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Inleiding

codering

bijzondere onderwerpen

spraakherkenning

spraaksynthese

Voor v ligt de reader van het vierde Colloquium
Signaalanalyse en Spraak, dat plaats vindt op 22
en 23 oktober 1990. Na de succesvolle Colloquia
in Amsterdam, Den Haag en Utrecht is het de beurt
aan het IPO om dit jaar gastheer fe zijn.

Het Colloquium is bedoeld als discussieplatform
voor deskundigen op het gebied van signaal-
analyse enerzijds en spraak anderzijds.

Met deze doelstelling voor ogen hebben wij een
aantal onderwerpen in het programma opgenomen
die passen in de trend van het huidige spraak-
onderzoek. Wij hopen dat deze trend voldoende in
de keuze van de artikelen naar voren komt.

Het Colloquium is verdeeld in vier secties:
Codering, Bijzondere onderwerpen,
Spraakherkenning, Spraaksynthese.

In de sectie Codering zal worden ingegaan op
spraak- en muziekcodering (maandagochtend), en
op de toepassing in spraak van Scale Space
Codering (SSC), een techniek die al langer vit de
beeldcodering bekend is. Ook gaan we dieper in
op de principes achter de Singular Value
Decomposition (SVD).

Een aantal onderwerpen is samengevat onder de
noemer ‘Bijzonder’ (maandagmiddag). Onder deze
noemer wordt aandacht gevraagd voor stromings-
verschijnselen, mogelijke toepassingen van fractals, de
nieuwe PSOLA-manipulatiefechniek, en de
achtergronden van regelsets bij spraaksynthese.

In de sectie Spraakherkenning (dinsdagochtend) zal het
vooral gaan om een vergelijking tussen de concurre-
rende benaderingen van Hidden Markov Models
(HMM) en Neural Networks (NN), en de prestaties van
HMM.

De sectie Spraaksynthese (dinsdagmiddag) is in het
bijzonder gericht op toepassingen (Spraakmaker,
SPICOS), waarbij ook human interface-aspecten
nader worden belicht. Daarnaast is er aandacht
voor de methodologie van het vinden van
duurregels in spraak.

Het organisatiecomité.
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TELECOMMUNICATIE

Perceptieve foutmaskering sleutel tot betere spraakkwaliteit

Digitalisering van spraak voor
mobiele telefonie

ren de mobiele abonnees niet recht-

strecks, maar loopt de communicatie via
cen vast basisstation in het midden van een
cel. Zo'n cel is een verzorgingsgebied met
cen bepaalde oppervlakte (in het verleden
cen stad of een deel van een provincic),
waarbinnen bepaalde radiofrequenties voor
de tweerichtingscommunicatie zijn toege-
wezen. Basisstations zijn onderling gekop-
peld via schakelcentra die weer toegang
hebben tot het openbare geschakelde tele-
foonnet (PSTN) ¢n in de tockomst tot het
“diensten geintegreerde digitale netwerk
(ISDN) .

In cen cellulair radiosysteem communice-

Het **cellulaire radio™ -concept biedt de mo-
eclijkheid 1ot hergebruik van radiofrequen-

R.J. SLUIJTER

De auteur s werkzaam by het Philips Natuurkundig Labora-

ronum te tindhoven

ties. bBrequenties van de ene cel kunnen op-
nicuw gebruikt worden in op enige afstand
eclegen cellen. Frequentiehergebruik ver-
eroot de netwerkceapaciteit binnen een gege-
ven radioband. Er is een trend te bespeuren
naar steeds kleinere cellen om steeds meer
abonnecs te kunnen bedienen. Bij kleine cel-
len - bipvoorbeeld met een diameter van en-

e b kigyy

Mobiele telefonie bestaat al een halve eeuw, maar slechts
weinigen konden tot nu toe van deze dienst profiteren. In de
toekomst zal echter iedereen, om het even waar, mobiele
telefonieverbindingen tot stand kunnen brengen. Digitale
cellulaire radio biedt de hiervoor noodzakelijke technische

mogelijkheden.

kele kilometers - wordt de kans groot dat ge-
bruikers zich tijdens een gesprek van de ene
cel naar de andere verplaatsen, zodat van
basisstation en dus van zend- en ontvangst-
frequentie moet worden omgeschakeld.
Cellulaire radiosystemen met kleine cellen
vereisen daarom een geavanceerd bestu-
rings- en beheerssysteem om er voor te zor-
gen dat dit omschakelen ongemerkt gebeurt.

Nieuwe ontwikkelingen op het gebied van
cellulaire radio gaan in de richting van digi-
tale in plaats van analoge systemen. Digitale
radiosystemen bieden ecn aantal voordelen
namelijk:

® verminderde gevoeligheid voor interfe-
rentie van nabuurcellen (**co-channel in-
terference’’). Frequenties kunnen daar-
door cerder, dat wil zeggen op kortere
afstand, worden hergebruikt, wat resul-
teert in een meer efficiént gebruik van
het radiospectrum:

@ potentieel betere spraakkwaliteit:

® minder invloed van veldsterktevariatics
(**fading’’) ten gevolge van meerwegs-
propagatie door het gebruik van geavan-
ceerde digitale signaalbewerking voor
kanaalcodering en van spraakinterpola-
tie om periodes van diepe fading tc over-
bruggen:

@ meer “privacy’ door versleuteling van
digitale spraak;

@ ccnvoudige(r) integratic van spraak- ¢n
datadiensten (ISDN) en

Foto a,b:

Experimentele hardware van de GSM-spraakcodec
uitgevoerd met een Philips signaalprocessor van het
type PCB 501 1. Een realisatie in de vorm van drie
maat-IC’s is op dit moment mogelijk. In de toekomst
zal de codec op een enkele chip kunnen worden
ondergebracht (foto’s : Philips Kommunikations
Industrie, Neurenberg, Duitsland).
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@ uitzicht op geavanceerde signaalbewer-
kings- en besturings-IC’s tegen lage
kosten door gebruik van VLSI-
technicken.

In 1991 zal in Europa een begin worden ge-
maakt met de installatie van een systeem
voor digitale mobiele radio in de 900MHz-
band. De ontwikkeling van dit Pan-Europe-
se systeem (GSM) zal gepaard gaan met la-
gere kosten als gevolg van de mogelijkhe-
den van massafabricage. Ook de internatio-
nale bewegingsvrijheid van de abonnecs zal
erdoor worden vergroot.

Eisen spraakcodec

De spraakcodec (codeer/decodeerschake-
ling) moet aan een aantal eisen voldoen te
weten:

® cen bitsnelheid van ongeveer 16 kbit/s
als compromis tussen de prestaties van
de huidige spraakcodecs en de vereiste
radiospectrum-efficiéntie;

® cen gemiddeld betere spraakkwaliteit
(onder praktische operationele condi-
ties) dan de huidige, analoge 900MHz-
systemen;

@ transparantie voor de auditieve signale-
ringssignalen van het netwerk naar de
gebruiker zoals kiestoon, beltoon, bezet-
toon enzovoort. Dit geldt ook voor even-
tueel achtergrondlawaai dat bij de in-
gangsspraak is opgeteld;

® minimale vertraging om echo’s te voor-
komen. Als bovengrens voor de vertra-
ging in een cascade van spraakcoder en
decoder geldt een waarde van 65 ms;

® bitfoutenkansen tot 1% mogen geen al te
grote invloed hebben op de gemiddelde
spraakkwaliteit en

® lage complexiteit. Bij voorkeur moet de
codec in é¢én IC te implementeren zijn.

Voor de selectie van een GSM-codec zijn
een zestal kandidaat-systemen uit Frankrijk,
Duitsland, Itali€¢, Noorwegen, Zweden en
het Verenigd Koninkrijk, onder meer via
luisterproeven, intensief met elkaar verge-
leken [1,2]. Uiteindelijk is de keus gevallen
op het Philips LPC/RPE-systeem (‘‘linear
predictive coding/regular pulse excita-
tion’’) aangevuld met het LTP-systeem
(*‘long term prediction’’) van IBM. Alvo-
rens het voorkeurssysteem in meer detail te
bespreken, zal in het kort worden ingegaan
op wat basiskennis over het spraakpercep-
tiemodel.

Perceptiemodel
Figuur 1 toont een algemeen gebruikt model

noise vocul tract
generator A parameters
uft) - i"’"]
unvorced syrithesrs { SHreh
R filter -
pirtch(T! - ¥ = { sty l
A A vorced _ .
vit)
pulse
nerator |
Ecoicdcil 10T formants
Fig. |. Model van het /\/\/\
s L,
spraakproduktie- A -
mechazisme V(if) H(f)

van het spraakproduktiemechanisme |[3].
Dit model is deels gebaseerd op kennis van
de menselijke spraakorganen en deels op de
karakteristiecke vormen van spraaksignalen.
Het model bevat twee signaalbronnen: een
(witte) ruisgenerator als stimulus voor het
opwekken van stemloze klanken en cen
pulsgenerator voor stemhebbende klanken.
De pulsgenerator, die in wezen model staat
voor de menselijke stembanden, levert een
serie periodieke pulsen v(z), waarvan de her-
halingsfrequentie //T overeenkomt met de
fundamentele frequentie ofwel de toon-
hoogte van de spraak. Het frequentiespec-
trum V(f) van dit signaal vertoont een lijnen-
spectrum met componenten op de frequen-
tie-afstand //T. De harmonische structuur
hiervan wordt vaak aangeduid als de spec-
trale fijnstructuur van de spraak. In het mo-
del wordt de spectrale omhullende van de
geselecteerde bron bepaald door het synthe-
sefilter, wat qua functie vergelijkbaar is met
het menselijke stemkanaal dat bestaat uit
mond-, neus- en keelholte. De frequentie-
overdracht van het filter vertoont karakte-
risticke resonantiepieken die formanten
worden genoemd. In de spraakband van 0-
4000 Hz kunnen zo’n drie tot zes formanten
voorkomen. ledere formant kan met twee
parameters (frequentieligging en band-
breedte) worden beschreven, zodat het syn-
thesefilter met acht tot veertien parameters
is te karakteriseren inclusief enkele additio-
nele globale spectrale parameters. Het men-
selijk spraakproduktiemechanisme wordt
door spierbewegingen bestuurd, hetgeen
betekent dat de parameters slechts langzaam
kunnen variéren met een tijdconstante in de
orde van grootte van 10 ms.

Spraak nemen we waar met het oor. Over
het functioneren van het menselijk oor is
veel minder bekend dan over het spraakpro-
duktiemechanisme. Desondanks is de ken-
nis voldoende om met succes toegepast te
worden in spraakbewerkingssystemen. Zo
weten we bijvoorbeeld dat het oor relatief
ongevoelig is voor de fase van de verschil-
lende frequentiecomponenten in de spraak.
Een van de meest nuttige eigenschappen is
auditieve maskering: sterke geluiden ver-
minderen het vermogen tot waarnemen van

zwakke geluiden speciaal als ze in dezelfde
frequentieband liggen. Dit kan men uitbui-
ten om ruis en vervorming onder het signaal
zelf te “*begraven’’. Daar de formanten het
leeuwendeel van de spraakenergie uitma-
ken, spelen ze een belangrijke rol bij de
ruismaskering.

GSM-codec
In praktische systemen wordt de spraak,
voorafgaande aan de verschillende bewer-
kingsstappen, in segmenten veraeeld die
achtereenvolgens worden bewerkt. De tijds-
duur van deze segmenten is in de orde van
grootte van 10 ms. Het synthesefilter bestaat
vaak uit een recursief, tijddiscreet filter,
waarvan de orde overeenkomt met het aan-
tal formanten dat moet worden opgewekt.
De overdrachtsfunctie //A(z) van zo'n syn-
thesefilter heeft de vorm:

1 1
R (1)
A(2) 14

1 —I,Elan‘): '

waarin p de orde van het filter is. De filter-
coéfficiénten af(i) zijn te bepalen op basis
van linear predictive coding (LPC): een
techniek dic gebruik maakt van de *‘korte
termijn correlatic’” over p bemonsterperio-
den in het spraaksignaal als gevolg van de
formanten [4]. Zoals later zal blijken, kan
dezelfde techniek worden toegepast om de
spectrale fijnstructuur weer te geven in ter-
men van de ‘‘lange termijn correlatic™ over
cen aantal perioden van de grondfrequentic
in het spraaksignaal. De resulterende para-
meters worden aangeduid met de termen
“‘korte termijn’’- respectievelijk **lange ter-
mijn’’-parameters.

Figuur 2 geeft het blokdiagram van de
GSM-codec, die werkt bij een biisnelheid
van 13 kbit/s [5]. De bemonsterfrequentic
van het in- en uitgangsspraaksignaal is 8
kHz. De decoder bevat een spraaksynthesi-
zer die bestaat uit een excitatiegencrator.
een long term prediction (L'TP) synthesefil-
ter voor het opwekken van de spectrale
fijnstructuur (toonhoogte) en een short term
prediction synthesefilter op basis van LLPC-
technicken voor het gencreren van de spec-
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trale omhullende. Het LTP-synthesefilter
heeft als overdrachtsfunctie:

I 1
Pz |

v (2)
waarin b de 1'TP-coéfficiént [6] en N de pe-
riode van de grondfrequentie i1s. De “*korte
termijn’’-parameters worden ¢lke 20 ms bij-
gesteld; de “'lange termijn’’-parameters b
en Nelke 5 ms.

In de uiteindelijke spraakcodec is het syn-
thesefilter als 8¢-orde ladderfilter uitge-
voerd en niet in de directe vorm volgens ver-
velijking «1). Ladderfilters hebben betere
stabiliteitseigenschappen in het bijzonder
als de coétficiénten zijn gekwantiseerd. De
juiste set retlectiecoéfficiénten {r(i)} van het
ladderfilter is echter één-op-één gerelateerd
aande set «(i)]. Het excitatiesignaal bestaat
uit een scrie equidistante pulsen die wordt
verkregen door het bemonsterraster van 8
KkHz met een factor 3 te decimeren. Deze ex-
citatiemethode staat bekend als regular pul-
se excitation (RPE). Het RPE-systeem
werkt met Sms-subrasters. De decimatie
kan in verschillende *‘fasen™ worden ge-
daan die de posities van de pulsen binnen het
raster bepalen. Deze fase of rasterpositic M
en de amplitudes xp van de pulsen worden
per subraster van S ms ontvangen.

In de encoder worden achtereenvolgens de
volgende bewerkingsstappen uitgevoerd:

s

@ lincur predictive coding (LLPC)
® “long-term prediction (LTP)' en

® bepaling van de “‘regular pulse excita-
ton (RPE)™ pulsreeks.

Als ecrste stap splitst men het signaal in seg-
menten van 20 ms. Vervolgens berekent
men met LPC-analyse de acht reflectiecoéf-
ticiénien (i) die gezamenlijk worden ge-
kwantiseerd in 36 bits. De set reflectiecoéf
ficicnten wordt gebruikt in het LPC-analy
sefilter vun het laddertype dat een over-
drachtstunctie A(z) heett. Dit verwijdert de
“korte termiyn’-correlatie van het spraak-
signaal ot met andere woorden, zorgt voor
cen viakke spectrale omhullende. Als twee-

plexer

Fig. 2. Blokdiagram van
de GSM-spraakcodec.

de stap wordt de ‘‘lange termijn’’-correlatie
ofwel de spectrale fijnstructuur verwijderd
met behulp van een adaptief LTP-filter met
overdrachtsfunctie P(z). ledere 5 ms wor-
den er nieuwe waarden van N en b berekend
en gekwantiseerd in respectievelijk 7 en 2
bits. Na de uitgangssignalen d en d van bei-
de filters van elkaar afgetrokken te hebben,
houden we een residu-signaal e over, dat
veel lijkt op witte ruis, omdat er nauwelijks
nog correlatie in het signaal aanwezig is. In
de derde stap splitst men het residu-signaal
weer op in subrasters van 5 ms. Elk sub-
raster wordt gefilterd in een laagdoorlaatfil-
ter en uit het uitgangssignaal x worden vier
gedecimeerde kandidaatreeksen gegene-
reerd, waarvan er twee slechts aan de uitein-
den verschillen volgens:

Xm(i) = x(m+3i)
i=01,..12

m=0,123 (3)

De rasterpositiec M wordt bepaald aan de
hand van de reeks met de grootste energie en
in 2 bits gecodeerd. De pulsamplitudes xs
worden eenvoudigweg gehandhaafd en ge-
normaliseerd met de maximum amplitude in
¢lk blok van 5 ms. Elke genormaliseerde
pulsamplitude wordt gekwantiseerd in 3 bits
en het maximum van het blok in 6 bits. De
parameters r(i), b, N, en M alsmede de
monsters xp en de maximum amplitude
worden tenslotte gemultiplext tot een
bitstroom met een bitfrequentie van 13
kbit/s.

Conclusie

Het basis-idee van de codeertechniek is het
extraheren van de belangrijkste spraakka-
rakteristieken in termen van filterparame-
ters en wel in een zodanige vorm dat de
spraak gereconstrueerd kan worden met be-
hulp van een grof gekwantiseerd excitatie-
signaal van lage bitsnelheid. De RPE-
kwantiseringsmethode is gebaseerd op een
perceptieve minimalisering van de codeer-
fout. Daar de analyse in wezen een spec-
trumvlakkende bewerking is en de kwanti-
seringsfout van het residu-signaal in princi-
pe ook een vlak spectrum heeft, krijgen zo-
wel het spraaksignaal als de kwantiserings-
ruis in de synthesizer een identieke formant-
structuur, waardoor een effectieve maske-

ring van de ruis optreedt. Het laagdoorlaat-
filter in de RPE-coder heeft een speciaal ge-
kozen frequentieresponsic om de ruismas
keringseigenschappen nog verder te optima-
liseren. Een gedetailleerde beschrijving van
dit maskeringsfenomeen is te vinden in refe-
rentie [7].

De GSM-spraakcodec levert een goede
spraakkwaliteit die aanzienlijk beter is dan
die van de huidige analoge cellulaire radio-
systemen. De codec is in hoge mate transpa-
rant, zodat niet alleen de signaleringstonen,
maar ook achtergrondlawaai op natuurlijke
wijze worden overgebracht. Circa 70% van
de overgezonden informatie bestaat uit het
predictieresidu. Daardoor is de foutgevoe-
ligheid van de codec vergelijkbaar met die
van de notoir robuuste golfvormcodecs.

De complete, experimentele codec is met
een Philips VLSI-signaalprocessor van het
type PCB 5011 en wat standaardcomponen-
ten gerealiseerd. Op basis van de huidige
VLSI-technologie kan de hardware in drie
“*maat-1C’s’" worden ondergebracht name-
lijk een IC voor de A/D- en D/A-omzetting
alsmede de filtering, een digitale signaal-
processor en een ASIC voor klokregeneratie
en wat logische bewerkingen. In een ko-
mende generatie VLSI-technologie behoort
een één-chips uitvoering tot de mogelijkhe-
den. Aan het prototype met signaalproces-
soren is een signaalvertraging van 22 ms ge-
meten. In totaal zal de vertraging van de co-
dec, inclusief extra foutencorrectie, zo'n 70
ms bedragen. ®

Ditartikel is gebaseerd op een voordracht tijdens het sympo-
sium “"Mobiele Communicatie’ van de TU Delft. | | oktober
1989

Dank is verschuldigd aan Karl Hellwig (PK) Neurenberg) voor
zijn hulp bij het tot stand komen van dit artikel
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Subband Coding of Digital Audio Signals
Without Loss of Quality*

Raymond N.J. Veldhuis, Marcel Breeuwer, Robbert van der Waal
Philips Research Laboratories, P.O. Box 80.000
5600 JA Eindhoven, The Netherlands

Abstract

A subband coding system for high-quality digital audio signals is described. To
achieve low bit rates at a high quality level, it exploits the simultaneous masking
effect of the human ear. It 1s shown how this effect can be used in an adaptive bit-
allocation scheme. Results obtained with a low-complexity and a high-complexity
system are discussed.

1 Introduction

Transmission and storage of high-quality digital audio is becoming important for the
audio industry, for instance in the case of digital radio and new applications for optical
disks. The bit rate of a high-quality stereophonic digital audio signal is about 1.4 Mbit /s.
For some transmission channels or storage media this is too high and therefore source
coding is required. Since digital audio is associated with high quality, a perceptible loss
of quality cannot be tolerated.

Source coding of audio signals at low bit rates generally introduces errors. This paper
describes a coding system that attempts to keep coding errors inaudible by exploiting
the simultaneous masking effect. This is the perceptive phenomenon that a weak signal,
e.g. quantization noise, is masked (= made inaudible) by a stronger signal, e.g. a pure
tone in the audio signal. Simultaneous masking is briefly explained in Section 2.

Simultaneous masking is most effective if both masked and masking signal are in
a rather narrow frequency band. This suggests the use of subband coding, where the
signal is first split up into frequency bands which are then quantized. The structure of
the subband coding system is given in Section 3.

Quantization should be such that the quantization noise is masked by the audio
signal. This is achieved by using uniform APCM quantization [1]. The subband signals
are split up into blocks. Each block is scaled to a unit level and then quantized by a
uniform quantizer. Quantized data and scale lactors are transmitted. In this manner
the power of the quantization noise can be controlled by allocating a certain amount of
bits to each quantizer.

"This paper has previously been published in [5].
I



In a subband coding system we can distinguish in-band masking, where both masked
and masking signal are in the same subband, and out-of-band masking, where masking
and masked signal are in different subbands. Both are exploited in the system described
in this paper. Section 4 explains how for each subband the maximum power of the
quantization noise that is masked, called the masked power, can be estimated.

Once the masked powers have been computed for all subbands, bits are allocated
to the quantizers. Ideally the amount of bits for each quantizer should be such that
the quantization noise is completely masked. However, the masked powers are signal-
dependent and therefore the amount of bits needed to ensure complete masking varies
in time. Because the coding system described here has a fixed bit rate, the bits must
be divided over the subbands in such a way that the audible degradation of the output
signal is minimal. This requires an adaptive bit-allocation technique, that is described
in Section 5.

There is a trade-ofl between quality, bit rate, and complexity. Complexity is largely
determined by the splitting and merging subband filters. It can be kept low by keeping
the number of subbands low and their minimum bandwidth high. At a fixed quality
level, the lowest bit rate achievable with a ‘low-complexity’ system is higher than with
more complex systems with more and narrower subbands. This is explained in Section
4. Results obtained with a simple and a complex system are discussed in Section 6.

2 Simultaneous masking

Simultaneous masking is the effect that a weak signal is made inaudible by a simul-
taneously occurring stronger signal. Masking is discussed in great detail in [2,3]. The
use of masking in subband coding is described in [4,6]. First consider the simple case
of a pure tone as a masking signal. A signal component with a certain frequency is
masked if the ratio of its power and the power of the masking tone is below the masking
threshold. The masking threshold is a function of frequency. Ifigure 1 shows a stylistic
approximation (on a dB scale) of the masking threshold for a pure tone of 1000 Hz at
a sound pressure level of 0 dB. In general the masking threshold for a pure tone can be
approximated by

Y‘mux(fm) (}'f)zs ) j i fma

To(fo) (%) s >

In this expression f,, is the frequency of the masking signal and Ty, ( fi) is the masking
threshold at this frequency. To simplify the masking model it is assumed that mask-
ing thresholds for tones of all frequencies have the same shape. However, T, (/)
depends on the frequency of the masking signal [4]. It is also assumed that the mask-
ing threshold is independent of the power of the masking signal. Furthermore, it is
assumed that masking is additive: the masking threshold for a signal containing more
than one frequency component can be obtained by adding the masking thresholds of
the components.

The masking model used here is a simplification of reality. Coding systems based
on it may show unexpected and unwanted effects. To avoid this, they must be tested

T(fmaf) = (1)
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Figure 1: Masking threshold as a function of frequency

and optimized in extensive listening experiments.

3 Subband coding

It is clear from Figure 1 that masking is strongest for frequencies close to the frequency
of the masking signal. This suggests that the masking phenomenon can be well exploited
in a subband coding system. In such a system the signal is split up into frequency bands,
called subbands, which are then quantized. The splitting of the signal into subbands
and the merging of the subbands into a replica of the original signal are done by dec-
imating and interpolating filter banks, such as quadrature-mirror (QMF) or conjugate
quadrature-mirror filter banks (CQF) [7,8]. Due to the decimation, the sampling fre-
quency of a subband signal equals twice the subband’s bandwidth. Therefore the total
sample rate after splitting is the same as the sample rate at the input. Because the
‘bandwidth’ of the masking threshold as given by (1) increases with the frequency of
the masking signal, the bandwidths of the subbands also have to increase (or be at least
non-decreasing) with frequency.

Quantizing signals means adding quantization noise to them. If the filter banks have
good separating properties, the additional noise will remain in the subband it was added
to. It was assumed in Section 2 that masking occurs if the signal-to-noise ratio is above
a certain threshold. This implies that the quantizers must operate at a predetermined
signal-to-noise ratio. This can be achieved with uniform APCM (1] quantizers. In this
type of quantizer the signal is first divided into blocks. Of these blocks the maximum
absolute values, called peak values, are computed. By dividing the samples in the blocks
by the peak values, they are scaled to a unit level. The scaled blocks are then quantized
with a uniform quantizer. After dequantization the signal-to-noise ratio is proportional
to the number of bits used in the quantizer. In this way the signal-to-noise ratio of a
quantizer can be predetermined by allocating a certain amount of bits to it.

Figure 2 shows a diagram of a coding system with 20 subbands. As can be seen,
quantized samples as well as coded peak values and side information to indicate the
number of bits used for quantization are transmitted.

In this section the number of subbands and the amount of bits for the quantizers
have not been determined. In Section 4 it is shown how for a given division of the
signal into subbands the masking model of Section 2 can be used to determine the
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Figure 2: Subband coding system with 20 subbands

masked power in the subbands. It is also explained how the final bit rate depends on
the division into subbands. In Section 5 it is shown how the number of bits allocated
to each quantizer is computed.

4 Masking and subband coding

It can be seen from Figure 1 that signals with a frequency lower than the frequency
of the masking signal are hardly masked. Therefore only two kinds of masking are
considered: in-band masking, this is masking within a subband, and masking of signals
in subbands at higher frequencies. For both cases the masked power is computed as a
function of the powers of the subband signals.

Firstly it is assumed that there is only a signal in the subband with index ¢. This
subband ranges from fi; to f,;. The signal power is of‘i. The quantization noise is
assumed to have a flat spectrum in the subband. The worst-case situation for in-band
masking occurs when the masking signal is a pure tone with a frequency f, ;. In this case
the power of the quantization noise in subband 7 that is masked by a signal with power
03',- in the same subband must be less than nf,i'l'(f“'i,flyi). This situation is illustrated
in Figure 3.

The worst-case situation for the masking of noise in subbands at higher frequencies
occurs when the masking signal in subband ¢ is a pure tone with a frequency f,;. For this
case the power of the quantization noise in subband j that is masked by a signal with
power o?; in subband 7 must be less than o?,T'(f;, fu ;). This situation is illustrated in
Figure 4.

In this way the contribution of a subband to the masked power in all subbands
can be computed. Because masking is assumed to be additive, the masked power in a
subband can be obtained by adding all contributions.

The lowest achievable bit rate at a certain quality level depends on the division
into subbands. Firstly, the computations of the masked powers are based on worst-case
assumptions. The real masked powers can be substantially higher. If the subbands
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are narrower the results of these computations will, on average, be closer to the real
masked powers. Secondly, it follows from Figure 3 that the contribution of in-band
masking to the masked power is higher if the subbands are narrower. The latter effect,
however, is limited because in reality the top of the curve of Figures 1, 3, and 4 is flatter
than is depicted [4], so that there is no use in decreasing the bandwidth of the subbands
beneath a certain point. Due to the two effects mentioned here, narrower subbands lead
to higher masked powers and consequently the amount of bits required for quantization
can be lower.

The results of this section are only valid if the distribution of signal power over the
subbands is stationary. In reality this is not true. Therefore the computations must be
repeated periodically. As a consequence of this instationarity the amount of bits needed
to quantize each subband will also vary in time. The allocation of bits to the quantizers
on the basis of the masked powers is discussed in Section 5.

5 Bit allocation

The quantizers in the subbands are uniform APCM quantizers. For the block length M
a rather arbitrary value of 32 has been chosen. Before quantization, the peak value and
the power are computed for each block. The power in a block is obtained as the average
of the squares of the samples of the block. The masked powers are now computed for
every block, instead of for every subband as was done in the previous section. Before
the masked power is computed, the blocks are arranged in an allocation window. An
allocation window contains all subband samples during a period of time. This period
is chosen in such a way that il contains one block of samples from the most decimated
subband. This is in general the subband at the lowest frequency. An example of an
allocation window for a 20-band system is shown in Figure 5. If the input sample
frequency is 44100 Hz, subbands 1-8 have a bandwidth of 689 Hz, subbands 9-20 have
a bandwidth of 1378 Hz.



It can now be computed how much each block in an allocation window contributes
to its own masked power and to the masked powers in the blocks in higher subbands. A
block only contributes to the masked power in blocks that lie within the time-interval
of the masking block.

Before allocating bits to the blocks, blocks with powers below their masked powers
can be excluded. The signals in those blocks will be masked. Only codes indicating
that they are empty have to be transmitted. Assume that the amount of blocks in an
allocation window is N and that the blocks are numbered from 1 to N. The masked
power in the 7*" block is denoted by 0?“,,-, and the peak value by p,. Ideally, one would
choose the amount of bits b; for this block such that the quantization noise is completely
masked, which means that

1 2m \?2 "
12 (25: 1) = B

This leads to a varying amount of bits per allocation window that can be higher than
what is available. Therefore the bits must be allocated under the contraint

N
> b= B, (2)
1=1

where B is the number of bits available. This number can be derived from the desired
bit rate, taking into account that also a small number of bits is required to code peak
values and to code the number of bits allocated to each block.

The allocation procedure is such that the total notse-to-mask ratio, given by

i 1( 2p; >2 1
~r\eh-1/) o

is minimized under the constraint (2). A further constraint is that all b, must be integers

with 2 < b; < 16. The solution to this constrained integer minimization problem is given
in [9].

6 Results

The ideas explained in this paper have been applied in two coding systems, a complex
system splitting up the signal into 26 subbands, approximately one third of an octave
wide, and a simpler 20-band system of which the bandwidths were given in Section
5. In both systems the adaptive bit-allocation method of [9] is used. Both systems
have been designed for coding stereophonic 16-bit compact disc signals with a sample
frequency of 44.1 kHz. Left and right channel are coded independently. With the
26-band system high-quality results can be obtained at bit rates of 220 kbit/s. With
the 20-band system similar results can be obtained at bit rates of 360 kbit/s. The
complexity of the systems is largely determined by the memory requirements of the
filter banks. These are substantially higher for the 26-band system.

The filtering and coding delay is determined by the maximum decimation factor,
the filter banks used, and the quantization block length. For the 26-band system the



decimation factor is 256 and the total delay can be as high as 800 ms. For the 20-band
system it is 32 and a typical value for the total delay is 80 ms. Other types of filter
banks and shorter quantization blocks may give lower values.
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Image Processing with Hierarchical Polynomial Transforms
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P.O. Box 513, 5600 MB Eindhoven, Netherlands

1 INTRODUCTION

The development of polynomial transforms'#!'® was motivated by a number of factors. First, we wanted

an image description technique which gave a better desciption of the early visual system than is currently
available. Second, we were not satisfied with the existing discrepancy between image processing techniques
in computer vision and image coding. In computer vision, one is interested in finding important image
features. This is often accomplished by fitting templates®!?, such as polynomials, to the image. Hence,
local spatial descriptions of the image are used extensively in computer vision. In image coding, the main
objective is to find image representations that are efficient, i.e. reduce the amount of information, and
complete, i.e. allow for a reconstruction of the original image. Currently, most image coding techniques
are based on a harmonic signal analysis”!12° i.e. use a frequency description of the image. This distinction
between processing techniques in image coding and computer vision is remarkable and undesirable, as it
obstructs the transfer of ideas between these related domains.

A polynomial transform!*!® performs an approximation of an image by a sum of local polynomials. A
local polynomial is the product of a window function and a polynomial, and hence has some simularity to
a Gabor signal”, which is the product of a window function with a sine or cosine. The forward polynomial
transform maps the image into a set of polynomial coefficients, while the inverse transform resynthesizes
the image from these coefficients.

The basic mathematics of polynomial transforms are discussed in section 2. In section 3, we elaborate on
the major properties of polynomial transforms and discuss some of the implications for practical applications
such as coding. An important choice for a polynomial transform is the window to be used. Section 4 argues
that there is usually no window that is optimal for the entire image, but that the window should be adjusted
to the image contents. One possible aproach to solving this window selection problem is discussed.

2 POLYNOMIAL TRANSFORMS

In this section we describe how signals can be locally approximated by polynomials. The process involves
two steps. First, the original signal is localized by multiplying it by a window function. The signal within
the window is subsequently approximated by a polynomial. We concentrate first on one-dimensional(1D)
signals, and subsequently extend the theory to two dimensions.

2.1 Polynomial transforms in 1 dimension

In order to localize the signal L(z), we apply a window function V' (z) to it. A complete description of the
signal requires that this localization process is repeated at a sufficient number of window positions. We
consider the case of equidistant spacing between local window functions.



From the localized window function V (z), we can construct a weighting function

W(x):ZV(x-kT) (1)

by periodic repetition. The weighting function is itself periodic with period T'. Provided W (z) is nonzero
for all z, we get

ZL (z — kT), (2)

so that we are guaranteed that the localized 31gna.ls L(z) -V (z — kT) for all different window positions kT
contain sufficient information about the original signal.

The next step consists in approximating the signal within the window V (z — kT') by a polynomial. As
basis functions for the polynomial expansion, we take the polynomials G,(z), degree(G,(z)] = n, that are
orthonormal with respect to V%(z), i.e.

+00
/ V%(2)G m(z)Gn(z)dz = bmn. (3)
— 00
These polynomials are uniquely determined by V ?(x)®5. Examples of orthogonal polynomials for different
window functions are listed in Abramowitz & Stegun®.

Under very general conditions* for the original signal L(z), we get that

V(z - kT) [L(x Z Ln(kT) - Gu(z - kT)| = (4)

with
La(kT) = / ” L(2) - Gz — kT)V?(z - kT)dz. (5)

Hence, the polynomial coefficients L, (kT') can be derived from the original signal L(z) by convolving with
the filter functions

Dn(z) = Gu(-2)V*(-1), (6)

followed by sampling at multiples of 7. This mapping from the original signal L(z) to the coefficients
Ln(kT) is called a forward polynomial transform.

If L(z) is analytic and finite for all z, then the convergence of the series expansion in equation (4)
can be guaranteed for most window functions. Hence, for a broad class of signals and window functions,
the polynomial approximation error can be made arbitrarily small by taking the maximum degree of the
expansion sufficiently high. This in turn implies that the description of the localized signal L(z)-V (z - kT)
can, up to an arbitrary small approximation error, be reduced to specifying a finite set of polynomial
coefficients L,(kT). The latter signal description is much easier to handle than the original signal itsell.
For instance, the signal energy within the window can be expressed in terms of the coefficients of the
expansion, 1.e.

+00
/ LY (z)V¥(z ~ kT)dz = Z Li{kT), (7)
—e9 n=0
hence reducing the continuous integral to a discrete sum. This is the generalization of Parseval’s theorem
to orthonormal polynomials.
Combining equations (2) and (4), we get the following expansion for the complete signal

ZZL (kT) - Pu(z — kT). (8)

n=0 k



This signal reconstruction, which is called a inverse polynomial transform, consists of interpolating the
coefficients with the pattern functions

Pu(z) = Gu(2)V (2)/W (2), (9)

and adding terms.
The forward and inverse polynomial transforms are illustrated in figure 1. Note that a polynomial

transform is completely specified by the window function V' (z) and the sampling distance T'. Section 4 will
discuss how these parameters can be selected.

Lz} o Do) b~ | T | LolkTY o 17 |-t Bola) |- ~ L(z)
DI(IL‘) l T Ll(kT) = T T Pl(:c) b3
Dz(l‘) l T (— Lz(kT) = T T Pg(I)

Figure 1: Polynomial transform.

If the window function is Gaussian, then the polynomial transform is called a Hermite transform!4:15.
The Hermite transform has a number of interesting special properties. Most noticeably, the forward polyno-
mial transform involves the use of derivatives of Gaussians. These filters are used extensively in computer
vision?%!® because of their interesting operational characteristics. Moreover, it has been demonstrated
that these Gaussian derivatives also provide a good description of cortical receptive fields?!, and are hence
relevant to visual perception.

2.2 Polynomial transforms in 2 dimensions

The polynomial transform technique can be easily generalized to two dimensions. Given a local window
function V' (z,y), the orthonormal polynomials G, n—m(z,y), where m and n — m are the degrees with
respect to x and y respectively, are uniquely determined!® by

+oo  r+oo 2
/ / V2, ¥)Camp—ml 2 3G 50-3(e, y)dady = 8,63, (10)
—o00 J—o00

forma =10,1,:::500, m=0,..:,n and §=0;:..,1.
The decomposition of two-dimensional(2D) signals into localized polynomials becomes

L(il?,y): io: Z Z Lm,n—m(p,q)'Pm,n—m(x_P,y“q), (11)

n=0m=0 (p‘q)

where the coordinates (p, ¢) belong to a 2D sampling lattice. The polynomial coefficients Ly n—m(p, ¢) are
derived by convolving the image with the filter functions

Dm,n—m(xay) = Gm,n—m(_wa —y)Vz(—-"J, ~"y)7 (12)



followed by sampling at the coordinates (p, q) of the lattice. The pattern functions are defined by

Pm,n—-‘m.(za y) = Gm,n—m(xa y)V(a:, y)/W(:l:, y)a (1?’)

where

W(z,y)= > V(z-py—9q) (14)
(p.g)

is the 2D weighting function. The necessary condition for applying the polynomial transform is that the
weighting function W (z, y) is different from zero for all coordinates (z,y).

An interesting special case arises when the window function is separable, i.e. V(z,y) = Vi(z) - Vy(y),
and the sampling lattice is rectangular. The filter and pattern functions are then also separable, and can
hence be implemented very efficiently. An important example of a separable window is the 2D Gaussian
window.

3 PROPERTIES OF POLYNOMIAL TRANSFORMS

It is a well-known analogy that a 2D signal L(z,y) can be regarded as a 2D surface in a three-dimensional
space by interpreting the signal strength as the height above the (z,y)-plane. This input description
does however not make explicit the relationships that may exist between different points on the surface.
Differential geometry!® describes how such a pointwise characterization of a surface can be converted into a
parametrized description, so that important characteristics such as surface orientation and tangent plane,
curvature, surface area, ... can be derived. Differential geometry is based on the ability to investigate
how surface descriptions depend on the orientation and position of the reference frame. We argue that
polynomial descriptions are ideally suited for this purpose.

Given a polynomial description of degree n in a reference frame (z,y), then translating and rotating

this reference frame to
Y cosf sinf | = + Ax (15)
vy |\ —sinf cosf y Ay

will result in a polynomial description of the same degree n. Moreover, the polynomial coefficients in the
new reference frame depend linearly on the coefficients in the old reference frame. For example, a simple
polynomial description of degree 1

L(z,y) = Loo + Lio- =+ Lo1 -y (16)
in the original (z,y)-frame is converted into

L(z,y) = [Loo — Az(Ligcosf + Loisinf) — Ay(—Lygsinb + Lo; cosb)]
+ (Liocos@ + Loysin®) -z’ + (—Liosin@ + Loj cosf) - y (17)

for the transformed (z’,y')-frame. This property of polynomials of being closed under translation and
rotation is unique and has important consequences for image coding (and image processing).

The first aim in image coding is to compact the signal energy in as few components as possible. For
instance, in a uniform region of the image this is realized (by most image description techniques) in a simple
way because the mean value is a sufficient description. The higher order (polynomial) coefficients are then
all equal to zero. Another class of image features that are very important, and that occur frequently, are
local 1D structures, such as edges and lines. By locally reorienting the reference frame along the direction
of the 1D structure, we can make a large number of the polynomial coefficients equal to zero!®.

The second aim in image coding is to reduce the number of bits needed for coding the (non-zero)
coefficients by making predictions for these coefficients, based on previously transmitted information. In



this case, a prediction for the polynomial description, centered at a given point in the image, has to be
derived from polynomial descriptions in nearby points. This implies translating the reference frame of the
latter descriptions to the point of interest. Again, this can be done fairly easy with polynomial descriptions
by simple linear transformations.

4 HIERARCHICAL IMAGE DESCRIPTIONS

It is unrealistic to expect that a single image representation technique can be optimal for all images of
interest. In this section we therefore address the problem of how several techniques, such as for instance
polynomial transforms for different windows and sample structures, could be integrated.

A useful interpretation of many image processing algorithms is that they convert an image into an
image description. In practice, this is most often done by determining the optimum approximation of the
input image by a weighted sum of a priori selected patterns. The weights of the contributing patterns then
constitute the description of the input image. With these coefficients an approximation of the original
image can be synthesized. Application of such a processing algorithm in image coding is straightforward

and 1llustrated in figure 2.
A > Q > S F“l
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Figure 2: The analysis A converts the input signal into a set of coefficients. These coefficients
are coded in Q. An approximation of the original signal is synthesized in S, using the coded
coefficients. The remaining differences between the input signal and the approximated signal are

coded in Q.

In order for the image description to be efficient, it is necessary that the a priori selected patterns are
well-adapted to the input image, i.e. that the original image can be (locally) approximated with a limited
number of patterns. However, because of the large variety of image features that can arise in natural
1mages, it is very unlikely that one set of patterns can offer an efficient description for all these features.
For instance, distinct spatial structures such as homogeneous regions, edges, lines, textural regions, ...
are likely to require distinct descriptions. The situation is further complicated by the fact that these
structures can have many different orientations and sizes (or spatial scales), and that they can move in
different directions within a range of velocities (or temporal scales).

One possible approach is to use several sets of patterns, inspired by the different features that can arise
in an image. For example, in many existing coding schemes, we distinguish sets that differ in spatial scale.
For each set of patterns an image analysis and resynthesis can be performed. The image is subsequently
segmented in regions by selecting the most efficient description at each image point. This approach is {or
instance adopted in segmentation-based coding!!. Additional recursive processing of the raw segmentation
data is however usually required to limit the number of segmentation regions.

This general scheme can be simplified in the case that the different sets of patterns can be ordered
in a hierarchical way. For instance, in the case of two sets of patterns with decreasing complexity and
descriptive power, we start by examining the image description by the simpler second set. This set clearly
offers the most efficient description, when applicable. The approximated image, after synthesis with the
second set of patterns, is subsequently compared with the original image by decomposing both on the more



complex first set of patterns. Only the differences in the two descriptions have to be coded. Application
of this approach in coding is illustrated in figure 3.

— As > Q3 S3 A,
" Ay Q2 Sy " A
— Ay Q1 S1
L Lo % @y == = : e

Figure 3: Hierarchical coder: The analysis A3 maps the input signal into a coefficient description
for the simplest set of patterns. These coefficients are coded in Q3. An approximation of the
original signal is synthesized in S3, using the coded coefficients. The analysis A, maps both the
original and approximated signal into a coefficient description for the next set of patterns. The
coefficients of the original image are coded in @2, conditional on the coeflicients of the approximated
image. This usually results in substantial savings over a direct coding of these coefficients. The
above process can subsequently be repeated at a number of levels. The description for the most
complex set of patterns is compared to the original signal.

The hierarchical scheme of figure 2 can for instance be applied in the case of multiscale analysis, where
the different sets of patterns differ only in (spatial and/or temporal) scale and sample spacing. This
includes wavelet descriptions®!?, with pyramid coding®!® and sub-band coding?® as special cases, but also
polynomial transforms for windows of different sizes!®. The orthogonality conditions that are used in
wavelet descriptions result in a specific kind of prediction between the different levels of the hierarchical
coder. More precisely, a perfect prediction is made for some coefficients in the description, while no
prediction is made for the remaining coefficients. It is however not obvious a priori that this approach
is better than the general case where an imperfect prediction is made for all coefficients. Although the
number of coefficients to be coded is larger in the general case, the total information content may be
smaller because the conditional coding of the coefficients is more efficient than the unconditional coding.
The application of hierarchical coding to polynomial transforms is an illustration of the general case.
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1. Introduction

Papers by Teager and Teager [1,2] and Kaiser [3] on nonlinear production mechanisms and
flow in the vocal tract provide us with questions without answers. I cannot answer most of
these questions because I know too little about speech. I will restrict myself to some fluid
dynamic aspects of the problem. In particular I would like to give some general
considerations on the character of flow induced sound sources. I will try to give a feeling for
the use of these general concepts in speech by considering some simple examples: glottis
oscillation, human whistling and sound production by turbulence. Finally I will give some
information about the state of the art in fluid dynamics.

[ will start by proposing a definition of "sound" and by discussing the relationship between
flow and acoustic field (section 2).

We discuss three basic types of sound sources:

—the monopole (volume injection) [+ ]
—the dipole (force ) [+ =]
_+_ ==
—the quadrupole [~ + ] or [+ —— +]

The periodic volume flow through oscillating vocal cords acts as a monopole on the
supra—glottal (downstream) part of the vocal tract. Vortex shedding induces an
aero—acoustic dipole.

Turbulence in free space induces a quadrupole.

In section 3, I will explain why the type and position of the source is crucial for sound
production.

In the literature one often assumes that vocal cords oscillation is driven by a Bernoulli
force due to the interaction of the cords with the local flow. In section 4 we discuss the
classical quasi—stationary flow model of the Bernoulli force.

As an example of vortex driven sound we consider in section 5 a model for human whistling
proposed by Wilson e.a.[4].

Finally sound production by turbulence is discussed in section 6.



2 Flow and acoustic field

The flow generated by speech is locally incompressible because the pressure differences
driving the flow are very small compared with the atmospheric pressure (1 bar). The sound
field consists of deviations from the incompressible or constant density approximation
which can be observed on the length scale of the acoustic wave length ¢/f. Where ¢ is the
speed of sound and f a characteristic frequency. These deviations are characterised by

density fluctuations p’ and pressure fluctuations p’= c2p’ which propagate as waves. In free
space the acoustic (particle) velocities u, associated with the wave propagation are much

smaller than the incompressible flow velocities vi ( u, ~ p’/pc). Therefore one may in

general neglect the feedback from the acoustic field to the incompressible flow in free space.
Acoustic waves are per definition assumed to be linear [5,6,7].

The vocal tract is a resonator in which acoustic energy can accumulate. In a resonator the
acoustic velocities may become larger than the incompressible flow velocities exciting the
sound field. In a clarinet the pressure amplitude p’ of the acoustic field at the reed can be
larger than the mean pressure difference over the reed which is driving the system. In such
a case during part of the oscillation period there is a flow through the reed directed from
the pipe (resonator) towards the mouth of the player [8]! Clearly there is under such
circumstances a strong (non--lincar) interaction between the flow through the reed and the
acoustic field.

Another type of (non—linear) interaction between incompressible flow and acoustic field is
shown in Fig. 1. The oscillating velocity of the acoustic field in combination with the mean
flow velocity results into periodic vortex shedding at the end of a pipe driven by a clarinet
mouth piece. The vortex rings are very similar to the smoke rings generated by a smoker
when impulsively blowing. The shedding of vortices is controlled by centrifugal forces and
viscous forces at a curved surface [9]. At a sharp edge (teeth), when the radius of curvature
is zero, there is always flow separation. Flow separation results into the formation of a
layer separating a low speed region from a high speed region : the so called shear layer. A
stream tube bounded by shear layers is called a free jet. Such a free jet is formed
downstream of the glottis and was observed by Teager [1].
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Ilig.1 Vortex shedding induced at a pipe termination acoustic resonance (pipe driven by
clarinet mouth piece, flow visualization by CO2 injection).



A shear layer can be considered as a row of vortices. Simple kinetic considerations
demonstrate that a shear layer is unstable for low frequency perturbations. Perturbation of
the rate of vorticity shedding at the separation point, induces a rolling up of the shear layer
into a coherent structure called ring vortex. Acoustic perturbation induces periodic vortex
shedding.

The basis of the modern theory of aero—acoustics [5,6,7] is the assumption that once the
strength and the path of the vortices as been calculated by means of an incompressible flow
approximation, one can calculate the generated acoustic field using the "vortex sound"
theory of Howe [5]. When the vortex shedding depends on the acoustic field this procedure
should be carried out iteratively.

In fluid mechanics we make a strong distinction between vortex shedding and turbulence
[9]. Vortex shedding is the process described above. 2—D vortices are very persistant in
absence of main flow. (Note: ring vortices are 2—D structures in cylindrical coordinates).
Turbulence is a chaotic behaviour of the flow triggered by the non linear convective forces
in the flow. This occurs at high velocities when viscous forces are not sufficient to stabilize
the flow. In turbulence energy extracted from the mean flow at large length scales is
transfered to smaller length scales by the process of "vortex stretching". By a so called
"cascade " process of succesive vortex stretching the energy is transfered to decreasing
length scales. When the energy has reached a critical length scale (Kolmogorov length
scale) it is dissipated by viscous forces (the fluid is heated up). Due to this very effective
dissipation process, in absence of a non—uniform main flow from which energy can be
extracted turbulence dies fast.

At typical conditions encountered in speech the flow in the oscillating glottis is not
turbulent but the free jet in the vocal tract is expected to be turbulent. The interaction
between turbulence and the acoustic field in a pipe is weak [6].

When we measure a pressure fluctuation in the vocal tract with a microphone we have two
contributions one from the acoustic field and one from the incompressible flow. The
contribution from the incompressible flow is the "pseudo—sound" which consists out of
pressure disturbances which do not propagate with the speed of sound but with the flow
velocity(think of the low pressure in a tornado). Because turbulence is a chaotic flow with a
broad band pressure fluctuation spectra, it can be distinguised from the acoustic field by
spectral analysis as suggested by Cranen and Boves [10]. This is not true for the
pseudo—sound of periodic vortex shedding. However vortex "rings" generated at the glottis
are not expected to live long. Due to turbulence they soon should diffuse and annihilate.
The influence of vortex shedding on pressure measurements depends strongly on the
distance from the glottis at which the microphone is placed.

3 Excitation of a resonator by basic types of sound sources

As stated in the introduction aero—acoustic sound sources in the vocal tract can have the
character of a monopole (oscillating flow through the glottis), dipole (vortex shedding) and
quadrupole (turbulence).

The supra—glottal part of the vocal tract is a resonator which we represent for simplicity as
a pipe segment of length L, closed at one end (glottis) and open at the other end (mouth).
We will now show that the capability of a sound source to excite such a resonator depends
strongly on the frequency of oscillation of the source and its position in the resonator.



At frequencies below the cut off frequency of the pipe, the acoustic field can be
approximated by two plane waves with equal amplitudes and oppposite propagation
directions. Interference of these waves results into standing waves. For given acoustic
source the acoustic field can be considered as build up out of a series of standing waves
with wave length A

A, =4L/(1+8n) s =2 (1)

Each of these standing waves is a so called mode which behaves as an independant
harmonic oscillator (acoustic mass/spring system) with a resonance frequency f =c/A .

$N0te: in speech resonances of the vocal tract are responsible for the formation of
ormants.). The closed end corresponds to a node of the acoustic velocity distribution and a
maximum of the pressure amplitude in the standing waves. At the open end the acoustic
pressure is almost zero p’~ 0 (pressure node).

Let us place a monopole (pulsating sphere) in the resonator. The volume flow injected is
Q= dV/dt, where V is the volume of the sphere. The source performes acoustic work given
by:

W = J pdV =OJ'tp’(dV/dt)dt’ =0Jtp’Q v (2)

We see from this formula that placing a monopole at the open end (p’=0) will not excite
the resonator. Please note that direct injection of Q in free space without vocal tract would
be a very ineffective way of producing sound because the sound source cannot perform
much work (p’~0). The vocal tract is not only a filter it is also an impedance matching
between the source and free space. The injection of Q at the closed end can excite a mode
of the resonator if we adjust the oscillation frequency to that of the mode. If we neglect
losses and non—linear effects we see from equation (2) that p’ will increase indefinitely with
increasing time (resonance). The higher p’ the more work the source can perform.

A dipole corresponds with two monopoles of equal strength Q but with opposite phases,
placed at a small distance ¢ from each other along the pipe. § should be small compared to
the wave length c/f. We will show that this corresponds to a force excitation. Assume for
simplicity that the flow between the two monopoles is uniform. The velocity of the fluid in
this region is given by Q/S, where S is the cross section area of the pipe. The momentum of
the fluid in the region is | /)()(Q/S) S 6], where p is the fluid mean density. From Newton’s

law we know that the rate of change in momentum corresponds to a force I
F= dlp, Q f/dt (3)

In words: the air between the monopoles is, like a cat in a bag, jumping up and down. This
results into a force F on the "bag". In the case of the pipe the force F is provided by the
surounding air in the form of a pressure jump Ap = F/S over the region where the dipole is
placed.



(Sa]

Note that when a dipole is placed in the middle of the pipe perpendicular to the pipe axis
it will not radiate for frequencies below the cut off frequency for the first transverse mode
of the pipe. A dipole placed close to the wall and directed perpendicular to the wall will
have a very weak radiation field even at high frequencies. In the present section we only
consider low frequencies and dipoles directed along the pipe axis.

The acoustic work W performed by the force F is given by:

¢ ¢
W= J Fdx = J F (dx/dt)dy = J F udv (1)
0 0

where u, is the acoustic velocity. We see from formula (4) that a dipole sound source like
vortex shedding at the closed pipe end (u;’lzo) will not excite the modes of the pipe. A
dipole placed at the open end where the amplitude of uy is maximum will strongly interact

with the acoustic field in the pipe. Hence the vortex shedding illustrated in Fig. 1 is
expected to be an effective sound source.

A quadrupole is obtained by placing two opposite dipoles at a small distance from each
other.(§ << c¢/f). In a pipe with uniform cross section a quadrupole is an very ineffective
sound source, what ever its position along the pipe.

We have considered here only the supra—glottal part of the vocal tract as a resonator. This
can be a useful approximation, however there is a priori no reason to exclude the coupling
with the sub—glottal part and the lungs. In particular low frequency oscillations might be
due to resonance of the entire system. We will consider this further in the next section.

4 Vocal cords oscillation

In the literature the vocal cords oscillation is assumed to be mainly controlled by the
interaction of the flow with the vocal cords. Reviews of such models are given by Cranen
[11] and Titze [12]. The model is based on the assumption that the flow in the glottis is not
only locally incompressible but also frictionless and quasi—stationary. Under such
circumstances the mechanical energy of a fluid particle is conserved as it is convected along
a streamline. This conservation law is the Bernoulli equation relating the velocity v to the
pressure p:

_1_ ,oov2 + p = constant (5)

2

where the integration constant is determined by the boundary conditions.

An esscential assumption in most models is that the flow separation responsible for the

formation of a free jet does not occur at the narrowest cross section of the glottis but a
little bit further downstream as shown in figure 2.



glottis separation point .

jet
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Figure 2. Formation of a free jet in the glottis

Note that as the free streamlines (shear layers) at the boundaries of the jet are like flexible
walls which cannot sustain any pressure difference the pressure in a stationary free jet is
determined by its surrounding. In the present case it is equal to the pressure in the
supra—glottal region . Therefore we can use Bernoulli’s equation to relate the supra—glottal
pressure to the pressure in the glottis.

Using the conservation law of mass we see that for a stationary flow the velocity at the
narrowest cross section should be higher than in the jet. Hence applying Bernoulli’s
equation we conclude that the local pressure at the narrowest cross section must be lower
than the pressures just upstream and downstream of the glottis. This low pressure will
"suck" the vocal cords towards each other. This sucking force is the so called Bernoulli
force F,.

B

As noted by Cranen [11] and Titze[12], assuming that the Bernoulli force depends only on
the aperture h of the glottis , all the work performed by this force upon closing the glottis
will be released when the glottis opens. Integrated over a period T= 1/f of oscillation we
have :

T
W = J Fp(dh/du)dt = 0 (6)
0

Hysteresis is needed to explain a transfer of energy from the flow to the vocal cords
oscillation. This can be achieved in various ways:
— change in vocal cords geometry (two mass model or wave motion along the vocal cords
surface [11,12]).
— Time dependence of the separation point ( [13],[14]).
— Contribution of inertial forces in the flow ([13],[15],[16]).

The first effect is well know in the literature.



Flow visualization experiments by Gupta [13] did not show large changes in the position of
the separation point. Gupta therefore assumes that this effect is negligible. One should
however consider this conclusion with care. When the vocal cords are almost closed a shift
in separation point must occur as a result of increasing importance of viscous forces. This
effect which was observed in our experiments is also illustrated by the stationary flow
measurements of Scherer and Titze [17].

The effect of inertia in the glottal flow can be significant [13].

One of the statements of Teager and Kaiser is that acoustical feedback and loading may
also be important. By acoustical feedback we mean an influence of the acoustic field on the
glottis oscillation. By loading we mean that acoustic pressure fluctuations at the glottis
cannot be neglected compared to the transglottal pressure drop. This last effect simply
implies that the glottis is not a ideal volume source (Q depends on p’). Titze [12] gives a
description of the acoustical loading by the supra—glottal part of the vocal tract. Teager [2]
illustrates the importance of acoustic feedback on speech by describing the effect of
replacing air by Helium in our lungs. Teager reports an increase of the formant frequencies
by a factor 1.6 instead of the factor 3 expected in a source filter model. Contamination of
Helium with 30% air would explain such an effect. Hence the "evidence" of Teager’s
conclusion is doubtful. However Gupta e.a. [13] show that the sub—glottal part of the
system (trachea) and the lungs may strongly influence the vocal cords oscillations. In their
model self sustained oscillations are achieved without Bernoulli force as a result of
acoustical feedback. The acoustic model used by Gupta [13] for the lungs seems unrealistic
and should be reconsidered. The problem is therefore still open.

Note that the existence of an interaction between the vocal cords oscillation and the
acoustic field is not necessarily in contradiction with a source/filter model. Let’s assume
that the low frequency oscillations of the entire acoustic system (lungs, trachea and vocal
tract) sustains the oscillation of the glottis. The low frequency determines the fundamental
frequency of speech. Changes of the geometry of the supra—glottal part responsible for
speech might not modify strongly the low frequency resonance of the entire system.

5 Human whistling

As stated above periodic vortex shedding induced by strong acoustic oscillations is a dipole
type sound source. The acoustic dipole corresponding to a vortex ring is directed
perpendicular to the plane of the ring [7].

In general, vortex shedding extracts energy from the acoustic field [6]. The reduction with
increasing mean flow velocity of the energy reflection coefficient (Fig.3) at an open end of a
pipe with sharp edges can be interpreted in terms of vortex sound [18]. When however the
pipe is terminated by a horn there can be a net sound production by vortex shedding if the
travel time of the vortex in the horn matches the oscillation frequency (Fig. 3). This
travelling time is determined by the mean flow velocity.
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Fig. 3 Influence of the mean flow velocity U, on
the energy reflection coefficient RE at a pipe

termination with sharp edges (r/W=0) and with
horns (horn radius of curvature r, pipe width
W). [18]

When we whistle , we form an acoustic mass spring system or Helmholtz resonator with
our mouth [4]. We then adjust the blowing velocity to the resonator frequency. This results
in self sustained oscillation due to perodic vortex shedding at our lips (horn shapped pipe
termination). Of course this effect cannot be described by a source/filter model as used in
speech. Such effects are also expected in the typical speech of a person missing a tooth.

Note that the model described above is very similar to the model proposed by Shadel [19].

In the model of Shadel however the lips have sharp edges and vortex shedding occurs at the
entrance of the flow channel formed by the lips.

6 Sound production by turbulence

Turbulence in free space is a quadrupole type of aero—acoustic sound source [7]. It is a very
weak sound source at speeds v low compared with the speed of sound. The power produced

decreases with (v/c)8. When an object small compared with the wave length is placed in

the neighbourhood of the flow the power decreases only with (v/c)6 because the object
induces a dipole contribution.



The "transformation" of a quadrupole into a dipole by a cylinder of radius R is easily
understood by using the method of images as show in Fig. 4. The figure is obtained by
using the basic law: that the image of a source Q placed at a normalized distance r/R from
the axis of the cylinder is a source Q at the inverse point R/r and a sink —Q on the axis of
the cylinder [20]. As shown in Fig. 4 the right hand dipole from the original quadrupole
forms a quadrupole with its image because it is close to the cylinder. The image of the left
hand dipole is a negligible small dipole near the axis of the cylinder. Ience the left hand
dipole acts almost as a free dipole.

Fig. 4 Longitudinal quadrupole near a cylinder.

This partially explains why wind blowing in a forest is much louder than in free space. At

10 m/s the difference in sound power is about a factor (v/c)2:103 . (Note: also periodic
vortex shedding at branches contributes quite significantly to sound production). For sharp
edges (teeth) on an object (man) large compared with the wave length this effect is even

stronger: a (v/c)5 dependence is expected [7].

A free space approximation as used above can only be used in the vocal tract for
frequencies high compared to the cut off frequency for the first transversal mode.

There is little information about sound production by turbulence in a tube at low
frequencies. In a uniform tube for frequencies below the cut off frequency of the first

transversal mode we expect a (v/ c)6 dependence of the sound power produced by
turbulence. In a series of experiments with an organ pipe we found that when the jet was
directed below the labium so that no self—sustained oscillation occured, the sound power

produced by the turbulence increased with (v/c)4. This is the behaviour expected for an
aero—acoustical dipole sound source in a tube at low frequencies [7]. The dipole character is
due to the presence of a sharp edge (labium) in the neighbourhood of the turbulent jet.
Unlike in free space we found a non—uniform spectral distribution. The turbulent noise is
modulated by the resonances of the tube (Fig.5).

The dramatic increase with speed and the very low efficiency of turbulence as a sound
source is clearly ilustrated by fricative noise in the vocal tract. We must blow much harder
with open glottis to reach a much lower sound level than when the sound is produced by
vocal tract oscillation. Also the effect of sharp edges (teeth) becomes clear when we
compare blowing with open mouth and with almost closed teeth. The increase in sound
production is a combination of improvement of sound production by the ("already
existing") turbulence in the main flow and additional vortex shedding at sharp edges.

The importance of obstacles in the flow and the dipole character of turbulence induced
sound sources in the vocal tract is discussed in detail by Shadle [19,21].



Sound produced by vortex shedding can easily be distinguished from turbulence noise.
Vortex shedding produces sharp peaks in the sound spectra. The quality factor of these
peaks is much larger than typical quality factors of vocal tract resonance. When the
frequency is determined by the flow (aeolian tone of a cylinder [7,9]) the frequency is
proportional with the flow velocity. When acoustical feedback induces whistling by lock—in
of the vortex shedding the frequency is close to a resonance frequency of the mouth or a
part of the mouth. It increases then only very slowly with increasing flow velocity.

The discussion above we have only considered low frequencies. However in fricative sounds
the high frequencies contribute substentially to the signal [19,21]. Above the cut off
frequency of the first transversal mode the dipoles directed perpendicular to the pipe axis
will also radiate. This effect explains the sudden increase at the cut off frequency of sound
produced by a turbulent jet blowing below the labium of an organ pipe (I'ig.5).
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Fig. 5 Internal pressure spectrum of an organ pipe excited by
a turbulent jet (pipe length 28.2 cm, width 2.0 cm).

Because both the cut off frequency and the position of the flow obstacles depend on the
shape of the vocal tract a simple low frequency (one dimensional) source/filter model will
not be accurate. Both the position and the strength of the sources will have to be modified
when the filter is modified in order to obtain an accurate description of fricative sounds.



7 Conclusion

Some of the flow effects described by Teager [1,2] and Kaiser[3] may be significant for
speech.

Acoustical "feedback" or "loading" can affect vocal cords oscillations and even sustain the
oscillations in absence of Bernoulli force. This statement is however not necessarly in
contradiction with the source/filter model.

Vortex shedding is the source of sound responsible for acoustic energy production in human
whistling. Whistling occurs when the vortex shedding is controlled by a coupling to the
oscillation of an acoustic mode of the cavity. This cannot be described by a source/filter
model. Vortex shedding without coupling to the acoustic field may also be a significant
sound source. This depends strongly on the position of sound source with respect to the
acoustic resonator.

The turbulence in the jet in the supra—glottal part of the vocal tract, generated during
vocal cords oscillations, will not be of major importance for the sound production.

Fricative sound is difficult to describe accuratly with a simple one dimensional model of
the vocal tract because high frequencies are important. Further even at low frequencies the
"source" depends on the geometry of the vocal tract (position of flow obstacles).

At the present time 3—D numerical calculations of unsteady turbulent flow at high
velocities are so crude that they cannot be used for the estimation of sound production by
the flow. Hence exact modelling is impossible. Interesting numerical simulations of the
laminar flow in the glottis have been presented by several researchers [ 22—24]. These
calculations should be considered as numerical experiments. They cannot be used for real
time sound production.

The use even of simple non—linear models is extremely time consuming. Very interesting
results based on simple non—linear models have been achieved for the clarinet [25]. In this
case non—linearity (like beating of the reed) appeared to be an essential feature.
Fortunately these simple models reproduce the typical sound of the music instruments
without a detailed model of the flow. The use of similar models for speech simulation seems
to be more promising than the detailed study of the flow proposed by Teager and Kaiscr.
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FRACTALE STRUCTUREN IN TIJDREEKSEN:
ZELFSIMILARITEIT, WILLEKEUR EN CHAOS

Johan Grasman

Vakgroep Wiskunde, Landbouwuniversiteit Wageningen

Vele typen fysische processen laten zich beschrijven door middel van differentiaalvergelij-
kingen zoals b.v. de slinger. Er zijn echter problemen waarvan we de differentiaalvergelijkin-
gen niet kunnen afleiden vanwege de gecompliceerdheid van het proces. Voorbeelden
daarvan zijn fysiologische en ecologische processen. De vraag die wij ons stellen is of in een
fysisch proces een chaotische attractor onderkend kan worden zonder in te gaan op de bijbe-
horende differentiaalvergelijkingen. Mocht dit lukken dan kan men op deze wijze ook minder
exact te formuleren processen analyseren op de aanwezigheid van zo’n chaotische attractor.
De dynamica van een dergelijk proces wordt geregistreerd door middel van een waarne-
mingsvariabele, in b.v. een ecologisch probleem kan .dat de dichtheid van een diersoort zijn.
Door de invloed van seizoenen zal men in zo’n geval eenmaal per jaar de dichtheid
registreren. De opeenvolgende waarden vormen een tijdreeks. Ook voor continu te meten
variabelen wordt veelal op discrete tijden de waarnemingsvariabele opgeslagen.

Zelfsimilariteit

Van een fysisch biologisch of economisch proces beschikken we over een waarnemingsvaria-
bele y(t). De registratie van y vindt plaats op discrete tijdstippen ty, t,,..., ty. Als van het pro-
ces bekend is dat het de zelfsimilariteitseigenschap heeft dan kan men op basis hiervan een
invulling van de waarde van y geven op de intervallen tussen de waarnemingspunten.
Zeltsimilariteit houdt in dat een variabele zoals bij voorbeeld de rente op de kapitaalmarkt
een zodanig verloop heeft dat de structuur van het diagram voor jaargemiddelden sterk gelijkt
op die van maandgemiddelden. Het enige verschil is dat het renteverloop zich over een groter
interval uitstrekt dan dat van maandelijkse gemiddelden.

Van een proces kennen we een variabele y(t) de waarde op enkele tijdstippen:

¥(t) = Yo, Y(t1) - YirensY(tn) = Yn- (1)

De eenvoudigste invulling van tussenliggende waarden is deelsgewijze lineaire interpolatie y
= ft) (zie figuur 1), hiermee wordt y(t) benaderd op I = [t,ty]. Bij fractale interpolatie
wordt binnen het deelinterval [, = [t ,t.], n = 1, ..., N de lineaire functie vervangen door een
deelsgewijze lineaire functie. In figuur 1 bijvoorbeeld worden in I; = [t,,t;] de tijdstippen

by =ty b, o, Th3, gy = 3

bepaald met de tussenliggende intervallen in dezelfde verhouding als I, n = 1,...,4. De
waarde van y in de nieuwe interpolatiepunten wordt als volgt bepaald: de afstand tussen
en de stippellijn g in het punt t, wordt overgebracht naar t,, met een vermenigvuldigingstac-
tor d. In t,, is £ de lijn welke het gehele deelinterval I; doorloopt zoals g dat doet op het
interval L. In de keuze van d = 0 is men nog vrij. Het fractale interpolatieproces is convergent
voor d < 1. Voeren we de interpolatie uit voor elk van de deelintervallen dan verkrijgen we
de deelsgewijze lineaire apporximatie f(t). Hoe gaan we nu verder? De bedoeling is dat de
grafiek £(t) wederom naar elk van de deelintervallen afgebeeld wordt.



1 ty £ —s t3 ty
Figuur 1: De afbeeldingen naar de subintervallen in het fractale interpolatieproces.

Het is aantrekkelijk om de afbeeldingen te beschrijven als afbeeldingen van R? in zichzelf.
Voor de afbeelding van het gehele interval naar het deelinterval I definiéren we

wi:IxR—=1]I xR. (2)

De afbeelding w, is samengesteld uit een lineaire afbeelding en een translatie. De werking
van w, is af te lezen in figuur 1. Het parallellogram dat zich over I uitstrekt wordt afgebeeld
naar het parallellogram over I, (in figuur 1 alleen voor n = 3 geschetst). Zoals gebruikelijk bij
de beschrijving van een iteratieproces wordt f*(t) bekend verondersteld en wordt de formule
gegeven die f<)(t) levert uit {*(t).

Het resultaat voor k — o wordt bepaald met het random iteratie-algoritme, zie figuur 2. Dit
werkt als volgt. We nemen een punt op de interpolatiekurve, b.v. één van de steunpunten. We
kiezen random een getal uit de verzameling {1,2,3} (met kans p; > 0, p, + p, + p; = 1). Dit

getal s, geeft aan welke afbeelding toegepast wordt: w,,. Dit wordt herhaald voor het nieuwe
punt en alle punten worden getekend.

| i
Ay

Figuur 2: Fractale interpolatie levert foo.

Chaos en fractale dimensie

We beschouwen het voorbeeld van een signaal y(1), y(2), ... dat gegenereerd wordt door een
iteratie-afbeelding:



x(n+1) = 1 - ax(n)’ + y(n), (3a)

y(n+1) = bx(n). (3b)

Voor n — oo doorlopen de punten (x(n), y(n)) de zogeheten Henon-attractor. Voor bijvoor-
beeld (a,b) = (1.4, 0.3) heeft deze attractor een chaotisch gedrag. De verzameling punten
{(x(n), y(n)}, n = 1,2,...,N, heeft een fractale dimensie D, welke volgt uit de
correlatie-integraal

C(&) = lim aantal puntcnparenmetzonderlingeafstand < e.
N—» N
Er geldt namelijk

D = lim-lg-g@.
e—= lOGE

Voor genoemde parameterwaarden: D = 1.2.

Reconstructie van een dynamisch systeem

Van vele fysische en biologische processen wordt met behulp van de reconstructie-methode
de dimensie van een mogelijk aanwezige chaotische attractor bepaald. Daarbij wordt ervan
uitgegaan dat het proces zich laat beschrijven door een niet-lineair iteratieproces

x(t +h)=F(x(t)) 4)

Het systeem wordt uitgelezen aan de hand van een observatie-variabele b.v. de eerste toe-

standsvariabele x,(t) op tijdstippen t, = hn. Het gereconstrueerde systeem heeft als toestands-
vector

z(0)= (L xll, L, s) s Xl _ g, 1)}

In de d-dimensionale toestandsruimte met d voldoende groot wordt de chaotische attractor
gerepresenteerd door de punten z(t)), z(t,),... .

We illustreren dit aan de hand van een tijdreeks geproduceerd door de Hénon attractor, waar-
bij we aannemen dat niet bekend is dat het de Hénon attractor betreft. Ook de dimensie van

het systeem wordt niet bekend verondersteld. De afbeelding (3ab) genereert de punten z,
volgens

2
z2Y = 1oz +b2®

n+1 n >

O 0

n+l~ “n >

(C Z(d = l)_

n+l "~ “n

Z



Voor d = 2 levert dit, zoals beschreven, voor de verzameling punten z,, z,, z,... in R’ een
correlatiedimensie D = 1.2. Voor d = 1 gaat het fout en kan een systeem van het type
M~ F(zMY niet de observatiewaarden genereren. In dat geval zou de verzameling

n o+ | n b

z
zM, 2V, 2V, ... op R als correlatiedimensie een waarde kleiner of gelijk 1 hebben, hetgeen

onjuist is. Dit geeft aan hoe we bij de tijdreeks x,(t)), x,(t,), x,(t3),... van een systeem met
onbekende dynamica (4) en onbekende dimensie van de toestandsruimte te werk gaan. We
bepalen D(d) voor d = 1,2,3,... en gaan na wanneer de verzadiging optreedt, d.w.z. wanneer D
niet meer stijgt bij toenemende d.

Voorspellen

Op basis van de tijdreeks x,(t;), j = 0,1,2,... kan met behulp van het model van vertraagde
coordinaten z een voorspelling gemaakt worden van de waarde van x, in de toekomst; zeg op
het tijdstip t + T. We doorlopen de gegeven tijdreeks over interval t; € [0,t) en registreren de

waarden z(¢;,), i = 1,2,....k van de k het dichtst bij z(t) liggende waarden. Een geschikte inter-
polatie van z(¢;, + T), i = 1,2,...k levert een voorspelling van z(t4+T). De kracht van een derge-

lijk voorspellingsmodel ligt in het behoud van het niet-lineaire karakter in het
voorspelsysteem, nl. de oplossingskurven uit een verleden. Een dergelijk voorspellingsmodel
kan dus in principe plotselinge toekomstige veranderingen verwerken. Echter gezien het
sterke divergente karakter van oplossingen kan het voorkomen dat z(¢;, + T), i = 1,...,k zich
over twee ver uit elkaar liggende subdomeinen van de toestandsruimte uitspreidt, zodat het
antwoord sterk van de gekozen interpolatietechniek afthangt: een "gemiddelde" oplossing kan

dan in een domein terecht komen dat ver van de attractor verwijderd is. Farmer en Sidoro-
wich (1987) geven een methode om tot een geschikt interpolatieschema te komen.
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PSOLA manipulatie van spraak

L.L.M. Vogten, 1PO-Eindhoven

1 Inleiding

Voor het spraakonderzoek zijn technieken om prosodische eigenschappen van
spraakgeluid te manipuleren van grote betekenis. Bij die manipulatie willen
we graag een zo hoog mogelijke kwaliteit en natuurlijkheid behouden. De
conventionele LPC-parameterbeschrijving van spraakgeluid met een bron-
filtermodel levert goede mogelijkheden tot manipulatie, omdat alle modelpa-
rameters onafhankelijk van elkaar als funktie van de tijd zijn gespecificeerd.
Veranderingen van de grondtoon F{, in een spraakuiting worden gerealiseerd
door bij stemhebbende klanken de herhalingsfrekwentie van de excitatie (het
bronsignaal) te wijzigen. Ook de duur van spraaksegmenten kan eenvoudig
worden gemanipuleerd door de frameduur, zoals die bij de analyse is gekozen,
bij resynthese van de afzonderlijke frames te verlengen of te verkorten. Im-
mers, de tijdsduur waarover de impulsresponsie van het filter voor ieder frame
wordt berekend kan willekeurig verlengd of verkort worden. ongeacht de her-
halingsfrekwentie van de excitatie,

Kwaliteit en natuurlijkheid van de aldus LPC-geresynthetiseerde en ge-
manipuleerde spraak laten echter soms te wensen over. Dat komt ten dele
vanwege fundamentele beperkingen in het bron-filtermodel en ten dele door
de wijze waarop in de standaard LPC-techniek de modelparameters wor-
den bepaald. Zo voorziet het model niet in stemhebbende wrijfklanken,
als combinatie van periodiek en ruisig geluid, en worden plofklanken, die
intrinsiek niet stationair zijn, bij LPC-analyse met een venster van enkele
tientallen ms soms hoorbaar aangetast. Daarnaast kan een te laag gekozen
aantal filtercoéfficiénten klinkers en nasalen aantasten, waardoor het tim-
bre verandert en de resynthese soms zoemend ("buzzy”) klinkt. Verder lei-
den fouten in de automatische toonhoogtemeting en stem-stemloosbeslissing
vaak tot een minder goede resynthese en kunnen eveneens bijdragen tot het
"buzzy” karakter van de geresynthetiseerde spraak. lenslotte hebben ook
een minder geschikte spreekstem of ongunstige akoestische omstandigheden
waaronder de microfoonopnamen zijn gemaakt (nagalm, achtergrondlawaai
een negatieve invloed op de resynthesekwaliteit.

Voor zulke gevallen zou een andere methode van manipulatie wellicht tot
betere spraakkwaliteit leiden, die minder verschilt van het origineel. Re-
cent werk van Charpentier & Moulines (1989) van het franse CNET wijst,
erop dat de door hen ontwikkelde techniek voor manipulatie in de golfvorm



van spraak- (en ander) geluid inderdaad tot natuurlijker spraak leidt. Deze
techniek, PSOLA (”Pitch Synchronous OverLap and Add”) geheten, is door
Verhelst (1990) in het TPO geintroduceerd en daarmee is inmiddels enige
ervaring opgedaan.

In deze bijdrage aan het Colloquinim SignaalAnalyse en Spraak
(COLSAS) zullen we die ervaringen weergeven. Ferst gaan we kort in op
het principe van de PSOLA-methode. Daarna demonstreren we enkele prak-
tische resultaten, aan de hand van een korte beschrijving van twee in het
[PO ontwikkelde interaktieve programma’s voor het manipuleren van toon-
hoogte en duur. We besluiten met een vooruitblik op mogelijke toepassingen
in het licht van de pro’s en contra’s van de PSOLA-techniek vergeleken met
de conventionele manipulatie via de LPC-techniek.

2 De PSOLA-methode

In de analysefase wordt de golfvorm op regelmatige afstanden (”pitch syn-
chroon™) voorzien van markeringen, bijv. op de positieve nuldoorgangen van
het signaal aan het begin van de iedere grondtoonperiode. In stemloze
stukken waarin geen duidelijke periodieke struktuur aanwezig is. worden de
markeringen op vaste tijdsafstanden aangebracht. Ter weerszijden van iedere
markering wordt de golfvorm "uitgepoort™ volgens halve "raised cosine” ven-
sters (Hanning, zonder "stoepje” ), zodat buiten de vensters het signaal nul is.
De vensters hebben dus een breedte van twee periodes van de grondtoon en
zijn bij niet-constante toonhoogte (licht) asymmetrisch. Daarmee is de oor-
spronkelijke golfvorm geanalyseerd in een rij korte golfjes, hier verder frames
genoemd, die elkaar overlappen en die zijn verkregen via pitch synchroon
tijdvensteren. In fig. 1 is dit schematisch aangegeven.

De synthese bestaat slechts uit het bij elkaar optellen van alle frames.
Zolang de tijdsafstand tussen de frames daarbij niet verandert t.o.v. de ori-
ginele, krijgen we uiteraard de oorspronkelijke golfvorm weer terug. Veran-
deringen in bijv. de toonhoogte verkijgen we door die afstanden te verkorten
(verhoging van de grondtoon F) of te verlengen (verlaging van Fy). Dat
is schematisch weergegeven in fig. 2. Zodra de nieuwe F, minder dan de
helft is van de originele, wordt de golfvorm tussen de opeenvolgende nieuwe
grondtoonperiodes nul. De lengte van die "lege stukken” neemt toe met
afnemende F,,. Ook bij zeer sterke verhoging van F, zal de golfvorm van de
nieuwe periodes sterk wijzigen t.o.v. de oude.

Duurveranderingen kunnen worden gerealiseerd door bij gelijkblijvende
onderlinge afstanden hele frames weg te laten (verkorte duur) of selectief te
herhalen (verlengde duur), zoals in fig. 3 is weergegeven. Bij vertragingen
met factoren 2 of meer kunnen in de stemloze stukken door de herhaling van
(ruis)frames ongewenste toonhoogte-effecten worden optreden. Die kunnen
worden tegengegaan door de stemloze frames bij de opeenvolgende herhalin-
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["ig. 1: Schematische weergave van de PSOLA analyse In de oorspronkelijke
golfvorm (a) worden " pitch synchroon”™ markeringen aangebracht, waaromheen de
golfvorm wordt uitgepoort (b) tot korte golfjes "frames” (c). De vensters zijn
hier schematisch als lineair weergegeven; in werkelijkheid verlopen ze volgens een
cos®-funktie.

gen in de tijd om te keren (Charpentier & Moulines, 1989). Zeer sterke
vertragingen (van factoren 4 of meer) leiden ertoe dat de veelvuldige her-
halingen van eenzelfde frame hoorbaar worden als stationaire stukken met
abrupte overgangen naar een volgend stationair stuk. Ken simpele lineaire
interpolatie tussen de opeenvolgende frames zou dit effect kunnen vermijden.

3 Implementatie in het IPO

De techniek van PSOLA-manipulatie is in het [PO praktisch toegepast in
twee grafisch interaktieve programma’s: MOP ("MOdify Pitch”, ontwikkeld
door Allain) en MAD ("MAnipulate Duration”, ontwikkeld door Eggen). De
onderzoeker kan daarmee een willekeurig segment, met cursor/duimwielen
specificeren en beluisteren. In MOP kan binnen zo’n segment de toonhoogte
lineair worden geinterpoleerd, vermenigvuldigd met een bepaalde faktor of
worden gecopieerd uit een al bestaande LPC-parameter-file waarin F, al
gestileerd is, bijv. met een ander automatisch programma. Het resultaat
kan direct worden beluisterd en vergeleken met de oorspronkelijke golfvorm.
In MAD kunnen op soortgelijke wijze binnen willekeurig aangewezen seg-
menten zowel de duur als de amplitude lineair worden geinterpoleerd of met
een vrij te kiezen faktor worden vermenigvuldigd In beide programma’s kan
de gebruiker kiezen of hij de manipulaties op alleen de stemhebbende, alleen
de stemloze of op beide wil uitvoeren. Fig. 4 en 5 geven een indruk van het-
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Fig. 2: Toonhoogteveranderingen met de PSOLA techniek Verhogen van Fj
(hier met een faktor 1.9) vindt plaats door de tijdsafstand tussen de oorspronke-
lijke markeringen (b), aangebracht bij de analyse, overeenkomstig de nieuwe Fy te
verkleinen, daarbij eventueel frames te herhalen, en dan de frames bi) elkaar op te
tellen (a). Verlagen van de grondtoon (hier met cen faktor (0.4) gebeurt door die
afstanden te vergroten, zo nodig met weglating van frames, en op te tellen (c).
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['ig. 3: Duurveranderingen worden met I’SOLA gerealiseerd door zoveel frames te
herhalen of selectief weg te laten als nodig is om de nicuwe duur van het betreffende
segment te verkrijgen. In dit voorbeeld is bij (a) de duur verlengd (faktor 1.9) en
bij (c) verkort (faktor 0.6).
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Fig. 4: Voorbeeld van interaktieve verandering van de toonhoogte via PSOLA met
het programma MOP. Boven: originele golfvorm met daaronder een indicatie voor
de stemloze fragmenten. Daaronder de Fj-gemanipuleerde golfvorm met eveneens
de stemloze stukken. De onderste helft van de figuur toont het oorspronkelijke
Fo-verloop (gestippeld, op log schaal) in de tijd, en de veranderingen daarin aange-
bracht (doorgetrokken). In het eerste deel van de uiting is Fi lineair geinterpoleerd.
in het tweede deel verlaagd met een faktor 0.4
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Fig. 5: Voorbeeld van interaktieve verandering van de duur via PSOLA met het
programma MAD. Boven: originele golfvorm met daaronder cen indicatie voor de
stemloze fragmenten. Daaronder het verloop van de faktor (alpha) waarmee het te
kiezen fragment in duur vermenigvuldigd wordt bij de synthese. In dit voorbeeld
zijn de stemhebbende stukken van het eerste decl verlengd (faktor 2.5) en is het
tweede deel van de zin in duur verkort (faktor 0.6). Het onderste deel toont het
amplitudeverloop (”gain”), dat 1n het tweede deel van de zin lineair afneemt van 1
naar O.



geen de onderzoeker voor zich in beeld heeft. Tijdens COLSAS zullen o.m.
deze programma’s gedemonstreerd worden.

4 Toepassingen: PSOLA versus LPC

Een aantrekkelijk aspect van de PSOLA golfvorm-manipulatie techniek is
de mogelijkheid om toonhoogte en duur te manipuleren met behoud van
zeer goede natuurlijkheid (kwaliteit) van het spraaksignaal. Bovendien is
ze zeer eenvoudig en vergt relatief weinig rekentijd. Daarom zal ze bin-
nen het spraak- onderzoek een belangrijk hulpmiddel kunnen worden, met
name voor het intonatie- en duur-onderzoek. In die gevallen waarin de oor-
spronkelijke spraak onder akoestisch slechte omstandigheden is opgenomen
(grote microfoonafstand, nagalm, achtergrondlawaai) zal de PSOLA-techniek
in principe tot aanzienlijk betere resynthese kunnen leiden dan LPC. Bij de
ontwikkeling van duurregels voor toepassing in o.m. automatische systemen
voor tekst-naar-spraakomzetting biedt ze zeer goede vooruitzichten. Ook
bij de spraaksynthese d.m.v. difoonconcatenatie kan ze wellicht tot betere
spraakkwaliteit leiden. Aanwijzingen daarvoor komen van het franse CNET,
waar de PSOLA-difoonsynthese op basis van golfvormconcatenatie, kwali-
tatief duidelijk superieur is t.o.v. de LPC-versies (Hamon et.al., 1989).

Toch kleven er ook nadelen en problemen aan de PSOLA-techniek. Uiter-
aard kost golfvormmanipulatie een faktor 10 meer opslagcapaciteit dan een
standaard LPC-techniek en 100 keer meer dan zuinig gecodeerde LPC. Dat
weegt bij een goede LPC niet altijd op tegen het (niet altijd spectaculaire)
verschil in kwaliteit en natuurlijkheid.

Een veel belangrijker hinderpaal voor toepassing van de PSOLA-techniek
op grote schaal is het feit dat de methode pitch synchroon werkt. De
markeringen moeten zorgvuldig, correct en consistent in de golfvorm wor-
den aangebracht. Fouten in de markering leiden bij manipultatie tot slechte,
hese spraak, "dubbele” toon- hoogtes enz. Visuele correctie van die fouten
vereist vooralsnog veel interaktief handwerk, is in de praktijk vaak lastig en
bij onregelmatige golfvormen soms zelfs onmogelijk. Daar komt nog bij dat,
eventuele fouten in de markeringen pas na manipulatie en synthese manifest
worden. Pas dan blijkt bijv. dat en constante frame-afstand bij synthese niet
de gewenste constante toonhoogte oplevert en dat de oorspronkelijke F, er
soms dwars doorheen klinkt.

5 Conclusie

Eerste ervaringen in het IPO opgedaan met de PSOLA techniek openen goede
perspectieven voor golfvormmanipulatie van toonhoogte en duur, met be-
houd van zeer goede spraakkwaliteit en natuurlijkheid. Daarom alleen al



vormt de PSOLA techniek een nuttige aanvulling op het arsenaal gereed-
schappen voor het spraakonderzoek. Duurmanipulatie kan plaats vinden
zonder enig verlies van natuurlijkheid. Toonhoogtemanipulatie is vooralsnog
slechts op beperkte schaal toepasbaar omdat bij grote verschillen tussen oor-
spronkelijke en nieuwe F,, vaak storende effekten hoorbaar zijn.

In de analysefase is het correct aanbrengen van de markeringen in de
golfvorm van zeer groot belang voor Fy-manipulatie in de synthesefase. Het
vinden van goede, robuuste algorithmes voor automatische markering is dan
ook essentieel voor ruimere toepassing van de PSOLA techniek in intonatie-
onderzoek en in de spraaksynthese.
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ABSTRACT

A method will be presented for extracting rules from a labelled speech
database in order to find context-dependent allophone rules. The classi-
cal approach to this problem involves parameter fitting by e.g. least-squares
error minimization on a sufficiently large dataset. In that approach, the type
of interaction is often to be chosen beforehand. Moreover, there remains a
general problem, how to improve the output of linearly ordered rule sets.

The present algorithm searches for the interaction in a broad class which can
be modified interactively. It is partly based upon the classical approach, and
partly on (non-linear) matrix manipulation. From the theory, we will discuss
the question, how to construct an ‘optimal’ linearly ordered rule set.

1 Introduction

In this paper, we present a method for the extraction of ‘rules’ from ‘data’.
By data we mean in general parameter data obtained from natural speech
or from a speech database, such as diphone sets. ‘Rules’ are algorithms used
e.g. in rule-based allophone synthesis systems, and specified by a focus, a
context specification and an action (cf. Loman et al., 1989). Such a rule
extraction meets the problem, how to find underlying structure in data. In
most cases, such a problem is untractable, unless we have a model that can
be fitted to the available data.

A rule extraction method may be a useful tool for the improvement of rule
sets used in allophone synthesis applications, as it may accelerate the op-
timization process. In the following, we go into detail on the theory and
background of the present method. The material extends the presentation
in Ten Bosch (1989).

2 Preliminaries

In this section, we first consider a simple example.

Suppose we have a labelled speech database in which [a] occurs sufficiently
many times. The first formant Fy of [a] is on the average equal to 700 (Hz),



except for [a] in unstressed syllables where the average F) equals 650. We
say that the parameter F; depends on the function [stress]. For simplicity,
we here assume that this function is binary-valued only. Other functions
are e.g. |height|, [front|, [round], [plosive], [nasal], [voice], [fric], etc. Other
parameters are e.g. the formant frequencies F;, bandwidths Bj, the energy,
LPC-parameters, etc. Functions and parameters are phonologically and pho-
netically inspired, respectively.

The corresponding rule might read:

if focus = [a] and syllable is unstressed then Fj := 650
if focus = [a] and syllable is stressed then Fy := 1700

or

F;, := 650
Fy := F) + 50 if [stress|(syll)

if focus = [a] then {

Here ‘[stress|’ is formulated as a predicate with ‘syll’ as an argument, defined
by

[stress|(syll) = 1 if the syllable syll is stressed
YW 70 0if the syllable syll is unstressed

In this example, [stress| is a binary-valued function. If the two values are 0
and 1, we call it a boolean. Other functions (e.g. [height]) may attain more
different values.

Also for the focus, we can introduce the predicate ‘focusA’ with argument
‘focus’ by defining

1 = true if ‘focus’ equals [a]
0 = false otherwise

Bocusiliffovns] = {

Accordingly, the above rule has a ‘numerical’ variant:

If [focusA|(focus) then F; := 650 + 50 [stress|(syll)

or, explicitly,

Fy := (650 + 50[stress|(syll)) - ([focusA](focus))
= 650 ([focusA](focus)) + 50 - [stress|(syll) - ([focusA|(focus)) (1)

More difficult rules can be formulated by using more functions, by involving
the same type of logic. Also, many functions can be decomposed into other
ones. For example, [focusA] can be factored out into [vowel] x [low] x (1-
[nasal]) x [back].



Table 1: A representation of a speech database

Functions Parameters
[focusA] ... |[stress| ... |... F
0 " 0 oo | wes  OL0
0 1 350
1 1 i | wns 00
1 1 oo | ... 710
1 0 660
0 oy 0 cee | ... 405

We see that the final, ‘numerical’ rule 1 corresponds to the initial rule ‘in
words’ we started with. We found a translation from a phonological rule
to a numerical rule. It will be evident that many phonological rules can be
translated in this manner. One can also observe that there exist a trade-off
between context specification and action specification in the rules. In the
rule we started with

if focus = [a] and syllable is unstressed then F; := 650
if focus = [a] and syllable is stressed then Fy := 1700

the context specification is rather elaborate (‘focus must be [a]’, ‘syllable
must be stressed or unstressed’); the action was very simple: F; := 650 or
Fy := 700. In the last rule:

Fy =650 - ([focusA|(focus)) + 50 - [stress]|(syll) - ([focusA](focus))

we do not have any context specification, but the action is rather elaborate.
In fact, the context specification is put into the action section of the rule by
using the feature functions for the action specification. This phenomenon is
very general and can be studied on its own (ten Bosch, 1990).

We now pose the question, how to find such ‘numerical’ rules in a ‘more or
less” automatic way. In this paper we will present an idea to cope with that
problem. Our method is based on a trick with respect to the interpretation
of the solution of a minimization problem. The method presented here is
still to be refined and improved.

Before we explain our approach, we first represent the speech database in a
tractable way. One possible representation is shown in table 1.

The above Fj-rule (rule 1) can in principle be found automatically from
table 1 by considering all lines in the table that contain a ‘1’ in the function
column [focusA], by minimization of a vector expression ||Az — b||. Here A is
an unknown matrix derived from the left-hand side of table 1, consisting of
the columns [focusA| and [stress| and their product; b is a known parameter



vector containing the parameters in the Fj-column in the right-hand side,
and z is the unknown weighting vector.

After minimization of || Az — b, the expression Az will be an approximation
of the parameter vector b. In general, Az will have the form (p denotes the
parameter, [fun| a function)

constant linear terms quadratic terms
pi= “ag +affun); + ...+ aylfun); [fun]; +...+... (2)

The algorithm searches for the matrix 4 and the vector z such that Az
optimally approximates b (Golub & Van Loan, 1983). The columns of matrix
A correspond to values of functions, or to values of powers or products of
them. These products correspond to compound conditional statements. For
example,

F, := 340 — 50]height|[front](focus) + 20(stress|(syll)

corresponds to

F; = 340 (from table)
no action if [height|(focus)
F, := F; — 50 if [height|(focus) =
if focus is front then { F1:= F1 — 100 if [height|(focus) =
Fy := F, — 150 if [height](focus)

if focus is contained in stressed syllable then F; := F; + 20

In general, equation 2 corresponds to a default parameter setting and a
sequence of interchangeable (eventually compound) if-statements.

The problem how to compose the matrix A out of the left-hand data in
tablel is probably very hard (‘NP-hard’, Lenstra, personal communication).
It corresponds to the search of the shortest non-trivial vector in a (high-
)dimensional lattice. In our case, however, we can incorporate intuitive pho-
netic knowledge to simplify our task and to reduce the dimension and size of
the solution space.

The solution vector = will have phonetic ‘sense’ only if the number of columns
will be restricted to a certain maximum M. For practical purposes, M was
set to 5. M = 5 corresponds to a parameter dependence of maximally five
functions or to an if-nesting of five levels.

The approximation Az to b in equation 2 is assumed to be adequate as in
practice parameter settings will be of the three following forms: (1) p := p+e,
(2) p:= ¢, or (3) p:= p+ec, where ¢ denotes some context-dependent positive
or negative constant, and p a parameter unequal to p. In case (3), parameters
at the right side of table 1 depend on other parameters at the right side of
that table. All the three cases (1), (2) and (3) are subcases of equation 2.



The algorithm allows a column of A to correspond to [fun]{*, where ¢; is a
positive integer. In order to reduce CPU-time, e; must be limited to some
upperbound E. In the algorithm, £ = 3 was taken. This is a safe upper-
bound. If [fun] is a boolean, we have [fun|® = [fun], so [fun]* = [fun] for
all £k > 1. Accordingly, in the case of booleans, putting e; > 1 is senseless.
In other cases, where [fun] is not a boolean, parameters are never observed
to depend on functions to more than degree 2. In one actual example (the
Dutch allophone synthesis), E' can be set to 1, due to the fact that contexts
are specified suficiently narrowly.

M, the number of columns in A, and E, the maximal exponent of the func-
tions used, depend on the width of the focus and the context of the rule in
question. The smaller the domain of the rule, the more specific the rule can
be, and the lower M and F can be, as possible context dependencies can
be put into the constants a;, a;;,. .., etc. This is again a consequence of the
trade-off rule between context and action we mentioned before.

The algorithm has now been applied to the phonemes /a/, /i/, /u/, /p/,
/t/, /k/ in different contexts, yielding a rule-based versions of utterances
/pit/, /put/, /kap/, etc. The data were taken from a set of accented (‘full’)
diphones available from a Dutch professional speaker. In the presentation,
we will give a demonstration of such rule-based ‘allophone’ speech.

It must be observed that the least-squares minimization does not ensure that
the quality of the resulting allophone speech actually increases. The relations
between speech quality and speech parameters are too complex, and, in any
case, non-linear. The current optimization only deals with the interpretation
of the data as found in the database. As a consequence, rule optimization
without thorough perceptual feedback will most likely be impossible. The
present algorithm however produces a first ‘good guess’, based upon speech
data, for an allophone rule set.

3 Application in rule sets

By means of the algorithm, it is possible to detect regularities in data that
can be represented by rules. Those rules have to be of special form, as we have
seen above. Each approximation Az to b yields a rule, which is denoted R;.
R; is decomposable into one parameter setting and a sequence of compound
if-statements. A linear rule set is represented by (R;,Rs,...,Ry), where
R, appears ‘later’ than R;. D, denotes the domain of the rule R;. In order
to avoid rule correlation, the domains D; in the ideal case must obey the
following constraint: if ¢ < j then either D; C D; or D; N D; = @. In other
words: a ‘later’ rule possibly corrects the output of a former rule only on a
subdomain. For the sake of rule improvement, such a rule set behaves best.
In practical cases, this structure is often not possible. For example, suppose
that at first the labials are dealt with, and that rules concerning plosives
occur later in the rule set. If the [p] results incorrectly and other labials and
plosives result correctly, we are likely to be forced to adopt a [p]-rule of which
the domain is a subdomain of both the labial-rule and the plosive-rule. The
construction of such ‘auxiliary’ rules however may be inspired by perceptual



rather than by numerical findings, and depends on how the rule set precisely
acts on the input phoneme string (Ten Bosch, 1990).

The solution for this problem in the present algorithm is, to take such de-
pendencies of two functions together in one global rule, which is found on
the domain of labials as well as plosives. This yields a rule with a compound
statement involving constants a;, a;;, as we have seen above. After having
found that global rule, severe mismatches may remain for specific function
values, e.g. [plosive| = 1, [voice] = 0 and [labial] = 1, pointing to [p|. By the
algorithm, an auxiliary [p|-rule is then suggested to correct the output of the
former global rule.

In the present implementation, the procedure can be dealt with interactively.
Domain specification, focus, and the upperbounds M and E can be defined
before and during the minimization process.

4 Conclusion

A method is presented for the extraction of rules from data for the purpose of
allophone synthesis. The algorithm is based upon the classical minimization
principles, but extended with some essential features. It searches for an
optimal additive-multiplicative model within user-defined restrictions. We
made a relation between the different formats of rules appearing in rule
sets on the one hand, and the numerical variants as found from numerical
algorithms on the other. The present experimental implementation allows us
to construct an ‘initial guess’ for the allophone rule set from a diphone data
set. Perceptual evaluation must lead to further optimization of this set.
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Abstract-The difficulties of speech recognition are analyzed. Classical approaches
are described and their weak points are brought out: non discriminant training,
difficulty to incorporate contextual information, insufficient flexibility of the
architecture.

A recurrent multilayer perceptron is shown to be able to advantageously replace the
classical Markov models and to circumvent their drawbacks.

However, dynamic programming remains the basic tool for connected speech
recognition.

Connectionist methods raise strong expectations in recognition and research must be
devoted in parallel to this new field as well as to the more classical Markov models.
Moreover, speech recognition constitutes a large scale application which will lead to a
better understanding of the connectionist mechanisms themselves.

Keywords—Speech recognition, connectionism, multilayer perceptrons, Markov
models, Boltzmann machine, neural networks, discrimination, classifiers, dynamic
programming.

1. INTRODUCTION

Speech recognition is only a part of speech understanding which is a much more ambitious
task: while recognition only provides a sequence of words satisfying a given syntax,
understanding requires the transformation of such a sequence into a semantic representation
which can enrich a data base or which can immediately activate a process such as robot,
textprocessing, baggage sorting, air flight reservations, data base query ... Achieving speech
understanding implies the combination of several knowledge sources as phonetics, lexical
properties, syntax, semantics and even pragmatics. The latter one restricts the search for a
recognized sentence to the domain of interest and is crucial for the disambiguation of the
anaphoras. The quality of the phonetic or lexical recognition could be significantly improved
by the cooperation of all levels which restricts the search domain. The implementation of such
interactions is particularly difficult and research goes on to solve the problem by using
Artificial Intelligence methods such as blackboards and knowledge sources as in the early
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HEARSAY system. Most of the high level techniques developed for natural language
processing rely on error-free low level inputs. As a consequence, the understanding is often
split in two steps: recognition and natural language processing. The rdle of recognition which
extends from the acoustic data acquisition to the syntactical level is to provide the most
reliable input as possible to the higher levels.

2. MODELS OF SPEECH UNITS

The simplest method occurring in the mind of an engineer for solving the problem of speech
recognition is to identify typical features of the signals to be classified and then to try and
detect these features in a recognition phase. Each word is then identified by its acoustic
signature. The early methods of speech recognition were based on such a pattern recognition
approach but formed the weak link of ambitious projects such as HEARSAY. The first step
requires indeed expert knowledge in phonetics. However,the utterance of a speech signal
differs so strongly from one speaker to another and its variability even for the same speaker is
so important that it is a tremendous work to specify the characteristic features of a speech unit
such as a word, a syllable and a fortiori a phoneme, particularly when embedded in a
discourse. Moreover, industrial production tends to avoid the need of human expertise each
time a different application must be designed.

The representation of the speech signal is obtained by a preprocessing that achieves some
data compression.Spectral or cepstral analysis are applied to sliding windows of the time
signal. The extracted parameters form an acoustic vector associated with each time slot.
Linear predictive coding is also commonly used but requires a special metric, known as the
[takura distance, contrary to the other representations which are compatible with an Euclidean
metric.

A supplementary data compression may be obtained by vector quantization. Each acoustic
vector is replaced by the nearest prototype. Prototypes are computed by a clustering algorithm
such as K-MEANS on a large acoustic vector data base.

2.1 Template Models

In small vocabulary applications, the word could be selected as the basic unit for speech
recognition. Typical records of words, named templates, are memorized and uttered signals
are compared with them. Variability of speechproduction is taken into account by storing
several templates per word uttered by the same speaker (for speaker dependent recognition)
or by different speakers (for the multispeaker mode).

For large vocabulary applications, smaller sub-units must be used in order to limit their
number. The smallest sub-unit set able to cover an unlimited vocabulary is the phoneme set
but phonemes are highly coarticulated so that they cannot be easily and accurately excised out
of a continuous text.

A significant improvement for the recognition was the Dynamic Time Warping (DTW)
(Vintsyuk, 1968; Sakoe & Chiba, 1978). This algorithm based on the dynamic programming
principles achieves the optimal matching between an acoustic vector sequence and the stored
models. The nonlinear distortions of the time axis between a reference template and an actual
utterance are smoothed out.
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To cope with the high variability of the speech signals, reference templates have been
replaced by statistical models.

2.2 Hidden Markov Models

Stochastic models of speech units (Jelinek, 1976) able to be automatically trained on a speech
data base have been developed. A Hidden Markov Model (HMM) is constituted by a set of
states connected together by transition edges. A probability density (named local probability)
to produce an acoustic vector is associated with each transition. The probability to produce an
acoustic vector sequence with a model, often known as score, is the sum of the cumulated
probabilities corresponding to each path in this model from a given initial state to a final one
(Bahl et al., 1983; Bourlard et al., 1985). A usual simplification is to reduce this sum to its
dominant term. Under this assumption, the score of the best path can be easily computed by
using a dynamic programming algorithm similar to the DTW and known as the Viterbi
algorithm. The Viterbi algorithm achieves the optimal matching between an acoustic vector
sequence and the states of the model. It also plays an essential role in connected speech
recognition: indeed, the determination of the best path with possible discontinuities at the
boundaries of the word models simultaneously provides the segmentation and the labeling of
words (Bridle et al., 1982; Sakoe, 1978, Myers & Rabiner, 1981; Ney, 1984).

The parameters of the models are estimated by training. Known sentences are matched
against the corresponding chain of models and the parameters are tuned to maximize the
global probability over the complete training data set. Such an "embedded training" avoids the
tedious a priori phonetic segmentation and the coarticulation effects are incorporated by the
stochastic nature of the representation (Bourlard et al., 1985). HMM 's, coupled with the
Viterbi algorithm, are particularly well suited for modeling the sequential nature of speech.

Hidden Markov models led to a breakthrough in the recognition score improvement.
However, during the last two years, any supplementary progress is obtained only at the price
of an excessively increased complexity (Aubert et al., 1988). The main difficulties lie in the
lack of discrimination between models of different speech units and in the ignorance of the
contextual speech information.

To make the models context-sensitive, two solutions are possible: either the data structure
can be modified by replacing each acoustic vector by a larger one containing also its left and
right neighbours (Furui, 1986; Marcus, 1981) or a new probability density can be defined
which depends on the neighbours (Wellekens, 1987). In both cases, the number of
parameters of the densities becomes so large that a meaningful training would require an
unrealistic amount of data. Moreover, in the second case, any modification of the contextual
window width would require an explicit reformulation.

The most commonly used learning criterion, known as the Maximum Likelihood
Estimation (Bahl et al., 1983; Bourlard et al., 1985) maximizes the global probability of the
model associated with the training set ( Baum-Welch algorithm) but does not simultaneously
minimize the probabilities associated with all other models and which could yield false
recognitions. The score of the correct path differs very slightly from that of the second
candidate: no discrimination occurs. Alternative criteria have been proposed as the Maximum
Mutual Information (Bahl et al., 1986) but they are difficult to work out and often at the price
of simplifying hypotheses (Brown, 1987). Another approach is a modification of the HMM's
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by the definition of discriminant local probabilities (Bourlard & Wellekens, 1988b) which
allow Bayes classification of the acoustic vectors (Fukunaga, 1972). Such discriminant
HMM s are closely related to connectionist networks as Multilayer Perceptrons (MLP) as wili
be shown in section 4.

3. CONNECTIONIST REPRESENTATIONS

These drawbacks are easily circumvented by using connectionist machines such as
Boltzmann machines or Multilayer Perceptrons. Just like the HMM's, connectionist
machines are trained on examples. The explicit formulation of the characteristics of the
processed information is not required but its main features are automatically captured and
stored in a distributed and hidden way in the parameters of the machines. This property is
essential when the underlying structure of the signals is not available as for example in speech
recognition or in vision: indeed, it is impossible to explicit the rules used by a listener or an
observer to come to a decision on the signal.

Another advantage of these machines is their generalization property which is closely
related to their non-linear characteristics. It plays an important role as it is impossible in a
training data base to include all possible speech events. Moreover, the hidden units of these
machines allow the construction of an internal representation of the speech. This self-
organization is useful as important hidden features of the internal structure of speech can be
so captured during the training phase.

The particular architecture of the connectionist networks make them suitable for parallel
computation so that the use of dedicated hardware will be a step towards real time speech
recognition.

3.1 Boltzmann machines

Boltzmann machines (Hinton et al., 1984) form a particular family of connectionist machines
which provide a solution by running to an equilibrium point which corresponds to the
minimum of an energy function. In the context of speech applications, "solution" means
recognition of a phoneme, a word or a sentence.

Boltzmann machines are constituted by a very large number of elementary computational
units with binary states. If some units are specialized to constitute an input and an output field
(visible units), they can be used as recognizers: the input units are clamped to represent a
stimulus the identification of which is displayed on the output field. The remaining units are
the hidden units.Boltzmann machines are said to be "stochastic" since the output of a unit is
"on" or "off" according to a probability depending on the weighted sum of the outputs of the
other units and of a control parameter known as the "temperature"”. The energy minimization
is performed by a simulated annealing algorithm (Kirkpatrick et al., 1982; Aarts & Korst,
1988). While in a simple descent algorithm, a unit will change its state only if it results in a
decrease of the energy, a temporary increase of the energy is statistically accepted in a
simulated annealing process: the higher the temperature, the more probable are the upward
energy jumps. If the temperature is slowly decreased, a global minimum of the energy is
eventually reached.
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The weights, known as synaptic weights, are bidirectional and symmetrical; their values
arc determined by the training phase. A Kullback-Leibler criterion is minimized which tends
to equalize, for a given input field, the probabilities to observe an equilibrium point with an
output field clamped on desired states on the one hand and with free outputs on the other
hand. During this training, an internal representation of the input/output mapping is
automatically built on the hidden units.

A huge amount of CPU time is required as well for the training as for the dynamic energy
minimization. That may be acceptable for the training phase since it is performed off-line but
a real-time convergence to the solution is compulsory in the recognition phase.

Although Boltzmann machines exhibit attractive features for simulating human
recognition processes, the required optimizations constitute a major hindrance to practical
implementations.

3.2 Multilayer Perceptrons

The architecture of multilayer perceptrons (MLP) is much simpler (Rumelhart et al., 1986).
Units are organized into layers; the last one is the output field and the other layers are hidden
for the outside world. The input of a unit is the weighted sum of the output activations of the
units of the preceding layer. The synaptic weights are thus unidirectional and for that reason,
no iterative process is required in the recognition phase.Thus real time applications can be
considered in particular by using a hardware implementation taking full advantage of the
parallel structure. This property justifies the fact that MLP's presently stand in the focus of
the connectionist research in speech recognition.

The training of MLP's is based on the gradient minimization of a criterion: the one most
commonly used is the least mean squared error between the desired and the actually observed
outputs. This minimization is cleverly programmed as an error back propagation (Rumelhart
al., 1986). A forward computation provides the activations of the output layer and the
differences with the desired outputs are computed. Then in a backward computational wave,
corrections are applied to the weights. However, just like for the Boltzmann machine
(although it 1s based on a different algorithm), the training is very time consuming since it
requires a very large number of iteration cycles during which a large data base is forwarded in
the input field with the corresponding desired activations on the output units.

Multilayer perceptrons have been used as discriminant nonlinear classifiers (Lippmann,
1987). They are able to classify data having nonlinear separating curves or even forming non
connected sets in the feature space.

A particular application in speech recognition is the representation of the whole set of
phonemes of a lexicon by a single MLP with one hidden layer (Bourlard & Wellekens,
1987, 1988a). Since this machine is globally trained on the whole data set contrary to what
happens for HMM models which are separately trained class by class, it can provide
simultaneous information on the probability that the input is a member of a class and on the
probability that it does not belong to the others. In other words, discrimination can be easily
enforced.

The input field may include contextual information in the same spirit as the famous
NETtalk network (Sejnowski & Rosenberg, 1987) which learns and memorizes in its
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synaptic weights the English language pronunciation rules which are indeed fundamentally
context-dependent.

In this particular configuration, each letter of a written word is supplied to the input field
surrounded by several left and right neighbouring letters (or silences). The associated output
is the phoneme that must be associated in a normal English pronunciation. The input field has
thus the structure of a shift register. During the training, the synaptic weights are iteratively
updated. After a large number of iteration cycles, NETtalk is able to deliver the correct
phonetic labeling of any written word. In an impressive demonstration by Sejnowski, this
machine activates a speech synthesizer showing that it has thus learned to read aloud.

In a speech recognition application, the letters are replaced by acoustic vectors and still
more variability appears in the input/output mapping: in our case between the acoustic input
and the phonemic labeling. However, it must be noticed that, even with quantized acoustic
vector inputs, the number of possible different stimuli increases exponentially with the width
of the contextual window: it is thus impossible to estimate the local probabilities by counting
as in a HMM due to the excessive size of the data set that would be required for a meaningful
training. The generalization property plays here a key role: indeed, during the training, the
synaptic weights have been tuned in order to generate at the outputs of the hidden units linear
combinations of cross-products between the inputs. Activations at the output layer are
obtained by recombining these cross-products (Bourlard & Wellekens, 1987,1988a). Thus, a
stimulus never observed in the input field, will preferably activate an output corresponding to
an input that possesses in common as many cross-products as possible. On the contrary, with
a discrete HMM, the activation would be zero or artificially fixed at a lower bound.

4. RECURRENT AND CONTEXT-SENSITIVE MLP

But classification is a static application. For speech recognition, a weakness of the
connectionist structures is the difficulty to cope with the sequential nature of the speech signal
or signal dynamics. Addition of feedback loops provides a solution to this shortcoming.

For instance, Prager, Harrison and Fallside (Prager et al.,, 1986) have described a
Boltzmann machine supplied with a feedback loop that, at the thermal equilibrium, brings the
decisions taken at the preceding instant in the input field. Unfortunately, this attractive
principle suffers from the drawbacks of the Boltzmann machines, 1.e. excessive CPU
requirements even in the recognition phase.

The same principle has been applied to MLP’s. Several applications for isolated word
recognition have been proposed in the literature but most of them are restricted to low size
lexicons and thus still remain at the level of research experiments.

In this section, a recurrent and context-sensitive MLP is described that can be used as
local probability generator (Bourlard & Wellekens, 1988b).

The input signal 1s a quantized acoustic vector sequence. Part of the inputs of the MLP
represents a current prototype vector. The output field contains a number of units equal to the
number of phonemes in the lexicon and it is fed back as such or after recoding to form the
second part of the input field.

Such a recurrent architecture allows the simulation of some useful properties of the
discriminant hidden Markov models. In the discriminant //MM'’s, the local probability is
defined as the probability to be on state (say gk) under the condition that the current observed

5 —— A T =
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vector is y; and that the precedingly visited state was gm. The estimators of these local
probabilities are precisely the oprimal output activations of the recurrent MLP (Bourlard &
Wellekens, 1988b). The optimal activations do not depend on the internal topology of the
machine but are immediately related to the data base statistics. They are actually the observed
outputs of the MLP provided the machine contains enough parameters. This condition is
gencrally not satisfied by nonlinear classifiers without hidden layers (Bourlard & Wellekens,
1986).

The input field can also be extended to the neighbouring vectors to take the context into
account as explained in the preceding section.

The training of this recurrent machine is totally supervised. Indeed, the data base is
constituted by prototype vectors and associated phonemes so that even the correct feedback
can be supplied to the input.

As such, this machine performs phonemic labeling. To solve more realistic tasks as large
lexicon connected speech recognition, it is useful to resort to the Dynamic Time Warping
procedure.

5. CONNECTED SPEECH RECOGNITION

Since the outputs of the recurrent context sensitive MLP are equivalent to the local
probabilities of a discriminant hidden Markov model, classical recognition packages based on
the Viterbi algorithm accept their activations as local probabilities. The multilayer perceptron
plays thus here the role of a local contribution generator able to force discrimination between
phonemes and to include wide contextual acoustic information.

A large tableau is built (Bourlard et al., 1985). Its column index represents the time. The
rows are associated with states and are ordered to form state sequences that correspond to
words. A one level Viterbi algorithm (Bridle et al., 1982; Ney, 1984) is used to find in the
tableau the best path between the beginning of a word model at the first instant to the end of a
word model at the last instant. Constraints are applied that forbid path discontinuities inside a
word. This path provides the word segmentation and the word labeling of the utterance.

Transition probabilities as in the HMM are no longer required in the DTW tableau itself
since they have been learned by the MLP which provides dynamical and context-sensitive
contributions.

6. CONCLUSIONS

Speech recognition still requires a huge amount of research before reaching a high level
application field such as natural language recognition with large vocabulary, without speaker
constraints and in a noisy environment. Meanwhile, less ambitious applications, based on
classical techniques as HMM 's have been commercialized.

Connectionist methods must be considered as one alternative technique towards
achievement of more difficult tasks. Results obtained up to now do not transcend the level of
preliminary studies. Thanks to the flexibility of their architecture which allows an easy
incorporation of contextual sensitivity and of recursion, the use of discriminant criteria and
the generalization ability, MLP's constitute extremely promising tools. Nevertheless, research
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is going on to improve HMM performances, viz. discrimination, state occupation duration,
model topology and nature of the local probability densities.

Connectionist models have not yet proved any definitive superiority versus classical
models but become everyday more challenging and raise expectations for increased speech
recognition scores. Conversely, their use in recognition allows a better understanding of the
connectionist mechanisms by applying their principles on a real industrial task.
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introduction

In current speech recognition research the use of Hidden Markov Models becomes
more and more popular and successful. However, for those who know little about
(Hidden) Markov Models, an accessible introduction is hard to find. What is a Markov
Model? How can Markov Models be used as recognizers? Why is a Hidden Markov
Model hidden? In this contribution an attempt will be made to answer these questions
step by step.

Starting from Markov processes that are described by Markov chains, we will first
show what the Markov Models look like. Next the way Markov Models can be used for
recognition is demonstrated (the Viterbi algorithm), and the algorithm for training these
models is presented (the Baum Welch reestimation algorithm). The intention of this
training (or learning) algorithm is to extract representative characteristics from the input
process; these characteristics are then modelled in the parameters of the Markov
Models. Next we will extend the Markov Models theory to Hidden Markov Models.
Hidden Markov Models inherit all properties of the Markov Models, but the states in
the model are no longer associated with one observation only, but with a probability
distribution over all possible observations. A new set of parameters is introduced,
describing this distribution, and changes in recognition and training algorithms are
explained. Changes can be quite drastic, because the hidden states raise the complexity
of the models and algorithms. One of the reasons why Hidden Markov Models are
introduced, is that the system becomes too large for normal Markov Models, if
structures to be recognized become more and more complex. Multiple observation
sequences turn out to be very useful to overcome this problem. Next we will adapt the
models to be capable to deal with more than one feature describing the objects (multiple
symbol distributions). This means that, for instance apart from spectra, one can also
specify the energy or LPC coefficients. After this mathematical foundation, we will
proceed with the application of Hidden Markov Models to speech. In order to increase
the readability, no references are given; instead we have included a list of recommended
literature.

1 This reader-contribution is a summary of a paper in IFA Proceedings 13 (1989), with D. van Bergem
as co-author.
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Markov Models

A Markov chain is a stochastic process, of which the outcome is a sequence of T
observations O(1), O(2) ...... O(T) that satisfy the following assumptions:

1. Each observation belongs to a finite set of N states { Sy, S2, ..., SN }. If the
outcome at time t is Sj, then we say that the system is in state Sj at that time.

2. Any observation depends only upon the immediately preceding observation and
not upon any other previous observation. For each pair of states { Sj, Sj } the
number ajj denotes the probability that Sj occurs immediately after Sj occurs.

In figure 1 a simple example is given of a Markov chain. The outcome of this Markov
chain might be the following observation sequence: "a”, "a”, "b", "a”, "b", "b", "a”, ...
nt=(1/2,1/2)

1/6 2/6
5/6

State 1 State 2

Figure 1. Example of a Markov chain.

The numbers ajj, called the state transition probabilities, can be arranged in a
matrix

a11] 412 a3 ... ... 4IN
a21 a2 a3 ... ... a2N
A = a31 a32 a3z ... ... asN
dN] aN2 aN3 ... ... 4NN

called the transition matrix, where N 1s the total number of states.
The initial state probability distribution, i.e. the probability distribution when
the process begins (t=1) can be arranged in a vector

IT = {15 D5 TRs susass , TN )

One can calculate the probabilities that the chain has produced the observations using an
algorithm called the forward procedure. For this procedure we define the probability
«j(t) as the probability of being in state Sj at time t. Thus the vector a(t) denotes the
probability distribution at time t.

N
@) = Zlai(t—l) - aj
1=



If one is interested in the single best path with the highest probability, the Viterbi
algorithm has to be used, which finds this path based on a Dynamic Programming
method. We define j(t) as the best score (highest probability) at time t along a single
path that ends in state S;j. This score can be recursively calculated with the formula:

S = max (8i(-1) - ajj
i) 12;‘1\1( i(t-1) - ajj )

The Viterbi algorithm is similar to the forward procedure. However, a maximization
over previous states is used instead of the summing procedure used in the forward
calculation. If we store the index i of the dj(t-1) that maximizes &; (1) in a vector yj(1),
the optimal path can be found by backtracking. This vector yj(t) 1 1s simply a pointer to
the 'best' preceding state Sj.

Wri(t) = argmax (0j(t-1) - ajj
’ 1<i<N ( / )

Hidden Markov Models

Suppose we want to model a stochastic process that generates 100 colours (in
modelling speech we will actually use 256 different 'symbols', which can be
considered to be acoustical events). With a 'normal' Markov Model we would need 100
states, one for each colour. To obtain such a model we would have to train 10000
(1002) transition probabilities, which would require an enormous amount of training
data. The number of states can be drastically reduced with the use of Hidden Markov
Models (HMM's), although at the cost of a greater arithmetic complexity as we will
see.

n=(05,05)
bl1(R) = 0.8 b2(R) = 0.3
bl1(B) =0.1 b2(B) =0.4
bl1(Y) =0.1 b2(Y) =0.3
0.4 0.2

Il 0.6 Il

S1 S2

Figure 2. A simple Hidden Markov Model with two states and three observation
symbols (colours).

Consider the Markov Model of figure 2. This model has two states S; and S».
However, the states are not associated with one coloured ball any more, but with an urn
that 1s filled with an infinite number of balls. For reasons of clarity we will use three
colours only, although it is possible to have balls with a large number of different
colours. There are red balls, blue balls and yellow balls, cach with a certain probability
of occurrence, being different for each state (see figure 2). This observation symbol



probability distribution can also conveniently be arranged in a N x M matrix, in
which N denotes the number of states and M the number of observation symbols
(colours in our examplce):

byj1 by2 bz ... ... bim
bp1 bpo bo3z ... ... bom
B = | b31 b3 b3z ... ... bim
byt bn2 b3 ... Ll bnm

called the observation matrix.
The recursion formulas for a(t), Sj(t) and yj(t) become:

N
_21 ( @i(t-1) - ajj ) - bj(O®)
1=

i)y =

6. . . 8. _1 < . .b.O
(0 lrsnideN( i(t-1) - ajj ) - bj(O(V)
yj = argmax(8i(t-1) - ajj )

1<i<N

How do we train the Hidden Markov Models? The following estimates are proposed
for aijs bj(m) and wj (Baum Welch):

‘ Probability of being in state Sj
' (and making a transition from state Sj to state Sj)
qij - Probability of being in state Sj
5 _ Probability of being in state Sj and observing symbol m
jmy = Probability of being in state S;
i = Probability of being in state Sjatt =1

Hidden Markov Models for speech

Of the many topics that remain when one wants to apply HMM's to speech, the
following are the most prominent:

« Isolated word recognition versus continuous speech recognition.

» Discrete observations (via a codebook) versus continuous observations.
Continuous observations (e.g. a spectral vector) are described in terms of Gaussian
densities, with mean and variance as parameters.

* The choice of the speech-unit to be modelled and the HMM topology used.

Figure 3 shows the HMM, we used in our Rexy system to model phone-like units.

The continuous speech recognition system Rexy, which is developed in our institute in
Amsterdam, is trained and tested for one (male) speaker, and has a vocabulary of 240
words. At the colloquium some of the recognition results will be presented.



Figure 3. Transition probabilities of the phone model.
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1 Introduction

In this paper we describe some applications of artificial neural networks
(NN’s) in the field of speech processing. It has been suggested to use NN's
in speech synthesis (to learn pronunciation rules [12]). speech analysis (to
perform voiced/unvoiced classification [1]) and speaker verification [2]. Nev-
ertheless, the bulk of applications is found in the domain of automatic speech
recognition.

Obviously, speech recognition involves a great deal of acoustic pattern
classification, and necural networks have been shown to have excellent pat-
tern discrimination capabilitics. Therefore it was quite normal to try and
use neural networks in the acoustic-phonetic decoding part of a speech rec-
ognizer. In this contribution we discuss the two types of neural networks that
are most oftenly used in this respect, namely, self-organizing feature maps
(SOFMN’s) and multi-layer perceptrons (MLP’s). We indicate how they can
be integrated in the recognition process, and investigate their performance.
Do NN-based recognizers perform better than recognizers based on more es-
tablished statistical models such as Hidden Markov Models (HMM’s)? Can
NN’s and HMM'’s be used together in one system?

2 Static pattern recognition

The classical pattern recognition paradigm is a static pattern recognition
scheme. It assumes that the input pattern can be classified correctly without
taking into account the context (the past and/or the future) in which it
occurs. In a static pattern recognition task, the neural network observes
an input pattern represented by a feature vector X = {X,..Xy}, and it
generates an output vector O = {0;..0p} representing evidences for the
classes 1..M to be distinguished (fig. 1). If the neural network is doing its
job well, 1t generates one active (high) output for each input vector, and this
active output corresponds to the class of the input pattern.

If the neural network incorporates feedback loops, it will take several
time steps before the output becomes stable. Therefore, networks with feed-
back are hardly used in speech recognition (which is essentially a real-time
process). The NN's are always fecd-forward or recurrent ncural networks.



1 output vector M]
4

Neural Network

E mput vector N]

Figure 1: Pattern recognition with a neural network

Recurrent nets have memory (information about the past), feed-forward net-
works don't.

In the subsequent sections we describe two pattern classification paradigms
that can easily be implemented with connectionist models. We outline the
basics of the models, and we indicate how the modecls are integrated in the
speech recognition process.

3 The Nearest Neighbour classifier

One of the most popular pattern classifiers is the nearest neighbour classifier.
It operates according to the following two principles:

1. The set of all possible input patterns can be represented adequately by
a finite set of labelled representatives, called templates.

2. The class of test input feature vector is assumed to be equal to that of
the nearest template in the feature space.

The distance between the input pattern and the reference templates is com-
puted according to a particular distance metric, and the reference templates
are usually obtained by means of a clustering procedure, e.g., a K-means [13]
or a C-means [4] clustering procedure. It has been shown by Kohonen [3]
that the clustering can also be accomplished by means of a self-organizing



fecature map. Such a map is represeuted on fig. 2. It consists of one layer

OuUTPUT
NODES

Figure 2: A self-organizing feature map

of nodes connected to the input features. Each node k is represented by a
vector Wy = {W},..Wyn}. The elements of this vector are the weights of the
connections to the input vector. Furthermore, each node k computes some
kind of a dissimilarity measure between its representation Wy and the input
vector X. During the training phase there are also imaginary connections
between adjacent nodes on the map. The meaning of these connections will
become apparent from the description of the training algorithm. an algorithm
which can be described in 4 steps:

1. Examine the set of available training input vectors Xp, (p = 1..P),
and select K of these vectors as the representations of the map nodes.
Notice that K must be larger than the number of classes M to distin-
guish.

2. Compute for cach training pattern Xp, the dissimilarity scores
N
lek = Z (I/‘/}\] - .Xp]')Q k = 1..]{ (1)

=1

and determine the node with the smallest sore. This node (ko) is called
the winner.



3. Update the weights of all nodes k which are located in a certain neigh-
bourhood of kq. If n represents the iteration step, the weights are
updated according to

Wi;(n + 1) = Wij(n) + a(n).[Xp; — Wij(n)) (2)

It is easy to verify that if the same input pattern were presented again,
the nodes in the neighbourhood of kg would have a response

ypk(n + 1) = ypr(n).[1 — a(n)]? (3)

Consequently, if a(n) is in the range from 0 to 1, the responses arc
reduced, while the responses of the cells far away from the winner are
not affected. The node ko will thus attract input patterns which are
similar to its current representation (=clustering).

4. The above procedure is repeated for all the training patterns, and the
average outputs of the winner are accumulated to constitute an overall
crror measure. As long as no convergence is established the procedure
is repeated from step 2.

The critical parameters are the learning rate a(n) and the definition of the
neighbourhood of the winner. It is recomnmended to start with a large neigh-
bourhood and to reduce it gradually to a single point near the end of the
training procedure. For the learning rate, it is advised to ensure that the
following relations are satisfied

Z: gln] = oo i a*(n) < oo (1)

The above training algorithm was shown to be a very powerful clustering
algorithm which is entirely unsupervised (no labelled data required). It tries
to minimize the total distortion which would arise from substituting the input
vectors by the node representations.

Once the clustering has been accomplished, one can assign a meaning to
each node k by estimating the conditional probabilities of the different classes
under the condition that node k was found to be the winner. If node k is
the winner, the hypothesis corresponding to the highest of these probabilities
will be emitted.



Kohonen [6] has used the feature map to recognize Finnish and Japanese
continuous speech utterances. In his recognizer, a spectral feature vector 1s
generated every 10 ms, and the corresponding phonetic hypothesis is deter-
mined by the self organizing map. The obtained sequence of phonetic labels
is then smoothied in order to remove isolated errors. Finally, successive labels
who are identical are substituted by a single label representing one phonetic
segment. These labels constitute a phonetic transcription of the utterance.
Although Kohonen claims to obtain excellent result, there is a lot of scepti-
cism in the rest of the speech recognition research community. In fact, the
Kohonen map does something very comparable to a classical vector quan-
tizer, and the applied smoothing algorithm does not offer the same temporal
modelling capabilities as HMM’s do. So far I didn’t come along any study
which demonstrates that Kohonen'’s strategy can compete with the standard

HMM approach.

4 The maximum a posteriori classifier

In a Maximum A Posteriori (MAP) classifier is operating according to the
following principles:

1. Estimate the a posteriori probabilities of the classes given the observa-
tion (the input pattern).

2. Select the class corresponding to the largest a posteriori probability

It has been demonstrated [9] that a Multi Layer Perceptron (MLP) can be
trained in such a way that its outputs become estimates of these probabilities.

A MLP is a feed-forward network which is organized in successive layers.
These layers are numbered from 0 (input layer) to L + 1 (output layer). The
layers 1..L are the so called hidden layers (fig. 3). The nodes of a particular

layer different from the output layer are connected to all the nodes of the
next layer. If we adopt the notation

N; = the number of nodes on layer [
yi; = output of node 7 of layer I (I =1..L +1)
wy;; = weight of the connection from node j on layer [ — 1

to node 7 on layer [
wiio = bias input for node 7 on layer !
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Figure 3: The Multi Layer Perceptron architecture



then the MLP is described by the following equations

i = Flai) (5)
Ny

ay = Y wijYi-1; + Wio (6)
J=1

1 ~

Flo) = )

The ncural network nodes are stimulated by the activation a;;, and the acti-
vation function F(a) approximates the threshold function

Fr(a) = 1 if a>0 (8)
= 0 1f a<0 (9)

From the pattern classification viewpoint, the MLP computes a set of dis-
criminant functions

By, &5 i L) m=1.M (10)

to make a decision about the class of the observation X. Thanks to the non-
linear activation function the discriminant functions can be highly nonlinear.
As the discriminant functions for a particular observation are entirely
determined by the weights of the network connections, it is for the training
algorithm to determine an optimum set of weights for the task at hand. How-
cver, it is not sure that there exists a set of discriminant functions (within the
family of functions that can be computed by the MLP) which can correctly
classify all the observations. It is interesting to notice for instance that

1. A MLP without hidden layers can only distinguish between classes that
are linearly separable in the input space. As the activation function is
monotonic, the discriminant functions computed by the MLP can be
regarded as linear: F'(a) > F(b) is equivalent to a > b.

2. A MLP with hidden layers, but with a linear activation function would
be equivalent to another MLP having no hidden layers.

From the paper of Lippmann [7] we have taken a figure (fig. 5) which clearly
shows the kind of decision areas that can be constructed in the input space
by MLP's with 0, 1 and 2 hidden layers.
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Figure 4: Decision regions that can be formed by MLP’s

5 Training the MLP

Starting from random initial settings, the training algorithm has to update
the weights until the MLP performs well enough on a representative set of
labelled training examples. If the training examples are denoted Xp (p =
1..P) and if their classes are known to be m,, the expected output of the
MLP given the input pattern X, is defined as

T, = {7;>1'-TPA1} (11)

with M being the number of classes to distinguish, and
Tom = 1 3f =iy (12)
= 0 if m#FEm, (13)
The expected output vector will be used as a teaching vector in the Er-
ror Back Propagation (EBP) training algorithm. This algorithm will try to

minimize an accumulated error
1PN

E= 52 Z [Opm - Tpm]2 (14)

p=1m=1

Notice that any other function accumulating the discrepancies between the
actual and the expected outputs would be equally acceptable. From a mathe-
matical viewpoint, the EBP algorithm is a stecpest descent (gradient) search



procedure in the weight space. The weights are updated according to

_9F
"aw

with 7 representing the learning rate. From the mathematics it follows that
the gradients can be computed as follows:

Aw = (15)

1. For the weights to the output layer (I = L + 1) it emerges that

OF L
I = ,; Sttty 41 4 (16)
with
Spti = (Opi = Tyi ) F (@) (17)

and F' representing the derivative of F'.

2. For the weights to a hidden layer [ one obtains

dF d
— 6),'. -1, 18
3101,‘]' }; pli-Yp,l-1,5 ( )
with "
41
i = F'(apii)- Y Spi1 b-Wisen i (19)
k=1

It emerges that the gradients for the hidden layers can be expressed in terms
of the é6’s which were computed for the higher layer. In other words, starting
from the output layer the errors must be propagated back to the actual layer
to compute the gradient.

As a steepest descent procedure usually converges very slowly, many tech-
niques have been proposed to speed up the training process. We briefly
mention some of them:

1. On-line training
Instead of presenting all the training patterns before updating the
weights, one can update them every time a single example is presented
(at least in the the beginning of the training).



2. Adaptive training
One can try to adapt the learning rate by regularly estimating the
properties of the error function in the surroundings of the weight vector.

3. Smoothing
Especially in case of on-line training it is recommended to update the
weights according to the following equation

JE
Aw(n) = ~N5— + fAw(n — 1) (20)

In the subsequent sections we describe how MLP’s can be applied in isolated
and continuous speech recognition.

6 Isolated word recognition

If we consider an entire word utterance as the input pattern presented to
the MLP, the word recognition problem can be reduced to a static pattern
recognition problem. The MLP will then perform a spatial coding of the
temporal relations inside the utterance.

A problem may be that different utterances of different words are bound
to have different lengths. Consequently, the utterances will be represented
by a different number of feature vectors (one every 10 ms). Two simple
strategies can be applied to convert the variable length input patterns into
fixed length patterns:

1. The padding method

2. The trace segmentation method

The padding strategy appends silence vectors to the utterances until an ex-
pected maximum length is reached. The trace segmentation method reduces
the length of the input patterns to an expected minimum length. It does
so according to a non-linear time warping transformation which is based on
the idea that successive feature vectors of an utterance u draw a trace in the
feature space. The length of this trace is computed as
Nu-1
Dy = Y d{Xn,Xue1) (21)

n=1



with N, being the number of feature vectors in the utterance, and d(X,Y)
representing the distance between two feature vectors X and Y. The trace
segmentation method will select N feature vectors (N < N,,) which are more
or less equidistantly spaced along the trace.

Some results recently published in the literature indicate that MLP’s can
attain the same level of performance as HMM’s [11]. However, recent studies
on vowel recognition under noisy circumstances [10] indicate that MLP’s are
more robust against noise.

7 Continuous speech recognition

In continuous speech recognition one is forced to recognize so called speech
units such as phones or diphones. Unfortunately, there are no pauses be-
tween these units so that they can’t be isolated from the surrounding units.
In fact, it is generally accepted that the units cannot be recognized accu-
rately without taking into account the properties of the surrounding units
(the phonetic context). Obviously, continuous speech recognition cannot be
reduced to a simple static pattern recognition scheme. Nevertheless, parts of
the problem may be solved by static pattern classifiers, and MLP’s may be
the obvious tool to design them.

Some researchers 3] have proposed the following two stage phone recog-
nition scheme:

1. Use a MLP to generate an output vector (representing phonetic evi-
dences) for each feature vector that comes in

2. Supply these vectors to a dynamic time warping (DTW) process which
is responsible for modelling the dynamics of the speech signal.

Speaker dependent tests [3] have demonstrated that the MLP + DTW com-
bination clearly outperforms the standard HMM approach (using context
independent phone models that is).

More recently, people have tried to integrate MLP’s directly into the
HMM paradigm. In that case, the MLP’s are used to estimate the emission
probabilities of the Markov states [9]. The training of the MLP’s must then
be embedded in the HMM training, which is not trivial but feasible.



In an accompanying paper [8], we discuss a hierarchical approach in which
a first MLP is responsible for generating broad phonetic class evidences once
cvery 10 ms. The evidence vectors are then supplied to a dynamic program-
ming algorithm which generates a multi-level segmentation of the utterance.
Once the segment boundaries are known, context-dependent descriptions of
the segments can be supplied to specialized MLP’s which perform the final
phonetic classification of the segments. The obtained phonetic hypotheses
are then supplied to a second dynamic programming stage which will search
for the optimum word sequence.
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I. INTRODUCTION

Variation in acoustic environments is huge due to
variety in room reverberation characteristics and back-
ground noises. Robustness against this variability could
be built into recognition systems by spreading out the
data gathering for training over many different envi-
ronments - much in the same way that speaker inde-
pendence is achieved by averaging data from hundreds
or even thousands of speakers. However the acoustic
variability is even larger than speaker variability, lim-
iting such a statistical approach to small vocabulary
systems. Furthermore, success cannot be guaranteed,
as inherent robustness might require adequate process-
ing in the first stages of the recognizer.

Sadly enough, much of the work in speech recog-
nition and speech research in general is still based on
recordings made in a quiet room. Such recordings are
essential in speech production research, but they are
fully misleading, however, if one wants to define salient
features for speech recognition and understanding. As
a consequence many glamorous systems are character-
ized by a total absence of acoustic robustness. For
potential users of speech recognition systems it is frus-
trating to see the performance of a system drop by
several orders of magnitude when one switches from a
lip microphone to a far talk microphone or when the
air conditioning in a room turns itself on.

In this paper we will first review the properties of
human performance in (not so) noisy conditions. Then
starting from a prototype speech recognition system
features are added which have shown their potential
in enhancing the machine robustness significantly. No

technical details are presented, these can be found in
the references.

II. HUMAN SPEECH UNDERSTANDING
IN NOISE

Background Noise Noise is most often defined in
a subjective way as anything ezcept the desired signal.
For speech recognition purposes it could as well be de-
fined as anything that hampers optimal recognition.
A bothersome noise level is something very subjective
and is very different indeed for HI-FI listening condi-
tions vs. office communication conditions or optimal
conditions for your automatic speech recognition sys-
tem.

'Rescarch Associate of the National Fund for Scientific Re
scarch of Belgium (N.I".W.0.)

Speech Recognition in Noise

Before thinking further about machines it is good to
see how different conditions affect human performance.
Background noise doesn’t affect speech understanding
at all as long as the SNR(signal to noise ratio) is better
than 20dB. This is so in most daily situations. Most
people barely notice if the SNR is 30 or 40 or only 20
dB. With lower SNRs things progressively get worse,
but basic conversation is still possible at SNRs around
0dB. A most common situation in which human recog-
nition is affected by background noise is inside a driv-
ing car, where an SNR of 6dB is common.

Room acoustics  Absorption coefficients of many
materials are highly frequency dependent. Hence re-
verberant recordings in a normal room vs. close talk
recordings undergo filtering aside from strong phase
shifts. Varying room acoustics is one of those typical
effects that we are well aware of in "music listening
mode”, but rarely in "speech listening mode”. The in-
formation in a speech signal is highly redundant and
understanding of speech filtered by filters as narrow as
one octave and less poses little problems. Sensitivity
of ASR systems to acoustics is much greater, largely
due to the use of speech modeling instead of hearing
modeling strategies inside the recognizer.

A Classification of Noisy Conditions For ASR
systems any environment in which the recorded signal
does not well fit a signal generated from a speech pro-
duction model can be considered as noisy. This devia-
tion can be due to room reverberation, to background
noise, limited bandwidth recording channel, stress con-
dition etc. Different typical noise conditions are best
illustrated by a number of examples.

e Clean Conditions:  Any situation with an
SNR of 45dB or above, i.e. the noise is at level
of quantization noise in a 12 bit A/D system,
can be considered as clean for speech recognition
purposes. This situation is achieved in free field
recordings in a silent room and with the use of a
lip microphone in a normal office or living room.

e Office Environment: The office environment
is the prototype environment where noise levels
are low enough not to affect human hearing, but
nevertheless pose difficult situations to automatic
speech recognition systems. ‘I'he noise level in
an office rarely reaches an annoying level with
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typical SNRs between 20 and 50dB. Most com-
mon noise sources are computer fans, aircondi-
tioning and (lowpass ) filtered road noise which
are rather broadband but mainly low frequency
noises. Furthermore there are impulsive noises
due to clicks, typing, slamming doors, telephone
rings etc.. Another large variability in offices ex-
ists in their reverberation characteristics which
also can have a significant filtering effect on the
speech signal. Problems posed by office environ-
ments are due to variability in conditions rather
than absolute noise levels.

e Telephone Quality: The telephone network
filters speech between 300Hz and 3300Hz. The
amount of filtering however is fully dependent
on the actual connection. One simplifying fac-
tor with telephone speech is the relative absence
of reverberation and the rather predictable noise
level (25-30dB), though these statements do not
hold for hands free telephone and mobile tele-
phone connections. Another annoying side effect
of telephone communication is nonlinear distor-
tion resulting from the many switches in the tele-
phone network.

e Noisy Conditions: Medium level stationary
background noise ( 6dB < SNR < 18dB ) is
typical for hands free telephone operation in a
driving car and speech recognition in factory en-
vironments.

¢ Lombard Speech: High background noise lev-
els and stress conditions cause speech distortion
on top of additive noise. This situation is intrin-
sically different from the previous ones and will
be dealt with briefly.

This paper concentrates on methods which are most
efficient in the not so noisy but highly variable office
environment, but the general approach should be in-
spiring for all possible situations.

III. A PROTOTYPICAL SPEECH
RECOGNITION SYSTEM

In order to illustrate the different strategies it is
easy to start from a rather prototypical speech recog-
nition system consisting of:

1. short time spectral estimation (feature extrac-
tion)

2. vector quantization (rough classification)

3. hidden Markov model recognition system (high
level recognition)

A system as described above is prototypical of most
of the existing large vocabulary systems (IBM Tan-
gora, Dragon Dictate, etc. ). Two aspects of these
systems are of critical importance:

Speech Recognition in Noise

1. Large vocabulary systems are isolated word sys-
tems and depend heavily on accurate silence de-
tection for word separation. The word separation
is not explicit but imbedded in the recognizer, as
it looks for a most likely word string of the type
"silence-word-silence-word- ... -silence”.

2. Parameters of a speech recognition system are
set (adapted) during a ”training session”, often
not lasting longer than a couple of minutes. A
system can only recognize what it has learned !!!
It will adapt to speech characteristics and room
acoustics at the same time, unless you manage to
separate both aspects. And the "silence model”
will be a model of the silence seen during train-
ing.

It is not surprising that these systems are not sen-
sitive to absolute noise level, as long as training and
testing conditions are very similar, but most sensitive
to small variations in the background conditions. The
IBM Tangora 5000, first demonstrated at ICASSP ’86,
was insensitive to absolute SNR over a range of 50 to
25dB, but could not tolerate variations of 6dB or more
between training and testing[1].

The task of building acoustically robust speech recog-
nition systems is one of environment normalization and
not just noise removal !!

IV. ROBUST SPECTRAL ESTIMATION

By robust spectral estimation I mean obtaining an
"environment independent” spectral estimate as re-
quired in step 1. of the prototypical recognizer. It
is proposed to achieve this robustness by the combina-
tion of three operations: background noise removal by
spectral subtraction, channel equalization and masking
of the variable residual noise from spectral subtraction
by noise which is prototypical for the recognizer.

Speech in Noise Model Two basic, though rea-
sonable assumptions, are used in almost all robust spec-
tral estimation techniques. The speech and noise sig-
nals are assumed to be additive and uncorrelated so
that their crosscorrelation is zero and the filtering due
to room acoustics and recording equipment is assumed
to be linear. Given these assumptions free field power
spectral estimation can be written as:

y(t)
Y2(f, k)

I

g(t) * s(t) + n(t) (1)
G(f).S*(f,k) + N*(f) (2)

in which t is time, f is the frequency and k a frame
index indicating the window over which the spectral es-
timate was computed. G(f) and N2(f) are only slowly
time-varying and to a first order approximation inde-
pendent of the frame index k.

Spectral Subtraction Spectral subtraction as de-
scribed by S. Boll in [2] has been the basis of many
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noise suppression algorithms. In communication sys-
tems spectral subtraction has been able to increase
SNR significantly, but only in a few specific cases has it
been able to improve speech intelligibility. However for
speech recognition spectral subtraction has been very
successful due to its normalizing effect over a wide vari-
ety of backgrounds. An estimate of the noise spectrum
is obtained by averaging power spectra estimates over
periods assumed to be speech free. A least squares es-

timate of the speech power spectrum is then obtained
as:

5‘2()‘,}@) = Y2(f1k) - Nz(f) (3)

As power spectral estimates must always be positive,
hard clipping at 0 or another appropriate measure is
required.

Spectral Subtraction Enhancements
estimation of power spectra is far from optimal with re-
spect to properties of the ear and common distortion
metrics within a speech recognizer. Therefore modifi-
cations can be made to the original spectral subtrac-
tion formulation such that minimization of the esti-
mation error isn’t in the power spectrum domain but

rather in the log spectrum or another appropriate do-
main (3], [4],[5].

Acoustic Channel Normalization Spectral sub-
traction doesn’t take into account the variable trans-
ferfunction G(f) from the recording channel, in which
the channel is the combination of the acoustic room
transferfunction and the recording electronics (micro-
phone, amplifier,etc.). Once measured, it is easy to
compensate for this rather slowly varying filter.

S2(fk) =G (HIYHS k) - N(f)] (4

Room acoustics, however, don’t just vary from session
to session, but even over a short time span, e.g. open-
ing of a door. Hence an adaptive estimation of this
transferfunction is required. A reasonable estimate can
be derived from peaks in frequency channel histograms,
measured over a few seconds (e.g. 10). This relies on
two assumptions: first, that typical conversation varies
quickly in acoustic phonetic content and that a vari-
able acoustic phonetic content provides a good spread
of spectral peaks over the whole frequency range.

Noise Masking If only consistency between train-
ing and testing matters, then one could ask: ”Why
not add always the same prototypical white noise to
mask out the natural environment ?” The idea is far
from silly, indeed, and can be used to one’s advan-
tage. Of course this masking noise will mask speech
as well as the background, leading to the key question
of how much noise can be added before the bad ef-
fects outweigh the normalizing effect. Straightforward
reasoning gives the answer:

Speech Recognition in Noise

Least squares

e Speech dynamics of roughly 20-25dB is adequate
for excellent speech communication. Noise at 25
db or more below the peak speech level will only
mask very low energy speech events which are de-
tectable in quiet environments and not in noisy
ones and which are not critical. Hence one should
avoid that a speech recognition system learns
about them. Thus, the amount of added noise
should be adaptive and relative to the speaking
level. Masking noise levels at 15-25 dB below
the peak speech level are reasonable choices; the
different levels will yield a tradeoff between in-
creased robustness and optimal performance in
clean conditions.

e Masking noise will only efficiently mask events
that are 6dB lower and more. The residual noise
of spectral subtraction is considerably lower than
the input noise, though less predictable. Using
spectral subtraction before adding masking noise
will therefore be very helpfull and increase the
effectiveness of this method by a margin of 12dB.

As final "robust spectral estimation” we hence propose
S2(f,k) = G A1, k) = N*(N)] + N (f) (5)

in which N2 (f) is set such that it is about 20dB below
the peak speech level.

The addition of spectral subtraction, channel nor-
malization and noise masking to the IBM Tangora 5000
improved worst case recognition scores (training in clean,
decoding in noise) from above 50% in the original sys-
tem to about 8%]1].

V. NOISE ADAPTIVE PROTOTYPES

The previous approach embedded environment nor-
malization into the signal processing. Another ap-
proach exists in delaying the environment normaliza-
tion until the vector quantization[6]. If transferfunc-
tion and noise level are known then original VQ pro-
totypes can be mapped into noise adapted prototypes.
Mapping of the prototypes can be exact but cluster
boundaries will not be mapped precisely from one en-
vironment to another. This distortion, if not too large,
will be quite gracefully handled by the stochastic na-
ture of HMMs.

VI. NOISE ADAPTIVE MODELS

Ultimately it is possible to implement environment
adaptation in the HMMs themselves. Reestimation of
the parameters of the noise models can be through an
independent speech silence discrimination algorithm/1].
This can be done quite accurately as no 100% correct
word segmentation is required, though only average
noise statistics. In isolated word recognition systems
this will guarantee a good silence detection. However,
in order to be effective not only the noise model pa-
rameters but also the speech parameters must be ad-
justed. This is possible in continuous density HMMs
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using dominance principles. Output probability den-
sities are modified on the basis of the maximum noise
level from training and recognition such that events
that fall below this level cannot be taken into account
[7],[8]. To some extent this method can be seen as the
equivalent of noise adaptive prototypes in VQ based
systems.

VII. MULTISTYLE TRAINING

Totally different problems arise in military appli-
cations of speech recognition where background noise
levels of 140dB SPL have to be dealt with. Human
communication is difficult, even with the use of lip-
microphones and shielding helmets. strong g-force and
stress have an important impact on the speech produc-
tion itself. Due to the bad conditions a speaker will
attempt to compensate and shout rather than speak.
This, combined with other stress symptoms, which might
be due to fighting conditions or g-force, distorts the
speech heavily. Obviously the additive speech in noise
model is not valid any longer.

The one way out in these circumstances is to use
"multistyle training”, i.e. train the recognizer with
data recorded in different noise and stress conditions(9].
HMMs are obviously a most suitable method for these
multistyle training procedures as no intrinsic modifica-
tions to training or recognition algorithms are required,
only the data base collection has to be modified. It is
this expensive and bothersome data collection that lim-
its applications to small command sets, both speaker
dependent and independent.

VIII. MULTI-MICROPHONE NOISE
SUPPRESSION

All preceeding approaches assume more or less sta-
tionary interference. There is however a large class
of acoustic interferences which are far from station-
ary: competing speakers, and all the impulsive noises:
clicks, typing, door slam, etc.. Speech beamforming
systems have recently been developed and are promis-
ing for a wide array of applications(10]. Easy delay and
sum beamforming is very robust but the SNR gain is
theoretically limited to 10log;oM dB with M the num-
ber of microphones. Higher SNR gains must be ob-
tained from single channel postprocessing, direct mul-
tichannel frequency estimation or multichannel adap-
tive filtering. The latter technique i1s quite expensive
in terms of computations and must be implemented
with a lot of care in order to avoid undesirable speech
distortion.

IX. CONCLUSIONS

Many existing speech recognition systems are in-
credibly sensitive to changes in the acoustic environ-
ment, as too much of speech research is based on speech
production rather than on hearing principles. Tech-
niques such as spectral subtraction, channel normaliza-
tion, noise masking and adaptive VQ prototypes have

Speech Recognition in Noise

matured substantially over the past couple of years.
Except for added complexity there is no reason not
to incorporate one or several of these technique into
a speech recognition system. Multi-microphone noise
suppression is a recent evolution and especially promis-
ing with respect to non-stationary interferences.
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Universiteit Gent.
Laboratorium voor elektronica en meettechniek.
St. Pietersnieuwstraat 41, B-9000 Gent. Belgie

1 Introductie

Men kan de verstaanbaarheid en natuurlijkhieid van synthetische spraak ver-
beteren door aan ieder foneem cen gepaste dunr toe te wijzen. Dit betekent
dat men in cen tekst-naar-spraak systeem nood heeft aan ecn goed dnur-
modecl waarin de factoren die de foneemduur bepalen, worden besclireven en
gequantificeerd.

Vele studies over duurfenomenen zijn gebaseerd op woordenlijsten met ge-
wone of nonsenswoorden die ofwel geisoleerd ofwel steeds in dezelfde draagzin
werden uitgesproken (onder andere [3.5,7]). Om een duurmodel te ontwik-
kelen voor continue spraak, hebben sommige onderzoekers zich gebascerd op
cen analyse van de foneemduur in een tekst (onder andere [2,4.6]). In wat
volgt bespreken we een dergelijke aanpak voor het Nederlands [9]. We gaan
dieper in op de ontwikkeling van het klinkergedeelte van ons duurmodecl.

2 Basismateriaal

Een tekst met 90 zinnen en een totale duur van meer dan 8 minuten werd
voorgelezen door een vrouwelijke spreker. De tekst werd op band opgeno-
men, gedigitaliseerd en in de computer opgeslagen voor verdere verwerking.
Het volledige corpus werd manueel gesegmenteerd op basis van de visucle
mspectie van de golfvorm, het energiccontour cun het spectrum. De fonecin-
grenzen werden op de gebruikelijke manier bepaald ter hoogte van de dis-
continuiteiten in het signaal, de excitatie en/of de formauntstructuur [7,4,6].

Bjj twijfel omtrent de ligging van een bepaalde foneemgrens werd deze grens
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als onzeker gemarkeerd. De fonemen die werden afgebakend door cen onze-
kere grens. werden bij de verwerking van de resultaten niet gebruikt. Van
de volledige tekst werd een brede fonetische transeriptie gemaakt. In deze
fonctische transcriptie werden drie accentsymbolen gebruikt: één voor de
primaire lexicale accenten, ¢én voor de secundaire accenten en één voor de
zinsaccenten. leder woord (waarin cen klinker optrad verschillend van cen
schwa) kreeg minstens één accent toegewezen. De zinsaccenten werden door
de spreker en de onderzoeker onafhankelijjk van elkaar toegekend. Terwijl ze
naar de tekst luisterden, duidden ze elk de woorden aan die dominant leken.
De overeenkomst tussen de resultaten van beiden was werkelijk erg goed.
Als er toch verschillen optraden, werd de lexicale optie verkozen. Van ieder
woord werd de woordsoort bepaald alsook de frequentic van voorkomen in
het Nederlands. Dit laatste gebeurde aan de hand van het corpus Uit den

Boogaart (1975).

3 Methode

Door middel van een stapsgewijze selectie van factoren, hebben we verschil-
lende duurmodellen opgesteld met toenemende complexiteit en accuraatheid.
Tijdens dit proces werd de theorie van de kleinste kwadraten gebruikt om de
paramecters van deze modellen te bepalen.

3.1 De klinkerduur

Figuur 1 toont het histogram voor de duur van alle klinkers mit de tekst.
De variantie in deze distributie wordt gebruikt als referentiewaarde voor de
evaluatie van de verschillende duurmodellen. Het meest eenvoudige model
dat we op basis van de resultaten in figuur 1 kunnen voorstellen, geeft aan
iedere klinker een duur van 69 ms.

3.2 De intrinsieke klinkerduur

Elk foneem heeft een eigen intrinsicke duur. Figuur 2 geeft een overzicht van
de gemiddelde waarden (en standaard afwijkingen) voor de klinkerduur per
klinker. Voor de berekening van deze waarden werden alle realisaties van ecn-
zelfde klinker samengenomen. Als intrinsicke waarde voor de verschillende
klinkers kunnen bijvoorbeeld de gemiddelde waarden uit figuur 2 worden ge-
bruikt. Een duurmodel dat aan iedere klinker deze intrinsieke dunr tockent.
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Figuur 1: Het histogram voor de duur van alle klinkers uit de tckst

verklaart reeds 56% van de originele variantie. Het is belangrijk op te merken
dat er een duidelijk verschil in duur bestaat tussen twee verzamelingen klin-
kers: de lange klinkers en de korte klinkers. De schwa i1s duidelijk de kortste
klinker. Een cerste, erg eenvoudig duurmodel dat aan lange klinkers, korte
klinkers en aan de schwa telkens cen verschillende waarde tockent, verklaart
54% van de totale variantie:

[kort] ---> 60 ms
[lang] ---> 104 ms
[schwal] ---> 48 ms

3.3 Klemtoon, functiewoorden, inhoudswoorden

Een belangrijke factor die de duur van klinkers beinvloedt en te maken heeft
met klemtoon, is het onderscheid tussen functiewoorden en inhoudswoorden.
De fonemen in functiewoorden zijn over het algemeen korter dan dezelfde
fonemen in inhoudswoorden. De opsplitsing in functiewoorden en inhouds-
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Figuur 2: De gemiddelde duur voor iedere klinker (verticale lijn = 2.stan-
daard afwijking)

woorden kan bijvoorbeeld op basis van de woordsoort gebeuren [6].  Als
inhoudswoorden beschouwt men dan alle woorden uit de open woordklassen.
Als functiewoorden gebruikt men de woorden uit de gesloten woordklassen
(voorzetsels, voegwoorden, hulpwerkwoorden, voornaamwoorden en lidwoor-
den). Deopsplitsing in functie- en inhoudswoorden kan ook gebeuren op basis
van de frequentie van voorkomen van de woorden. Om de meest geschikte
classificatiemethode te bepalen, hebben we de volgende procedure uitgevoerd:
alle niet-prepauzale klinkers met cen lexicaal accent werden geselecteerd. De
variantie van deze groep klinkers werd tijdens het experiment als referentie
gebruikt. Zoals reeds werd vermeld, haalden we de woordfrequenties uit het
werk van Uit (1(311'B()ogaart (1975). De klinkers werden in 2 groepen onder-
verdeeld op basis van een drempelwaarde voor de woordfrequentie. In figuur
3 zien we het overblijvende deel van de variantie voor verschillende drewmn-
pelwaarden. Gebruiken we een frequentiedrempel 2000, dan wordt 29% van
de variantie verklaard. Als we alle persoonlijke voornaamwoorden ook als
functiewoorden beschouwen, krijgen we een iets beter resultaat (31%). Een
indeling op basis van de woordsoorten verklaart slechts 22% vau de totale
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Figuur 3: Het overblijvende gedeelte van de variantie, indien de woorden op
basis van hun frequentie worden opgesplitst in functie- en inhoudswoorden.

variantie. In wat volgt, werd gebruik gemaakt van de optimale opsplitsing
in functie- en inhoudswoorden.

In figuur 4 1s duidelijk de invloed te zien van belangrijkheid en accentu-
ering op de klinkerduur. Er wordt een onderscheid gemaakt tussen klinkers
in functiewoorden en klinkers in inhoudswoorden. De klinkers uit de laatste
groep werden onderverdeeld 1n drie categoriecn athankelijk van hun accent-
type. We onderscheiden klinkers met een zinsaccent, klinkers met cen lexicaal
accent en onbeklemtoonde klinkers. We kunnen nu een tweede eenvoudig
duurmodel opstellen dat reeds 64% van de totale variantie verklaart

[kort, zinsaccent] ---> 68 ms
[kort, lexicaal accent] ---> 63 ms
[kort, geen accent] -==> 58 ms
[kort, functiewoord] ---> 52 ms
[lang, zinsaccent] ~==% 123 ws
[lang, lexicaal accent] ---> 107 ms
[lang, geen accent] ey OO0 ms
[lang, functiewoord] --=> 70 ms

[schwa] ---> 48 ms
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Figuur 4: De invloed van belangrijkheid en accentuering op de klinkerduur

3.4 De plaats van de klinker in het woord en in de
zin

Het derde duurmodel, dat ongeveer 73% van de totale variantie verklaart.
houdt rekening met de plaats van de klinker in het woord en binnen de zin.
Er worden verschillende aanpassingsregels gebruikt: deze regels wijzigen de
toegekende duurwaarde met een bepaalde factor. Uit de literatuur blijkt dat
er verlengingen optreden in de lettergrepen net voor een belangrijke syntac-
tische grens, ook al worden deze grenzen niet door cen panze gemarkeerd
[1]. Aangezien we in ons tekst naar-spraak systeem over omzeggens geen
syutactische mformatie beschikken, hebben we de verlengingseffecten slechits
bestudeerd in prepauzale posities. De volgende fenomenen werden geobser-
veerd:

e klinkers zijn langer in prepauzale posities dan in andere posities.



e klinkers met klemtoon (lexicaal accent of zinsaccent) worden korter
naarmate het aantal lettergrepen dat nog moet worden uitgesproken,
toencemt. Dit effect is vooral te zien in prepauzale posities. In [3] werd
cen geljjkaardige effect vastgesteld in geisoleerde Nederlandse woorden.

e onbcklemtoonde klinkers zijn langer in woord-finale posities dan in ove-
rige woordposities.

Deze tendensen werden gequantificeerd. De resultaten zijn in het duurmodel]
van figuur 5 weergegeven. In dit model wordt ook rekening gehouden met
het fat dat de klinkers 7, y en u, zich voor ecen consonant r als cen lange
klinker gedragen.

{i,y,uf ~~=» [lang] /_x

[kort, zinsaccent] ---> 69 ms

[kort, lexicaal accent] ---> 64 ms

[kort, - accent] ---> 59 ms

[kort, functiewoord] -==> 52 ms

[lang, zinsaccent] ---> 120 ms

[lang, lexicaal accent] =---> 104 ms

[lang, - accent] ===3 92 ms

[lang, functiewoord] -==% 7O ms

[schwa] --=> 47 ms

[+accent, +prepauzaal, syl=0] ---> % 1.40
[+accent, +prepauzaal, syl=1] -3 % 1,25
[-accent, -schwa, +prepauzaal, syl=0] ---> % 1.56
[-accent, -schwa, +prepauzaal, syl>0] ---> * 1.05
[-prepauzaal, syl>0] --=> % 0.95
[schwa, +prepauzaal, syl=0] e % .20

Figuur 5: Duurmodel 3.

Syl = z betekent dat in het woord nog z syllaben op de klinker volgen.
Met [+accent] worden zowel lexicaal beklemtoonde klinkers als klinkers met
een zinsaccent aangeduid.



3.5 De invloed van de volgende medeklinker

In prepauzale posities 1s duidelijk de invloed te zien van de medeklinker die
op de klinker volgt. In andere omstandigheden is het effect erg klein. Om de
invloed van postvocale medeklinkers in rekening te brengen, werd de volgende
regel aan model 3 toegevoegd:

{[+accent, prepauzaal, syl<2],
[-accent, prepauzaal, -schwa, syl=0]}

/_[stemloze plosief] ---> % 0.85
/_{[nasaall,[liquid]} ---> % 0.95
/_[stemhebbende plosief] --=> % 1.04
/_[stemhebbende fricatief] ---> * 1.14

Dankzij de toevoeging van deze regels, verklaart het nieuwe model (model 4)
76% van de totale variantie. Dit is een (kleine) stijging van 3% ten opzichte
van het vorige model. Dat deze regel wel degelijk van belang is, hebben we
als volgt proberen aan te tonen. We hebben alle klinkers geselecteerd die
aan de volgende voorwaarden voldoen: [prepauzaal. -schwa]. Binnen deze
groep werd de resterende variantie gemeten wanneer gebruik wordt gemaakt
van model 3. Door de introductie van de regel die rekening houdt met de
invloed van de volgende medceklinker, werd 24% van deze resterende variantie
verklaard.

3.6 Performantie van het model

Om cen goed 1dee te krijgen over de performantie van de voorgestelde mo-
dellen, zou men 1n principe de performantie moeten meten op een tekst die
niet werd gebruikt voor het afleiden van de modellen. Gelet op het feit dat
het voorbereidende werk (opnamen, digitalisatie, segmentatice,...) erg tijdro-
veud 1s, hebben we dit niet gedaan. Om toch een inzicht te verwerven over
de bruikbaarheid van de modellen, hebben we doormiddel van cen rotatie:
methode de performantie gemeten. Zo een rotatie-methode gaat als volgt
ziin werk:

o ncemn cen declverzameling van observaties als cen testverzamehng (&

%).
e bepaal de parameters van de modellen met de overblijvende observaties.

e bepaal de performantie van het model op de testverzameling.



e herhaal deze werkwijze 100/2 keer zodat iedere observatie ¢énmaal in
cen testverzameling optreedt.

e bepaal de gemiddelde waarde van de verschillende performantiemetin-
gen.

In tabel 1 zijn de performanties weergegeven die werden bekomen met een
rotatic van 20% cn 50%. Gelet op de relatief kleine daling in performantie ten

model | geen rotatic (grootte testverzameling)
rotatie 20% 50%
2 64.2 63.5 63.0
3 73.0 1.4 70.5
4 5.9 73.6 72.1

Tabel 1: Performnantic van de duurmodellen 2, 3 en 4

opzichte van de waarden die men bekomt zonder roteren, kunnen we stellen
dat de voorgestelde modellen ook in staat zijn het belangrijkste deel van de
variantie van de kiinkerduur in een willekeurige tekst te verklaren.

4 Bespreking

We hebben verschillende modellen voorgesteld voor de klinkerduur.  Deze
modcllen hadden cen toenemende complexiteit en accuraatheid. Ze werden
ontwikkeld op basis van cen analyse van productiedata gemeten in cen voorge-
lezen Nederlandse tekst. Aangezien we slechts één spreker hebben gebruikt,
is het onduidelijk of bepaalde aspecten (en vooral de parameterwaarden)
algemeen geldig zijn of enkel gelden voor onze spreker. Voor de tekst-naar-
spraak omzetting volstaat het echter een goed duurmodel te hebben voor de
spreker die voor het aanmaken van het systeem wordt gebruikt. Het is in dit
licht dat de duuranalyse van de tekst moet worden gezien.

De verschillende modellen werden perceptief niet gecvalucerd. Het ver-
schil tussen de gemeten klinkerduur en de duur zoals die wordt gegenereerd
met model 4, vertoont cen standaardafwijking van 15 ms. Dit is over het alge-
meen minder dan het juist waarncembare duurverschil voor een enkelvoudige
verandering van de segmentale duur in zinnen [1]. De betere modellen (3 en



4) verklaren het grootste gedeelte van de variaties in de klinkerduur zoals die
in een tekst worden geobserveerd. Derhalve zijn ze zeker bruikbaar bij tekst-
naar-spraak synthese van zinnen. Dit wordt ook bevestigd door de informele
perceptieve beoordeling van synthetische spraak.
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Speech Maker: a Framework for Text-to-Speech Systems

Hugo C. van Lecuwen

Abstract

Speech Maker is a general framework in which oue can implement @ text-to-speech system
[t is being developed at the Institute for Perception Reseach ([PO), and in the SPIN-
ASSP project it is used as the framework in which a text-to-speech system for Dutch ix
being implemented. In this paper three important aspects of this system are discussed:
the data structure which is used to store relevant data lor the text-to-speech process,
the general architecture of the entire system, and a formalism which can be used to
manipulate the data structure. The implementation of the Dutch text-to-speech system
is used in this paper as an example to illustrate these three aspects

Multilevel synchronized structure

Most text-to-speech (TT'S) systems consist of a serial control structure and a linear data
representation (Carlson & Granstrom (1976), Kerkhoff, Wester & Boves (1984), Kulas &
Rihl (1985), Allen, Hunnicutt & Klatt (1987), Van Rijnsoever (1988)). A serial contiol
structure means: the various modules (such as grapheme-to-phoneme conversion or intonation
contour generation) are called upon in a certain order and do not interact. A linear data
representation means: the information which is transferred from one module to the other is
coded in a linear way, often in a string of characters Such a string may need to contain
information of different types For instance, a string presented for grapheme-to-phoneme
conversion may need to contain information on sentence accent, morphological structure
and orthography. The Dutch word ‘partijvoorzitterschap’ can be represented at this level
as ‘'partij#voorYzitt %er %schap’, where ‘'’ denotes sentence accent, ‘#’ a morphological
boundary between compounds and ‘%’ a boundary between stems and affixes

In Speech Maker a serial control structure 1s maintained, but the linear data representation
is replaced by a multi-level, synchronized data structure. In this structure, information of
different types 1s represented on different levels. The information on the different levels is
synchronized by so-called sync marks, which are placed between all data items on each level
IF'or instance, ‘partijvoorzitterschap’ can be represented as follows in Speech Maker:

accent: | 1
morph. | stem | prefix | stem suffix suffix
graph: | partiy voor | zitt er schap

Here, the morpheme types are coded directly instead of indirectly by the different types
of boundary, and sentence accent is indicated by a more insightful code (‘+’ instead of 7,

“Institute for Perception Research, PO Box 513, 5600 MB Eindhoven, The Netherlands
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a quote occurs rather frequently in unrestricted text in a function which seldom means: put
sentence accent on this word).

This somewhat more complex way of data representation, which has first been introduced
by Hertz, Kadin & Karplus (1985), is chosen for two main reasons.

1 We believe that 1t is more transparent. Each level represents a different type of infor-
mation. The representation of the information at a certain level need not necessarily
be different from the representation of information at other levels. For instance, the
presence of sentence accent (i.e. which words are to receive accent in the sentence) and
word stress (which syllables carry word-internal stress) may both be indicated by ‘+t°
since the level itself disambiguates.

Moreover, text-to-speech systems will have to be expanded for some time to come, since
they are not yet perfect. More information of linguistic nature will become available to
the system, which will be increasingly difficult to code transparently in a linear string.
For instance, word class determination is closely related to morphological analysis.
Word class is needed for syntactic analysis, which in turn is needed for determination
of sentence accent and pause position. Even if it were possible to code such information
transparently in a linear string, separating the different types of information explicitly
will considerably enhance its transparency. And we believe a transparent data repre-
sentation increases comprehension of the system’s internal state This in turn increases
the speed with which a user can develop new modules or improve existing ones, given
the correct tools to interact with such a structure.

2 Separate modules in the T'TS system become more independent of each other. A certain
module is developed at a certain time. It is designed to deal with certain kind of input.
When a new module is added to the TTS system it 1s well possible that an existing
module will be confronted with input it cannot deal with For instance, if the word class
of a certain word is ‘noun’, and if this is represented by ‘|n|’ preceding the orthographic
representation of the word, the grapheme-to-phoneme conversion will probably not be
able to recognize this as information which is not to be pronounced, unless the module
is altered once word class information is added to the system This is undesirable, since
this means that each module in the entire TTS system may need to be adjusted when
the system is expanded

General architecture

The multi-level synchronized structure 1s the heart of Speech Maker All data transferred
between modules pass through this structure Also, the data in the structure are the only
data directly accessible for the user. Therefore, in the context of Speech Maker the multi-level
synchronized structure is called the central data structure (CDS)

The general architecture of Speech Maker 1s therefore as follows: the first module reads
the mmput from a file or from the terminal and writes it into the central data structure. Fach
consecutive module reads its data from the CDS Often, not all data present in the CDS are
necessary for a certain module, so a selection 1s made. This )s done by a module-specific
interface which collects the relevant data, and transforms them to the input format of the
module. In the same way, the output of the module is collected by the interface and written
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Figure 1. General architecture of Speech maker.

into the CDS and synchronized with the other levels. Some modules will fill a new level with
information (e.g. a grapheme-to-phoneme conversion module fills the phoneme level), some
modules will alter an already filled level (e.g. a phonological module nay alter the phoneme
level). The last module, however, only reads i1ts data from the (:DS, and its output is sent
to a loudspeaker. This architecture is depicted in figure |

The Dutch text-te-speech system

The general Speech Maker architecture will have to receive a specific implementation for a
specific language. In the SPIN-ASSP project a text-to-speech system for Dutch is under
development which will be referred to as ‘Spraakmaker’. In Spraakmaker the following levels
of information and linguistic modules are implemented.

The most important levels of information to be distinguished are:

a) Sentence: indicates the begin and end of the <entence and its type (declara-
tive/interogative).

b) Intonation phrase: indicates the begin and end boundaries of an intonation phrase.
Between the intonation phrases a pause will be added and a declination reset occurs

¢) Word: indicates the begin and end ot a word and contains all information concerning
words. Not all information is of the same type. Therefore, several sub-levels are intro
duced. The information differs from sub-level to sub-level, but the synchronization is
the same for all sub-levels. Therefore the whole can be considered as one level. The
most important sub-levels are

e type  1indicates whether a word 1s lexical (the ‘normal’ words, to be dealt, with
by the morphological analyser), or a number or an acronym (to be dealt with by
specialized rule-based expansion modules).

e class: gives the part of speech (or word class) of the word.

e accent: indicates whether or not the word 1s Lo receive sentence accent



Morphology. indicates the morphological structure of a word and the type of the mor-
phemes (prefix /stem/suffix).

Syllable: gives the syllable structure of a word and the stress level of the syllables
(primary /secondary /none).

Graphemes. gives the orthography of the word

Phonemes: gives the phonemic representation of the word. Attached to each phoneme
is an indication of its duration

Pitch movement: gives the type of pitch movement according to the Dutch intonation
grammar of 't Hart & Cohen (1973). There are fonr additional sublevels which specify
the movement parameters:

anchor: gives the anchor of the pitch movement (vowel onset/end of voicing).
onset: gives the timing onset relative to the anchor (e.g. a pitch lending rise in
Dutch usually starts 70 ms before vowel onset).

duration: gives the duration of the pitch movement

excursion: gives the excursion of the pitch movement (for instance in semitones)

At the time of publication of this paper most of the above levels have already been imple-

men

level.

utte

ted in Spraakmaker, except for the phoneme duration sublevel and the pitch movement
When all of the analysis modules have operated (and the input sentence has been
red) the CDS will look as follows! (suppose the input sentence was “De bal vloog over

de schutting”).

sentence: declarative
int_phrase-
word.type: lex lex lex lex lex lex
.class: det  noun | verb h det, noun
.accent: + t (1)
morph: stem stem | stem stem stem stem suffix
syllable: 4 } #] b
grapheme: de bal | vloog o | ver de  schu | tt  ng
phoneme: d@  bAL | vlox o | v@r | d@  «xU | T IN

The second part of Spraakmaker’s architecture is the succession of modules which operate

on

he CDS. The following modules are implemented, and are called by Spraakmaker in the

order in which they are presented here.

. Label: reads text from a file or from the terminal. Marks the beginuing and the end
of a sentence and labels the words in the sentence A wide range of labels is used
to characterize the words (abbreviations, telephone numbers, amounts of money, etc.)
Thus, the grapheme, word.type and sentence levels are initiated.

2. Expand: deals with all input that has received a special label, and expands or rewrites
the input to one of the three output types. lexical, number, acronym. For instance,
after application of LABEL, “tel. 050-123456” is represented in the CDS as:

"Phoneme duration and pitch movements have been not included in this display, since they are not yet

mcluded in Spraakmaker.



. = . .
word.type: | abbr | tel nr |
graphemes: [ orel L OR0 123456

The expander will alter these data into:

word.type: lex d d ‘ d | d d
graphemes: | telefoon 0 50 112 |34 56

3. Word: deals with several aspects of grapheme-to-phoneme conversion on the word
level. This comprises phonemic representation, word stress, morphological and syllable
structure and word class. These different output types are included in one module
since it is relatively efficient 1o determine them at the same time Lexical items must
be analysed morphologically to arrive at the correct pronunciation. For this purpose a
morpheme lexicon is needed, and once one has a lexicon, one can also store phoneme
representation, syllable and stress information. Combining the morphemes renders word
class. Changes to the pronunciation due to morphological structure (e.g. ‘reduction’
«»‘reduce’) will be dealt with by the next module. Non-lexical items (numbers and
acronyms) are dealt by specialized, rule-based modules which determine above output
types in a more modular manner. The input is the orthography (the grapheme level),
the output is written into the phoneme, syllable. morphology and word.class levels

4 Phonology: adjusts phonemic representation. Since the previous module is word based
it cannot deal with phonologic effects such as assimilation which trancede morpheme
and word boundaries. These effects are dealt with by this phonologic module. Input
and output are both the phoneme and syllable levels

5. Prosodic analysis: determines sentence accents and the begin and end of intonation
phrases. Takes its input from the word class sublevel and fills word accent and intona
tion phrase (sub)levels.

6. Duration?: determines durations of the phonemes Takes as input the phonemes, syl-
lable structure, word stress and sentence accent. Output i1s written to the duration
level.

7. Pitch movements?: determines the relevant pitch movement parameters. Input: sen-
tence range, intonation phrase, sentence accent, word stress; the output is written to
the pitch movement level.

8 Speech synthesis: determines the speech waveform. Takes as input the phonemes, sy!
lable structure, segmental duration, intonation phrase and pitch movement parameters.
The output (a sample data file) can be written to a file, and /or 1s sent to a loudspeaker
via a DA-converter.

Speech Maker Formalism

As can be seen 1n figure 1, each module needs a specific interface to communicate with the
CDS. This is necessary if the module expects linear input and produces linear output. This

*Not yet implemented



will be the case for most modules which already exist, e.g. modules extracted from a ‘linear’
TTS system. New modules, however, can be developed according to the philosophy of the
multi-level synchronized data structure. Modules which can directly access the data structure
do not need an interface.

For this purpose a formalism has been devised which eunables the rule-writer to directly
manipulate the CDS. This formalism is called SMF which stands for “Speech Maker Formal-
ism”. With SMF, a linguist can algorithmically manipulate the CDS directly.

The central idea in SMF is that the rule-writer can access and modify the CDS 1n a
way that resembles the way in which Speech Maker presents it to the user, viz. in a two-
dimensional display as depicted in (1). The rules to be used are two-dimensional too

Every rule consists of a pattern and an action. The pattern specifies a state which should
be present in the CDS. The action part specifies how the CDS should be altered. The desired
state (specified in the rule) is matched to the actual state of the CDS, and if it matches the
action 1s performed. Both the pattern and the action part can encompass one or more levels.

An example of an SMF-rule is given below lts purpose 1s to attach a certain pitch
movement (indicated bij ‘1&a’) to a stressed syllable in an accented word in sentence final
position:

sentence:

(2)
+
syllable: +

word.acc: |<
| --> pitch : | 1 & a |

I
I
I

¢

Here, the arrow ‘-->’ separates the pattern part (left) from the action part (right). The
pattern part specifies constraints on three levels: the ‘sentence’ and ‘syllable’ level, and the

‘word.acc’ sublevel. The levels of information are called streams in the SMF environment.

These constraints are synchronized by means of the vertical bars, ‘| . These denote sync
marks which must be present in the specified stream(s). If they are placed exactly beneath
each other this means that the streams must be synchronized at that point

In the syllable stream a ‘+’ must be found preceding the sync mark that is synchronized
with the sentence and the word level This means that it must be the last syllable in the
sentence. The syllable which carries stress must also be part of an accented word. This is
indicated by the ‘search left” operator, ‘1<’ This operator must be interpreted as follows
If. in the current example, one starts at the sync mark to the left of the ‘+’ in the syllable
stream, and one ‘goes up’ one level to the word stream, one should search for the first sync
mark to the left of this point. This may be the same sync mark (if the original sync mark is
also present 1n the word stream) or it may be another one (the original one 1s not present)
Thus, in rule (2) , between the sync mark thus found and the end-of-sentence sync mark a
‘47 in the word.acc stream must be found (i.e. the word must be accented). The search left
operator and its counterpart, the search right operator ‘>|’ are powerful operators to specify
special relations between streams?, such as ‘a stressed syllable in an accented word’

The focus marks *” in the line below the stream constraints serve two purposes. In the
first place they serve to relate the sync marks in the action part to the pattern part. In

"The search right operator is not needed here since we know that the stressed syllable concerns the sentence
final syllable, and therefore the end-of-sentence syne mark must be present in the werd stream



rule (2) the sync marks enclosing the ‘1 & a’ are the same sync marks enclosing the “+” in the
syllable stream. This means that if those sync marks are present in the pitch (movements)
stream, ‘1 & a’ will be inserted between those sync marks. If they are not. SMF will first.
insert them in that stream after which the data insertion takes place. ‘1°, ‘& and ‘a’ are
three different data items, which are also called tokens. In general, tokens are data items in a
stream that are enclosed between two sync marks Between these tokens automatically new
sync marks will be inserted, i.e. sync marks which are not present in any other stream of the

CDS.

The second function of the sync marks is to indicate how the matching process should
proceed after the matching of the rule. A rule is always part of a rule set. This is an ordered
set of rules which are matched from first to last. A rule set also has a ‘focus stream’, this
1s the stream through which the anchor proceeds. The anchor 1s a pointer to a sync mark
which indicates where a rule will be matched against the CDS. Starting from one side of the
CDS, the anchor will move sync mark by sync mark to the other side. For each rule set the
user can choose whether the matching direction should be from left to right or from right to
left.

In left to right matching the first focus mark *=’ of the pattern 1s mapped onto the anchor.
If the pattern matches, the new position of the anchor will be the sync mark to which the
second focus mark has been mapped. If the pattern does not match, the next rule will be
tried, starting at the same position of the anchor. or if there is no next rule, the position of
the anchor is shifted to the right by one sync mark in the focus stream?. Vice versa, in right
to left matching the second focus mark i1s mapped to the anchor, and the anchor 1s updated
in an analogous way

Thus, suppose the CDS is in the following state®:

sentence: ', declarative i
word.type: i lex lex | lex lex | lex )
.accent: ( i | i [
syllable: s t ¢ - i
graphemes: ’ de  man | had een | ge weer
pitch: | |

|
The arrow ‘17 indicates the anchor. Suppose, also, that rule (2) is part of a rule set which
matches from right to left and that the syllable stream is the focus stream. Then, as can be

seen, the rule matches, and when it has been applied, the CDS will be in the following state

sentence: declarative ;

word.type: lex ’ lex = lex lex i lex ‘

accent: ‘ ' o '

syllable: | i | E 4 l

graphemes: de | man had een | ge | weer f

pitch: i 1 & a |
t

"This is true for token-by-token matching. In rule-by-rule matching the anchor is shifted one position
directly, and the same rule is matched for the new position. If the final sync mark is reached the anchor is
reset to the first sync mark and the next rule can be matched

®Only the relevant portion is shown.



It falls outside the scope of this paper to discuss all possibilities of SMF. Some, however,
have been shown in the example. In general one can use the patiern part to access data and
synchronization information in the CDS, and manipulate this information with the action
part. An important characteristic that has not yet been mentioned is the possibility to
invoke a new rule set as part of the action which is performed when a rule matches. In this
way one can build ‘programs’ to manipulate the C:DS. and thus build a full module for Speech
Maker. One can view rule sets as subroutines, the matching order of rules within a rule set
as a repetition-statement, and rules as if-statements. One can perform variable instantiation
in patterns and use the variables in expressions in the action part. Thus, several important
aspects of general purpose programming languages are available in SMF| not as flexible and
explicit as in those languages, but more implicit and dedicated to the task of manipulating
the CDS. Therefore, almost everything the user needs to type in to define a Speech Makei
module is directly relevant to the process of altering the CDS. Moreover, it can be formulated
in a two-dimensional manner which corresponds to the mental picture one develops ol the
CDS when working with the system. By only having to define information which is directly
relevant one can concentrate on the task of manipulating the ¢DS without being bothered
or distracted by the syntactical aspects of general purpose languages (consider, for instance,
how one would specify rule (2) in C or Pascal). It is our hope that this kind of transparency
in the rule formalism improves both the speed of development and the quality of the new
Speech Maker modules.
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Multimedia workstations for the office

F.L. van Nes

Abstract

Human factors research was carried ont on the application of speech in three
areas of man-computer communication: instruction, voice commands for sys-
tem control and annotation of documents. As to instruction, learning was found
to proceed equally fast with speech and text: a number of subjects preferred
speech to text. Secondly, in speech-to-text conversion, subjects preferred voice
to manual commands for layout and typographic control, although text input
was slower with voice than with manual commands. Thirdly, voice annotations
are more readily made than script annotations, but processing times may be
longer for voice than for script annotations. In conclusion, speech is a valu-
able medium for human-compnter interaction, provided the applications are
carefully chosen and a proper user interface is made.

Introduction

In contrast with human dialogues, human-computer interaction is still predomi-
nantly monomedial: generally a keyboard, i.e. a manual medium, is used for com-
puter input and the resulting system output is nearly always presented on screen, 1.e.
a visual medium (Edwards, 1988). In view of this impoverished communication still
obtaining after several decades of computer use, it is understandable that, spurred by
technological progress, numerous efforts are now being made to investigate, develop
and design multimedia interfaces.

Speech is the first candidate as an alternative or a second medium, both at the

input and output side of a computer, because speech is the easiest, fastest and most
natural mode of communication between human beings. We therefore welcomed the
opportunity provided by the European Community’s ESPRIT! program to intensify
our research on the human factors of speech interfaces. as part of the ESPRIT-
HUFIT (Human Factors in Information Technology) ‘Office Automation” project.
Office tasks are an interesting domain for the application of speech interfaces, in the
first place because of their socio-economic importance. The following are the results
from this research on the use of speech in three areas:
(1) provision of information on system control to the user, both before and during
task execution: spoken instructions and help messages; (2) application of voice
commands for system control purposes; (3) addition of content information such as
comments or criticisms to other such information visually presented.

Content information is defined here as consisting of the variable messages cho-
sen by the user in the application concerned. In contrast. control information is
defined as the invariable control messages that are a prerequisite to enable data to
be interchanged between user and computer system (Van Nes, 1987).

To assess 1ts relative value properly, speech was contrasted with an alternative
medium in all three areas investigated.

IPO annual progress report 23 1988
"Buropean Strategic Program for Research and Development in Information Technology
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Spoken Instructions

Definition, research motive and experiments
‘Spoken instructions’ are understood as all the directions for use which should be
studied and learned before and. where necessary, consulted during use.

Traditionally, such instructional information has always been in printed form,
1.c. as text on paper or on an electronic display. But people generally dislike reading
bulky printed manuals, whereas the available space for instructional text on a display
may be limited, especially during tasks such as word processing. An investigation
of speech as an alternative medium for instructions is held to be justified for these
and a number of other reasons (Nakatani et al.; 1986).

Three experiments on spoken versus written instructions were carried out in this
study; two of them have been published so far (Potosnak & Van Nes, 1984; Van Nes,
1987). ‘Written’ here and in the rest of this paper means displayed on a CRT.

All three experiments showed in the first place that a variety of tasks, word pro-
cessing, electronic mail handling and annotating an electronic text, could, in fact,
be learned with spoken as well as written instructions. Learning was determined by

measuring the knowledge gained about operating the system or by directly moni-
toring performance with it.

Performance

In the word-processing and electronic mail-handling experiments, subjects had to
work first with one, then with the other instruction medium. There was a consid-
erable learning effect in both experiments. This effect, measured in task-execution
time and requested number of help messages, was greater when spoken instructions
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were received first, which possibly implies that speech i1s a better medium for the
initial learning of tasks of this type. The word-processing task, in particular, showed
a larger decrement from the first to the second medium experienced by the subjects,
both in execution time and number of help messages,when spoken instructions were
given first. However. both of these performance measures were themselves also
greater when spoken instructions were given first, so there was in any case more
scope for improvement.

The annotation system instructions were on the average learned equally fast
by subjects who received them in either spoken or written form. This involved a
complete set of instructions, with corresponding questions afterwards, pertaining
to all aspects of dealing with the annotation system. Learning the instructions
1s defined here as ability to answer the questions correctly. Figure 1 shows that
when about 20 minutes was initially spent in studying the hierarchically structured
instruction sets, a certain fraction of the questions could be answered by heart.
After that, a somewhat longer period of study of the instructions was needed to
answer the remaining questions. As regards the duration of both the initial and
subsequent learning periods, there were no significant differences between read and
heard instructions.

Not all answers given by heart were correct. Figure 2 shows firstly, that on
the average. subjects answered about 8 questions correctly by heart after spoken
instructions compared with about 5 questions after written ones. This difference
was not significant. however. Secondly, Figure 2 shows that the total number of
questions that were answered correctly was larger for the subjects who had received
spoken instructions than for those who had received written ones. In this case the
difference was significant (t-test: a < .05).

Preference

The word-processing and electronic mail-handling experiments allowed subjects to
compare spoken with written instructions. For the word-processor tasks, five sub-
jects preferred speech, three preferred text. The reasons given for their respec-
tive preferences demonstrate that different, inherent aspects of both media, such as
volatility versus permanence, are assigned a different importance by the subjects,
who therefore express different preferences (Van Nes, 1987). Take for example a
word-processing command divided into four steps, i.e. four consecutive key presses.
With spoken instructions, subjects could look at the keyboard and press required
keys in sequence while listening, without having to look at their screen in the in-
terim, possibly several times. to read the instruction. An interview revealed (Poto-
snak & Van Nes, 1984) that the subjects of the electronic mail-handling task slightly
favoured written instructions. However, those subjects who used the mail system
with spoken instructions before they did so with written ones rated it as more in-
teresting, more useful and more fun than subjects who used the mail system with
the instruction media in reverse order.

Conclusion

The operation of relatively complicated systems, such as those for electronic text
annotation. can be learned from spoken instructions. Learning may proceed just as
fast with speech as with text and may possibly be more thorough. Whether speech
or text is preferred for learning a task depends on the task as well as on the relative
importance that users attach to properties of the instruction media.



Voice commands for system control

D¢ finition, research motive and experiment

Voice commands are an alternative to manual commands. The dominant computer
input medium is still the keyboard; but voice input may reduce training requirements
and increase input speed compared to typing (Bailey, 1982). Also, typing errors
remain a problem for a number of keyboard users (Ogozalek & Van Praag, 1986),
whereas it has been shown that subjects may prefer voice to keypress commands,
even with a considerable percentage of misrecognitions (Van Nes & Van der Heijden,
1978). With recent progress in speech-recognition technology, voice input now seems
feasible, certainly in the case of the limited vocabularies that are commonly employed
for control purposes. However, knowledge on the human factors of this input medium
is still limited, so that experiments were carried out with voice commands, using
real and simulated speech recognition.

Only one experiment, with simulated speech recognition, with a large vocabulary
of the kind that may be encountered in a speech-to-text conversion system will be
reported here. Simulated recognition has been used before, for instance to determine
whether a voice-activated typewriter would be useful in composing letters (Gould,
Conti & Hovanyecz, 1983). In principle, such conversion systems show an intertwined
content- and control- speech input, e.g. for the correct spelling of homonyms; to
distinguish punctuation marks from text words with the same spelling; or for shifting
from lower to upper case. However, the control input may also be exerted by manual
means in such a system, leaving the content input to voice. We investigated both
selection of command buttons on a screen with a mouse-actuated cursor and voice
commands for control input, in an experiment where the content input, that is
messages to be converted to text, were always spoken.

Professional secretaries served as subjects in two experiment sessions, one with
voice commands and the other with manual commands. They had to read a prepared
text word-by-word from paper, together with a few simple layout commands, e.g.
‘centre’; ‘new line’. The subjects used commands such as ‘text word’ if they wanted
to escape default interpretation of words such as ‘period’. The experimenter, who
sat in another room as the subject, pressed a single key for every correct input, thus
displaying the already formed words, punctuation marks, etc. to the subject. ‘Cogni-
tive errors’ made by the subjects, such as omitting a command like ‘text word’, were
recorded. The simulated speech recognition employed included simulated recogni-
tion errors that had to be noted and acted upon by the subjects.

Performance

The average time per correct text-unit input was significantly lower for voice control
than for manual control, see Figure 3. A ‘text unit’ is defined here as a word or a
punctuation mark; a capitalized word (first letter or entire word) is counted as two
text units. However. the rate of errors made by the subjects during their task was
significantly higher for the voice-commands part, which led to an error-correction
time of 43% of the total text-input time, than for the manual-commands part, where
this percentage was 27. Figure 3 shows that this higher error rate led to a longer
overall average entry time per text unit for voice commands. That the entry times
were high in any case was due to (1) the fact that the entered words were, after
he perceived them, produced and displayed by the experimenter (2) subjects having
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not completely mastered their task yet in the preceding training session. The last-
named fact can also be concluded from the rather high number of errors.

Preference

Notwithstanding the substantial difference in error rate, 10 of the 12 subjects pre-
ferred the voice to the manual mode. One of the reasons given for this preference
was: ‘it seems to be faster’. In view of the objective results, this judgment is either
based on the time needed for correct text-unit input actions alone, or on an under-
estimation of the time spent in error correction for spoken commands.

Conclusion

The speech-to-text conversion system tested had a lower overall text-input time with
manual than with voice commands. However, the reverse is true when only correct
input actions are taken into account.

A considerable majority of subjects preferred the voice commands to manual
ones. When considering this, two factors have to be taken into account, however;
subjects were already using speech for content input in the conversion system in any
case, and they were not faced with (simulated) misrecognition of the same utterance
over and over again, as may happen in real recognition systems. In our system, when
a ‘misrecognition’ occurred, the next text unit entered was ‘correctly recognized’.



Voice annotations on texts

Definition, research motive and experiments

The presentation of text on computer-driven displays provides a number of extra
options in comparison with print on paper. [or instance, notes to the text may
be added. by the original writer or others. and stored separately so that they can
be displayed together with the text or apart. Furthermore. these notes may be in
written or spoken form, as typed or spoken annotations, respectively.

Voice may be a more suitable medium than text for some types of annotation.
For example, the author found that voice annotations on scientific manuscripts were
an effective means of transferring long and/or subtle conments, even from several
annotators who might disagree. This is partly because a spoken message conveys
additional information than the written one with the same wording, through its
temporal structure and intonation. However, speech messages have their limitations
(Bailey, 1982; Van Nes. 1982; Aucella et al., 1987), hence a study on the relative
merits of voice and text annotations seemed desirable, both from the point of view
of the producer or sender of the annotations and from that of their consumer or
receiver

Three experiments were carried out, one on producing and two on receiving both
typed and spoken annotations.

Performance

Production. When subjects were given a free annotation task in which they had
to use either text or voice, they made about the same number of text and voice
annotations, but in the voice mode about twice as many words were used for con-
veying approximately the same information. Making text annotations took almost
three times as long as voice annotations, the difference being caused by the differing
production times of tvping and speaking and by specific technical properties of the
respective interfaces (Van Nes, 1987).

Reception. In a first experiment on receiving and subsequent processing rather
complex, partly conflicting annotations from four different persons, two male and
two female, both annotation types had ronghly equal processing times. In a second
reception experiment designed with all the findings from the first one in mind, the
annotation tasks consisted of typical secretarial correction work. A male person
made all the annotations; 16 female subjects, all professional secretaries, had to pro-
cess them. At the level of letter and word corrections, both annotation types were
processed equally fast. For corrections involving whole sentences, text annotations
led to significantly shorter overall processing times (defined as the period between
selection of an annotation and selection of the following annotation), as may be ob-
served in Figure 4. This is probably due to the need to replay long voice annotations
in order to be able to process them. i.e. to memory limitations of the subjects.

Preference

Production. Of the 12 subjects who had to produce text as well as voice annota-
tions, & preferred the voice version for a variety of reasons, for example: ‘because
it is faster’ or: ‘complete sentences are nsed more easily’. The 4 remaining subjects
preferred the text version for a variety of other reasons, for example: ‘when typing
after reading (the text to be annotated) one stays in the same mental framework’,
or: ‘it i1s easier to make changes’.



Reception. In the first experiment of this type. where complex annotations from
four persons had to be processed. 3 subjects preferred voice. 6 preferred text and 5
had a mixed preference or none at all. A rather striking result was that the subjects
were clearly influenced by the perceived anthority of the respective annotators; they
did not really know what to do with annotations that were formulated as well as
spoken in a doubtful manner, for instance: ‘In my opinion this may be viewed as...”.
On the other hand, some subjects explicitly objected to being ordered, so to speak,
to change the text in a certain way. This was especially true when they did not
know the annotator concerned.

In the second experiment, preference for voice or text tended to depend on the
level of the annotations to be processed. At letter level, 7 subjects preferred voice,
3 preferred script and 8 had no preference. This picture gradually changed at the
higher text levels; at word level, 5 subjects still preferred voice against 6 who pre-
ferred script, 7 having no preference. But at sentence level, only 3 subjects (condi-
tionally) preferred voice (‘provided that the speaking rate is slowed down’), whereas
12 preferred script, 3 subjects having no preference. Thus, overall preference tended
to be for text when annotations from somebody else had to be processed.

Conclusion

From the point of view of the annotator, voice appears to be the more efficient
medium, because longer voice annotations took less time to make than text annota-
tions. Two-thirds of the annotators also preferred the voice version. For receiving
and processing annotations the picture is more or less reversed. With regard to per-
formance, the advantage of voice has disappeared, as total processing times are the
same or, for corrections involving sentences, even longer in the voice mode. This is
reflected in the preference scores: taking all results from both reception experiments
together, roughly three quarters of the subjects preferred text to voice. Making as
well as processing voice annotations in more complex situations, such as writing
or referceing a scientific manuscript need to be investigated systematically, because
some cvidence suggests voice to be especially useful then.

Discussion

In general. the foregoing data are not unfavourable to the application of speech in
human-computer interaction. An interesting aspect of the voice-preference data is
that people vary in their positive or negative evaluation of inherent properties of
speech, such as accentuation and volatility, and therefore judge its value differently
with respecy Lo other input and output media. In view of the fact that speech
interfaces, although available for many years. are only very slowly gaining ground
(Aucella et al., 1987), prudence seems justified when generalizing our research re-
sults to practice. Moreover, in practical environments other factors that were not
investigated hitherto may be important. for instance disturbing others with audible
speech to or from a machine. However. it secins clear that speech can be a valuable
medium for computer input as well as output in appropriate applications with a
proper user interface. If speech is used to complement manual input and visual out-
put while making 2 distinction between different types of information, full advantage
may be taken of the favourable properties of such a speech channel.
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SPICOS: a cooperative

natural-language dialogue system

D.G. Bouwhuis and R.P.G. Collier

IHuman beings are quite substantially more complex than even the most advanced technical systems. Still,
humans often have much less difficulty in communicating with each other - even without any physical contact -
than in communicating with technical systems. Their advantage is the use of spoken natural language.
Therefore, interaction between humans and future technical systems should also be made possible in the form of
human language. SPICOS is a venture to explore this possibility by integrating all the state-of-the-art expertise

in language and speech technology into a demonstration system.

Ease of use

Advanced technology allows systems manufacturers to make products that can do almost anything
imaginable. However, the user often finds himself unablc to fully exploit the functionality of a new systcm,
because the use of it is too complicated. This is onc of the rcasons that the purchase of complex systems
nowadays becomes more and more dependent on clements like ease of use, employce training, cost of
application development and continuity of development, rather than on system performance and price alonc.
Indeed, easy and effective communication with a complex system is an important aspect in the assessment of the
system by a potential user. Interaction by means of spoken natural language can become a very decisive [actor in
such an asscssment.

Philips Research has now developed the natural-language dialoguce system SPICOS in a precompetitive

joint rescarch projectl!ll with Siemens.

The SPICOS system

In natural-language communication between humans and machines a number of basic processing steps
arc required. We can recognize these from the quite typical example of a user who wants to retrieve information
from a databasc by means of the SPICOS system

First of all, speech recognition is nceded for automatic identification of the individual words of an
utterance. This opcration is in fact the conversion from spoken information to words in text and has nothing to
do with interpreting or undcrstanding, although sometimes there is a crude analysis of the syntactic structure.
Next, a linguistic-analysis modulec must compute the meaning of the utterance as a whole. Frequently, this is
not possible on the basis of its semantic properties only, and dialogue properties have to be taken into account

as well; this is done by dialogue handling. As a result a logical expression is derived that can be used as a

This article has been produced in cooperation with the Philips Research Publicity

Dept., Eindhoven, The Netherlands.
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database query, so that an answer can be derived from the stored data. This answer is again a logical expression,
which is converted into a 'written form' (i.e. ASCII format) of natural language by the answer generation
module. Finally, the answer is converted into a spoken response by speech synthesis (fig.2).

If for any reason an appropriate database query cannot be derived dircctly, the system still has to come
up with an adequate reaction to the user. This is another function of the dialoguc handling module:
counterquestion generation. On hearing the answer or the counterquestion, the user can initiate a new request and
in this way effectively set up a dialogue with the system.

The different parts of the SPICOS system have been worked out by different participating groups: PFH
and PRLB (speech recognition), Siemens Research (speech recognition and linguistic analysis) and IPO (answer
generation, dialogue handling and speech synthesis). At the moment the working language for SPICOS is
German. In the following sections we will describe the SPICOS system in some more detail, with emphasis on

the contributions made by IPO.

Speech recognition

Fig.3 shows two graphical representations of a German sentence as a function of time. Upon reception,
not only the actual words but also their boundarics are unknown to the system; so all of these have to be
cstimated. Two procedures, which are based on Hidden Markov Modclling (HMM) and an clementary language
modecl, are used for this. They require large amounts of computing time. In order to speed up recognition,
SPICOS cmploys a special hardware front-end and a fast look-ahead search (of some 500 ms); this approach is
particularly successful in long words. But despite all measures taken, SPICOS - like all other systems in this
domain - is still too slow to operate in real time.

Currently SPICOS is able to identify 1200 different words in continuous speech, which compares
favourably with alternative systems.

Linguistic analysis

The input to the linguistic-analysis module is a string of words with no meaning attached; if the string
represents a grammatically completely correct sentence, a logical formula is constructed in a language called (2]
EL/F, representing the syntactic structure only. This is translated into another language EL/R, in which
meanings arc attached to the units of what is now called the proposition. Ideally, it should be possible 1o
construct a database query directly from this formula; in actual practice this is far from true. Many uttcrances in
a dialogue arc not information requests, while others can only be answered after preprocessing.

A further, frequently occurring difficulty is ambiguity, by which onc sentence can lead to different
databasc querics and possibly to different answers. Thercfore, neither a purce database query language nor a

linguistic-analysis system per se lcads to a robust interactive information systcm.

111 SPICOS = Sicmens-Philips-1PO COntinuous Speech recognition and understanding system; SPICOS-I was
completed in 1987 and SPICOS-T1, described here, in 1990

12| EL/F = Ensemble Language / Formal; EL/R = Enscmble Language / Referential.



Dialogue handler

When the SPICOS system is unable to cope successfully with the current information, the dialogue
handling module tries to obtain additional, mostly disambiguating information from the user. Ambiguitics can
have many forms; ¢.g. in the process of speech recognition the system may be unable to decide between ‘cine' or
'keine' (‘'one' or 'none’). This would lcad to a counterquestion like 'Did you say "cine” or "keine"?" When the user
responds with either single word, recognition will become quite accurate.

Syntactic and semantic ambiguity is handled in a similar way: the system asks specifically for
disambiguation that can be provided in single words by the user. Still, as the language coverage of the grammar
can never be complete, questions occasionally occur that cannot be treated because the required grammar rulcs arc

not implemented.

References

In actual human dialogucs onc particular phecnomenon is that of implicit reference. This happens for
cxample in the question 'Did D write a note and did E receive it?' The word 'it’ refers back to the word 'note’.
This kind of backward reference is called an anaphora and SPICOS contains algorithms to rcsolve a range of
basic anaphoras. Meanwhile, it has proved possible to extend the theoretical description of these references
considerably. Also cataphoras, or forward references, can now be resolved.

Another feature of the dialogue handler is a dialogue history. Most linguistic-analysis tools can only
provide a representation for a single sentence, dependent as they are on local syntactic structure. In a dialogue,
however, previous sentences provide a context in which incomplete references can be resolved on a logical basis.

The final featurc that deserves mentioning, is the user certification that preceeds the actual interaction.
In this way all references indicated by personal pronouns and possessives can be easily handled. For instance, the

user can ask 'Did F get a copy of my rceport?’, where the word 'my' will be correctly interpreted.

Presuppositions

Many questions reflect some partial knowledge of the answer, i.c. they contain some presuppositions,
valid or not. For example, the question 'Did G get the leaflets?' logically leads to a scarch for leaflets in the
database. If it turns out that G received only one leaflet, the answer could be 'No', leaving the user under the
impression that no lcaflet was received at all. In cases like this SPICOS interprets 'leaflets’ as ‘at Icast one
Icaflet’. This kind of presupposition is termed nonfatal, as the query can be adapted relatively easily to produce a
satisfactory answer. However, wrong presuppositions are not always harmless. The question "Was action taken
after receipt of the letter?' cannot reasonably be answered if there was no letter. This is called a fatal
presupposition, and the user is appropriatcly informed concerning the absence of such a letter, after which an

alternative question can be formulated.

Answer generation

In the answer generation module, the answer from the database is converted from an abstract logical

form into words. The main propertics of this module are sincerity and cooperation, which mcans that the



information asked for is stated in full, along with a formulation of how the question has been interpreted.
Conscquently, an answer will not be just 'Yes' or 'No', but ¢.g. 'Yes, all letters were written by G'. If the user

judges that this information is not what he intended to Icarn, he can choose a more appropriale question to
proceed with.

Speech synthesis

The text string from the answer generation module is first translated into a phonetic form, becausc one
letter may sound very differently in various contexts. Next, the speech sounds arc genecrated by diphone
synthesis; diphones run from the middle of one speech sound (a '‘phoneme’) to the middle of the next one. The
word Philips e.g. would be composed as: #{, fi, il, 11, Ip, ps, s#, where 'I' represents the short vowel like in
'bit', and # represents the silent period preceding and following the word. The main advantage of such a procedure
is that the numerous transitions between consecutive speech sounds are automatically covered and necd not be
compuled by an extensive rule system. This type of synthesis is fast and allows arbitrary text messages to be
made audible.

Of itsclf diphone speech sounds monotonous. Therefore, the spoken output has to be enriched with
variations in spcech melody. Appropriate intonation rules specify which pitch movements may follow cach
other, and where they should occur. Many rises and falls of about half an octave coincide with accented words,
some others occur at syntactic boundaries (fig.4). Usually, automatic accent lending is not explicitly related to
word or sentence meaning. The handling of presuppositions in SPICOS, however, makes it possible to
implement accent rendering in a more principled way. If a presupposition is violated, it is most natural to
accentuate the corrected information like in 'No, G wrote two reports’, in which 'two' would have been the
ncgation of, say, ‘one' and would be clearly accented. These and similar features notably increasc the naturalness
of the speech output, and also indicate how a question was interpreted, and how the user could proceed.

It is interesting to note that with the combination of processing modules as described above, a spoken
interaction can be maintained for which, despite the enormous complexity of the system, no uscr manual is

necded at all. In fact, there is not even one.

Implementation

Currently the SPICOS system has been implemented on three computers in a network configuration
(fig.S). The time elapsing between the end of a spoken input and the onsct of the spoken answer, is about 20
times the duration of the input. Most of this time is taken up by speech recognition, the duration of which can
vary considerably, depending on acoustic ambiguitics in the speech signal. Despite the fact that speech
recognition in SPICOS is speaker-dependent, as it has been trained on a single speaker, the system is sometimes
quite liberal and recognizes other speakers benevolently. However, there is also a speaker-adaptive mode, in
which a new speaker has to say only a few words, after which he will also be able to work with SPICOS (at a
slight cost in recognition rate). Future research will especially be directed at human factor aspects; these will be

of overriding importance when response time has been brought down to nearly real-time levels.
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Fig.2  The information flow during interactive use of the SPICOS system. At the points labelled A, B and C
communication takes place in the well-known ASCI! format, which implics that the information can

also dircctly be displayed as text. FP = fatal presupposition (scc main text).
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Fig.3  Two graphical representations of the naturally spoken German sentence 'Hat Ney den Bericht

cmpfangen?’, which arc both a function of time. @) Instantancous amplitude of the speech signal; b)

'spectrogram’ with frequency along the vertical axis; the degree of shading indicates the intensity of the
various frequency components.
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ffig.l Synthetically spoken sentence with automatically generated pitch rise in 'nein’ and contrastive accent on
'gibt', which can be recognized as local excursions of the pitch 2. All speech segments have standard
durations indicated by 100%. The actual duration D used for synthesis has often been chosen differently.
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Fig.5 Overview of the present implementation of the SPICOS system. The hardwarc compriscs three

computers (SUN, TI) and a specially designed Acoustical Front-End (AkuFE). The computers

communicate via an Ethernet-connection. M = microphone; L = loudspeaker; HMM = Hidden Markov

Modclling.



