fact that the input gas to the PPC configuration is the output gas from the plasma reactor containing concentrations of NO₂, N₂O and O₃ along with long lived reactive species and intermediates. Ozone from the plasma reactor entering the catalytic reactor, might get adsorbed on the active site of the catalyst and gets decomposed into oxygen and an active O radical. This active oxygen decomposes into oxygen leaving the active site of the catalyst. The reaction pathways or the plausible mechanisms of O₃ decomposition on a catalytic surface are mentioned in [99, 100].

To summarize, for the PPC configuration, with increasing flow rate, the NO conversion decreases. This behaviour is similar to the behaviour of the plasma-alone configuration. On the contrary, the IPC configuration does not show significant dependence of the NO conversion on the flow rate, for flow rates up to $5 \, \text{slm}$. At $6 \, \text{slm}$ flow rate, lower NO

conversions are observed, probably due to the transport limitation of the catalytic reactions. The higher conversions at lower gas flow rates come at the expense of higher N_2O and O_3 concentrations. The catalytic materials in the PPC configuration managed to suppress the O_3 formation and thus no O_3 was observed at all the flow rates. By-products formation for the PPC configuration was significantly lower as compared to the IPC and the plasma-alone configuration for all the flow rates.

4.4 Effect of temperature

The performance of the NTP process can be influenced by temperature as it can change the reaction kinetics. It also changes gas density which in turn can effect the local reduced electric field value (E/N) [101]. There are very few NTP studies on the effect of temperature on NO_x removal and by-products formation [89, 102–109]. Harling et al. [102] studied the effect of temperature on NO_x removal and on the destruction of DCM using non-thermal, atmospheric plasma-assisted catalysis using TiO₂ and Al₂O₃ catalysts. They have observed that the NO_x generated by the plasma increases with temperature and that adding a catalyst showed a higher destruction of NO_x with both a single-stage (what we refer here as IPC) as well as a two-stage (referred here as PPC) configuration. Ravi et al. [103] studied the temperature effect on hydrocarbon enhanced nitric oxide conversion using a dielectric barrier discharge reactor, using ethylene, acetylene, n-hexane as additives. They have observed that with increasing temperature, the discharge power increases as well and attribute this effect to the increased ionization at higher temperatures. Their results show that adding ethylene and n-hexane results in higher NO removal efficiency and that the temperature has no effect. Whereas when adding acetylene, the performance improves performance only at higher temperature. Wang *et al.* [104] in their study on NO and SO_2 removal using dielectric barrier discharge plasma at different temperatures mentioned that the E/N increases with increasing temperature and that electronic excitations play an important role in NO removal. They also observed that with increasing in temperature the NO conversion decreases. Kim et al. [89] observed that the energy constant value decreases exponentially with increase in temperature. Unfortunately, in most of these references the by-products formation is not discussed.

In this section, we have studied the NO removal and the by-products formation by varying the temperature from 50 °C to 200 °C using both the in-plasma configuration (IPC) and the post-plasma configuration (PPC). Unfortunately, we have not performed the experiments with plasma-alone configuration in this section. We have used the following catalytic materials: TiO_2 , Al_2O_3 and NaY. The input NO concentration used in this part of the experiments is 200 ppm. The flow rate is maintained constant at 5 slm. The applied-peak voltage was kept constant at 16 kV and positive polarity pulses have been used. The pulse repetition rate was varied to vary the energy density. To study the effect of temperature, the reactor filled with catalytic materials is placed in a temperature-controlled oven which can be heated up to 400 °C. The input gas to the reactor can be preheated up to 200 °C in the gas mixing line before entering the reactor.

4.4.1 In-plasma configuration

In this section, we have studied the effect of temperature on the NO conversion and byproducts formation by varying the energy density for the IPC configuration. The plasma reactor is packed with TiO_2 , Al_2O_3 , and NaY. Figure 4.17 shows the effect of temperature on the NO conversion for TiO_2 , Al_2O_3 and NaY at energy density values of 20 J/L, 30 J/L and 40 J/L.

Figure 4.17 – NO conversion as a function of temperature at various energy densities for the input NO concentration of 200 ppm and gas flow rate of 5 slm for the in-plasma configuration.

It can be observed that, at 20 J/L, using TiO_2 showed a slightly higher NO conversion as compared to Al_2O_3 and NaY. While at 40 J/L, using Al_2O_3 performed better than TiO_2 and NaY. This difference between the various catalytic materials can also be observed in Fig. 4.18 where the energy constant is plotted as a function of temperature for TiO_2 , Al_2O_3 and NaY.

The strong temperature dependence when using TiO_2 might be due to the creation of more oxidative sites on the TiO_2 surface when exposed to plasma [110]. With more oxidative sites, the back formation of NO might have been facilitated through reactions 4.13 and 4.14. The better performance of Al_2O_3 as compared to TiO_2 and NaY at higher temperatures could be due to the limitation in the back-reduction of NO₂ to NO on the surface of Al_2O_3 as mentioned in [111].

We restate here the reactions mentioned in Chapter 3 along with their rate constants. In addition with reactions we consider, these reactions (reactions 4.8, 4.10, 4.13, 4.14) are important to understand the effect of temperature on NO conversion and by-products formation. All the reactions that we consider here are obtained from [112–115]. From Fig. 4.17 it can be seen that at all the energy densities, the NO conversion decreases with increasing temperature for all the catalytic materials. A similar trend has been observed by [104, 105]. NO is oxidized to NO₂ mainly through reactions 4.7 and 4.8. At higher temperatures, ozone is decomposed easily to oxygen and atomic oxygen through reaction 4.6. Thus apparently, reaction 4.7 is not important at higher temperatures. With increasing temperature, the rate of reaction 4.8 decreases and thus less NO conversions are observed. The effect of temperature depends on the nature of the pollutant, eventual additives and the catalysts used.

$$e + N_2 \rightarrow e + N + N, \quad k = 7.05 \text{ x } 10^{-10} \text{ cm}^3 \text{s}^{-1}$$
 (4.4)

$$e + O_2 \rightarrow e + O + O, \quad k = 1.434 \text{ x } 10^{-9} \text{ cm}^3 \text{s}^{-1}$$
 (4.5)

$$O + O_2 \rightarrow O_3$$
, $k = 6.9 \times 10^{-34} (T/300)^{-1.25} \text{ cm}^3 \text{s}^{-1}$ (4.6)

$$NO + O_3 \rightarrow NO_2 + O_2$$
, $k = 2.3 \times 10^{-12} exp(-1450/T) cm^3 s^{-1}$ (4.7)

$$NO + O \to NO_2$$
, $k = 2.44 \times 10^{-27} T^{-1.8} \text{ cm}^3 \text{s}^{-1}$ (4.8)

$$NO_2 + N \to N_2O + O, \quad k = 3.0 \times 10^{-12} \text{ cm}^3 \text{s}^{-1}$$
 (4.9)

$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
, $k = 1.2 \times 10^{-13} \exp(-2450/T) \text{ cm}^3 \text{s}^{-1}$ (4.10)

$$NO_2 + O + M \rightarrow NO_3 + M$$
, $k = 9.0 \times 10^{-32} \exp(T/300)^{-20} \text{ cm}^6 \text{s}^{-1}$ (4.11)

$$NO_2 + NO_3 + M \to N_2O_5 + M, \quad k = 2.7 \times 10^{-30} (T/300)^{-3.4} \text{ cm}^6 \text{s}^{-1}$$
 (4.12)

$$NO_2 + O \rightarrow NO + O_2$$
, $k = 1.7 \times 10^{-11} \exp(-300/T) \text{ cm}^3 \text{s}^{-1}$ (4.13)

$$N + O_2 \rightarrow NO + O, \quad k = 4.4 \times 10^{-12} \exp(-3220/T) \text{ cm}^3 \text{s}^{-1}$$
 (4.14)

 N_2O concentration as a function of energy density for various temperatures at an input NO concentration of 200 ppm at a gas flow rate of 5 slm is shown in Fig. 4.19. The N_2O concentration increases with increasing energy density for all the temperatures considered

Figure 4.18 – Comparision of the energy constant value as a function of temperature for TiO_2 , Al_2O_3 , and NaY in the IPC configuration for an input NO concentration of 200 ppm at a gas flow rate of 5 slm.

here. As already observed in this section, the NO conversion decreases with increasing temperature. The same trend is noticed for the N_2O formation. Despite of the back formation of NO at higher temperatures, NO₂ concentration increases with increase in temperature due to the higher reaction rate constants of reaction 4.5 as compared to the rate of reaction 4.4. Also the higher dissociation of O₃ at higher temperatures through reaction 4.6 will play a role. Thus, we expect at higher temperatures that most of the energy is used for producing more atomic oxygen than atomic nitrogen which leads to higher NO₂ concentrations and lower N₂O concentrations at higher temperatures. Thus, we observe lower N₂O concentrations with increase in temperature. As mentioned earlier, we have not considered ions in our reaction pathways although NO⁺, H₃O⁺ ions are major ions in air plasmas because the ion densities are relatively small and are not chemically active in the NO_x removal process [74].

When comparing the catalytic materials, TiO_2 produces lower N₂O concentrations as compared to Al₂O₃ and NaY at all temperatures. This probably could be due to the lower NO conversion and thus comparatively less NO₂ is available to get consumed by reaction 4.9 to produce N₂O. The lower NO conversion with TiO₂ is due to the increase in the oxidative sites when the TiO₂ is exposed to the plasma, thus facilitating the back formation of NO through reactions 4.13 and 4.14 as mentioned earlier. As the ozone decomposition increases with increasing temperature, we have not observed any ozone formation for the temperatures between 50 °C to 200 °C.

Figure 4.19 – N_2O concentration as a function of energy density for various temperatures for the input NO concentration of 200 ppm at gas flow rate of 5 slm for the in-plasma configuration.

4.4.2 Post-plasma configuration

We have studied the effect of temperature on the NO conversion and by-products formation by varying the plasma energy density. The catalytic reactor is packed with TiO₂, Al₂O₃, and NaY and is positioned downstream to the plasma reactor in a post-plasma configuration (PPC) arrangement. To study the effect of temperature, this catalytic reactor downstream to the plasma reactor is placed in a temperature-controlled oven which can be heated up to 400 °C. In this configuration, only the catalytic reactor was heated up to the desired temperature, the plasma reactor remained at room temperature.

Fig. 4.20 shows the effect of temperature on the NO conversion for TiO_2 , Al_2O_3 and NaY

Figure 4.20 – NO conversion as a function of temperature at various energy densities for the input NO concentration of 200 ppm and gas flow rate of 5 slm for the post-plasma configuration.

at energy density values of 20 J/L, 30 J/L and 40 J/L. It is observed that the NO conversion remains almost constant up to 50 °C for TiO₂ and NaY and up to 100 °C for Al₂O₃ at all the energy densities. TiO₂ performed better at the energy densities of 30 J/L and 40 J/L at all temperatures while NaY performed better at low energy density of 20 J/L. For all the catalytic materials, the maximum NO conversions are at 40 J/L and at 200 °C. The maximum conversion achieved by TiO₂, Al₂O₃ and NaY are 96%, 90% and 94% respectively.

Figure 4.20 shows that the NO conversion is a function of both the plasma energy density and the temperature. With increase in temperature, the NO conversion increases. This is opposite to what has been observed for the IPC configuration in the previous section. For the IPC configuration, NO conversion decreased with increase in temperature whereas in the PPC configuration the NO conversion remained constant up to a certain temperature depending on the material and starts to increase for higher temperatures. This behaviour is similar to the behaviour of the conventional selective catalytic reduction process of NO in dry conditions with additives [116–119].

Typically, all the catalytic materials showed distinct behaviour from 150 °C on which suggests that the catalytic material is activated thermally from this temperature. It is not clear from the available measurement data that if this increase in NO conversion further increases with increase in temperature at even higher temperatures beyond 200 °C. Nevertheless, the tendency of NO conversion is similar to that of the thermal catalysis. Also a similar temperature dependence has been observed for toluene and benzene destruction using NTP and catalysts [102, 120].

Figure 4.21 – N_2O concentration as a function of energy density for various temperatures for the input NO concentration of 200 ppm at gas flow rate of 5 slm for the post-plasma configuration.

We have studied the effect of temperature on N_2O concentration as a function of energy density for the PPC configuration. In the previous sections we have observed that the PPC configuration produced little or no ozone. At higher temperatures O_3 gets easily dissociated to O_2 and atomic oxygen. Thus, also in this section, no O_3 formation occurred at all the temperatures. The N_2O concentration as a function of energy density for various temperatures is shown in Fig. 4.21. It can be observed that the N_2O concentration for TiO₂, Al_2O_3 and NaY increases with increase in the energy density for all the temperatures that we have used in this part of the study. At low energy densities, no significant change is observed in the N_2O concentration for TiO₂, Al₂O₃ and NaY for all the temperatures. NaY showed higher N_2O concentrations as compared to TiO₂ and Al₂O₃. This might be due to the higher plasma energy density required by NaY to obtain maximum conversion. High energy densities leads to high N₂O concentrations because of the increased atomic nitrogen formation. Although the N₂O concentrations does not show a strong dependence of temperature in the PPC configuration, it can be observed that an increasing temperature leads to a slight reduction of the N₂O concentrations for TiO₂, Al₂O₃ and NaY. Therefore the PPC configuration performed better as compared to the IPC configuration showing high NO conversion and less by-products formation at higher temperatures.

4.5 Summary and conclusions

In this chapter, we have investigated the effect of operational parameters on NO_x removal using plasma-alone, in-plasma (IPC) and post-plasma (PPC) configurations. The operational parameters that we have studied here are the input NO concentration, flow rate and temperature. We have used the following catalytic materials: TiO₂, Al₂O₃, NaY and SiO₂ both in a IPC and a PPC configuration for all the parameters except in the study on the effect of temperature where we have not performed the experiments with plasma-alone configuration and also we have not used SiO₂ in both the IPC and the PPC configuration.

A summary of the effect of these parameters on the NO conversion and on the by-products formations is shown in the table 4.2. The '+'-symbol indicates a better performance (higher NO conversion and lower by-products formation) with an increase of the stated parameter, while the symbol '-'-indicates that the reactor configuration performs worse with an increase of the stated parameter, the symbol '+/-'-indicates that the performance may either increase or decrease and finally a 'o'-indicates that the system does not show any significant dependence on the parameter.

Effect of NO input concentration With increase in the input NO concentration all the three configurations showed lower NO conversion but on the other hand the by-products formation was lowered. Higher NO conversions are obtained with plasma-alone configuration but at the expense of high NO_x , N_2O and O_3 concentrations, while on the other hand the PPC configuration showed the opposite trend. The PPC configuration showed lower NO conversions but also less NO_x , N_2O and O_3 concentrations. The performance of the IPC configuration lies somewhere in between the plasma-alone and the PPC configurations.

	Plasma-alone			In-plasma			Post-plasma		
	NO	N ₂ O	O ₃	NO	N ₂ O	O ₃	NO	N ₂ O	O ₃
Concentration	-	+/-	+	-	+	+	-	+	+
Flow rate	+/-	+	+	+/-	+	+	-	+	+
Temperature				-	+	+	+	0	+

Table 4.2 – A summary of the effect of the operational parameters on NO conversion and byproducts formation. The symbols indicate that the reactor configuration performs better (+), worse (-), may either increase or decrease (+/-) and does not show any significant dependance (\circ) with an increase of the stated parameter.

The IPC configuration showed higher NO conversions with moderate NO_x , N_2O and O_3 concentrations.

Effect of flow rate With increasing flow rate, the NO conversion decrease for the plasmaalone and for the PPC configuration. The IPC configuration does not show significant dependance of the NO conversion with flow rate up to a 5 slm, while at 6 slm, lower NO conversions are observed. This probably could be due to transport limitations of the catalytic reactions. The higher conversions at lower gas flow rates comes with the expense of higher N₂O and O₃ concentrations. The catalytic materials in the PPC configuration managed to suppress the O₃ formation and thus no O₃ was observed at all the flow rates. Lower by-products formation was observed for the PPC configuration as compared to the IPC and the plasma-alone configuration for all the flow rates.

Effect of temperature With increasing temperature, the NO conversion decreases for the IPC configuration whereas the PPC configuration showed increasing NO conversions with increasing temperatures. No ozone was observed for the PPC configuration, while for the IPC configuration, above 50 °C no ozone formation has been observed. In both the configurations, N₂O concentrations slightly decreased with increasing temperature. Thus both the configurations performed better in terms of minimum by-products formation at higher temperatures. The PPC configuration showed the best performance results with respect to both NO conversion and N₂O concentration at higher temperatures.

Chapter 5

Screening of catalytic materials for NO_x removal

5.1 Introduction

In plasma-catalysis, the important task is to choose an appropriate catalyst. Choosing a proper catalyst in the case of a PPC configuration is rather straight forward. The plasma reactor converts the NO to NO_2 before passing on to the catalytic reactor. The role of the catalyst is then to decompose the ozone that is formed by the plasma and to adsorb or selectively reduce the NO_2 to N_2 . This role of the catalyst is comparable to the catalytic function for the conventional selective catalytic reduction (SCR) process after the plasma reactor has changed the gas composition. On the other hand, choosing an appropriate catalyst for a IPC configuration is more complicated as the catalytic material is placed inside the plasma reactor and the properties of the catalytic material such as size, shape, surface area, pore size, dielectric constant and many currently unknown parameters influence the performance of both the plasma and the pollutant removal. Thus, it is important to investigate whether the catalyst changes the discharge characteristics and vice-versa, if the plasma changes the physical and chemical characteristics of the catalyst for the IPC configuration.

Noble metals and transition metal-oxides have been found to be effective for ozone decomposition. When noble metals are used as a catalysts, it is reported that their catalytic activity decreases with time due to poisoning of the catalyst by adsorbed O atoms [121]. The metal-oxide catalysts are considered as an alternative to the noble metal catalysts as the activity of metal-oxide catalysts is higher compared to the metal catalysts [122]. In the case of transition metal oxides being used, it is reported that surface defects such as vacancies and dislocations alter the local oxygen bonding which turns out to be the active sites for the catalysts is presented in [123–126]. Transition metal oxides have been used

in combination with non-thermal plasma for NO_x and VOC removal by many researchers [48,99,100,127–132]. In this chapter, we have performed experiments with various metaloxides from the first transition period namely: NiO, MnO, CuO, Fe₃O₄, Co₃O₄ supported on TiO₂ and Al₂O₃.

Yamamoto et al. in their study on the transition metal oxide catalysts for diesel PM removal [133], have plotted catalytic oxidation rate as a function of formation enthalpy for various transition metal oxides. This plot suggested that the Fe₂O₃ has high catalytic oxidation rate at moderate formation enthalpy. Wojciechowska et al. in their study on the nitrogen oxides removal by catalytic materials [121] made an excellent review on the NO reduction using various catalytic materials and using various additives. They stated that the activity of the metal-oxides loaded on Al_2O_3 for NO reduction by CO is as follows: Fe > Cu > Cr > Ni > Co > Mn > V. From Sabatier's principle, for an optimum rate of reaction, the interaction between the adsorbates should neither be too weak nor too strong. There is a clear trend in the activation energy energies, heats of desorption and catalytic activity for this first transition period of elements that we have chosen. The activation energies of oxygen desorption from oxides showed a increasing trend along the first transition period while the heats of oxygen desorption shows a decreasing trend with the exception of Fe_2O_3 . On the other hand, the catalytic activity showed a decreasing trend along the period for oxidation of ammonia, ethylene, methane and other hydrocarbons as mentioned in [134]. Thus, it will be interesting to study how these materials perform when combined with plasma for NO_x removal.

Not much literature is available on a systematic study on the comparison between IPC and PPC configurations for these various catalytic materials for NO_x removal. Various studies state that the IPC configuration achieved better NO_x removal efficiencies whereas the PPC configuration showed lesser by-products formation.

In this chapter, we study the role of catalytic material in changing the plasma discharge characteristics by considering the voltage-current waveforms and by measuring the dielectric constants of these catalytic materials and to correlate the dielectric constant values with the discharge characteristics. We have studied NO_x removal by loading various metal oxides on TiO₂ and Al₂O₃ supports and by using them in a IPC and in a PPC combination with a pulsed DBD reactor. The metal-oxides that we have used in this study are NiO, MnO, CuO, Fe₃O₄, and Co₃O₄. To understand the effect of the support material, we have loaded 3% of these metal oxides both on TiO₂ and Al₂O₃ and compared the NO conversion, NO_x concentration and by-products formation for both supports using both the in-plasma configuration (IPC) and post-plasma configuration (PPC). Next, the effect of 3wt% and 5wt% of these metal oxides loaded on TiO₂ and Al₂O₃ for both the IPC and PPC.

The experimental setup, energy density measurements and gas measurements for these experiments are described in Chapter 2. The characteristics of all the catalytic materials was done and were mentioned in detail in Chapter 2. The particle size of all the catalytic materials used here is 1-2 mm. All the experiments were conducted with an input NO concentration of 200 ppm and a gas flow of 5 slm.

All the catalytic materials were pre-treated before conducting the experiments. The

reactor is filled with catalytic materials and then placed in a oven. The reactor is then heated up to 400 °C with a continuous flow of synthetic air at a flowrate of 1 slm. This pre-treatment was done to ensure that there is no adsorbed H₂O or CO₂ on the catalytic materials. All the experiments were performed for 3 times and are reproducible within +/- 5% error margin.

5.2 In-plasma catalytic configuration

5.2.1 Effect of catalytic support

In this section, we have performed experiments with 3wt% of NiO, MnO, CuO, Fe₃O₄, Co₃O₄ loaded on to TiO₂ and Al₂O₃ supports. These catalytic materials were placed inside the plasma reactor, as a IPC configuration. Figure 5.1a shows the effect of the various metal oxides loaded on TiO₂ on NO conversion. For all the catalytic materials, the NO conversion increases with increasing energy density. In case of TiO₂ substrate, the NO conversion is always higher using the plasma-alone configuration as compared to using the IPC configuration. The same trend was observed in the previous chapters and was also reported by other researchers [45, 75, 105].

Figure 5.1 – NO conversion for various metal-oxides loaded on TiO_2 and Al_2O_3 for an IPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm.

When looking at the various catalytic materials, at low energy densities, up to 30 J/L, Fe₃O₄ showed higher NO conversion whereas MnO and NiO showed poor conversion. CuO showed better NO conversion at lower energy density (up to 30 J/L) than at high energy density.

When the metal oxides are loaded on Al_2O_3 instead of TiO_2 , different NO conversion behaviour can be observed. NO conversion as a function of plasma energy density for various metal oxides loaded on Al_2O_3 is shown in Fig. 5.1b. 3% Fe₃O₄ showed higher

Figure 5.2 – NO_x concentration for various metal-oxides loaded on TiO_2 and Al_2O_3 for an IPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm.

NO conversion than plasma-alone and also than the IPC-TiO₂ configuration. And 3% NiO showed poor NO conversion when loaded on TiO₂ whereas when this NiO is loaded on Al₂O₃, the NO conversion is better.

Considering the NO_x concentrations as a function of the plasma energy density, as shown for TiO₂ in Fig. 5.2a, it can be observed that NO_x concentrations decrease with increasing energy density initially, while increasing again at high energy densities for metal oxides loaded on TiO₂. This increases in NO_x concentration at higher energy densities is attributed to the NO₂ concentrations that increase with increasing energy density. The plasma-alone and the MnO catalyst showed the highest NO_x concentrations. Low NO_x concentrations were obtained with Fe₃O₄ followed by Co₃O₄ and CuO.

Figure 5.3 – By-products formation as a function of energy density for various metal-oxides loaded on TiO₂ and Al₂O₃ for an IPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm. (a) N₂O concentration with metal oxides loaded on TiO₂ (b) N₂O concentration with metal oxides loaded on Al₂O₃ (c) O₃ concentration with metal oxides loaded on TiO₂ (d) O₃ concentration with metal oxides loaded on Al₂O₃.

So, MnO and NiO showed poor performance with respect to both NO and NO_x concentrations. Though the NiO catalyst loaded on TiO₂ performed poorly, the performance of this catalytic materials was enhanced significantly when loaded on to Al₂O₃ as seen in Fig. 5.3d. For metal-oxides loaded on Al₂O₃, NO_x concentration was observed to reduce with increasing energy density as seen in Fig. 5.3d. We have studied the NO_x concentrations only up to 60 J/L since all the catalytic materials showed above 95% NO conversion at this energy density. Further increase in energy density will be a mere waste of energy and also will show a further increase in the by-products formation. Fe₃O₄ showed low NO_x concentration the plasma-alone configuration is approximately 170 ppm whereas using the Fe₃O₄ catalyst resulted in only 55 ppm. So Fe₃O₄ showed more than 30% NO_x removal efficiency. CuO showed reasonably better NO conversion but poor NO_x concentrations.

Figure 5.4 – Voltage-current waveforms for plasma-alone, TiO_2 , metal oxides loaded on TiO_2 , Al_2O_3 and metal oxides loaded on TiO_2 at a frequency of 300 Hz for an input NO concentration of 200 ppm and for a gas flow-rate of 5 slm.

Figure 5.4 – Voltage-current waveforms for plasma-alone, TiO_2 , Al_2O_3 and metal oxides loaded on TiO_2 at a frequency of 300 Hz for an input NO concentration of 200 ppm and for a gas flow-rate of 5 slm.

The main purpose of combining the catalysts with the plasma reactor is to reduce the formation of by-products. In order to compare the performance of the various catalytic materials and the two support materials, we have plotted the N_2O and O_3 concentrations as a function of energy density and compared these results N₂O and O₃ concentrations as generated with the plasma-alone configuration. These results are shown in Fig. 5.3. It can be seen from Fig. 5.3a that using the MnO catalyst, results in significantly higher N₂O concentrations than for the plasma-alone configuration and also compared to the other catalytic materials. All the metal oxides loaded on TiO₂ result in higher N₂O concentrations as compared to the plasma-alone configuration, except for the CuO catalyst. The same behaviour is observed with metal oxides loaded on Al₂O₃, with the exception that CuO produced higher N₂O concentrations than the plasma-lone configuration. Despite its moderate performance with respect to NO conversion and NO_x concentration, NiO loaded on Al₂O₃ showed higher N_2O concentrations than any other metal oxide catalyst. The lower N_2O concentrations obtained with the plasma-alone configuration could be attributed to the higher concentrations of NO₂ which reacts with O_3 to form NO₃ and N_2O_5 . A N_2O_5 peak is observed in the FTIR spectrum with the plasma-alone configuration and not when using catalytic materials. We have not further discussed the N_2O_5 formation in this thesis as we have not calibrated the FTIR to quantify the N_2O_5 concentrations.

Another important by-product that is of our interest is O_3 . Almost all the catalytic materials showed no ozone formation whereas the plasma-alone configuration showed increasing O_3 concentrations with increasing energy density. Small concentrations of O_3 were observed with Fe₃O₄ on TiO₂ and with Fe₃O₄ and CuO on Al₂O₃ when the energy densities are above 45 J/L. But at such high energy densities, NO is already completely converted and thus O₃ appears.

Figure 5.5 – Voltage-current waveforms for metal oxides loaded on Al_2O_3 at a frequency of 300 Hz for an input NO concentration of 200 ppm and for a gas flow-rate of 5 slm.

To summarize, the plasma-alone configuration produced less N_2O compared to all the metal oxides loaded on both TiO₂ as well as on Al₂O₃. This is attributed to the formation of other by-products such as NO₃ and N₂O₅. On the other hand, O₃ formation showed a different trend. All the catalytic materials suppressed the formation of O₃.

We tried to understand the difference in the different performance of the various metal oxides loaded on either TiO₂ or Al₂O₃ substrates by comparing the voltage-current waveforms for all these configurations. Figure 5.4 shows the voltage and current waveforms for the plasma-alone, as well as for TiO₂, TiO₂ loaded with 3 wt% of NiO, MnO, CuO, Fe₃O₄, Co₃O₄ and fig. 5.5 shows the voltage and current waveforms for Al₂O₃ and Al₂O₃ loaded with 3 wt% of NiO, CuO, Fe₃O₄, Co₃O₄. For all the waveform, the pulse repetition rate was 300 Hz. The applied peak-voltage, the input NO concentration and operational conditions

were kept constant for all the materials.

For the plasma-alone configuration, the current waveform show intense spikes which means, as expected for a DBD configuration, intense microdischarge activity. When a catalytic material is introduced inside the plasma reactor, the current waveform and thus the discharge activity is changed significantly. When Al_2O_3 is placed inside the reactor, the current waveform shows microdischarge activity but with slightly lower magnitude as compared to the plasma-alone reactor. Similarly when the plasma reactor is packed with TiO₂, the current waveform shows much less microdischarge activity. These differences in microdischarge activity can be explained by the different capacitances due to the different dielectric constants of the two materials. For the plasma-alone reactor, the capacitance of the reactor is low, resulting in a higher discharge current and more discharge activity. When the catalytic material is placed inside the reactor, the capacitance of the reactor is increased and consequently the current magnitude reduces. Of the two materials, TiO₂ has the highest dielectric constant and thus the highest capacitance. Due to the higher dielectric constant the electric field in the air cavities around the catalyst enhances, eventually leading to more discharges on the surface of the catalytic material [135–137].

When the metal oxides are loaded on the TiO_2 support, the discharge activity is slightly less intense which could be correlated again to their dielectric constants. In Chapter 2, we have derived values for the dielectric constant for the various catalytic materials. When TiO_2 is loaded with metal oxides, the dielectric constant is decreased, thus producing reasonably higher microdischarge activity as compared to TiO_2 with out metal oxides.

The positive and negative half cycle of the voltage-current waveform are fairly different from each other and this difference depends on the catalytic material. When using Fe_3O_4 and NiO on Al_2O_3 support, intense spikes are observed on the current waveforms, which could be related to increased microdischarge activity. The peak current for both of these materials is higher as compared to the other catalytic materials that we have used in our study. This increase in microdischarge activity might have led to the increased conversions obtained with these materials. In order of NO conversion rate, Fe_3O_4 loaded on Al_2O_3 showed highest NO conversion followed by NiO and CuO on Al_2O_3 . The increased peak currents and microdischarge activity when metal oxides are loaded on Al_2O_3 are expected to be the main reason for the increased NO conversion. Other parameters of the catalytic material such as particle size, shape, surface roughness, conductivity might affect the conversion efficiency as well. For all the experiments, we have used catalytic materials with particle size 1-2 mm and thus the different performance of the various materials cannot be attributed to the effect of particle size. The plasma development along the surface of these catalytic materials is studied using ICCD imaging in the Appendix 7.6.

5.2.2 Effect of wt% of metal-oxide loading

To study the effect of metal oxide loading, TiO_2 was loaded with 3 wt% and 5 wt% of CuO, Fe_3O_4 and Co_3O_4 . Figure 5.6 shows the effect of metal oxide loading on NO conversion and NO_x concentration as a function of energy density. When increasing the wt% of metal oxide loading on TiO_2 , the NO conversions increase notably. There is also a significant

difference in the NO_x concentration. Loading a metal oxide on the TiO₂ always results in lower NO_x concentrations as for TiO₂ alone, except for Fe₃O₄. For this catalyst, 5% Fe₃O₄ results in higher NO_x concentrations as compared to 3% Fe₃O₄. On the contrary, for CuO, 5% CuO showed much lesser NO_x concentrations as compared to 3% CuO. No significant difference was observed for Co₃O₄. To conclude, increasing the metal oxide loading on the TiO₂ support results in increased conversion of NO.

Figure 5.6 – NO conversion and NO_x concentrations for various metal-oxides loaded on TiO_2 for an IPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm.

 N_2O formation as a function of energy densities for the various metal oxide loadings is shown in Fig. 5.7. With increasing energy density, the N_2O concentration increases for all the metal oxide loadings. When increasing the metal oxide loading on the TiO₂, the N_2O concentration shows a considerable difference at higher energy densities. A higher metal oxide loading results in higher N_2O concentrations at higher energy densities. While at low energy densities, up to 25 J/L, the metal oxide loading has no significant effect on the N_2O concentration. Loading of 5% and 3% of Fe₃O₄ on TiO₂ results in similar N_2O concentrations. This might be due to the presence of higher concentrations of NO_2 , which reacts with atomic nitrogen to form N_2O . Higher NO_2 concentrations leads to higher N_2O concentrations.

When looking at the O_3 formation, higher metal oxide loadings completely suppressed the O_3 formation even at high energy densities. No O_3 has been observed.

To conclude, the CuO catalyst with 5% loading on TiO_2 performed better, for both the NO_x removal as well as with low by-products formation.

With increase in metal oxide loading both the physical properties and the electrical properties of the catalytic material may change. The change in physical properties is related to the increase in the active sites of the materials. Varying the metal oxide loading may also vary the discharge activity. The V-I waveforms for 3% metal oxide loading and 5%

Figure 5.7 – N₂O concentration as a function of energy density for various wt% of metal-oxides loaded on TiO₂ for an IPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm.

metal oxide loading on TiO_2 are shown in Fig. 5.8. The voltage waveforms do not show any significant difference and the input peak-voltage for all the materials is same. However, some interesting observation can be made from the current waveforms. With increasing metal oxide loading, the number of spikes in the current waveform increase, indicating an increase in microdischarges. This increase in microdischarges may lead to increased reactive species production since more energy is deposited in the discharge. With increased reactive species production, the conversions and by-products formation will also be different. Thus we obtain an increase of the NO conversion with increased metal oxide loading, but at the expense of higher N₂O formation.

The observed differences in discharge current, and thus in discharge behaviour, might be due to the difference in the dielectric constant for the various metal-oxide loading concentrations. In Chapter 2, we have discussed the difference in the dielectric constants with increased metal oxide loading. With increasing dielectric constant, the local electric field strength between the catalytic pellets increases, which apparently effects the NO conversions. With different metal oxide loading, the intensity of plasma varies and the observations of this variation in plasma discharges after placing the catalytic materials in the plasma reactor will be presented in Chapter 7.6.

Figure 5.8 – Voltage-current waveforms for 5% metal oxides loading on TiO_2 at a frequency of 300 Hz for an input NO concentration of 200 ppm and for a gas flow-rate of 5 slm.

5.3 Post-plasma catalytic configuration

5.3.1 Effect of catalytic support

In this section, we have studied the effect of the metal oxide loading when supporting the metal-oxide catalyst by either TiO_2 or by Al_2O_3 , by performing experiments with 3wt% of NiO, MnO, CuO, Fe₃O₄, Co₃O₄ loaded on to the two support materials and when using a PPC configuration. Figure 5.9 shows the effect of various metal oxides loaded on TiO_2 (Fig. 5.9a) and Al_2O_3 (Fig. 5.9b) on NO conversion.

From the Fig. 5.9a, it can be seen that the NO conversion is notably higher for the plasma-

alone configuration than for a PPC configuration with metal oxides loaded on TiO_2 . Even at higher energy densities, the catalytic materials were not able to realize NO conversion above 90% with PPC configuration. While in comparison, with the IPC configuration as shown in the previous section, all the materials achieved more than 90% NO conversion for energy densities above 50 J/L. However, for the PPC configuration, MnO showed moderate NO conversion whereas CuO showed poor conversion in comparison with the results for these materials for the IPC configuration. There was not a significant difference in NO conversion between the IPC and the PPC configurations for the material MnO, Fe_3O_4 and Co_3O_4 .

Figure 5.9 – NO conversion as a function of energy density for various metal-oxides loaded on TiO_2 and Al_2O_3 in the PPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm.

The metal oxides loaded on Al_2O_3 showed better conversions than the metal oxides loaded on TiO_2 as can be observed in Fig. 5.9b. Comparing these results with the results obtained with the IPC configuration in the previous section, with the catalytic materials applied in the PPC configuration, lower NO conversions are obtained as with the plasmaalone configuration. For the PPC configuration, CuO showed better NO conversion compared to all the other catalytic materials whereas Co_3O_4 obtained low NO conversion.

The order of NO conversions obtained with metal oxides loaded on TiO₂ is plasma-alone > TiO₂ > MnO \cong Fe₃O₄ \cong Co₃O₄ > CuO. In a same way, the order of NO conversion obtained with metal oxides loaded on Al₂O₃ is plasma alone > CuO \cong Al₂O₃ > Fe₃O₄ > NiO \cong Co₃O₄. MnO showed better conversions in the PPC configuration than in the IPC configuration. Huang *et al.* also observed higher conversions and lower O₃ concentrations with MnO in the PPC configuration compared to the IPC configuration [138].

With increasing energy density, NO_x concentrations started to reduce for all the catalytic materials. Applying catalytic materials always results in much lower NO_x concentrations in PPC configuration as compared to the plasma-alone configuration. However, the IPC configuration as described in the previous section, results in substantially lower NO_x con-

Figure 5.10 – NO_x concentration for various metal-oxides loaded on TiO₂ and Al₂O₃ for the PPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm.

Figure 5.11 – N_2O concentration as a function of energy density for various metal-oxides loaded on TiO₂ and Al₂O₃ for the PPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm.

centrations than the PPC configurations. Metal oxides loaded on Al_2O_3 showed significantly lower NO_x concentrations as compared to loading the metal oxides on TiO₂. MnO and NiO showed higher NO_x concentrations when loaded on TiO₂ both for the IPC and the PPC configuration whereas NiO loaded on Al_2O_3 provided much less NO_x concentrations. Fe₃O₄ showed low NO_x concentrations both for TiO₂ and Al_2O_3 supports. Finally, Co₃O₄ also obtained lower NO_x concentrations both on TiO₂ and Al_2O_3 supports despite of its poor performance with regard to NO conversion.

The by-products formation as a function of energy density for metal oxides loaded on TiO_2 and Al_2O_3 is shown in Fig. 5.11. We do not show the O_3 concentrations because we have not observed O_3 concentrations for all the metal oxides in the PPC configuration. Therefore we show and discuss only the N_2O concentrations. It can be observed that with increasing energy density, the N_2O concentrations increase in a similar way as for the plasma-alone and for the IPC configuration. Thus, the N_2O formation is a strong function of the plasma energy density. In general, metal oxides loaded on Al_2O_3 result in slightly higher N_2O concentrations as compared to loading metal oxides on TiO_2 . This is reasonable because, metal oxides loaded on Al_2O_3 obtained higher NO conversions than metal oxides loaded on TiO_2 for the given energy density.

CuO loaded on TiO₂ showed low N₂O concentrations both with IPC and PPC configurations. The result of this lower N₂O concentrations might be because of lower NO₂ concentration, while NO₂ is required to react with nitrogen radicals to form N₂O. Apart from CuO, the other metal oxides on TiO₂ did not show significant effect on the N₂O formation. A similar effect is observed with metal oxides loaded on Al₂O₃. There is also not a significant difference in N₂O formation between the different metal oxides loaded on Al₂O₃. Overall, the PPC configuration showed lower conversions as compared to the IPC configuration, but resulted in lower by-product formation.

5.3.2 Effect of wt% of metal-oxide loading

In this section, we have studied the effect of metal oxide loading on the NO_x removal and by-products formation by loading 3wt% and 5wt% of CuO, Fe₃O₄ and Co₃O₄ on TiO₂. The effect of metal loading on NO conversion and NO_x concentration as a function of energy density is shown in Fig. 5.16. It can be observed that with increase in metal loading higher NO conversions and lower NO_x concentrations were obtained. The NO conversion is moderately increased by increasing the metal oxide loading of Fe₃O₄ while CuO and Co₃O₄ showed significant difference.

The increase in NO conversion for the PPC configuration could be due to the increase in surface area with increasing metal oxide loading. Fe_3O_4 and CuO showed considerably lower NO_x concentrations with increasing metal oxide loading while moderately less concentrations were observed with Co_3O_4 . In general, increasing the metal oxide loading led to higher conversions in both IPC and PPC configurations.

As O_3 formation is completely suppressed in the PPC configuration, we only looked at the N_2O concentration to study the by-products formation. The N_2O concentration as a function of energy density for various metal oxide loadings on TiO₂ is shown in Fig. 5.13. With increase in metal oxide loading, the N_2O concentration increased with energy density for all the metal oxides. Thus the increase of NO conversions and the reduced NO_x concentrations with an increase in metal oxide loading, comes at the expense of increased by-products formation. The N_2O concentrations produced with 5% Fe₃O₄ in PPC configuration is comparable to the performance of the 5% Fe₃O₄ loading in the IPC configuration. This is striking, because, the main advantage of using the PPC configuration is the reduced by-

Figure 5.12 – NO conversion for various metal-oxides loaded on TiO_2 for PPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm.

Figure 5.13 – N₂O concentration as a function of energy density for various wt% of metal-oxides loaded on TiO₂ for PPC configuration for an input NO concentration of 200 ppm and at a flow-rate of 5 slm.

products formation. Increasing the metal oxide loading seems to curb this advantage of the PPC configuration.

5.4 Conclusions

DBDs are widely used for VOCs and NO_x removal. Two main arrangements are generally proposed in the literature to combine a plasma reactor with a catalytic reactor: an in-plasma

catalytic configuration (IPC), and a post-plasma catalytic configuration (PPC). In both of these configurations, different catalysts such as NaY, noble metals and transition metal oxides supported on TiO_2 and on Al_2O_3 have been tested. Transition metal oxides were preferred over noble metal metals for economic reason.

Figure 5.14 – Comparison of the performance of various metal-oxides loaded on TiO_2 and Al_2O_3 for an IPC configuration for an input NO concentration of 200 ppm, at a flow-rate of 5 slm and for the energy density of 50 J/L.

In this chapter, we have studied NO_x removal by loading various metal oxides on TiO_2 and on Al_2O_3 using a pulsed DBD reactor. The metal-oxides that we have used in this study are NiO, MnO_x , CuO, Fe₃O₄, Co₃O₄. To understand the effect of support material, we have loaded 3% of these metal oxides both on TiO_2 and Al_2O_3 and compared the NO conversion, NO_x concentration and by-products formation using both the in-plasma configuration (IPC) and post-plasma configuration (PPC). Also the effect is studied on the amount of metal-oxide loading on both support materials, where we have compared the performance of 3wt% and 5wt% of these metal oxides loaded on TiO_2 and Al_2O_3 for both the IPC and PPC. We studied the role of catalytic material in changing the plasma discharge characteristics by looking into the voltage-current waveforms and measuring the dielectric constants of these materials to correlate them to the discharge characteristics.

A comparison of the performance of various metal oxides loaded on TiO_2 and on Al_2O_3 with respect to NO conversion, NO_x concentration and N_2O concentrations at an energy density of 50 J/L for an IPC and for the PPC configuration is given in Fig. 5.14 and Fig. 5.15 respectively. In general, the metal oxides loaded on Al_2O_3 performed well for both the IPC and PPC configuration. The increase in performance of Al_2O_3 and metal oxides supported on Al_2O_3 for the IPC configuration might be due to the formation of more

Figure 5.15 – Comparison of the performance of various metal-oxides loaded on TiO_2 and Al_2O_3 for the PPC configuration for an input NO concentration of 200 ppm, at a flow-rate of 5 slm and for the energy density of 50 J/L.

intense microdischarges, as has been observed in the current waveforms. These more intense microdischarges might be related to the higher dielectric constants: the higher the dielectric constant, the less intense the current waveform and thus the related plasma.

Comparison of the performance of various amounts of metal oxide loading on TiO_2 with respect to NO conversion, NO_x concentration and N_2O concentrations at an energy density of 40 J/L is given in Fig. 5.16. Higher metal oxide loading showed higher conversion but at the expense of higher by-products formation. 5% CuO/TiO₂ showed the most optimum performance for both the IPC and the PPC configuration. With increase in metal oxide loading, the surface area increases and thus improved conversions can be expected.

Figure 5.16 – Comparison of the performance of various metal-oxides loading on TiO_2 for an input NO concentration of 200 ppm, at a flow-rate of 5 slm and for the energy density of 40 J/L. (a) IPC-configuration (b) PPC-configuration.

Chapter 6

SDBD REACTOR FOR ON-DEMAND AIR PURIFICATION

6.1 Introduction

Although the main focus of our work is on understanding DBDs for air purification applications, we have also developed an Surface-dielectric-barrier-discharge (SDBD) reactor for on-demand air purification as a part of Environmental Sensors for Energy Efficiency (ESEE) project funded by EU. SDBDs have become popular recently due to their wide range of applications such as ozone generation, surface treatments and air-pollutants removal [139–145]. An important advantage of SDBD plasma is that only relatively low high-voltage pulses (< 10 kV) are needed to generate the plasma [139]. They are effective in removing a wide range of pollutants. Non-thermal plasma is generated as a thin plasma layer along a dielectric surface at room temperature and atmospheric pressure. Despite the fact that the generation of homogenous plasma is relatively simple, the challenge lies in scaling-up of SDBD reactors.

In this chapter, we have developed a modular plasma-catalytic surface-dielectric-barrierdischarge (SDBD) reactor to handle large flows and which can be scaled-up and scaled-down easily. A SDBD power modulator was developed to generate 7-kV high-voltage pulses with microsecond duration that can power two SDBD-reactor plates at a maximum of 5 kHz pulse repetition rate. The developed reactor can accommodate up to 20 SDBD plates and thus 10 such SDBD driver units are needed to power these SDBD plates and to treat larger flows.

In this study, we have used three SDBD drivers connected in parallel to 6 SDBD plates. The applied power can be controlled by means of the adjustable pulse-repetition rate. The electrical and the chemical characterization of this developed SDBD reactor will both be discussed in detail in this chapter. The operational efficiency of the developed SDBD has been investigated by studying the removal of NO_x and ethylene. The removal efficiency of

 NO_x and ethylene are determined as a function of energy density and operational parameters such as initial concentration and gas flow rate. Finally, we combined the SDBD plasma reactor with catalyst by placing the Al_2O_3 plates without TiO₂ coating and with TiO₂ coating alternatively to the SDBD plates in a parallel arrangement.

6.2 Experimental setup

The schematic representation of the experimental setup used to study the SDBD reactor performance can be found in Fig. 6.1. The flow of gas was controlled by using Bronkhorst mass flow controllers. The gas used in the experiments discussed in this chapter consists of a mixture of NO in N₂ (10000 ppm of NO in N₂ base), C_2H_4 in N₂ (1000 ppm of C_2H_4 in N₂ base) and synthetic air. Synthetic air (less than 3 ppm of H₂O content) is used to dilute NO and C_2H_4 to get the desired input concentrations. The gas mixture is dosed at room temperature and at atmospheric pressure.

Figure 6.1 – Schematic representation of the experimental set-up using SDBD reactor.

The treated gas from the SDBD reactor was sampled out to a Fourier Transform Infrared Spectrometer (FTIR, BRUKER Tensor 27) with a 20-cm optical path gas cell to measure the exit gas concentration. The resulting spectra from the FTIR are used to calculate the varying concentrations of NO, NO₂, O₃, N₂O,C₂H₄, CO and CO₂. Ozone concentrations were measured with a UV-absorption spectrometer. For UV absorption measurements, we have used a 11-mm optical path cell and the optic fibers connect this path cell with the UV source and the spectrometer. We have used Micropack D-2000 as UV source and Ocean Optics

HR2000 spectrometer. A pulsed-power SDBD modulator is used to produce the discharges. Pulse repetition rate was varied from 0-300 Hz to vary the energy density. We have explained in Chapter 2 about the gas compositions and the formulas that we have used to calculate the conversions and selectivities. All the experiments in this chapter were performed for 6 times and are reproducible within +/-5% error margin.

The SDBD plasma-catalytic reactor consists mainly of two components: 1. Electrode plates and 2. catalytic plates. The detailed description of the design of the electrode plate and the synthesis of the catalytic plate are found in the following sections.

6.2.1 Design of SDBD plate

The electrode plate, from here on is referred as the SDBD plate. The SDBD plate consists of a thin ceramic dielectric plate plated with copper strip electrodes on both the sides. The layout of the copper electrode strips on the ceramic plate is shown in Fig. 6.2. In our research, alumina is used as a dielectric plate and the metallic strips are copper coated with gold to avoid corrosion when the plasma is ignited. The dimensions of the ceramic plate are $150 \times 100 \times 1$ mm. These tracks of copper strips are produced by pcb-production technique as shown in Fig. 6.3a. The copper strips have a width of 2.3 mm and the distance between the tracks is 2.5 mm. The distance between the top edge of the dielectric plate to the copper strip is 11.5 mm and from the side edge is 10 mm. Each side of the plate consists of 16 parallel copper strips. At one side of a plate, all electrode strips are connected to the high voltage and all strips at the other side are grounded. When high-voltage (up to several kV) is applied to the metal strips, discharges initiates from the electrode along the dielectric surface of the plate. Plasma is generated on both sides of the planar SDBD plate as shown in Fig. 6.3b. These SDBD plates were manufactured for us by Accent PCB Nederland B.V. An extensive optical characterization study on this SDBD plates can be found in [146].

6.2.2 Synthesizing the catalyst plate

In a reactor, dielectric plates coated with a catalytic material can be positioned in parallel to SDBD plates. An example of a possible combination is shown in Fig. 6.4. The catalyst plate was made by depositing TiO_2 on a ceramic plate (Al₂O₃) with the dimensions similar to that of the SDBD plate. This deposition of TiO_2 as a thin film was made by means of a chemical deposition method. The deposition method used is the sol-gel technique where the ceramic plates were dip coated in the sol-gel [147].

6.2.2.1 Synthesizing TiO₂ thin films by sol-gel method:

A thin film of TiO_2 was deposited on the ceramic plate by sol-gel method in the following steps.

Figure 6.2 – SDBD plate with copper metal electrodes with gold deposited on the top of copper strips. Green tracks represent the front side tracks while the red tracks represent the back side tracks

(a) Plasma-off

(b) Plasma-on

Figure 6.3 – SDBD-plate with copper tracks coated with gold to avoid corrosion. The dimensions of the SDBD plate are $150 \times 100 \times 1$ mm. (a): with-out plasma and (b) with plasma-on at 7-kV applied voltage.

Step 1: For the deposition of TiO_2 thin film, the ceramic plates were initially cleaned with distilled water and acetone and then dried in the oven at $100^{0}C$ to ensure that the surface is very clean with out any impurities.

Figure 6.4 – Planar arrangement of catalytic plates in parallel to a SDBD plate. The air flow is along the surface of all the plates.

- Step 2: Titanium (IV) tetraisopropoxide (1.77 g) is hydrolyzed with deionized water (100 ml). An ultrasonic bath was used for effective stirring up to 20 min at room temperature.
- Step 3: The resulting titanium hydroxide precipitate is separated by centrifugation. The procedure is repeated until the alcohol generated during hydrolysis of titanium alkoxide is completely removed (at least 2 times).
- Step 4: The precipitate is then dissolved in 20 ml of aqueous hydrogen peroxide (15%) to get a transparent orange sol of titanium peroxo complex and then diluted with water, after dilution the color of the sol changes from orange to yellow.
- Step 5: Poly(ethylene glycol) (PEG400) was added in order to control morphology of deposited film.
- Step 6: After mixing, the sol should be aged for 5-24 h to form a gel.
- Step 7: The viscous Ti-peroxo complex gel is used for dip coating. For that, a cleaned Al_2O_3 substrate is dipped into the TiO₂ gel and slowly and evenly pulled out of the gel at a uniform rate 1 mm per second. A very thin film of TiO₂ is formed on the substrate and is first dried in air at room temperature followed by drying at 100 °C for 2 hours in an electric oven. The films formed are further heated at 400 °C for 1 hour in an electric furnace in air.
- Step 8: The remaining gel, which has not been used for dip coating is dried and calcined for XRD and TGA. The XRD and TGA data has been presented in the Appendix. 7.6 in the Fig. A.11 and A.10 respectively. The XRD reveals that the TiO_2 is 43% rutile and 57% anatase.

The thickness of the TiO_2 layer depends on the ageing time of the TiO_2 sol. We have dip coated the ceramic plate after 6 hours which lead to a thickness of 34 nm and after 24 hours to get a thickness of 60 nm. TiO_2 coated ceramic plates were characterized by scanning electron microscopy (SEM) to determine the uniformity of coating and to check for the thickness of the coated layer. The SEM images for both 34 nm and 60 nm of TiO₂ coated plates are shown in Fig. 6.5 and 6.6 respectively. The top view of the SEM images in Fig. 6.5a and 6.6a shows that the coating of the TiO₂ layer is uniformly covered on the Al_2O_3 plates.

Figure 6.5 – SEM images of ceramic plate coated with a 34 nm thin layer of TiO_2 using the sol-gel dip coating technique. (a) is the top view and (b) is the cross-sectional view.

Figure 6.6 – SEM images of ceramic plate coated with a 60 nm thin layer of TiO_2 using the sol-gel dip coating technique. (a) is the top view and (b) is the cross-sectional view.

6.2.2.2 Design of SDBD plasma-catalytic reactor

The overview of the SDBD reactor is shown in Fig. 6.7. The SDBD plasma-catalytic reactor consists of a casing, having a rectangular section in the middle which is connected to conical input and output loft structures. The length, width and height of the reactor is approximately 470 mm, 118 mm and 109 mm respectively. The rectangular cross-section area of the reactor is provided with grooves of 1.2 mm width at the top and bottom to place the SDBD and the catalyst plates. This design can accommodate up to 20 plates in total. The reactor is constructed with 7 mm thickness of Teflon walls (except on the top of the reactor. This is to avoid short-circuiting issues) around which 1 mm thickness of stainless steel casing is made to give more stability and rigidity. To have a optical view of the plasma, the top of the reactor holds a Polymethyl methacrylate (PMMA) window. High voltage connections to the SDBD plates was realized by a metallic finger-type interface in which the SDBD plates can be inserted. The inlet and outlet gas connections has a diameter of 50 mm which makes it easy to handle large amount of flows up to 100 litres per minute. The loft diameter can be reduced with different reducers to accommodate a variable flow. The lofts at the inlet and outlet can be easily detachable to change or replace the SDBD and catalyst plates. There is a provision to place filters such as activated carbon for the gas to flow through before being exposed to the SDBD and the catalyst plates if the gas stream contains particulate matter.

Figure 6.7 – Overview of the SDBD reactor.

6.3 Electrical characterization

6.3.1 Power modulator Topolgy

A photograph of the SDBD pulsed power modulator is shown in Fig. 6.8 and the detailed description of the solid-state pulse modulator to generate SDBD plasma is mentioned in [148]. A single SDBD modulator is able to generate pulse voltage up to 7-kV with a rise time of approximately $2\mu s$. The pulse voltage of 7 kV is limited by the capacitance of the SDBD modulator. A single SDBD modulator can power up to 2 SDBD-plates with dimensions of 100 x 150 mm when connected in parallel.

Figure 6.8 – Photograph of a single pulsed-SDBD power modulator which was used to power the electrode-plate.

6.3.2 Modulator specifications

Homogeneous plasma was observed visually when the power modulator was powered by a DC voltage above 200 V. When this power modulator was powered by a DC-voltage between 200-260 V, it is able to generate a high-voltage output pulse over the electrode plate ranging from 5.9 to 7.1 kV. With the change in the DC input-voltage, the energy-per-pulse can be adjusted from 0.8 to 20 mJ. This change in the reactor peak voltage and the energy-per-pulse can be seen in Fig. 6.10. The typical voltage-cuurent waveform and energy per pulse of the pulsed SDBD modulator is shown in Fig. 6.9. The output power to the reactor can be varied up to 120 W. Based on the maximum 120 W output power and with practically

minimum 1 slm volumetric flow rate, a maximum applicable energy density of approximately 120 J/L can be obtained. This data was collected with three pulsed-SDBD power modulators connected in parallel to 6 electrode-plates with an air flow of 10 slm. The pulse repetition rate can be varied from 0-5 kHz.

Figure 6.9 – Typical voltage-current waveform and energy per pulse of the pulsed SDBD modulator.

6.4 Chemical characterization

To check the performance of this SDBD reactor, experiments were conducted for NO and VOC removal at various initial concentrations and various flow-rates. We have used ethylene as model compound for the VOC. NO and ethylene removal efficiency and the by-products formation as a function of energy density has been studied for reactor configuration having only 6 SDBD plates and also 7 Al₂O₃ plates and TiO₂ coated on alumina plates placed in between and parallel to the 6 SDBD plates.

6.4.1 NO removal in the pulsed-SDBD reactor

In this section, we present results on NO removal with the SDBD reactor at various initial concentrations and various flow-rates. We have used 1% of NO in N_2 gas and diluted this with synthetic air to get the desired concentrations. All the experiments were conducted at atmospheric conditions. We have studied the NO removal efficiency and by-products formation as a function of energy density.

Figure 6.10 – Reactor-peak-voltage and the energy-per-pulse as a function of the DC-supplyvoltage for the three pulsed-SDBD power modulators in parallel to the 6 electrode-plates with an air flow of 10 slm.

6.4.1.1 Effect of NO input concentrations

Figure 6.11 shows the NO and NO_x conversion as a function of energy density for various NO input concentrations. It can be observed that with increasing NO initial concentrations, the NO conversion decreases. This behaviour was similar to the observations of the experiments conducted using a DBD reactor which were discussed in Chapter 4. NO is completely converted for the input NO concentration of 100 ppm at an energy density of approximately 20 J/L. Whereas for 300 ppm of NO input concentration, the maximum NO conversion is 65% even at high energy density of 120 J/L. It can be observed from Fig. 6.11b that with increasing energy density, NO_x conversion increases initially and then starts to decrease for all the input NO concentrations. This decrease in NO_x conversion at high energy densities is due to the increased NO_2 concentrations. With increasing the NO initial concentrations, NO_x conversion increases up to 200 ppm and then decreases. For 300 ppm of NO input concentration, NOx conversion happens to be negative. These negative conversions are due to the increased NO_2 concentrations which contribute to the total NO_x concentrations. When these NO and NO_x conversions are compared to the DBD results, DBD showed higher conversions. This trend was also observed by other researchers [149, 150] for the NO_x as well as for the hydrocarbons removal. It may not be appropriate in our study to quantify the results comparing SDBD and DBD even at the same energy densities because of the

(c) N_2O and O_3 concentrations

Figure 6.11 – NO and NO_x conversion and by-products formation as a function of energy density with 6 SDBD plates at various initial concentrations with the μ s-pulsed SDBD driver.

differences in the volume of the reactor and thus the differences in the residence times. From our study on the effect of rise time, which was mentioned in Chapter 3, we observed that the short pulses gives higher removal efficiencies. The nanosecond pulse showed better removal efficiency compared to the micro-second pulse. The power modulator for DBD produced a micro-second pulse with rise-time of approximately 0.9 μ s whereas the power modulator for SDBD produced a pulse with approximately 2 μ s rise-time. This difference in the rise-time might have also played a role in the decrease of the NO and NO_x removal efficiency.

The by-products formation with varying input concentrations can be seen in Fig. 6.11c. It can be observed that the N_2O concentration increases linearly with energy density. At low energy densities, N_2O concentrations do not depend significantly on the input NO concentrations but at higher energy densities, the effect of input NO concentrations is

slightly visible. O_3 formation is more prominent for low NO input concentrations. With increasing the NO initial concentrations, O_3 formation decreases. For 100 ppm of NO input concentration, O_3 formation is observed at low energy densities itself. Whereas for the input NO concentration of 300 ppm, no O_3 has been observed. These high O_3 concentrations at low NO input concentration is because of no NO is available to consume the atomic oxygen, as NO is completely converted. The excess atomic oxygen combine with O_2 to form O_3 as mentioned in reaction 3.7. When the O_3 concentration is compared to the DBD for the input NO concentration of 200 ppm, it is evident that SDBD produced higher O_3 for the given energy density.

6.4.1.2 Effect of flow-rate

Here, the effect of flow-rate on NO and NO_x conversions and the by-products formation is studied. The gas flow-rates were varied from 5 slm to 15 slm. The NO and NO_x conversion as a function of energy density for various flow-rates can be seen in Fig. 6.12. It is observed that with increasing gas flow, the NO and NO_x conversion slightly decreases. The gas flow of 10 slm showed minimum NO and NO_x conversions compared to the 5, 12 and 15 slm flow-rates. But the distinction between the NO and NO_x conversions is not so obvious as in the effect of initial concentrations. Oda et al. in their work on decomposition of gaseous organic contaminants by surface discharge induced plasma chemical processing -SPCP [151], studied the effect of residence time on the removal of acetone as a function of input power for the input concentrations of 100 ppm and 1000 ppm. They varied residence time by varying the flow-rate and observed that the higher conversions are achieved by increasing residence time which showed the same trend as our experiments on NOx. On the other hand, the power efficiency is higher at shorter residence time than at longer residence times for 100 ppm input concentration. Whereas for 1000 ppm, the residence time did not show any significant effect on the power efficiency. The by-products formation is more dependent on energy density and less on flow rate as is seen in the Fig. 6.12c. The concentrations of N_2O and O_3 did not show significant variation with flow rate but their concentrations increased with increasing energy density.

To study the performance of this SDBD plasma reactor combined with catalyst, the Al_2O_3 plates without and with TiO₂ coating were placed alternately to the SDBD plates in a parallel arrangement. Figure 6.13 shows the comparison of the NO and NO_x conversion with all these three configurations for an initial NO concentration of 200 ppm and at a gas flowrate of 5 slm. It is observed that the NO conversion is slightly higher and NO_x conversion slightly lower for just 6 SDBD plates. When these 6 SDBD plates are combined with Al_2O_3 plates with and without TiO₂ coating NO_x conversions are slightly improved. N₂O and O₃ concentrations are observed to increase with increasing energy density. This is because, NO is converted to NO₂ which reacts with atomic nitrogen to form N₂O and atomic oxygen. This atomic oxygen through recombination reaction, produces O₃. Thus we observe an increasing trend for N₂O and O₃ concentrations with increase in energy density. It can also be noticed that the by-products formation has been reduced by combining the SDBD plates with catalytic plates. With SDBD plates placed alone in the reactor, the N₂O concentration

(c) N_2O and O_3 concentrations

Figure 6.12 – NO and NO_x conversion and by-products formation as a function of energy density with 6 SDBD plates at various flowrates with the μ s-pulsed SDBD driver.

is observed to be approximately 49 ppm at an energy density of 70 J/L. On the other hand when these SDBD plates are combined with catalytic plates, N₂O concentrations are reduced to 33 ppm at 70 J/L. With SDBD, dissociation of oxygen is a predominant reaction and thus ozone formation occurs in almost all the experiments. The ozone concentration increases with increasing energy densities irrespective of performing experiments with just SDBD plates or placing alumina plate or TiO₂ coated alumina plates in between the SDBD plates. As long as NO is present in the reactor, the ozone formation will be suppressed. But combining the SDBD plates with catalytic plates showed a significant effect on the O₃ concentrations. O₃ concentrations were reduced from 62 ppm to 25 ppm, which is nearly 2.5 times, by placing the catalytic plates in combination with the SDBD plates. The probable reason for the reduction in by-products formation could be that the active species generated

(c) N_2O and O_3 concentrations

Figure 6.13 – NO and NO_x conversion and by-products formation as a function of energy density with catalytic plates placed alternately to the SDBD plates in a parallel arrangement at an input NO concentration of 200 ppm and gas flow-rate of 5 slm.

by the SDBD plasma can travel longer distance before they get quenched when there are no catalyst plates in parallel to the SDBD plates. Thus, there is a probability that more atomic nitrogen are available to react with NO₂ to form N₂O. This might be the reason why we observed higher N₂O concentrations with 6 SDBD plates. The same explanation holds good for O₃ as well. When the catalyst plates are placed in parallel to the SDBD plates, the generated atomic oxygen and O₃ collide with the walls of the catalyst plates to form O₂. So, probably the catalyst plates are just acting like walls to quench the reactions than more of a catalyst. This might also explain why we have not seen any difference in the by-products concentrations of 6 SDBD+7 Al₂O₃ plates and 6 SDBD+7 TiO₂ plates.

6.4.2 Ethylene removal in the pulsed-SDBD reactor

Here, we have evaluated the performance of the SDBD reactor for VOC removal. Ethylene was used as a model compound because of its significant impact in the food industry and in the floral markets. It is relatively simple molecule compared to other VOCs and thus it is easy to destroy with NTP. Experiments were conducted at various input concentrations of ethylene, whereby ethylene removal and CO, CO₂ selectivity is studied as a function of energy density. We have not evaluated the by-products formation in-detail here. The FTIR spectra for C_2H_4 at an energy density of 50 J/L showing the by-products is shown in the Appendix. 7.6 in the Fig. A.5. The input concentration was varied from 50 ppm to 250 ppm at an interval of 50 ppm. It is observed from Fig. 6.14a that for all the input concentrations 100% conversion can be realized with increasing energy density. This complete removal of ethylene was also reported in [152] and [153]. With increasing the input concentrations, the conversion of C_2H_4 decreases. 90% conversion of C_2H_4 was achieved at an energy density 10.5 J/L for input concentration of 50 ppm whereas the 250 ppm obtained 90% conversion with an energy density of 76 J/L. The selectivity towards CO and CO₂ as a function of energy density is shown in Fig. 6.14b. With increasing energy density, the selectivity towards CO is increased. There is remarkably little on the selectivity of CO₂. The selectivity towards CO is higher than CO2 which means that the C2H4 is converted more to CO and further oxidation of CO to CO_2 is limited. R.Aerts *et al.* [153] suggested a detailed destruction pathway for C_2H_4 with dry air and humid air in their work on gas purification by non-thermal plasma: A case study of ethylene. This destruction pathway for dry air could be summarized in four main steps:

Figure 6.14 – C_2H_4 conversion and CO, CO_2 selectivity as a function of energy density with 6 SDBD plates at various C_2H_4 input concentrations with the μ s-pulsed SDBD driver.

Step 1: C₂H₄ collides with N₂ metastables and with O atoms to produce vinyl radicals

 (C_2H_3) and acetylene molecules (C_2H_2) through the following reactions:

$$C_2H_4 + N_2(A^3\Sigma_{u^+}) \to C_2H_3 + H$$
 (6.1)

$$C_2H_4 + N_2(A^3\Sigma_{u^+}) \to C_2H_2 + 2H$$
 (6.2)

Step 2: C₂H₃ is oxidized by O₂ to form CHO radicals and HCHO. Formaldehyde is observed as by-product at low energy densities.

$$C_2H_3 + O_2 \rightarrow CHO + HCHO \tag{6.3}$$

Step 3: C_2H_3 may also reacts with O to form CO and CH₃ or C_2H_2 and OH. The C_2H_2 exhibits a high bond energy and also high degree of reactivity. Although its reactions with electrophilic species like OH are strongly exothermic, the formation of the intermediate pi-complex is a slow, rate determining process. Therefore, C_2H_2 yet can be observed as product.

$$C_2H_3 + O \to CO + CH_3 \tag{6.4}$$

$$C_2H_3 + O \rightarrow C_2H_2 + OH \tag{6.5}$$

Step 4: CHO is further oxidized by O, O₂ and OH to form CO and CO₂

$$CHO + O \to CO + OH \tag{6.6}$$

$$\rm CO + OH \rightarrow \rm CO_2 + H$$
 (6.7)

$$\mathrm{CO} + \mathrm{O}_2 \to \mathrm{CO}_2 + \mathrm{O} \tag{6.8}$$

Thus, in the ethylene destruction pathway, CO, CO₂, HCHO and C₂H₂ are the main by-products that were produced. In this study, we have studied the CO and CO₂ formations and not the formaldehyde or acetylene because of the limitations to quantify them with the existing experimental setup. With increasing the input concentrations, the selectivity towards CO is increased. There is remarkably little effect on the selectivity of CO₂ as seen Fig. 6.14b. This decrease in selectivity is due to the lower conversion of C₂H₄ itself. The maximum CO selectivity that is observed here is 60% for an input concentration of 100 ppm.

Figure 6.15 – C_2H_4 conversion and CO, CO₂ selectivity and NO₂ and O₃ concentrations as a function of energy density with and without catalytic plates placed alternately to the SDBD plates in a parallel arrangement with an input C_2H_4 concentration of 200 ppm and a gas flow of 5 slm with the μ s-pulsed SDBD driver.

The selectivity towards CO_2 is higher for low concentrations because at low concentrations, C_2H_4 is completely converted to CO at low energy densities and thus the remaining energy is used to oxidize CO to CO_2 . Thus CO is observed as a main by-product for all the concentrations.

In real time applications, CO and HCHO are not the preferred by-products because of their toxic nature and thus we need higher energy densities as mentioned by [152] to oxidize CO and HCHO to CO₂. Combining plasma with a catalyst is another option to increase the selectivity towards CO₂. We tried to evaluate the third option by combining SDBD plates with plates coated with TiO₂ and studied the conversion of C_2H_4 , selectivity towards CO and

 CO_2 and other by-products such as O_3 and NO_x . The effect of placing the catalytic plates on the C_2H_4 conversion and on CO and CO₂ selectivity can be seen in Fig. 6.15. It is noticed that the C_2H_4 conversion is slightly higher with just the SDBD plates than combined with the catalytic plates. There is no notable difference in the selectivity towards CO and CO₂. As the gas mixture consists of N₂ and O₂ because of synthetic air, we also observed NO₂, O₃ as by-products and the results are presented in Fig. 6.15c and Fig. 6.15d respectively. NO₂ concentration increases with increasing energy density. Harling et al. [154] in their work on the novel method for enhancing the destruction of environmental pollutants by the combination of multiple plasma discharges, mentioned that they have not observed any NO and NO₂ concentrations which is in contradiction to our results. R.Aerts et al., [153] also reported very low NO_2 concentrations. This may be because of the high energy densities that they have used where the NO2 is further converted to N2O and HNO2. The SDBD plates combined with catalytic plates showed lower NO₂ concentrations and O₃ concentrations. With the TiO₂ sol-gel method that we have used to coat the Al_2O_3 plates with TiO₂, we have managed to obtain only a TiO₂ layer thickness of 60 nm. It will be interesting to study the performance of the reactor with the increased thickness of TiO₂ layer which can show increased catalytic activity.

6.5 Conclusions

Surface-dielectric-barrier-discharges (SDBDs) have become popular recently due to their ease of generation and their wide range of applications such as ozone generation, surface treatments and air-pollutants removal. In this chapter, we have developed a modular plasma-catalytic surface-dielectric-barrier-discharge (SDBD) reactor to handle large flows which could be scaled-up and scaled-down easily. A SDBD power modulator was developed to generate high-voltage pulses up to 7 kV with microsecond duration that can power two electrode-plates. We have used 3 SDBD power modulators connected in parallel to power up to 6 SDBD plates. The applied power can be controlled by pulse-repetition rate. The electrical and the chemical characterization of the developed SDBD reactor has been done. Reactor performance was analyzed by conducting experiments with NO_x and ethylene at various input concentrations and various flow-rates and studying the conversions and the by-products formation.

In general, DBD performed better than SDBD with respect to NO and NO_x conversions despite the SDBD modulator providing higher input energy per pulse. This may be due to the short rise-time pulses created in DBD than in SDBD. With increasing NO initial concentrations, the NO and NO_x conversion decreases. We have observed negative NO_x conversion for 300 ppm of NO input concentration. With increasing gas flow, the NO and NO_x conversion is achieved at longer residence time.

We have evaluated the performance of the SDBD reactor for VOC removal and ethylene was used as a model compound due to its interest in the food and floral industry. 100% conversion of C_2H_4 was obtained for all the input concentrations. With increasing the input concentrations, the conversion of C_2H_4 decreases similar to the trend of NO_x conversion.

With increasing the input concentrations, the selectivity towards CO is observed to decrease while there is no effect on the selectivity towards CO_2 . This decrease in selectivity of CO is due to the lower conversion of C_2H_4 itself.

To reduce the by-products formation, we were interested to look into the option of combining this SDBD reactor with catalyst. To study the performance of the SDBD plasma reactor combined with catalyst, the Al₂O₃ plates without TiO₂ coating and with TiO₂ coating were placed alternatively to the SDBD plates in a parallel arrangement. When these 6 SDBD plates are combined with Al₂O₃ plates with and without TiO₂ coating, C₂H₄ conversion is marginally improved. The by-products formation have been reduced by combining the SDBD plates with catalytic plates. O_3 concentrations in the NO_x removal experiments were reduced from 62 ppm to 25 ppm, which is nearly 2.5 times, by placing the catalytic plates in combination with the SDBD plates. There is significant reduction in NO_x concentration and slight reduction in O₃ concentration in the C₂H₄ removal experiments. With the sol-gel method that we have used here to coat the Al₂O₃ plate with TiO₂, we have managed to obtain the TiO_2 layer with thickness of 60 nm. It will be interesting to study the performance of the reactor with the increased layer thickness of TiO2 which can show increased catalytic activity. With increased catalytic activity we may obtain higher conversions and low concentrations of by-products. Thus, it will be worthwhile to investigate a better coating technique to get a thicker and a homogeneous deposition of the TiO₂ layer on the Al₂O₃ plates.

Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

Non-thermal plasma (NTP) technology has been researched for the past few decades for environmental remediation, bio-medical and surface engineering applications. In this thesis we focussed on combining non-thermal plasma (NTP) technology and catalysts for air purification applications by using a dielectric-barrier-discharge (DBD) reactor. We investigated the effect of various electrical and operational parameters on the performance of the DBD reactor in terms of NO_x , by-products concentrations and energy costs. We performed this parametric study systematically using the three reactor configurations: plasma-alone, IPC and PPC configurations. We have also performed screening of the catalytic materials for NO_x removal and studied the role of the catalytic material in changing the plasma discharge characteristics. As a part of the environmental sensors for energy efficiency (ESEE)- EU project, we have developed a modular plasma-catalytic surface-dielectric-barrier-discharge (SDBD) reactor to handle large flows which could be scaled-up and scaled-down easily.

7.1 Research goals

In this thesis, we have investigated the combination of non-thermal plasma (NTP) technology and catalysts for air purification applications and the effect of various parameters on the plasma and plasma-catalytic processing efficiency. NO_x has been taken as target pollutant and the effect of various parameters on its removal efficiency have been researched using a pulsed-DBD (with and without a catalyst) and a SDBD reactor (with and without a catalyst). The main goals of this research were:

• To systematically study the effect of various electrical and operational parameters on NO_x removal and to optimize the performance of our DBD configuration.

- To understand the plasma-catalytic interactions by studying the physical interaction of the plasma with the catalyst and to correlate this interaction with the chemical processing efficiency.
- To develop an on-demand air purifier which could be scaled-up and scaled-down easily by using plasma-catalytic technology.

We have achieved the first research goal by two approaches. First, we optimized the plasma reactor for NO_x removal by varying the electrical parameters, such as applied peak-voltage, pulse polarity and pulse rise-time. This was done for all the three reactor configurations: plasma-alone, in-plasma (IPC) and post-plasma (PPC). We have observed that for waveform with microsecond-pulse duration, with positive polarity and 16-kV applied peak-voltage, gives the most optimum NO_x conversion. It was also observed that, in comparison with the plasma-alone configuration and the PPC configuration, the IPC configuration performs better with respect to both NO conversion and reducing by-products formation. We used these conditions for further experiments to analyze the effect of operating conditions such as input NO concentrations, gas flow rate and reactor temperature. It was observed that high removal efficiencies were obtained at low input concentrations and low flow rates for all the three configurations. Also it was found that the PPC configuration performed better at increased reactor temperatures.

Secondly, we packed the reactor with various catalytic materials and have tested the NO_x removal in both IPC and PPC configurations. It was observed that metal oxides loaded on Al_2O_3 showed better NO_x removal.

The second research goal was achieved by analyzing the voltage-current waveforms for all the catalytic materials that we have used. The current waveforms provide information on how the discharge varies for different catalytic materials that are placed inside the DBD reactor. We have related the differences in discharge characteristics to the dielectric constants of the materials used. Therefore, the dielectric constants of all the catalytic materials have been measured. We also have done ICCD imaging and correlated the observed plasma intensities with the chemical activity of the plasma-reactor and of the plasma-reactor filled with catalytic materials.

We achieved the third research goal by developing a modular plasma-catalytic surfacedielectric-barrier-discharge (SDBD) reactor to handle large flows. A SDBD power modulator was developed to generate 7-kV high-voltage pulses with microsecond duration that can power two SDBD-reactor plates at a maximum of 5 kHz pulse repetition rate. The electrical, chemical and the reactor characterization of this developed SDBD reactor was done. We studied the performance of the SDBD using NO_x and ethylene as model compounds. This reactor was developed as a part of EU-funded project Environmental sensors for Energy Efficiency (ESEE) and was successfully demonstrated as a final deliverable in the consortium meeting organized at CIAT, France.

The summary and the main conclusions of this work are organized in line with the chapter titles in this thesis and discussed in the following sections.

7.2 Investigation on the effect of electrical parameters on NO_x removal

In this chapter, we optimized the electrical parameters to obtain energy efficient NO_x remediation. We have varied electrical parameters such as the applied peak voltage, the pulse polarity and the pulse rise-time, and studied the effect of these parameters on the removal of NO and NO_x , the by-products formation and the energy consumption. This study was done for all- the three configurations: plasma-alone, in-plasma catalytic configuration(IPC) and post-plasma catalytic configuration (PPC). Commonly used catalyst support materials such as TiO₂, Al₂O₃, zeolites and SiO₂ have been used in the IPC and the PPC configurations. The main conclusion from this chapter are listed below.

- It is observed that the NO conversions and the by-products formation strongly depend on the plasma energy density, and not on the applied peak-voltage. The NO conversion and the formation of by-products increases with increase in the energy density. At higher energy density, the amount of radicals production increases leading to increased conversions and by-products formation. We have shown that the energy deposition per pulse increases with increase in the applied peak-voltage. High energy deposition per pulse leads to increased microdischarges resulting in increased conversions. This increased microdischarge activity also heat up the gas resulting in the energy losses. Therefore the energy costs increases at higher applied peak-voltages.
- The effect of using positive polarity pulses or negative polarity pulses on the NO_x removal efficiency has been tested. We found that that the positive voltage pulses performed better than negative pulses with respect to NO_x except for the case that a SiO₂ catalytic support is used in an IPC configuration. There is no significant difference in the by-products formation between the positive and the negative pulses. The reason for the increased conversion with positive pulses might be due to increased reactive species production with positive pulses as compared to the negative pulses. Also, few studies have indicated that the negative polarity pulses produces less streamer volume and thus low production of atomic oxygen.
- We have compared the NO_x removal efficiency using high-voltage pulses with microsecond pulse rise-time and with nanosecond pulse rise-time. It was observed that the ns pulse showed higher conversions but at the expense of higher by-products formation for the given energy density. At high energy density, both the μ s pulse and the ns pulse obtain similar NO conversion but the N₂O, O₃ and N₂O₅ concentrations are quite high with the ns pulse. The applied voltage for the ns pulse is approximately 40 kV where as for the μ s pulse is approximately 16 kV which means high energy per pulse can be deposited with ns pulse as compared to the μ s pulse. This could be a reason that the short rise time pulses showed higher conversions and higher by-products formation. The better performance of the short rise-time pulses for NO conversion is observed in all the three tested reactor configurations.

7.3 Investigation on the effect of operational parameters on NO_x removal

In this chapter, we analyzed the influence of various operational parameters such as input NO concentrations, gas flow-rate, and reactor temperature on the efficiency of NO_x removal. We have evaluated the performance by considering the increase in the NO_x removal and the decrease in by-products formation. We have studied the effect of operational parameters with the plasma-alone configuration, with the IPC and with the PPC configuration. For each configuration we investigated the efficiency of NO_x removal and the by-products formation. Commonly used support materials such as TiO_2 , Al_2O_3 , zeolites and SiO_2 have been used in the IPC and the PPC configuration. The main observations and conclusions are as follows:

- High NO removal efficiency can be obtained at low NO input concentrations for all the three configurations. Higher input concentrations require higher energy densities to obtain complete conversions. Therefore, the energy deposited in the plasma is used for the NO conversion and thus we observe lower by-products formation at higher input concentrations. The highest NO conversions are obtained with the plasma-alone configuration but at the expense of high NO_x, N₂O and O₃ concentrations followed by the IPC configuration and then by the PPC configuration. This is because, the plasma-alone configuration is efficient in converting NO to NO₂ at low energy density and due to this we see higher NO_x concentrations as NO_x is the sum of NO and NO₂. On the other hand, the IPC configuration requires slightly higher energy density to obtain complete NO conversions and thus shows moderate NO_x, N₂O and O₃ concentrations.
- High NO removal efficiency can be obtained at low gas flow rates for the plasmaalone and for the PPC configuration. At low gas flow rates, the time spent by a NO molecule increases which increases the probability of collisions between the electrons and gas molecules resulting in higher generation of atomic N and O at a given energy density. With more atomic N and O available, the NO conversion increases at low gas flow rates. The IPC configuration doesnot showed significant dependence of the NO conversion on flow rate up to 5 slm, while at 6 slm, lower NO conversions are observed. This probably could be due to the transport limitation of the catalytic reactions. The higher conversions at lower gas flow rates comes at the expense of higher N₂O and O₃ concentrations.
- With increasing reactor temperature, the NO conversion decreases for the IPC configuration whereas the PPC configuration showed increased NO conversions. This is due to the ease of ozone decomposition at higher temperatures facilitating the back formation of NO in the IPC configuration. The PPC configuration behaviour is similar to the thermal catalysis. Typically above 150 °C, all the catalytic materials showed a distinct behaviour suggesting that the catalytic materials are activated from this temperature. Both the configurations performed better with respect to minimum by-products formation at higher temperatures. This is again due to the ozone decomposition with increasing temperatures.

7.4 Screening of catalytic materials for NO_x removal

In this chapter, we have studied NO_x removal by loading various metal oxides on TiO₂ and Al₂O₃ supports, combining them with a pulsed DBD reactor. The metal-oxides that we have used in this study are NiO, MnO, CuO, Fe₃O₄, Co₃O₄. To understand the effect of support material, we have loaded 3wt% of these metal oxides both on TiO₂ and Al₂O₃ and compared their NO conversion, NO_x concentration and by-products formation using both the in-plasma configuration (IPC) and the post-plasma configuration (PPC). We also studied the effect of metal loading, where we have compared the performance of 3wt% and 5wt% of these metal oxides loaded on TiO₂. Also this comparison was made for both the IPC and the PPC configuration. Finally, in this chapter we studied the effect of the catalytic material on the plasma discharge characteristics by analyzing the voltage-current waveforms and by measuring the dielectric constants of these materials to correlate them to the discharge characteristics. The main conclusions from this chapter are:

- The NO conversion is highest for the plasma-alone configuration, followed by the IPC and then by the PPC configurations. The by-products formation are observed to be less when combining the DBD plasma with catalytic materials. All the catalytic materials significantly suppressed the formation of O_3 which could be due to the insitu decomposition of O_3 to atomic oxygen.
- We correlated the differences in the performance of the various metal oxides loaded on TiO₂ and Al₂O₃ by looking into the voltage-current waveforms and correlated these parameters to the discharge activity. The plasma-alone configuration showed a current waveform with intense current spikes, indicating intense microdischarge activity. When a catalytic material is introduced into the plasma reactor, the discharge activity is changed significantly. For instance, when Al₂O₃ is placed inside the reactor, the current waveform shows microdischarge activity but with slightly lower magnitude than for the plasma-alone reactor. Similarly when the DBD reactor is packed with TiO₂, the current waveform shows less microdischarge activity. This change in the discharge activity could be explained with differences of the dielectric constants of the materials.
- With the increase in the wt% of metal oxide loading on TiO₂, the NO conversions increase notably. There is also a significant difference in the NO_x concentration. We have observed that varying the metal-oxide loading varied the discharge activity. With increase in metal oxide loading, the magnitude of the transient spikes in the current waveform is increased, which indicates an increased number and intensity of microdischarges. This increase in microdischarges may lead to an increase in reactive species production. With increased reactive species production, the conversions and by-products formation depend on this as well. This change in discharge behaviour could be due to differences in the dielectric constant for different amounts of metal-oxide loadings. The CuO catalyst with 5wt% loading on TiO₂ performed best for both the NO_x removal as well with low by-products formation in the IPC configuration.

• The conversion obtained in the PPC configurations are lower than with the plasmaalone and the IPC configurations. However, both the PPC and the IPC configuration resulted in lower by-product formation. In general, if high conversions are required with moderate by-products formation, the IPC configuration is preferred and if the by-products formation is a serious issue then the PPC configuration is a preferred choice.

7.5 SDBD reactor for on-demand air purification

In Chapter 6, we have developed a modular plasma-catalytic surface-dielectric-barrierdischarge (SDBD) reactor to handle large flows and which could be scaled-up and scaleddown easily. A SDBD power modulator was developed to generate 7-kV high-voltage pulses with microsecond duration that can power two SDBD-reactor plates at a maximum of 5 kHz pulse repetition rate. The developed reactor can accommodate up to 20 SDBD plates and thus 10 such SDBD driver units are needed to power the entire reactor and to treat larger flows. The electrical and the chemical characterization of this SDBD reactor is discussed in detail in this chapter. The operational efficiency of the developed SDBD has been investigated by studying the removal of both NO_x and ethylene. Finally, we combined the SDBD plasma reactor with catalyst by positioning Al_2O_3 plates (without or with a TiO₂ catalytic coating) alternatively to the SDBD plates in a parallel arrangement. The conclusions from this chapter are as follows:

- The dependence on operational parameters of NO and NO_x conversions obtained with the SDBD reactor, was comparable to the behaviour of the DBD reactor. In general, the DBD reactor performed better than the SDBD reactor with respect to NO and NO_x conversions, despite of the SDBD modulator providing higher input energy per pulse.
- When the SDBD plates are combined with Al_2O_3 plates with and without the TiO₂ catalytic coating, the C₂H₄ conversion conversions are marginally improved. The formation of by-products is reduced when combining the SDBD plates with catalytic plates: O₃ concentrations in the NO_x removal experiments were reduced from 62 ppm to 25 ppm, which is nearly 2.5 times, by applying catalytic plates in combination with SDBD plates. There is significant reduction in NO_x concentration and slight reduction in O₃ concentration in the C₂H₄ removal experiments by applying catalytic plates in combination with SDBD plates. Although, we observed better performance of the SDBD reactor with the catalytic plates, it is not clear whether the catalytic plates acts more like a catalyst to increase the product selectivity or behave like walls to quench the reactions. Probably, if we can increase the thickness of TiO₂ coating from 60 nm to few μ m thickness then we can understand the role of these catalytic plates.

7.6 Recommendations for future work

We have studied the efficiency of NO_x removal in a systematic manner by using various catalytic materials in both the IPC and the PPC configurations, under various electrical and operational conditions. But we realize that this study is not complete yet. There are still some remaining questions for a good understanding of the NO_x removal mechanisms.

- In practical applications, the presence of moisture and hydrocarbons in the air flows to be purified, cannot be avoided. Thus, it will be informative if this parametric study could be extended further to study the effect of moisture content and hydrocarbon addition on NO_x removal, for the two configurations considered here: the IPC and the PPC configurations. We did the parametric study using model gas compositions, however it will also be worthwhile to do this parametric study for practical exhaust gases from diesel engines, in order to further verify the feasibility to valorize the plasma-catalytic technology.
- We have studied the efficiency of NO_x removal by using various metal-oxides on TiO_2 and Al_2O_3 supports using both the IPC and PPC configurations. However, this catalyst screening is far from complete. In all our experiments we have used a particle size of 1-2 mm. When we change the particle size, the void spacing changes, which in-turn affects the residence time distribution and eventually the conversions. It will be interesting to do residence time distribution (RTD) studies with the DBD-plasma reactor and the two plasma-catalytic reactors, to study the effect of void spacing on the residence time. Also, other parameters such as particle size and shape do effect the plasma discharges. Thus, this systematic study could be extended to study the NO_x removal efficiency with varying particle size, shape.
- The activity, selectivity and the life-time of the catalyst are determining factors when choosing a catalyst. It will be interesting to study the life-time of the catalyst after plasma exposure and also to study the regeneration of the catalyst using plasma.
- It will be interesting to study the gas-phase and adsorbed-phase-species, by performing adsorption and desorption experiments for all the catalytic materials to deduce plausible surface mechanisms. This can further give information on the difference in the performance of these catalytic materials in both the IPC configuration and the PPC configuration.
- We saw from the spatial development of the discharges that introducing a packing material within the plasma affects the discharge behaviour. Also, the metal-oxide loading affects the plasma dynamics. It will be interesting to study further the effect of various metal-oxides and the effect of various wt% of loadings on the plasma development and intensity. In our study, we could not clearly distinguish whether the discharges are surface discharges, along the catalytic surface or are filamentary discharges, and how the discharge mode depends on the catalytic packing material.

Probably, a more dedicated reactor where we could pack the reactor with only one or very few pellets is needed to study this more in detail.

• We have developed the SDBD reactor and successfully demonstrated pollutant conversions. While discussing the results, the role and functionality of the catalytic plates could not be clarified. Whether these catalytic plates are just acting like a surface to quench the reactions or really contribute to surface reactions remains unclear. To understand this, there is a need to down-scale the existing reactor where we can insert one SDBD plate and one catalytic plate. With this configuration, we will be able to vary the distances between the plates, coating techniques for the catalytic plates and the thickness of the catalytic material. Through this, we can gain more insights in the role of the catalytic plates.

Appendix

A1. Supplementary data for the experimental setup

Characterization of catalytic materials

X-ray diffraction patterns for various catalytic materials

Figure A.1 – X-ray diffraction patterns for TiO_2 and metal oxides loaded on TiO_2 . Baselines are shifted for clarity

Figure A.2 – X-ray diffraction patterns for Al_2O_3 and 5% Fe₃O₄/Al₂O₃. Baselines are shifted for clarity

TEM images for various catalytic materials

(a) 3% CuO/TiO₂

(**b**) 3% Fe₃O₄/TiO₂

Figure A.3 – TEM images of the metal oxides loaded on $\rm TiO_2$ and $\rm Al_2O_3$

(c) 3% CuO/Al₂O₃

(**d**) 3% Co₃O₄/TiO₂

(e) 3% Fe₃O₄/Al₂O₃

FTIR spectra and calibration

(b) Plasma-off

Figure A.4 – Typical FTIR spectra measured with FTIR spectrometer for (a) NO and NO₂ for plasma-off measurements during the NO-removal experiments and (b) NO₂ and by-products spectra for plasma-on measurements at high energy density where NO is completely converted.

Figure A.5 – The FTIR spectra measured with FTIR spectrometer for C_2H_4 at an energy density of 50 J/L showing the by-products.

Figure A.6 – Typical FTIR calibration curves for different gases that are used and measured in our experiments.

A2. Effect of the NO input concentration

Figure A.7 – NO and NO₂ concentration as a function of energy density for various input concentrations for all the catalytic materials in the IPC configuration.

Figure A.8 – First order kinetic plot to understand the effect of initial concentration on the removal efficiency by calculating the energy constants for IPC configuration.

Figure A.9 – NO and NO₂ concentration as a function of energy density for various input concentrations for all the catalytic materials that we have used in our study in the PPC configuration.

A3. SDBD reactor for on-demand air purification

Figure A.10 – Thermogravimetric analysis (TGA) curve for the remaining sol-gel which has not been used in the dip coating of TiO_2 catalytic plate. The weight loss in the curve is due to the evaporation of Polyethylene glycol. Above 400 °C, we can see that the polyethylene glycol is completely evaporated and the weight remains almost constant. The carbon is completely removed and thus there exists no carbon deposits on the plate.

Figure A.11 – X-ray Diffraction (XRD) pattern for TiO_2 powder. XRD was done after drying the sol-gel which we have used for dip-coating.

A4. Plasma-catalytic interactions: Effect of dielectric constant

Introduction

In the Chapters 3, 4 and 5, we have seen that there is a difference in the performance of the plasma reactor when the electrical and operational parameters are changed. Also, the performance varies largely when the catalytic materials are introduced into the plasma reactor and the performance mainly depends on the type of catalytic material. The way the plasma is generated dictates the plasma chemistry. Thus it is expected that the effectiveness of a plasma-reactor packed with catalytic materials depends on the nature of the catalytic materials under the same conditions.

Hensel *et al.* in their work on electrical and optical properties of AC microdischarges in porous ceramics observed that the pore size of the material influences the mode of discharge [155]. A ceramic material with larger pore size showed microdischarge, while materials having smaller pore size showed surface discharges. They explain that plasma can be generated inside the pores if the pore-size is big enough (>100 μ m in their work). Kim *et al.* studied the dependence of streamer propagation on the type of the catalytic material and the reactor performance for VOC removal [156–158]. They observed that the presence of catalytic material affects the propagation velocities of the streamers and that active metal-oxides deposited on zeolites significantly change the plasma dynamics.

It will be interesting to study further the effect of various metal-oxides and what will be the effect of the amount of metal-oxide loading on the plasma intensity. From the results in the Chapter 5, we observed that the metal-oxides loaded on TiO_2 and on Al_2O_3 affects discharge behaviour. Therefore in this chapter, we study the effect of the catalysts on the discharge behaviour more in-detail. To study the temporal and spatial behaviour of the discharges, we have used a fast intensified charged coupled device (ICCD) camera. We correlated the changes in discharge behaviour to the dielectric properties of the catalytic materials. The dielectric properties of the packing materials are believed to have influence on the discharge behaviour, since the dielectric constant affects local electric field intensities on the surface of the catalytic material, affecting the presence of possible surface discharges along the dielectric materials. We have measured the dielectric constants of all various materials that we have used in our study and the results will be mentioned in the following sections.

Experimental setup

In this chapter, time-resolved imaging of the plasma in the packed-bed reactor is done with an ICCD camera and for various packing materials. The schematic representation of the experimental setup is shown in Fig. A.14. The ICCD camera is a 4 Picos-DIG from Stanford Computer Optics [159] and has a minimum exposure time of 200 ps. It has a spatial resolution of 780×580 pixels and $8.3 \times 8.3 \,\mu$ m pixel size. We have used two lens systems in this study. In part of the experiments we have used a Sigma 180-mm F 4-5.6 lens for imaging larger areas of 3×1.5 cm. Also a microscopic lens was used to focus on one

pellet of the catalyst (approximately $2 \text{ mm} \times 2\text{mm}$), allowing more detailed observations. To protect the camera against electrical interference, it is enclosed in an EMC cabinet. The camera is synchronized with the high-voltage pulsed-power supply and the trigger source. The trigger source that we have used here is a Tektronix CFG250 pulse generator. The trigger signal is also monitored with a digital oscilloscope to check the correct timing of the camera with respect to the pulse source. The gain of the camera was set to 760 V. The power modulator that we used in these experiments is described in Chapter 2 in the section 2.3.1. The schematic representation of the reactor that we have used in these experiments is shown in the Fig. A.13. The reactor has similar dimensions as mentioned in section 2.1.1 except that the reactor is not cylindrical. We have used a rectangular reactor here, to have a better lateral view on the plasma and the catalyst inside the reactor. All the experiments were carried out at room temperature and atmospheric pressure with an input NO concentration of 200 ppm and a gas flow rate of 2 slm. We have used positive polarity pulses for all the experiments.

Figure A.12 – Schematic representation of the experimental setup used for ICCD imaging.

Effect of applied peak-voltage on discharge intensity in plasma reactor

In the section 3.2, we observed that the NO conversion does not depend on the applied peakvoltage but is a function of the plasma energy density. Apparently the amount of radicals generated by the plasma increases with increasing energy density.

Figure A.13 – Schematic representation of the DBD-reactor used for ICCD imaging. A rectangular configuration was used to have a better lateral view on the plasma and the catalyst.

Figure A.14 – Typical Voltage and current waveform of the pulsed power source used for ICCD imaging. The blue line represents the period when the camera gate was open.

In this section, we have varied the applied peak-voltage from 12 kV to 20 kV to see how the discharge intensity varies. The input NO concentration, the gas flow and the pulse repetition rate were maintained at 200 ppm, 2 slm and 500 Hz respectively. It can be seen from Fig. A.15 that the intensity of the plasma increases with increasing applied peak-voltage. At a peak-voltage of 12 kV, the discharges start to initiate only at one side of the reactor and below 12 kV we have not seen any discharge activity. With further increase in applied peak-voltage, the number of microdischarges increases. This is because,with increase in the applied peak-voltage, there is an increase in the energy-per-pulse deposition

Figure A.15 – Change in plasma volume as function of applied voltage at the pulse repetition rate of 500 Hz for a gas flow of 2 slm and an input NO concentration of 200 ppm. Exposure time of the camera is $2 \mu s$ and the gain of the camera is 760 V. We have averaged the 50 images at each setting. The colour bar shown in these images will be used in all the images of this chapter.

which in turn increase the plasma energy density. Also, new microdischarges are generated at new locations with increase in applied peak-voltage [160].

From the results in section 3.2, we saw that at a given energy density, higher peak-voltages lead to higher energy costs for NO removal. At high applied peak-voltages, the capacitive current increases leading to the increased energy losses. The energy supplied is used to heat up the gas thus reducing the energy efficiency. At an applied peak-voltage of 15.5 kV and higher, some bright spots can be observed at the high-voltage wire-electrode. This might be due to local field electric enhancements at minor imperfections of the electrode.

Discharge behaviour in DBD-plasma reactor packed with TiO₂

We have observed that packing the plasma reactor with different catalytic materials lead to different discharge activity and difference in the performance of the reactor. In this part of the study, we analyze the plasma development, using fast ICCD imaging, when catalytic

materials is placed inside the DBD plasma reactor.

We have packed the plasma reactor with TiO_2 of various packing particle size, and loaded with 5% Fe₃O₄/TiO₂ and 5%Co₃O₄/TiO₂. For these materials we looked how the intensity of the plasma varies with each material.

Effect of packing particle size

The packing particle size is one of the important parameters for the performance of packed bed reactors and affecting the discharge activity. We have packed the DBD reactor with particle sizes of respectively 2 mm, 1-2 mm, 0.5-1 mm and 200-500 μ m. The packing particle size of 2 mm is cylindrical in shape with a length of approximately 4 mm while the other particle sizes do not have a uniform particle shape.

Figure A.16 – Discharge behaviour for plasma reactor packed with TiO_2 for particle size 2 mm cylindrical pellets with change in the pulse repetition rate. The NO input concentration was 200 ppm and the gas flow rate was 2 slm.

The plasma discharge intensity for the DBD plasma reactor packed with TiO_2 for particle sizes of 2 mm and of 1-2 mm at various pulse repetition rates (prr) are shown in the figures A.16 and A.18 respectively. The images for a packing particle size of 0.5-1 mm and

Figure A.17 – Discharge behaviour for plasma reactor packed with TiO_2 for particle size 2-3 mm with change in the pulse repetition rate using microscopic lens. The NO input concentration was 200 ppm and the gas flow rate was 2 slm.

of 200-500 μ m are shown in the figures A.19 and A.20 respectively. The images show that the discharges are mostly present in the space between the catalytic particles. The discharges looks different as compared to the situation that only plasma, and no catalyst is present in the reactor. No clear filamentary like discharges can be observed when the plasma-reactor is filled with the catalytic materials. For all the pictures, it can be observed that there is slightly increased discharge activity on the left side of the picture as compared to the right side. This could probably due to slight movement of the centre electrode towards the left while packing the catalytic materials.

We observed no significant discharge activity at 10 Hz. From 100 Hz, we observe some discharge activity near to the walls of the reactor. With increasing pulse repetition, the energy density increases (at constant flowrate and applied peak-voltage) leading to increased discharge activity. It looks like discharges propagate from the walls of the reactor to the centre electrode. To have a closer look at the discharge propagation, a microscopic lens was used and focussed on a single catalytic pellet as shown in Fig. A.17. We can see that the discharge propagates just in the gas gap between the pellets which can be referred as a "partial discharge".

Figure A.18 – Discharge behaviour for plasma reactor packed with TiO_2 for particle size 1-2 mm with change in the pulse repetition rate. The NO input concentration was 200 ppm and the gas flow rate was 2 slm.

When we look at the intensity of the plasma for various packing particle sizes, it can be observed by comparing the figures 6.7, 6.10 that the plasma is less intense for the smaller packing particle size. For the TiO_2 with particle size of 1-2 mm (Fig. 6.10), the plasma intensity is less until a repetition rate of 200 prr, while the intensity increases with repetition rate from 300 prr,

As we have not performed plasma processing experiments with varying packing particle size, it is hard to comment if the particle size affects the NO removal efficiency. In a study by Kim *et al.* [157] on time-resolved imaging of positive pulsed corona-induced surface streamers on TiO₂ and γ -Al₂O₃-supported catalysts, it was observed that the presence of a catalytic materials influences the propagation velocities of the streamers. They stated that the partial discharge served as a starting point for primary streamers, and promote the streamer propagation towards the next catalyst bead which will result in enhanced discharge intensity. That means that for a larger particle size, the probability of partial discharge will increase, resulting in more intense plasma. In our work, we observed that the higher the intensity of the plasma, the less efficient it is. Thus, we may say that decreasing the particle

Figure A.19 – Discharge behaviour for plasma reactor packed with TiO_2 for particle size 0.5-1 mm with change in the pulse repetition rate. The NO input concentration was 200 ppm and the gas flow rate was 2 slm.

size may result in an increase of the efficiency. But, in [161], it is shown that there is an optimum particle size for NO_x removal efficiency. In their work on low temperature NO_x synthesis in a packed bed reactor Patil *et al.*, observed higher NO_x conversion efficiency for lower particle sizes, concluding that lower particles result in higher efficiencies. Though, this work is on NO_x synthesis and our work is NO_x removal, the main point of citing their work here is to state that the lower particle sizes may lead to improved efficiencies.

Metal-oxides loaded on TiO₂

In Chapter 5, we have used different metal-oxides loading on TiO_2 and Al_2O_3 to study the performance of plasma-catalytic reactor in both IPC and PPC configurations. The results from this chapter show that different metal-oxides showed different NO removal efficiency and that with increase in the metal-oxide loading, the performance of the reactor was improved. It was also observed from the voltage-current waveforms that different materials result in different discharge activity.

Figure A.20 – Discharge behaviour for plasma reactor packed with TiO_2 for particle size 200-500 μ m with change in the pulse repetition rate. The NO input concentration was 200 ppm and the gas flow rate was 2 slm.

We have shown in the previous section that the dielectric constant decreases with metaloxide loading. Literature says that an increase of the dielectric constant of the catalytic material, results in localized electric field enhancement and that the discharges will be concentrated more on the surfaces of the catalytic material [162]. In the case of our system, this would mean that TiO_2 should show more surface like discharges than metal-oxides loaded on TiO_2 .

For that reason, in this section we observed the plasma intensity for TiO_2 with and without metal-oxide loading. ICCD images were taken for 5%Fe₃O₄/TiO₂ and 5%Co₃O₄/TiO₂ for an input NO concentration of 200 ppm and a gas flow rate of 2 slm. The ICCD image of TiO₂ without a metal-oxide loading is given in Fig. A.18. The ICCD images of 5%Fe₃O₄/TiO₂ and 5%Co₃O₄/TiO₂ are shown in figures A.21 and A.22 respectively. It can be seen that the intensity of the plasma is bit higher in the case that the plasma-reactor is packed with TiO₂. For 5%Fe₃O₄/TiO₂ and 5%Co₃O₄/TiO₂, the intensity is a bit lower. From the plasma processing results for the in-plasma configuration (IPC), as given in Chapter 5, 5%Fe₃O₄/TiO₂ and 5%Co₃O₄/TiO₂ did not show significant difference in their NO

Figure A.21 – Discharge behaviour for plasma reactor packed with 5% Fe_3O_4/TiO_2 for particle size 1-2 mm with change in the pulse repetition rate. The NO input concentration was 200 ppm and the gas flow rate was 2 slm.

conversion, whereas TiO_2 showed slightly lower NO conversion as compared to the metaloxide loaded materials. So apparently the intensity of the plasma can be correlated to its NO removal performance: the more intense plasma results in a lower NO conversion efficiency. This might be due to heating up of the reactor at higher plasma intensity.

From the images that we obtained, it is difficult to comment on whether the discharges are more surface-like or filamentary as we have looked at just the intensity of the plasma. Kim *et al.*, in their study on the microscopic observation of discharge development on the surface of zeolite supported metal nanoparticles [156], observed that the plasma is dense at the contact points of the pellets. The metal nanoparticles supported on the zeolites resulted in less intense plasma, but gave a plasma that was expanded over a wide surface area. Also they observed that the intensity and area of the plasma are higher with Ag than for Cu nanoparticles. Thus the active metal oxide affects the plasma dynamics.

Figure A.22 – Discharge behaviour for plasma reactor packed with 5% Co_3O_4/TiO_2 for particle size 1-2 mm with change in the pulse repetition rate. The NO input concentration was 200 ppm and the gas flow rate was 2 slm.

Conclusions

In this appendix, we correlated the chemical activity of the plasma-alone reactor and of the plasma-reactor filled with catalytic materials, to the intensity of the generated plasma. We observed how the plasma development is affected when catalytic material is introduced in the plasma zone. For this purpose, we have used an intensified charged coupled device (ICCD) to record the temporal and spatial development of the discharges.

We have observed that the intensity of the plasma in the DBD reactor increases with increasing applied peak-voltage at a given energy density. This is because, with increase in applied peak-voltage, the number of microdischarges increases. At high intensity of the plasma, the energy costs for NO removal increase and the reactor performance is reduced.

The discharge behaviour changes when the DBD reactor is packed with TiO_2 pellets. No clear filamentary discharges can be observed. When looked in to the effect of particle size on the discharge activity, the intensity of the plasma increases with increasing particle size due to the availability of larger gas-gap with aids in the formation of partial discharges between the particles.

Loading metal-oxides on the TiO_2 resulted in a reduction of the plasma intensity. In conclusion, the nature of the metal-oxide used affects the plasma dynamics. It will be interesting to study further the effect of various metal-oxides and what will be the effect of loading on the plasma intensity. Also the temporal evolution of discharges may give a clue whether the discharges are more like surface discharges or filamentary discharges.

Bibliography

- [1] "European environment agency." https://www.eea.europa.eu/ data-and-maps/indicators/transport-emissions-of-air-pollutants-8/ transport-emissions-of-air-pollutants-5. Accessed: 2017-12-04.
- [2] T. Hammer, T. Kappes, and M. Baldauf, "Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes," *Catalysis Today*, vol. 89, no. 1, pp. 5–14, 2004.
- [3] Y. S. Mok, C. M. Nam, M. H. Cho, and I.-S. Nam, "Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes," *IEEE Transactions on Plasma Science*, vol. 30, no. 1, pp. 408–416, 2002.
- [4] J. S. Chang, "Recent development of plasma pollution control technology: a critical review," *Science and Technology of Advanced Materials*, vol. 2, no. 3, pp. 571–576, 2001.
- [5] S. Müller and R.-J. Zahn, "Air pollution control by non-thermal plasma," *Contributions to Plasma Physics*, vol. 47, no. 7, pp. 520–529, 2007.
- [6] A. Mizuno, "Industrial applications of atmospheric non-thermal plasma in environmental remediation," *Plasma Physics and Controlled Fusion*, vol. 49, no. 5A, p. A1, 2007.
- [7] L. A. Rosocha, "Nonthermal plasma applications to the environment: gaseous electronics and power conditioning," *IEEE transactions on plasma science*, vol. 33, no. 1, pp. 129–137, 2005.
- [8] H.-H. Kim, Y. Teramoto, A. Ogata, H. Takagi, and T. Nanba, "Plasma catalysis for environmental treatment and energy applications," *Plasma Chemistry and Plasma Processing*, vol. 36, no. 1, pp. 45–72, 2016.

- [9] V. R. Chirumamilla, W. F. L. M. Hoeben, F. J. C. M. Beckers, T. Huiskamp, E. J. M. Van Heesch, and A. J. M. Pemen, "Experimental investigation on the effect of a microsecond pulse and a nanosecond pulse on NO removal using a pulsed DBD with catalytic materials," *Plasma Chemistry and Plasma Processing*, vol. 36, pp. 487–510, Mar 2016.
- [10] B. Penetrante, M. Hsiao, B. Merritt, G. Vogtlin, and C. Wan, "Plasma-assisted heterogeneous catalysis for NO_x reduction in lean-burn engine exhaust," tech. rep., DTIC Document, 1997.
- [11] B. M. Penetrante, R. M. Brusasco, B. T. Merritt, and G. E. Vogtlin, "Environmental applications of low-temperature plasmas," *Pure and Applied Chemistry*, vol. 71, no. 10, pp. 1829–1835, 1999.
- [12] M. Sun and V. Ravi, "Role of Oxygen in the Plasma Catalytic Removal of NO_x," VIVECHAN IJR, vol. 1, no. 2, pp. 1–9, 2010.
- [13] F. Beckers, W. Hoeben, A. Pemen, and E. Van Heesch, "Low-level NO_x removal in ambient air by pulsed corona technology," *Journal of Physics D: Applied Physics*, vol. 46, no. 29, p. 295201, 2013.
- [14] E. Neyts and A. Bogaerts, "Understanding plasma catalysis through modelling and simulation : a review," *Journal of Physics D: Applied Physics*, vol. 47, no. 22, p. 224010, 2014.
- [15] V. I. Pârvulescu, M. Magureanu, and P. Lukes, *Plasma chemistry and catalysis in gases and liquids*. John Wiley & Sons, 2012.
- [16] T. Nozaki and K. Okazaki, "Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications," *Catalysis today*, vol. 211, pp. 29–38, 2013.
- [17] U. Roland, F. Holzer, and F.-D. Kopinke, "Improved oxidation of air pollutants in a non-thermal plasma," *Catalysis Today*, vol. 73, no. 3, pp. 315–323, 2002.
- [18] A. M. Vandenbroucke, R. Morent, N. De Geyter, and C. Leys, "Non-thermal plasmas for non-catalytic and catalytic VOC abatement," *Journal of hazardous materials*, vol. 195, pp. 30–54, 2011.
- [19] T. Yamamoto, M. Okubo, K. Hayakawa, and K. Kitaura, "Towards ideal NO_x control technology using a plasma-chemical hybrid process," *IEEE Transactions on Industry Applications*, vol. 37, no. 5, pp. 1492–1498, 2001.
- [20] H. Conrads and M. Schmidt, "Plasma generation and plasma sources," *Plasma Sources Science and Technology*, vol. 9, no. 4, pp. 441–454, 2000.
- [21] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," *Spectrochimica Acta - Part B Atomic Spectroscopy*, vol. 61, no. 1, pp. 2–30, 2006.

- [22] B. M. Penetrante and S. E. Schultheis, Non-thermal plasma techniques for pollution control: part b: electron beam and electrical discharge processing, vol. 34. Springer Science & Business Media, 2013.
- [23] U. Kogelschatz, "Dielectric-barrier discharges: their history, discharge physics, and industrial applications," *Plasma chemistry and plasma processing*, vol. 23, no. 1, pp. 1–46, 2003.
- [24] M. B. Chang and S. C. Yang, "NO/NOx removal with C₂H₂ as additive via dielectric barrier discharges," *AIChE journal*, vol. 47, no. 5, pp. 1226–1233, 2001.
- [25] A. Mizuno, R. Shimizu, A. Chakrabarti, L. Dascalescu, and S. Furuta, "NO_x removal process using pulsed discharge plasma," *IEEE Transactions on industry applications*, vol. 31, no. 5, pp. 957–962, 1995.
- [26] M. Moscosa-Santillan, A. Vincent, E. Santirso, and J. Amouroux, "Design of a DBD wire-cylinder reactor for NO_x emission control: experimental and modelling approach," *Journal of Cleaner Production*, vol. 16, no. 2, pp. 198–207, 2008.
- [27] T. Hammer and S. Bröer, "Plasma enhanced selective catalytic reduction of NO_x for diesel cars," tech. rep., SAE Technical Paper, 1998.
- [28] C.-L. Chang and T.-S. Lin, "Decomposition of toluene and acetone in packed dielectric barrier discharge reactors," *Plasma chemistry and plasma processing*, vol. 25, no. 3, pp. 227–243, 2005.
- [29] N. Blin-Simiand, S. Pasquiers, F. Jorand, C. Postel, and J. Vacher, "Removal of formaldehyde in nitrogen and in dry air by a DBD: importance of temperature and role of nitrogen metastable states," *Journal of Physics D: Applied Physics*, vol. 42, no. 12, p. 122003, 2009.
- [30] H. M. Lee and M. B. Chang, "Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor," *Plasma chemistry and plasma processing*, vol. 21, no. 3, pp. 329–343, 2001.
- [31] J.-O. Chae, "Non-thermal plasma for diesel exhaust treatment," *Journal of electro-statics*, vol. 57, no. 3, pp. 251–262, 2003.
- [32] G. Xiao, W. Xu, R. Wu, M. Ni, C. Du, X. Gao, Z. Luo, and K. Cen, "Non-thermal plasmas for VOCs abatement," *Plasma Chemistry and Plasma Processing*, vol. 34, no. 5, pp. 1033–1065, 2014.
- [33] V. Puchkarev and M. Gundersen, "Energy efficient plasma processing of gaseous emission using a short pulse discharge," *Applied physics letters*, vol. 71, no. 23, pp. 3364–3366, 1997.

- [34] T. Yamamoto, S. Member, C.-I. Yang, M. R. Beltran, and Z. Kravets, "Plasma-assisted chemical process for NO_x control," *Industry Applications, IEEE Transactions on*, vol. 36, no. 3, pp. 923–927, 2000.
- [35] T. Oda, "Non-thermal plasma processing for environmental proection: Decomposition of dilute VOCs in air," *Journal of Electrostatics*, vol. 57, no. 3-4, pp. 293–311, 2003.
- [36] S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, and N. Mason, "The 2012 Plasma Roadmap," *Journal of Physics D: Applied Physics*, vol. 45, no. 25, p. 253001, 2012.
- [37] J. C. Whitehead, "Plasma catalysis: A solution for environmental problems," *Pure and Applied Chemistry*, vol. 82, no. 6, pp. 1329–1336, 2010.
- [38] H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, and S. N. Li, "Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications," *Environmental Science and Technology*, vol. 43, no. 7, pp. 2216–2227, 2009.
- [39] J. Jolibois, K. Takashima, and A. Mizuno, "Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: NO_x removal," *Journal* of *Electrostatics*, vol. 70, pp. 300–308, June 2012.
- [40] H. Miessner, K.-P. Francke, and R. Rudolph, "Plasma-enhanced HC-SCR of NOx in the presence of excess oxygen," *Applied Catalysis B: Environmental*, vol. 36, pp. 53–62, Feb. 2002.
- [41] R. McAdams, P. Beech, and J. T. Shawcross, "Low temperature plasma assisted catalytic reduction of NO_x in simulated marine diesel exhaust," *Plasma Chemistry* and *Plasma Processing*, vol. 28, pp. 159–171, Feb. 2008.
- [42] D. Tran, C. Aardahl, K. Rappe, P. Park, and C. Boyer, "Reduction of NO_x by plasmafacilitated catalysis over In-doped γ-alumina," *Applied Catalysis B: Environmental*, vol. 48, pp. 155–164, Mar. 2004.
- [43] H. H. Kim, K. Takashima, S. Katsura, and A. Mizuno, "Low-temperature NO_x reduction processes using combined systems of pulsed corona discharge and catalysts," *Journal of Physics D: Applied Physics*, vol. 34, no. 4, p. 604, 2001.
- [44] S. Bröer and T. Hammer, "Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V₂O₅-WO₃/TiO₂ catalyst," *Applied Catalysis B: Environmental*, vol. 28, no. 2, pp. 101–111, 2000.

- [45] T. Oda, T. Kato, T. Takahashi, and K. Shimizu, "Nitric oxide decomposition in air by using nonthermal plasma processing with additives and catalyst," *Industry Applications, IEEE Transactions on*, vol. 34, no. 2, pp. 268–272, 1998.
- [46] A. Nasonova, H. C. Pham, D.-J. Kim, and K.-S. Kim, "NO and SO₂ removal in non-thermal plasma reactor packed with glass beads-TiO₂ thin film coated by PCVD process," *Chemical Engineering Journal*, vol. 156, pp. 557–561, Feb. 2010.
- [47] T. Oda, T. Kato, T. Takahashi, and K. Shimizu, "Nitric oxide decomposition in air by using non-thermal plasma processing - with additives and catalyst," Oct. 1997.
- [48] I. Jõgi, K. Erme, A. Haljaste, and M. Laan, "Oxidation of nitrogen oxide in hybrid plasma-catalytic reactors based on DBD and Fe₂O₃," *The European Physical Journal Applied Physics*, vol. 61, no. 02, p. 24305, 2013.
- [49] J. H. Kwak, J. Szanyi, and C. H. Peden, "Nonthermal plasma-assisted catalytic NO_x reduction over Ba-Y,FAU: the effect of catalyst preparation," *Journal of Catalysis*, vol. 220, pp. 291–298, Dec. 2003.
- [50] Y. Lee, J. Chung, Y. Choi, J. Chung, M. Cho, and W. Namkung, "NO_x removal characteristics in plasma plus catalyst hybrid process," *Plasma Chemistry and Plasma Processing*, vol. 24, no. 2, pp. 137–154, 2004.
- [51] Y. S. Mok, D. J. Koh, D. N. Shin, and K. T. Kim, "Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process," *Fuel Processing Technology*, vol. 86, no. 3, pp. 303–317, 2004.
- [52] Y. S. Mok, D. J. Koh, K. T. Kim, and I.-S. Nam, "Nonthermal plasma-enhanced catalytic removal of nitrogen oxides over V₂O₅/TiO₂ and Cr₂O₃/TiO₂," *Industrial & engineering chemistry research*, vol. 42, no. 13, pp. 2960–2967, 2003.
- [53] R. G. Tonkyn, S. E. Barlow, and J. W. Hoard, "Reduction of NO_x in synthetic diesel exhaust via two-step plasma-catalysis treatment," *Applied Catalysis B: Environmental*, vol. 40, no. 3, pp. 207–217, 2003.
- [54] A. Srinivasan and B. Rajanikanth, "Nonthermal-plasma-promoted catalysis for the removal of NO_x from a stationary diesel-engine exhaust," *IEEE Transactions on Industry Applications*, vol. 43, no. 6, pp. 1507–1514, 2007.
- [55] J.-H. Niu, A.-M. Zhu, C. Shi, H.-Y. Fan, X.-M. Chen, and X.-F. Yang, "The reactions and composition of the surface intermediate species in the selective catalytic reduction of NO_x with ethylene over Co-ZSM-5," *Research on Chemical Intermediates*, vol. 33, no. 6, pp. 549–566, 2007.
- [56] J. H. Kwak, J. Szanyi, and C. H. Peden, "Nonthermal plasma-assisted catalytic NO_x reduction over Ba-Y, FAU: the effect of catalyst preparation," *Journal of Catalysis*, vol. 220, no. 2, pp. 291–298, 2003.

- [57] Y. Nie, J. Wang, K. Zhong, L. Wang, and Z. Guan, "Synergy study for plasmafacilitated C₂H₄ selective catalytic reduction of NO_x over Ag/γ-Al₂O₃catalyst," *IEEE transactions on plasma science*, vol. 35, no. 3, pp. 663–669, 2007.
- [58] Z. Liu, K. Yan, A. Pemen, G. Winands, and E. Van Heesch, "Synchronization of multiple spark-gap switches by a transmission line transformer," *Review of scientific instruments*, vol. 76, no. 11, p. 113507, 2005.
- [59] G. J. J. Winands, "Efficient streamer plasma generation," PhD Thesis, Eindhoven University of Technology, 2007, ISBN 978-90-386-1040-5.
- [60] T. Huiskamp, "Nanosecond pulsed power technology for transient plasma generation," PhD Thesis, Eindhoven University of Technology, 2015, ISBN 978-94-6259-776-1.
- [61] F. Beckers, "Pulsed power driven industrial plasma processing," PhD Thesis, Eindhoven University of Technology, 2015, ISBN 978-90-386-3982-6.
- [62] Dielectric constant probe-Keysight Technologies, 2018 (accessed January 2, 2018). https://www.keysight.com/en/pd-1000000046%3Aepsg%3Apro-pn-16451B/ dielectric-test-fixture?cc=US&lc=eng.
- [63] E. Hioki, "Hioki 3532–50 lcr hitester instruction manual," *JAPAN. HIOKI EE COR-PORATION*, 2001.
- [64] D. Ghodgaonkar, V. Varadan, and V. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," *IEEE Transactions on instrumentation and measurement*, vol. 39, no. 2, pp. 387–394, 1990.
- [65] J. W. Lamb, "Miscellaneous data on materials for millimetre and submillimetre optics," *International Journal of Infrared and Millimeter Waves*, vol. 17, no. 12, pp. 1997–2034, 1996.
- [66] G. Jiang, W. Wong, E. Raskovich, W. Clark, W. Hines, and J. Sanny, "Open-ended coaxial-line technique for the measurement of the microwave dielectric constant for low-loss solids and liquids," *Review of scientific Instruments*, vol. 64, no. 6, pp. 1614– 1621, 1993.
- [67] W. Hu, L. Li, W. Tong, and G. Li, "Supersaturated spontaneous nucleation to TiO₂ microspheres: synthesis and giant dielectric performance," *Chemical Communications*, vol. 46, no. 18, pp. 3113–3115, 2010.
- [68] A. A. Gafoor, M. Musthafa, and P. Pradyumnan, "AC conductivity and diffuse reflectance studies of Ag-TiO₂ nanoparticles," *Journal of electronic materials*, vol. 41, no. 9, pp. 2387–2392, 2012.

- [69] J. Hwang, K. Lee, Y. Jeong, Y. U. Lee, C. Pearson, M. C. Petty, and H. Kim, "UV-assisted low temperature oxide dielectric films for tft applications," *Advanced Materials Interfaces*, vol. 1, no. 8, 2014.
- [70] L. A. Rosocha and R. A. Korzekwa, "First report on non-thermal plasma reactor scaling criteria and optimization models," tech. rep., LAWRENCE LIVERMORE NATIONAL LAB CA, 1998.
- [71] C. R. McLarnon and B. M. Penetrante, "Effect of reactor design on the plasma treatment of NO_x," tech. rep., SAE INTERNATIONAL WARRENDALE PA, 1998.
- [72] K. Takaki, M. Shimizu, S. Mukaigawa, and T. Fujiwara, "Effect of electrode shape in dielectric barrier discharge plasma reactor for NO_x removal," *IEEE Transactions on Plasma Science*, vol. 32, no. 1, pp. 32–38, 2004.
- [73] T. Huiskamp, W. Hoeben, F. Beckers, E. van Heesch, and A. Pemen, "(sub) nanosecond transient plasma for atmospheric plasma processing experiments: application to ozone generation and NO removal," *Journal of Physics D: Applied Physics*, vol. 50, no. 40, p. 405201, 2017.
- [74] A. C. Gentile and M. J. Kushner, "Reaction chemistry and optimization of plasma remediation of N_xO_y from gas streams," *Journal of applied physics*, vol. 78, no. 3, pp. 2074–2085, 1995.
- [75] S. G. Jeon, K.-H. Kim, D. H. Shin, N.-S. Nho, and K.-H. Lee, "Effective combination of non-thermal plasma and catalyst for removal of volatile organic compounds and NO_x," *Korean Journal of Chemical Engineering*, vol. 24, no. 3, pp. 522–526, 2007.
- [76] B. Adelman, G.-D. Lei, and W. Sachtler, "Co-adsorption of nitrogen monoxide and nitrogen dioxide in zeolitic de-NO_x catalysts," *Catalysis letters*, vol. 28, no. 2, pp. 119– 130, 1994.
- [77] W. Addison and R. Barrer, "Sorption and reactivity of nitrous oxide and nitric oxide in crystalline and amorphous siliceous sorbents," *Journal of the Chemical Society* (*Resumed*), pp. 757–769, 1955.
- [78] S. Masuda and H. Nakao, "Control of NO_x by positive and negative pulsed corona discharges," *IEEE Transactions on Industry Applications*, vol. 26, no. 2, pp. 374–383, 1990.
- [79] M. A. Jani, K. Takaki, and T. Fujiwara, "Streamer polarity dependence of NO_x removal by dielectric barrier discharge with a multipoint-to-plane geometry," *Journal of Physics D: Applied Physics*, vol. 32, no. 19, p. 2560, 1999.
- [80] T. Huiskamp, W. Sengers, F. Beckers, S. Nijdam, U. Ebert, E. Van Heesch, and A. Pemen, "Spatiotemporally resolved imaging of streamer discharges in air generated in a wire-cylinder reactor with (sub) nanosecond voltage pulses," *Plasma Sources Science and Technology*, vol. 26, no. 7, p. 075009, 2017.

- [81] R. Hackam and H. Aklyama, "Air pollution control by electrical discharges," *IEEE Transactions on Dielectrics and Electrical Insulation*, vol. 7, no. 5, pp. 654–683, 2000.
- [82] P. Vitello, B. Penetrante, and J. Bardsley, "Simulation of negative-streamer dynamics in nitrogen," *Physical Review E*, vol. 49, no. 6, p. 5574, 1994.
- [83] C. Subrahmanyam, "Catalytic non-thermal plasma reactor for total oxidation of volatile organic compounds," *Indian Journal of Chemistry*, vol. 48, no. August, pp. 1062–1068, 2009.
- [84] N. Blin-Simiand, P. Tardiveau, A. Risacher, F. Jorand, and S. Pasquiers, "Removal of 2-heptanone by dielectric barrier discharges - The effect of a catalyst support," *Plasma Processes and Polymers*, vol. 2, no. 3, pp. 256–262, 2005.
- [85] T. Namihira, S. Tsukamoto, D. Wang, S. Katsuki, R. Hackam, H. Akiyama, Y. Uchida, and M. Koike, "Improvement of NO_x removal efficiency using short-width pulsed power," *IEEE Transactions on Plasma Science*, vol. 28, no. 2, pp. 434–442, 2000.
- [86] Y. S. Mok, M. Dors, and J. Mizerazcyk, "Effect of reaction temperature on NO_x removal and formation of ammonium nitrate in nonthermal plasma process combined with selective catalytic reduction," *IEEE transactions on plasma science*, vol. 32, no. 2, pp. 799–807, 2004.
- [87] A. Khacef and J. M. Cormier, "Pulsed sub-microsecond dielectric barrier discharge treatment of simulated glass manufacturing industry flue gas: removal of SO₂ and NO_x," *Journal of Physics D: Applied Physics*, vol. 39, no. 6, p. 1078, 2006.
- [88] H. Kim, K. Takashima, S. Katsura, and A. Mizuno, "Low-temperature NO_x reduction processes using combined systems of pulsed corona discharge and catalysts," *Journal* of Physics D: Applied Physics, vol. 34, no. 4, p. 604, 2001.
- [89] H. H. Kim, G. Prieto, K. Takashima, S. Katsura, and A. Mizuno, "Performance evaluation of discharge plasma process for gaseous pollutant removal," *Journal of electrostatics*, vol. 55, no. 1, pp. 25–41, 2002.
- [90] K. Takaki, T. Sato, S. Mukaigawa, and T. Fujiwara, "Influence of NO initial concentration on removal efficiency in dielectric barrier discharge reactor," in *Pulsed Power Conference*, 2007 16th IEEE International, vol. 1, pp. 399–402, IEEE, 2007.
- [91] B. Penetrante, M. Hsiao, J. Bardsley, B. Merritt, G. Vogtlin, A. Kuthi, C. Burkhart, and J. Bayless, "Identification of mechanisms for decomposition of air pollutants by non-thermal plasma processing," *Plasma sources science and technology*, vol. 6, no. 3, p. 251, 1997.

- [92] H.-H. Kim, "Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects," *Plasma Processes and Polymers*, vol. 1, no. 2, pp. 91–110, 2004.
- [93] X. Zhu, X. Gao, X. Yu, C. Zheng, and X. Tu, "Catalyst screening for acetone removal in a single-stage plasma-catalysis system," *Catalysis Today*, vol. 256, pp. 108–114, 2015.
- [94] S. Delagrange, L. Pinard, and J.-M. Tatibouët, "Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts," *Applied Catalysis B: Environmental*, vol. 68, no. 3, pp. 92–98, 2006.
- [95] H.-H. Kim, S.-M. Oh, A. Ogata, and S. Futamura, "Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO₂ catalyst," *Applied Catalysis B: Environmental*, vol. 56, no. 3, pp. 213–220, 2005.
- [96] T. Namihira, S. Tsukamoto, D. Wang, H. Hori, S. Katsuki, R. Hackam, H. Akiyama, M. Shimizu, and K. Yokoyama, "Influence of gas flow rate and reactor length on NO removal using pulsed power," *IEEE Transactions on Plasma Science*, vol. 29, no. 4, pp. 592–598, 2001.
- [97] T. Hammer, T. Kishimoto, H. Miessner, and R. Rudolph, "Plasma enhanced selective catalytic reduction: kinetics of NO_x-removal and byproduct formation," tech. rep., SAE Technical Paper, 1999.
- [98] T. Yamamoto, M. Okubo, K. Hayakawa, and K. Kitaura, "Towards ideal NO_x control technology using a plasma-chemical hybrid process," *Industry Applications, IEEE Transactions on*, vol. 37, no. 5, pp. 1492–1498, 2001.
- [99] A. Ogata, K. Saito, H.-H. Kim, M. Sugasawa, H. Aritani, and H. Einaga, "Performance of an ozone decomposition catalyst in hybrid plasma reactors for volatile organic compound removal," *Plasma Chemistry and Plasma Processing*, vol. 30, no. 1, pp. 33–42, 2010.
- [100] S. Futamura, A. Zhang, H. Einaga, and H. Kabashima, "Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants," *Catalysis Today*, vol. 72, no. 3, pp. 259–265, 2002.
- [101] N. Blin-Simiand, F. Jorand, Z. Belhadj-Miled, S. Pasquiers, and C. Postel, "Influence of temperature on the removal of toluene by dielectric barrier discharge," *International Journal of Plasma, Environmental Science and Technology*, vol. 1, no. 1, 2007.
- [102] A. M. Harling, H.-H. Kim, S. Futamura, and J. C. Whitehead, "Temperature dependence of plasma- catalysis using a nonthermal, atmospheric pressure packed bed; the destruction of benzene and toluene," *The Journal of Physical Chemistry C*, vol. 111, no. 13, pp. 5090–5095, 2007.

- [103] V. Ravi, Y. S. Mok, B. Rajanikanth, and H.-C. Kang, "Temperature effect on hydrocarbon-enhanced nitric oxide conversion using a dielectric barrier discharge reactor," *Fuel Processing Technology*, vol. 81, no. 3, pp. 187–199, 2003.
- [104] T. Wang, H. Liu, X. Zhang, H. Xiao, and B. Sun, "NO and SO₂ removal using dielectric barrier discharge plasma at different temperatures," *Journal of Chemical Engineering of Japan*, vol. 50, no. 9, pp. 702–709, 2017.
- [105] Y. Takahara, A. Ikeda, M. Nagata, and Y. Sekine, "Low-temperature NO decomposition in humidified condition using plasma–catalyst system," *Catalysis today*, vol. 211, pp. 44–52, 2013.
- [106] A. G. Panov, R. G. Tonkyn, M. L. Balmer, C. H. Peden, A. Malkin, and J. Hoard, "Selective reduction of NO_x in oxygen rich environments with plasma-assisted catalysis: the role of plasma and reactive intermediates," tech. rep., SAE Technical Paper, 2001.
- [107] E. Filimonova, Y. ho Kim, S. H. Hong, and Y.-H. Song, "Multiparametric investigation on NO_x removal from simulated diesel exhaust with hydrocarbons by pulsed corona discharge," *Journal of Physics D: Applied Physics*, vol. 35, no. 21, p. 2795, 2002.
- [108] B. Rajanikanth, A. Srinivasan, and V. Ravi, "Discharge plasma treatment for NO_x reduction from diesel engine exhaust: a laboratory investigation," *IEEE Transactions* on Dielectrics and Electrical Insulation, vol. 12, no. 1, pp. 72–80, 2005.
- [109] G. B. Fisher, C. L. DiMaggio, and J. W. Sommers, "NO_x reactivity studies of prototype catalysts for a plasma–catalyst aftertreatment system," tech. rep., SAE Technical Paper, 1999.
- [110] J. C. Whitehead, "Plasma-catalysis: the known knowns, the known unknowns and the unknown unknowns," *Journal of Physics D: Applied Physics*, vol. 49, no. 24, p. 243001, 2016.
- [111] H. Miessner, K.-P. Francke, R. Rudolph, and T. Hammer, "NO_x removal in excess oxygen by plasma-enhanced selective catalytic reduction," *Catalysis today*, vol. 75, no. 1, pp. 325–330, 2002.
- [112] R. Atkinson, D. Baulch, R. Cox, R. Hampson, J. Kerr, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III," *International journal of chemical kinetics*, vol. 21, no. 2, pp. 115–150, 1989.
- [113] J. Brian and A. Mitchell, "The dissociative recombination of molecular ions," *Physics reports*, vol. 186, no. 5, pp. 215–248, 1990.
- [114] Y. Itikawa, "Cross sections for electron collisions with nitrogen molecules," *Journal of physical and chemical reference data*, vol. 35, no. 1, pp. 31–53, 2006.

- [115] R. Dorai and M. J. Kushner, "Effect of multiple pulses on the plasma chemistry during the remediation of NO_x using dielectric barrier discharges," *Journal of Physics D: Applied Physics*, vol. 34, no. 4, p. 574, 2001.
- [116] M. Nahavandi, "Selective catalytic reduction (SCR) of no by ammonia over V₂O₅/TiO₂ catalyst in a catalytic filter medium and honeycomb reactor: A kinetic modeling study," *Brazilian Journal of Chemical Engineering*, vol. 32, no. 4, pp. 875– 893, 2015.
- [117] R. Q. Long, R. T. Yang, and R. Chang, "Low temperature selective catalytic reduction (scr) of NO with NH₃ over Fe–Mn based catalysts," *Chemical Communications*, no. 5, pp. 452–453, 2002.
- [118] G. Qi and R. T. Yang, "Low-temperature selective catalytic reduction of NO with NH₃ over iron and manganese oxides supported on titania," *Applied Catalysis B: Environmental*, vol. 44, no. 3, pp. 217–225, 2003.
- [119] D. A. Peña, B. S. Uphade, and P. G. Smirniotis, "TiO₂-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH₃: I. evaluation and characterization of first row transition metals," *Journal of catalysis*, vol. 221, no. 2, pp. 421–431, 2004.
- [120] V. Demidyuk and J. C. Whitehead, "Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system," *Plasma chemistry and plasma processing*, vol. 27, no. 1, pp. 85–94, 2007.
- [121] M. Wojciechowska and S. Lomnicki, "Nitrogen oxides removal by catalytic methods," *Clean Technologies and Environmental Policy*, vol. 1, no. 4, pp. 237–247, 1999.
- [122] T. Batakliev, V. Georgiev, M. Anachkov, and S. Rakovsky, "Ozone decomposition," *Interdisciplinary toxicology*, vol. 7, no. 2, pp. 47–59, 2014.
- [123] S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q. H. Wang, M. Bhaskaran, S. Sriram, M. S. Strano, and K. Kalantar-zadeh, "Transition metal oxides-thermoelectric properties," *Progress in Materials Science*, vol. 58, no. 8, pp. 1443–1489, 2013.
- [124] A. Clark, "Oxides of the transition metals as catalysts," *Industrial & Engineering Chemistry*, vol. 45, no. 7, pp. 1476–1480, 1953.
- [125] H. H. Kung, Transition metal oxides: surface chemistry and catalysis, vol. 45. Elsevier, 1989.
- [126] W. Oelerich, T. Klassen, and R. Bormann, "Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials," *Journal of Alloys and Compounds*, vol. 315, no. 1, pp. 237–242, 2001.

- [127] K.-P. Francke, H. Miessner, and R. Rudolph, "Plasmacatalytic processes for environmental problems," *Catalysis Today*, vol. 59, no. 3, pp. 411–416, 2000.
- [128] M. Magureanu, N. Mandache, E. Gaigneaux, C. Paun, and V. Parvulescu, "Toluene oxidation in a plasma-catalytic system," *Journal of applied physics*, vol. 99, no. 12, p. 123301, 2006.
- [129] S. Futamura, H. Einaga, H. Kabashima, and L. Y. Hwan, "Synergistic effect of silent discharge plasma and catalysts on benzene decomposition," *Catalysis Today*, vol. 89, no. 1, pp. 89–95, 2004.
- [130] S. Bröer and T. Hammer, "Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V₂O₅-WO₃/TiO₂ catalyst," *Applied Catalysis B: Environmental*, vol. 28, no. 2, pp. 101–111, 2000.
- [131] J. Wu, Y. Huang, Q. Xia, and Z. Li, "Decomposition of toluene in a plasma catalysis system with NiO, MnO₂, CeO₂, Fe₂O₃, and CuO catalysts," *Plasma Chemistry and Plasma Processing*, vol. 33, no. 6, pp. 1073–1082, 2013.
- [132] X. Fan, T. Zhu, Y. Sun, and X. Yan, "The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air," *Journal of hazardous materials*, vol. 196, pp. 380–385, 2011.
- [133] S. Yamamoto, S. Yao, S. Kodama, C. Mine, and Y. Fujioka, "Investigation of transition metal oxide catalysts for diesel PM removal under plasma discharge conditions," *Open Catal. J*, vol. 1, pp. 11–16, 2008.
- [134] B. Halpern and J. Germain, "Thermodesorption of oxygen from powdered transition metal oxide catalysts," *Journal of Catalysis*, vol. 37, no. 1, pp. 44–56, 1975.
- [135] T. Butterworth and R. Allen, "Plasma-catalyst interaction studied in a single pellet DBD reactor: dielectric constant effect on plasma dynamics," *Plasma Sources Science* and Technology, vol. 26, no. 6, p. 065008, 2017.
- [136] D. Mei, X. Zhu, Y.-L. He, J. D. Yan, and X. Tu, "Plasma-assisted conversion of CO₂ in a dielectric barrier discharge reactor: understanding the effect of packing materials," *Plasma Sources Science and Technology*, vol. 24, no. 1, p. 015011, 2014.
- [137] H.-H. Kim and A. Ogata, "Nonthermal plasma activates catalyst: from current understanding and future prospects," *The European Physical Journal Applied Physics*, vol. 55, no. 1, p. 13806, 2011.
- [138] H. Huang, D. Ye, and X. Guan, "The simultaneous catalytic removal of VOCs and O₃ in a post-plasma," *Catalysis Today*, vol. 139, no. 1, pp. 43–48, 2008.
- [139] F. Beckers, "Pulsed operation of a SDBD plasma reactor," Master Thesis, Eindhoven University of Technology, 2008.

- [140] S. Pekárek, "Experimental study of surface dielectric barrier discharge in air and its ozone production," *Journal of Physics D: Applied Physics*, vol. 45, no. 7, p. 075201, 2012.
- [141] N. Mastanaiah, P. Banerjee, J. A. Johnson, and S. Roy, "Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma," *Plasma Processes and Polymers*, vol. 10, no. 12, pp. 1120–1133, 2013.
- [142] K. Nassour, M. Brahami, S. Nemmich, N. Hammadi, N. Zouzou, and A. Tilmatine, "New hybrid surface-volume dielectric barrier discharge reactor for ozone generation," *IEEE Transactions on Industry Applications*, vol. 53, no. 3, pp. 2477–2484, 2017.
- [143] M. A. Malik, K. H. Schoenbach, and R. Heller, "Coupled surface dielectric barrier discharge reactor-ozone synthesis and nitric oxide conversion from air," *Chemical Engineering Journal*, vol. 256, pp. 222–229, 2014.
- [144] S. Portugal, S. Roy, and J. Lin, "Functional relationship between material property, applied frequency and ozone generation for surface dielectric barrier discharges in atmospheric air," *Scientific reports*, vol. 7, no. 1, p. 6388, 2017.
- [145] T. Huiskamp, W. Brok, A. Stevens, E. van Heesch, and A. Pemen, "Maskless patterning by pulsed-power plasma printing," *IEEE Transactions on Plasma Science*, vol. 40, no. 7, pp. 1913–1925, 2012.
- [146] S. Voeten, F. Beckers, E. Van Heesch, and A. Pemen, "Optical characterization of surface dielectric barrier discharges," *IEEE Transactions on Plasma Science*, vol. 39, no. 11, pp. 2142–2143, 2011.
- [147] A. Balamurugan, S. Kannan, and S. Rajeswari, "Evaluation of TiO₂ coatings obtained using the sol–gel technique on surgical grade type 316l stainless steel in simulated body fluid," *Materials Letters*, vol. 59, no. 24, pp. 3138–3143, 2005.
- [148] A. Pemen, E. van Heesch, and F. Beckers, "Quasi resonant pulse modulator for surface-dielectric-barrier discharge generation," Proceedings of the 4th Euro-Asian Pulsed Power Conference (EAPPC-2012), 30 September - 4 October, pp. 1-4, 2012.
- [149] J. Jolibois, K. Takashima, and A. Mizuno, "NO_x removal using a wet type plasma reactor based on a three-electrode device," in *Journal of Physics: Conference Series*, vol. 301, p. 012011, IOP Publishing, 2011.
- [150] H. Zhang, K. Li, C. Shu, Z. Lou, T. Sun, and J. Jia, "Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor," *Chemical Engineering Journal*, vol. 256, pp. 107–118, 2014.

- [151] T. Oda, R. Yamashita, I. Haga, T. Takahashi, and S. Masuda, "Decomposition of gaseous organic contaminants by surface discharge induced plasma chemical processing-spcp," *IEEE Transactions on Industry Applications*, vol. 32, no. 1, pp. 118–124, 1996.
- [152] S. Chavadej, K. Saktrakool, P. Rangsunvigit, L. L. Lobban, and T. Sreethawong, "Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO₂," *Chemical engineering journal*, vol. 132, no. 1, pp. 345–353, 2007.
- [153] R. Aerts, X. Tu, W. Van Gaens, J. Whitehead, and A. Bogaerts, "Gas purification by nonthermal plasma: a case study of ethylene," *Environmental science & technology*, vol. 47, no. 12, pp. 6478–6485, 2013.
- [154] A. M. Harling, D. J. Glover, J. C. Whitehead, and K. Zhang, "Novel method for enhancing the destruction of environmental pollutants by the combination of multiple plasma discharges," *Environmental science & technology*, vol. 42, no. 12, pp. 4546– 4550, 2008.
- [155] K. Hensel, V. Martišovitš, Z. Machala, M. Janda, M. Leštinský, P. Tardiveau, and A. Mizuno, "Electrical and optical properties of AC microdischarges in porous ceramics," *Plasma Processes and Polymers*, vol. 4, no. 7-8, pp. 682–693, 2007.
- [156] H.-H. Kim, J.-H. Kim, and A. Ogata, "Microscopic observation of discharge plasma on the surface of zeolites supported metal nanoparticles," *Journal of Physics D: Applied Physics*, vol. 42, no. 13, p. 135210, 2009.
- [157] H.-H. Kim, Y. Teramoto, and A. Ogata, "Time-resolved imaging of positive pulsed corona-induced surface streamers on TiO₂ and γ-Al₂O₃-supported Ag catalysts," *Journal of Physics D: Applied Physics*, vol. 49, no. 41, p. 415204, 2016.
- [158] H.-H. Kim, N. Hwang, A. Ogata, and Y.-H. Song, "Propagation of surface streamers on the surface of HSY zeolites-supported silver nanoparticles," *IEEE Transactions* on *Plasma Science*, vol. 39, no. 11, pp. 2220–2221, 2011.
- [159] "4Picos ICCD camera," accessed January 2, 2018. http://stanfordcomputeroptics. com/products/picosecond-iccd.html.
- [160] U. Kogelschatz, "Filamentary, patterned, and diffuse barrier discharges," *IEEE Transactions on plasma science*, vol. 30, no. 4, pp. 1400–1408, 2002.
- [161] M.-G. Chen, A. Mihalcioiu, K. Takashima, and A. Mizuno, "Catalyst size impact on non-thermal plasma catalyst assisted deNO_x reactors," in *Electrostatic Precipitation*, pp. 681–684, Springer, 2009.

[162] H. L. Chen, H. M. Lee, S. H. Chen, and M. B. Chang, "Review of packed-bed plasma reactor for ozone generation and air pollution control," *Industrial & Engineering Chemistry Research*, vol. 47, no. 7, pp. 2122–2130, 2008.

LIST OF PUBLICATIONS

Journal Publications

- V.R. Chirumamilla, W.F.L.M. Hoeben, F.J.C.M. Beckers, T. Huiskamp, E.J.M. van Heesch, A.J.M. Pemen, "Experimental investigation on the effect of a microsecond pulse and a nanosecond pulse on NO removal using a pulsed DBD with catalytic materials," *Plasma Chem. Plasma Proc.*, vol.36, pp.487–510, 2016.
- A.J.M. Pemen, V.R. Chirumamilla, F.J.C.M. Beckers, W.F.L.M. Hoeben, T. Huiskamp, "An SDBD plasma catalytic system for on-demand air purification," *IEEE T. Plasma Sci.*, 2018, submitted
- V.R. Chirumamilla, A.J.M. Pemen, "Effect of applied peak-voltage and polarity on NO_x removal in plasma-catalytic pulsed-DBD reactor- an experimental study," *Plasma Chem. Plasma Proc.*, 2018, to be submitted
- V.R. Chirumamilla, A.J.M. Pemen, "Effect of operational parameters on NO_x removal in plasma-catalytic pulsed-DBD reactor- an experimental study," *Plasma Chem. Plasma Proc.*, 2018, to be submitted
- V.R. Chirumamilla, A. Parastaev, E. Hensen, A.J.M. Pemen, "Screening of catalytic materials for NO_x removal by combining a pulsed-DBD reactor with catalytic materials," *Plasma Chem. Plasma Proc.*, 2018, to be submitted

Conference contributions

• V.R. Chirumamilla, W.F.L.M. Hoeben, F.J.C.M. Beckers, E.J.M. van Heesch and A.J.M. Pemen, "Indoor air cleaning by plasma-assisted catalysis," 26th symposium on *Plasma Physics and Radiation Technology (26 NNV)*, 11-12 March 2014, Lunteren, The Netherlands.
- V.R. Chirumamilla, W.F.L.M. Hoeben, F.J.C.M. Beckers, E.J.M. van Heesch and A.J.M. Pemen, "Removing NO_x in indoor air by combining pulsed dielectric barrier discharges with CuO-MnO₂/TiO₂ catalyst," 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV), 21-26 September 2014, Zinnowitz, Germany.
- V.R. Chirumamilla, W.F.L.M. Hoeben, F.J.C.M. Beckers, T. Huiskamp and A.J.M. Pemen, "Experimental investigation on NO_x removal with pulsed DBD in combination with catalysts," *Proceedings of the 22nd International Symposium on Plasma Chemistry (ISPC 22)*, July 5-10, 2015, Antwerp, Belgium.
- V.R. Chirumamilla, W.F.L.M. Hoeben, F.J.C.M. Beckers, E.J.M. van Heesch and A.J.M. Pemen, "Effect of pulse rise-time on NO_x removal in a hybrid plasmacatalytic system", *6th Central European Symposium on Plasma Chemistry (CESPC-6)*, September 6-10, 2015, Bressanone, Italy (awarded with a best poster award).
- V.R. Chirumamilla, W.F.L.M. Hoeben, F.J.C.M. Beckers and A.J.M. Pemen, "Effect of initial concentration on NO_x removal using pulsed dielectric barrier discharges", *International Workshop on Plasmas for Energy and Environmental Applications (IWPEEA-2016)*, 21- 24 August 2016, Liverpool, United Kingdom.
- V. R. Chirumamilla and A.J.M. Pemen, "Kinetics studies on NO_x removal in a pulsed DBD catalytic reactor", 29th symposium on Plasma Physics and Radiation Technology (29 NNV), 7-8 March 2017, Lunteren, the Netherlands.

Acknowledgements

After a slightly longer amazing journey of four and half years, today is the day, It is done! It has been a very challenging period for me not only in the scientific area but also on personal front. Scripting this dissertation has had a big influence on myself. I would take this opportunity to reflect on everyone: my colleagues, friends and family who have supported and helped me throughout this journey.

Firstly, I would like to express my sincere gratitude to my promotor and supervisor, prof. Guus Pemen for the continuous support during my Ph.D study. Thank you Guus for believing in me and giving me this opportunity. It was your invaluable support which has motivated me to complete this thesis.

I would like to convey my thanks to dr. Tom Huiskamp who kindly accepted to be my supervisor at the very last minute. Thank you very much for your critical reviews on my thesis. I have learnt a lot from you both professionally and personally. You gave me a lot of positive energy especially when I was emotionally down.

I would like to thank the rest of my thesis committee : prof.dr. J.C. Whitehead (The University of Manchester), prof.dr. C. Paradisi (University of Padova), prof.dr. V. Hessel, dr.ir. W.F.L.M. Hoeben, and dr. R.A.H. Engeln, not only for their insightful comments and encouragement, but also for the hard questions which incented me to widen my research content. A very special thanks to all the sponsors of the Eniac JU project who extended their financial support and sponsored this research.

I should definitely convey my gratitude to dr. Frank Beckers. Frank, I should accept that I could not have finished my thesis without your contribution. It is amazing that you have a solution for every problem and fix anything in the lab. Although you wanted to follow your three commandments : "I don't know; I don't care ; It's your project", you always come to help me in the lab after seeing my pathetic face.

My sincere appreciation goes to dr. Wilfred Hoeben for introducing me to all our colleagues and giving me a short lab trip on my first day at TU/e. Your help to build my first small set-up in the corona lab and your coordination of new experimental infrastructure in

the HV lab in Flux building steered me in the direction I am in today.

Alexander Parastaev, I always admire your passion for research and keen eye for detail. Without your contribution, chapter 5 would not have existed. I very much enjoyed our short discussions related to both Ph.D and other interesting issues. I wish you all the very best with your thesis completion.

I would like to thank Jovita Morales, Frans Kuijpers, Paul Bijer, Paul Anderoemer, Harry te laat, Ruud de Regt from EPC for their willingness to help me in building my setup or to fix the things that I used to break.

Thank you Herman for your patience in dealing with my gas bottle ordering and most of the time bringing and fitting the gas cylinders for my lab work. I would like to thank dr. Jan Bernards and Jan van Lierop from Thin Films and Functional Materials laboratory at Fontys, Eindhoven for giving me an opportunity to try the sputtering technique at Fontys.

I am privileged to meet few wonderful people during the course of my PhD who became good friends. Lei and Jin: I cannot thank you enough for all the help and support you have offered me. Jin, you gave me tons and tons of motivation throughout the thesis period. I am truly blessed to have a friend like you. Sharmistha and Raja: You are such an inspirational couple. Thank you for being there when I needed the most.

Ananthi and Praveena: how can I say just thank you to both of you? You guys are truly amazing. Both of you were there with me during my ups and downs. In the past few years, there isn't anything that happened in my life without you two. But all of it would not have been possible if Ashok and Sundar were not supportive and caring as they are.

I would like to thank Alexander, Merce, Armand, Siddharth, Hasan, Bart, Pavlo, Anna, Rene, Marcel, Hennie, Annemie, Annemarie, Mansoor, Samina, Elena, Babar, Gu, Ballard and many other colleagues from EES-group for creating a pleasant work environment and continuous support. Annemarie, you were always there for me when I need some help both at TU/e and outside TU/e.

I would also like to thank Gertjan and Yvonne, Martin kok, Reju and Bindu, Dewi and Inge for making our stay pleasant at our new place. I would also like to thank my friends Nagarjuna, Arun and Anita, Bhaskar Patil, Shariar, Samaneh for their friendly talks, lunches and dinners.

This thesis would not have been possible without the love and support from my parents. I am indebted to them for their belief and allowing me to do what I wish in my life. I am indebted to my mother-in-law and father-in-law for their understanding and for standing besides me during every aspect of my life. Your prayer for me was what sustained me this far. The greatest strength comes from my sister, Vijji and my brother, Amar. Though, we miss the regular conversations, I always cherish those moments that we have spent together. It will be incomplete if I miss to thank my aunts and uncles, sister-in-laws and brother-in-laws, cousins, nieces and nephews; thank you family.

Finally, I would like to acknowledge the most important persons in my life: My husband Srini and my daughter Akshaya. Thank you Srini for your unconditional love, infinite patience, unimaginable support and ofcourse for wonderful morning coffees!. You and our cute little angel Akshaya have been by my side in all happy and sad moments of this expedition. Your love and trust in me made it possible for me to finish what I started.

CURRICULUM VITAE

Vindhya Rani Chirumamilla was born on August 10, 1983 in Guntur, Andhra Pradesh, India. She obtained her bachelor of technology in chemical engineering from Jawaharlal Nehru Technology University, India in 2004. She received her master of technology in mineral process engineering from Andhra University in 2006. While pursuing her masters she also worked as an engineer at Indian Ordnance factory services, Itarsi, India. She also received joint M.Sc. degree in Management and Engineering of Environment and Energy (ME3) from Ecole des Mines de Nantes, France and Universidad Politecnica de Madrid in 2009. Later on she worked as a researcher at Tata steel R&D, Jamshedpur, India. In 2013 she joined Electrical Energy Systems group at Eindhoven University of Technology, as a PhD candidate under the supervision of prof.dr.ing. A.J.M. Pemen which resulted in this thesis. During her PhD project she received a best poster award at 6th Central European Symposium on Plasma Chemistry, Bressanone (Italy), 2015.