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Speech Segmentation. 

Summary. 

This report describes an investigation of a procedure for automatic segment ion. 
The original procedure, as published by B. S. Atal, was writ ten to reduce the 
data rate when transmitting speech. The method describes the speech by a small 
number of slowly varying and compact phi functions. Atal implies that these 
functions each correspond to an articulatory gesture made in producing an 
utterance. The current task is to modify this procedure, not to minimise bit 
rates, hut to find phonernes. The report firstly suggests reasons why this should 
be possible. It then explains the original procedure, emphasis being placed on 
its implementation. Next the report describes a number of problems dicovered 
when trying to use the procedure to locate phonemes. Possible reasons for the 
problems are discussed together with some solutions, or attempted solutions. 
Finally alternative approaches to the main problems are suggested. 



Speech Segmentation. 

Introduc tion. 

At the Institute for Perception Research ( IPO) Eindhoven, synthetic speech is 
made by joining not phonemes but diphones. A diphone is a segment consisting of 
the stable part of one phoneme and the transition lllltil the stable part of the 
next phoneme. The method was implemented for Dutch. With about 40 phonemes in 
the Dutch language, over 1200 phoneme pairs had to be extracted by hand. 

B.S. Atal of the Bell Laboratories recently published a paper entitled:" 
Efficient coding of L.P.C. parameters by temporal decomposition." [ l] In it he 
describes a method to decrease the bit rate for transmitting speech. In this 
method he tries to associate so-called phi funct ions wi th phonemes. This project 
attempted to use this method not to obtain a reduction in bit rate, but to 
locate phonemes automatically. With this method the tedious task of hand 
segmentation of diphones can be automated. This would be a useful tool for 
creating a speech database for other languages. 
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Speech Segmentation. 

1 Speech. 

The overall aim of the analysis procedure is to break up speech by marking the 
phonetic boundaries. This is by no means an easy task. Even defining what thP 
boundaries should be is difficult. Consider the dutch diphtong "ei" ; is it one 
phonetic sound or has it a boundary somewhere in the transition of "e" to "i"? 

First let us consider how we speak. Speech is produced by a physical system, 
namely our vocal cords and the vocal tract. We produce different sounds by 
changing the shape of our vocal tract. Each particular sound or PHONEME has its 
own target position. Speech is made up of articulatory movements towards the 
target positions of each of the sounds in an utterance. For example when we say 
the word "bag" there are three target positions. First we have a bilabial place 
of aticulation where the lips close to produce the "b" sound. Next the vocal 
tract opens as we pronounce the vowel. Finally the back of the tongue c loses 
against the soft palate for the velar consonant "g". 

Figure 1 shows the waveform of a small segment of speech 150 mSecs long. It is 
the final "be" from the nonsense word "beboobe" Notice how the waveform quickly 
gains amplitude. This is where the mouth opens for the plosive "b". Fron this 
data we can reconstruct the shape of the vocal tract. See figure la. The 
interval between each diagram of the vocal tract is 100 mSecs. We can see in the 
figure firstly, the mouth open from the previous consonant, then the mouth 
closing for the plosive. Next there is a quick opening of the mouth where the 
pressure built up during the closure is released and finally the tract 
positioning itself for the next vowel. 

3 
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Speech Segmentation. 

Because speech is a physical system it has an inherent inertia. We cannot change 
the shape of our vocal tract instantaneously. There are transitions. In the 
interval between two phonemes the shape of the vocal tract corresponds to 
neither of the two phoneme's target positions. In fact, especially for fast 
speech, we may never reach the target positions. The tract starts to shape 
itself for a sound, but before it is stable it starts to approach the position 
for the next phoneme. A diphone takes into account the characteristic region 
between two phonemes. 

Normal sampling does not take advantage of the transitions in speech. In a 
transistion region we may require about lü mSecs per frame for good resynthesis, 
while in the stable part of a sound, 100 mSecs per frame might be sufficient. 
Atal's bit rate reduction method tries to take advantage of this. The question 
is whether the method can also be used for segmentation. 

In order to detect phonemes the best approach would be to detect the transitions 
towards and away from the phonemes. Basically this is what the method tries to 
achieve. 

For a piece of speech data to be analysed, ( an ut terance ) , we wish to 
associate a so-called phi function for every speech event in that ut te rance. A 
speech event could be defined as a distinct component of the speech. For 
example, a s ilence section, a pure vowel, or a nasal consonant would all be 
distinct speech events. The associa ted phi function should be zero un til the 
transition for that speech event begins. At this point the phi function should 
track the transitions towards and away from that speech event, and then, remain 
zero. 0bviously, if we can get such phi functions, the segmentation of speech 
would be rather simple. If speech can be described by a number of transit ion 
functions, then this should be possible. 

6 



Speech Segmentation. 

2 Choice of Speech Parameters. 

Before we can start analysing speech we must have it in a form easy to 
manipulate. If you take a look at the waveform of the speech, you will very 
quickly realize that it is hard to handle the raw data. In the original method 
as proposed by Atal "log area parameters" are used as a parametric description 
of speech. Throughout my investigations I have been using log area parameters as 
well. In general the analysis method should work on any type of parameters with 
maybe small modifications. In spite of this I feel that the log area parameters 
are best suited for the analysis. 

2.1 What are the Log Area Parameters? 

Log area parameters are determined from a LPC analysis of speech [2]. The speech 
output is roodelled by an electrical source and an all pole filter. 

The electrical source is either 

1) white noise generator for unvoiced speech segments, or 

2) an oscillator for voiced speech. The frequency of oscillation is set 
equal to the pitch. 

The filter coefficients are chosen so as to minimize, in the particular time 
frame, the mean square error between the synthesized and actual speech. This is 
done by a Linear Predictive Coding method [ 3). The filter can be described in a 
number of ways. The most common method is to describe the impulse response or as 
a cascade of second order filters. The re is a variety of ways of desc ribing a 
2-nd order filter. Two obvious ways are, the coefficients of the polynomial of 
the filter in the frequency domain, or the resonant frequency and bandwidth ( Q 
factor). There are other ways. Each set of parameters is related by some 
specific transformation. One such set of parameters is the set of log area 
coefficients (4). 

2.1.1 Interpretation of Log Area Parameters. 

Log area parameters describe an acoustic model of speech. The speech output can 
be considered as arising from a sound source in a sound cavity. The source is 
analogous to the electrical case: 

1) a noise source for unvoiced speech, and 

2) an oscillating source with a repetition frequency equal to the pitch 
frequency for voiced speech. 

For simplicity the cavity is considered as divided into a number of equally 
spaced sections. Each section has its own cross sectional area. The log of the 
ratio of areas of neighbouring sections define the log area parameters. The log 
area parameters hence can be interpreted as describing a s impli fied model of our 
vocal tract. This is shown on fig. 1. The last log area parameter describes the 
ratio of areas in the throat nea r the vocal cords, while the first at the li ps. 
Figure 1 shows the mouth changing position as it articulates a word. 

7 



Speech Segmentation. 

Figure 2 shows for the speech segment of figure l, the log area parameters 
changine with time. Each set of log area parameters correspods toa interval of 
10 mSecs. The plots are made by smoothing the 10 log area parameters over 
"distance", the position in the acoustic tube. This set of log area parameters 
was used to derive the shape of the vocal tract in fig. la. 

8 
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Speech Segmentation. 

Advantages of the Log Area Parameters. 

1) Thèy are easily interpreted as the shape of the vocal tract. Changes 
in a log area parameter means a movement in the vocal trac.t. 1i1is 
makes this set of parameters well suited for our analysis. 

2) The parameters all have the same meaning. Unlike resonant frequency 
and bandwidth, they can be treated as similar quantities. This means 
we don't have to worry about the effects of addiog a bandwidth to a 
frequency! 

3) They have similar statistics. The mean and standard deviation are 
approximately equal for each parameter. This allows them to be treated 
simply in error calculations and minimizations. lf on the other hand 
the means were not equal, then the parameter with the highest mean 
would be weighted the most for the error minimization. Unless of 
course, the method took this into account. 

4) The parameters change rather slowly in time. This allows for greater 
intervals between samples. As a consequence it saves computer time. 

5) They are uniformally distributed over their range of values. This 
minimizes the dynamic range and errors introduced due to truncation. 

A disadvantage of the log area parameters, or LPC parameters in general is that, 
unlike our vocal tract which has antiresonances as well as resonances, the LPC 
parameters model only resonances. 

My investigations are based on the temporal decomposition model for log area 
parameters as desc.ribed by B.S. Atal in the Proceedings of the ICASSP 1983 [ 1). 
( This paper is supplied as an appendix to this report). The first problem is 
understanding the method. While some of the theory for this method is described 
in that paper, a lot of the practical details are missing. I present here my 
interpretation of the procedure together with an outline of how this is 
implemented. 

10 



Speech Segmentation. 

3 The Data 

A segment of speech is first recorded on a reel to reel magnetic tape. Next we 

digitize the speech at a sampling rate of l0kHz. The speech spectrum is assumed 
to have a ldghest significant frequency component of SkHz. The analog to Jigital 
converter has a resolution of 12 bits. Each sample is an integer between -2048 
and +2047. 

The raw quantized data is passed to the program "AALA". Here the speech is 
firstly converted to LPC parameters. For the analysis a window of duration 25 
mSec (250 samples) is used. Shifting the window 100 samples at a time, gives 
frames of LPC parameters every 10 mSec. The speech is now decribed by a tenth 
order filter through linear prediction. 0ther parameters extracted are the 
voiced or a unvoiced source, gain, and, fora voiced source, lts pitch. 

S(t) = X( t) • G( t) • 0( t) 

where S( t) is the speech 
X(t) is the exci tat ion and can be either the voiced 

or unvoiced source 
G( t) is the gain 
0(t) is the filter 

In our case of tenth order analysis 

0( t) 
10 

-1 r a.z 
j= 1 J 

(a. being the LPC parameters) 
J 

The AALA program then converts the LPC parameters to log area parameters. [4] 

l 1 



Speech Segmentation. 

4 The Analysis 

The aim of the analysis is to descibe the data by phi functions, one phi 
function for each speech event. 

The speech data is represented by a pxN matrix, Y, where 

pis the number of L.A. parameters (Log Area) 
Nis the number of frames of L.A. parameters in the utterance. 

(The time dimension). 

In my case pis set to 10 

We can convert the L.A. parameters to other abstract parameters by a linear 
transformation. This can be represented as : 

where 

Y=A.<p (1) 

A is a pxm transformation matrix 
mis the number of new parameters 
rp is the new data matrix consisting of 

N frames of 
m new parameters. 

Note that that the re are no time transformations. 

The speech, in other words, is desribed by some linear combination of basis 
functions. In our case we want the basis functions to have special properties, 
namely to be phi functions. The number of parameter (m) is not known. This 
depends on the number of speech events present in the ut terance. 

From 1 we can wri te 

For a speech segment of 1 to 2 seconds durat ion, it wil 1 contain about 20 
to 30 speech events. So we can write 

The rank of 
parameters). 
utterance. 

30 
Y. 

J 
2.: Ai. w fo r j 

i= 1 J , i 
1 top ( 3) 

Y ho wever, can 
As a result we 

be no greater 
cannot find 

than 10 ( The number of 
30 phi functions with 

log 
this 

area 
one 

Instead we take a smaller time interval of data, say 300 mSec, where \olie ex peet 
no more than 7 or 8 speech events. In this case the equation for the phi 
functions is valid. The requirement can be rcstated as follows. 

l 2 



Speech Segmentation. 

The rank of the Y matrix must be greater than the number of speech 
events (m). 

To satisfy this requirement it is estimated that the length of speech should be 
about 

200 to 400 mSec. 

4.1 Rank of the Speech Matrix. 

From equat ion 2 we note that we can write 

p 

• 2.: Wki Y/ n) l~k~m, l <n<N 
1=1 

(4) 

So the phi functions are simply a linear combination of the actual parameters. 

The number of phi funct ions should be the same as the the rank of Y. This is 
because if we want the phi functions to reconstruct the data, then the rank for 
a segment of data can be no greater than the number of phi funct ions in that 
segment. 

In principle the number of phi functions is fixed by the number of speech 
events. There will not be 10 phi functions for every speech segment we cons ider. 
The problem is to determine the rank of the speech matrix. This is accomplished 
by the singular value decomposition of Y: 

U D VT 

YT the speech matrix transformed 
UT the left hand singular vectors 
V the right hand singular vectors 
D an array of eigenvalues 

(5) 

The decomposition transforms the log area parameters, Y to orthogonal ones, U. 
The amount of information in each of the orthogonal components is specified by 
the eigenvalue of that dimension. 

If we take all the eigenvalues as significant, we maintain all the information. 
However, taking only a limited number of eigenvalues as significant and the rest 
as zero, we throw away some of the information. The eigenvalue is a measure of 
the mean square error we would introduce by assuming that eigenvalue is zero. 
[ S] Take only the m highest eigenvalues. The error introduced is 

2 
e 

p 
2.: ). 

i=m+ 1 l 
(6) 

For the log area parameters we can tolerate a 5 percent error, This percentage 
is estimated from listening tests with resynthesised speech. It is possible to 
reconstruct the speech after the complete decomposition has taken place with a. 

13 



Speech Segmentation. 

5% feature loss. The resulting distortion is small. This percentage can and will 
be varied later. 

We take as significant the eigenvalues that add to 95% of the total sum of the 
eigenvalues. The other eigenvalues are set to zero. Consequently some of the 
othogonal vectors in U are multiplied by zero. This constitutes a decrease in 
dimensionality, hence a decrease in rank. The important information stays. 

For example if the 10 eigenvalues are: 

10, 8, 7, 6, 3, 1, o.s, 0.4, 0.2, 0.1 

10 
l À. 

i= l 
1 

10 
l À. 

1=7 1 

36.2 

1.2 

95 % of 36.2 = 34.39 

for a 5% error take the first 6 
eigenvalues as siginficant 

or a l.2/36.2xl00 = 3.3% error. 

We consider as relevant d;ita, only the first 6 orthogonal functions in U in 
equation S. The problem is now reduced to have a rank of 6. 

4.2 Determining the Phi Functions. 

The difficulty with determining phi functions is to decribe thern mathematically. 
What we do instead is to describe the properties of them. 

If the hasis of speech are the art iculatory movements, these should be reflected 
ln the L.A. parameters. It is obvious that from equations 4 and 5 we can write 

( 7) 

What we have to calculate are the "b" coefficients. 

The conditions under which we calculate the b coefficients must reflect the 
property of the phi function. Speech events last for a short time only. 
Consequently phi functions should have short durations. The aim is to find a 
linear transformation so as to obtain such functions. We reflect this property 
by a measure of distance: 

0 ( 1) (8) 
n n 

Tuis function tells us how concentrated the phi function is about the sample 1. 
The smaller that O(l) is, the better. Hence we try to minimize 0(1) with respect 
to the unknown coeffieients b. 

l 4 



Speech Segmentation. 

The requirement becomes: 

bO(l) 
--- = O l<i<m for each ~k 

bbki (9) 

This equation reduces to an eigenvalue problem: 

where 

The eigenvalue 
problem is the 

R b = .Ab 

Ris a mxm matrix and 

R .. 
1.J 

r(n-1)
2u

1
(n)Uk(n) 

n 

(10) 

b is the eigenvector corresponding to the unknown 
coefficients 

À is the eigf;jnvalue and it is equal to the minimum 
value of O'" 

problem has m solutions and the solution to the minimisation 
smallest eigenvalue. 

4.3 Locating Phi Functions. 

Although we have now defined a criterion for generating phi functions, we do 11ot 
know 

1) How many phi functions exist 
2) where they are located. 

Consider equa tion 8, not ice tha t the expression should be minimum if l is 
somewhere around the middle of the phi function. At this location the derived 
phi function should be close to the actual phi function. H 1 is located 
somewhere between two phi functions then these two will interact produci ng a 
resultant. Although the function produces the minimum value of equation 8, it is 
not any of the desired phi functions. If 1 is located near the centre of the phi 
funct ion, any other phi funct ions interact ing should only have small effect s, 
because being away fran 1, they are heavily weighted. 

We define the location of a phi function by its centre of mass 

L (11) 
n n 

The original procedure for locating phi functions is as follows. r; 

l) Assume tl1ere is a phi function located about the first frame,l=l. 

15 



Speech Segmentation. 

2) Select a speech segment 30 mSec long, 15 mSec each s ide of the point 1 
Problems with extending the data to always be able to have such a 

segment will be discussed later. 

3) Use equations 10 and 7 to calculate the phi ftmctions. Consider only 
the phi function associated with the smallest eigenvalue of equation 
10. This corresponds to the function concentrated most about 1. 

4) Calculate the phi function's location: L. Define a new function, the 
location function. 

r(l) = L - 1 (12) 

5) l=l+l, repeat stages 2 to 4 for all the frames. 

Figure 3 shows the phi functions as they are calculated for the word "beboobe". 
Not lee how the phi functions are similar in regions, but then move in to a 
transition section before the next "stable" phi region. The "oo" is broken in 
two sections, first the pure "o" sound followed by the english "w" sound. This 
occurs because the vowel has a slight diphtt10ng charateristic. 

Figure 4a shows the location function v(l). This function 

1) Is positive when 1 is less than the location of the phi function. 

2) Is negative when 1 is greater than the location of the phi function. 

3) Changes rapidly from negative to positive when 1 is near the 
transition regions of the phi functions. 

Equa tion 
positive 
located, 

12 can be used to find where and how many phi functions exist. At every 
to negative zero crossing of v( 1) we say that a phi function is 

at that 1. 
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Speech Segmentat ion. 

4.4 A Better estimate of the Phi Functions. 

'füe procedure as described by Atal recommends two methods for obtaining better 
estimates of the phi functions. 

4.4.1 Recomputation. 

The phi functions are recomputed at every location point found. Instead of using 
a window of 300 mSec, this time the window is adjusted to fit 5 phi functions. 
That is a window that covers the phi function at the location and two others at 
both sides. In this segment, the L.A. parameters will be a linear combination of 
5 phi functions. To reflect this fact we set the rank of the Y matrix to 5. The 
first 5 orthogonal functions from the singular value decomposition will be taken 
as significant. 

For the first two and the last two phi functions a smaller window length is 
used. In these cases only 3 phi functions are included in the data segment. The 
rank is set to 3. 

4.4.2 An iterative Refinement Procedure. 

The next stage is to fit the calculated phi functions to the original data. So 
doing should give a much better estimate of the phi functions. The phi functions 
are calculated at positions which are not necessarily optimal. Even so the 
method of minimization produces distortions as it cannot correctly separate them 

The iterative process comprises of two steps. 

Step 1) 

Step 2) 

With the calculated phi functions, find the A matrix to minimize the 
mean square error defined as: 

E 
m 

l;[Y.(n)- l; a.k'Pk(n)]
2 

n 
1 

k=l 
1 

(13) 

l~i~p, l<k< Il of phi functions. 
We equate the deri;ative of E w.r.t. A (the unknown coefficients) to 
zero. This simplifies to a set of simultaneous equations. 

(14) 

I < r < Il of phi funct ions, l < i ~ p 
where p is the number of log area parameters. 

With the calculated A matrix, recalculate the phi functions to 
minimize the mean square error again. This time we take the derivative 
w.r.t. the phi function and equate that to zero. The resulting 
expression for the phi function becomes: 
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(15) 

This process is repeated unt il the error drop is smaller than some threshold. 
Figure 4 shows the results of one run on the utterance "beboube". Once again t,,,lE'. 

can see that the "oo" is in two overlapping sections. The segment for the closed 
mouth section of the first "b" is unfortunately also in two sections. Most 
probably because it is such a long section. Compare it to the second "b". 
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5 lnvestigating the Procedure. 

0riginal ly it was thought that the method could be put di rectly to segment ing 
speech. It did not take much investigation to show that this was far fran the 
truth. As the procedure stands, it has a lot of shortcomings. The main criticism 
is the procedure's sensitlvity to various parameters. lt was found that for a 
good combination of parameters the results were also good. The problem lies in 
the fact that every speech segment needed a different set of parameters. This is 
not very good for automatic segmentation. 

The first stage of the investigation was to establish the effects of a few 
simple parameters on the process. These parameters were 

1) The original window size for analysis 

2) The amount of error tolerated for the singular value decomposition. 

3) The number of log area parameters. 

The third parameter was found to be fairly unimportant. Similar results were 
obtained for 8 or more parameters. Tuis suggests that most of the art icula to ry 
information is in the first 8 or so L.A. parameters. 

5.1 Varying the Parameters. 

The procedure was first run on the speech segment "mama". The alm was to see how 
the phi functions change with some parameter variations. lt was found that the 
effects were dramatic. A simple change in one parameters could change not only 
the location of phi functions but also the number. 

The two parameters under investigation are: 

1) The length of the speech used to analyse phi fl.lllctions. Tuis is called 
the window length. lt is the length in frames of a rectangular window 
which multiplies our utterance to give the short speech segment for 
analysi s. 

2) The amount of information allowed to be cut by reducing the 
dimensionality of the speech. This is the % feature loss. lt says how 
much of the total information is lost. 

The best way to judge the effects of these parameters is by the v function. This 
is plotted in figure 5 for the values: 

Window length = 100, 200, 300, 400 mSec 
% feature loss= 2, 5, 10 % 

As can be seen the locations and number of phi functions are different for every 
set of parameters. (Locations are indicated by vertical lines on the graphs.) 
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Speech Segmentation. 

In tenns of segmentation this is disastrous. It basically means that as the 
program stands, the parameters decide on the segmentation, not necessarily the 
data. One can hardly hope to obtain any relation between phi functions and 
actual articulation this way. 

At this point a closer investigation is required. 

The first step is to study the procedure knowing what the outcome should be. 

5.2 Investigations with Resynthesised Data. 

To see how the program behaves, data const ructed 
The output of an analysis run was converted back 
the phi functions and the A matrix, the L.A. 
equation 1. 

frcxn phi f unc t ions was used. 
to log area pa raine te rs. Frcxn 

parameters are obtained from 

These resynthesised L.A. parameters were analysed as normal data. The same 
parameter analysis as before leads to fig 6. 

Now the location funct ion is more consistent when considering parameter changes. 
For window lengths of 200 to 300 mSecs and % feature loss of 2 to 5%, the 
location funct ions are almost identical to each other. 

From this some conclusions can be drawn. 

1) If the % feature loss is high then some phi functions are not found. 

2) The window length must be able to fit the biggest phi finction. 

3) The window length must rema Ln small enough to maintain the rdnk 
greater th:=m the number of phi functions in the window. 

A plot of the results for 

window length 
%feature loss 

300 mSecs 
5% 

is shown in figure 7. We see that the phi funct ions are al most ident ical to the 
originals. The phi functions for the resynthesised data tend to be more spread 
out. We can explain this by the feature loss. The phi functions are recalculated 
for the data with reduced rank, and so some data loss. In actual data the 
feature loss would involve mostly noise. There is no such noise in the 
resynthesised data! The iterative refinement uses the original data. By 
distorting the functions the refinement procedure compensates for the feature 
loss. As would be predicted, for O i.feature loss there is no distort ion. 
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Speech Segmentation. 

5. 2.1 Procedure Modification with Resynthesised Data. 

While still using the resynthesised data a few changes to the procedure were 
tr ied. 

5.2.2 Utilizing the Same Windowed Data fora Few Values of 1 

The singular value decomposition is a necessary hut expensive process. I tested 
whether it was possible to have the window shifted by quarter of its length, 
rat her than by steps of one frame. One set of windowed data, and hence one 
singular value decomposition is used fora few values of 1. The location of lis 
always near the centre of the window. 

Although this proved to save computation time, the method decrease the range in 
which the parameters can vary. The plot of the location function for various 
parameters is on figure 8. For most parameter settings extra phi functions are 
found. The location of some of the phi functions has also changed. I do not 
believe the saving in time is justified by the deterioration in results. 
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Speech Segmentation. 

5.2.3 Modifying the Location Function. 

We wish to find the position in the phi function for which 0(1) is minimum. 

Equation 12 can be rewritten as 

n n 

A better function could be 

n n 

where 
( -1 for X ( 0 

sgn(x) = ( 0 for X = 0 
( 1 for X ) 0 

2 lntuitively the (n-1) factor should be an improvement because this finds the 
point about which the function has symmetrical weighting. The results for this 
new location function with different parameters is shown on figure 9. This shows 
no improvement over the old location function. The number and location of phi 
functions is the same as before, but the dynamic range of the function is 
greater. Tuis modification is not recommended. 
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Speech Segmentation. 

5.3 Modifying the Data. 

From the previous section it appears that the data may not have the information 
required for segmentation. Alternatively the information may be hidden. 

In order to determine this a number of parameters of the data were changed. 
These included 

1) The window length fora frame of L.P.C. analysis 

2) The number of log area parameters. 

I found that these had minimal effects. If the window length was too long 
phonemes disappeared. They were averaged out over the surroundings. Similarly if 
the number of L.A. parameters decreased then too much information was lost and 
phonemes could not be located. Too short window lengths produced spurious phi 
functions, as did a large number of log area parameters. 

I did notice that the most unstable regions in the data were the instances when 
the energy was the lowest. For example the silent part of a plosive. In these 
cases the data is pure noise, not related at all to the rest of the data. The 
L.A. parameters, descibing only the shape of the acoustic tube, have no 
amplitude information. Noise data leads to totally randcm parameters which are 
not easily distinguished from valid ones. 

During the iterative refinement the error is minimized over the whole interval. 
Even where the data is mreliable. The other problem is that there are numerous 
phi functions produced to describe the "noise" data. Generally these phi 
functions can be considered as "out of character" as the data is not reliable. 
The phi functions interact in the production and location of other phi 
functions. "Noise" phi functions can therefore dietort other phi functions. 

5.3.1 Modified Parameters. 

The first attempt to solve the problems with low energy was to multiply the log 
area parameters with the log of the energy in the frame. The idea is that the 
low energy regions should contribute only one phi function, the 8(1) funct ion 
being smallest for this section. Secondly when considering equations 13 and 14 
in the iterative refinement, the low energy sections will have a small effect. 
The L.A. parameters are small in the noise sections so they should not 
contribute greatly to the error. Incorparating the energy to the data also adds 
information that should help with segmentation. 

The results did not however support these considerations. The re was no visible 
improvement. The phi functions obtained where just distorted verslons of phi 
functions in a normal analysis 

5.3.2 Interpolating the Data 

An alternative solution is to interpolate low energy L.A. parameter sections 
between two high energy points, which should provide reliable data. The 
threshold between reliable and mreliable data was chosen as the point at which 
the mean energy in a frame equals 500. The wavefonn is normalised to have values 
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between -2047 and 2048, while the energy is calculated as the sum of the squares 
of the sample values. 

Any frame with with an energy level lower than 500 is thrown away. Instead the 
values for these points are linearly interpolated. The interpolation uses the 
two nearest calculated points either side of the low energy points. 

Results show that this stabilizes the data somewhat. The problem now is that 
these L.A. frames do not match the rest of the data. For the low energy regions 
the phi functions have characteristic straight linea. This contrasts to the 
other phi functions. 

5.3.3 Smoothing the Log Area Parameters 

Another improvement for the data is to pass it through a low pass filter. A 
three point moving average filter was used. The filter is non-causal with a 
symmetrie impulse response about O. This introducee no phase delay and ensures 
the L.A. parameters are synchronous with the original data. 

The impulse response is given by: 

h(n) = a8(n+l)+(l-2a)8(n)+a8(n-1) (17) 

The optimum value of ais about 0.15. 

A comparision of the results with normal and enhanced L.A. paramters is shown in 
figure 10. Clearly the phi functions belonging to phonemes are much easier 
selected fran the enhanced parameters. 
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S.4 Investigation of the Phi Functions 

To investigate the actual phi functions found, a program was written to produce 
a three dimensional plot of the phi functions as a function of 1. Figure 3 shows 
one such plot. On the horizont al axis we have time. Vert ically it is the 
magnitude of the phi function. The axis into the page is 1, the position over 
which the window is centred. For simplicity the phi functions are smoothed and 
truncated to their main lobes. 

A few observations and modifications to the procedure resulted from the 3 
dimension plot of phi functions. 
Sidelobes. It was realized that the phi functions found usually have aide 

lobes. However we are only interested in and use the main lobe of 
the phi function. This has a few consequences. The side lobes have 
an effect on the location function. Sometimes the side lobes vary 
erratically and so does the location function. 

Another problem is that, because the re are s ide lobes present, the 
main lobe is not the true phi function. Usually this effect is 
minimal. The presence of s ide lobes, we can say, does not occur in 
the desired phi function. This is because phi functions are to 
represent one articulatory movement. A aide lobe can only be 
interpreted as two rnovements, in opposite directions. 

The effect is most noticeable in transitional regions. The calculate 
phi function is the result of two or oore equally contributing 
"desired" phi functions. In these cases a lot of the energy of the 
phi function is in the side lobes. 

Solutions. To minimize the effect that side lobes have on the location 
function, the phi functions are truncated to the main lobe before 
evaluation of the location function. The main lobe is the section of 
the phi function that has the same sign as that at the point ''1". 
Because the main lobe in most cases is stable the resulting location 
ftmction should not be so erratic. 

The only successful way I have found to deal with phi functions in 
the transition regions, is to ignore them. Fran equation 8 we notice 
that resulting phi functions are normalized by 

(18) 

If after truncation, the "energy" of the phi fWlctions has a value 
of 0.7 or less, then the phi function is ignored. Under these 
circumstances we assume that the phi function calculated is a result 
of two or more actual phi functions interacting. 

The results for these modification are shown in figure 11 for the utterance 
"bebuube". There are a few things to note. Firstly unlike "beboobe", some of the 
plosives are in two sections. A silence where the ioouth is closed followed by 
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the rapid opening of the mouth. The location function is smoother in the second 
case. lère the last "e" is represented by one phi function as desired and the 
mess between 500 and 600 mSecs has been cleaned up. 
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S.S Further observations. 

A look at figure 3 shows that there are distinct regions of phi f\lllct ions. In 
these regions, all the phi functions are similar. Between these regions the phi 
functions either change abruptly or smoothly. An abrupt change is prefered, as 
fr001 these it is easier to identify phi function boundaries. 

In an at tempt to obtain more abrupt changes, equation 8, the measure of 
distance, was modified. 

The (n-1) 2 factor was changed to (n-1) 4 and to ABS(n-1) 

The resulting phi functions are plotted in figure 12 for the word "beboobe". 
Compare this with figure 10. t«> significant advantage is seen in either of the 
plots 4 For the ABS(n-1) factor the changes are less abrupt, hut in the case of 
(n-1) , there is not much improvement. 
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5.5.1 Begin and End of Utterances 

Normally for phi analysis we use a symmetrical rectangular window. At the 
beginning and end of segments this isn't possible. The original program 
shortened the window on the side where the data was missing. The window about 
frame 2 would start at frame 1 and end at sample 17 (A normally 300 ■Sec window 
with 10 mSec between frames). The result is a shorter unsymmetrical window. 

We would obtain identical results when using the sk.ewed window as when we use a 
symmetrical window with the data zero before frame 1 and after the last frame. A 
bad effect is that the first and last phi functions may not be found. This 
happens because the phi function as calculated is actually zero over some 
section. Before it is properly located the next phi function becomes predaainant 
in the measure of distance function (equation 8). 

Several methods were tried to compensate this effect. Each of them involved 
extending the data in some way. 

1) Reflect the data about frame 1. 

2) Reflect the data and multiply it by a decaying function. 

3) Extend the first sample by two frames. 

Peculiarly enough the 3rd method seems to work best. A comparison between 
extended data and normal analysis is seen in figure 13. This in general is a bad 
run for it misses a lot of phonemes. The important thing to observe is that with 
the extended data the first phi funct ion is located. Fig. 14 gives some idea "'1y 
this is a difficult segment of data. The plot of all phi functions shoE only a 
few regions where the phi functions are stable. However the first phi function 
is clearly visible, hut not found until the data is extended. On the resulting 
analysis run, the first phi function is highly distorted. This arises from the 
iterative refinement's attempt to minimize the error. 
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Speech Segmentation. 

5.5.2 Other Problems 

For a the ut terance "pepaape" some more shortcomings of the system were not leed. 
Figure 15 shows the 3 dimensional plot of all phi functions, while figure IA 
shows the result of the complete analysis. Notice that for the first "P" and the 
vowel phoneme there is no phi function found. Clearly there are phi functions 
for this phoneme in the plot of al 1 phi func t ions. 

A possible explaination is that the sidelobes have a strong effect on the 
measure of distance. The effects at the edge of the window may have a toa big 
influence on the procedure to find phi functions. The resulting phi functions 
are primarily due to decreasing the effects away from the location point. 

To counter this a Hamming window, instead of the rectangular window, ,,,.c1s 
employed to select small segments of the utterance. TI1e results of using the 
Hamming window are seen by the segmentation plot in figure 16. This time all the 
phi functions are present. 
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Speech Segmentation. 

Y<•t another problem was noti~ed. Even though a phi function was foun<l in tli,_• 
l1>1·atio11 prc,cPdur.•, Lhl'. f1111<·tion IH'Ver mani.festl'd itself in the nutp11t. T\11• 
r,,;i•;on h.1s Lu d,, with th,~ syslem'~; sensltivi.ty Lo the wl11dow 1,·ngth. fn 11si:1.1; 
the second window leng th of five f unc t ions, the phi func t Î.<J11 L'.an ,·.ha1t)!,1' 

altogether. The solution is simple. Use the phi functions founcl using the Fixed 
window lengtll. This may cause more steps to be taken in the iter;itive 
refinement. The iterat ive refinement process seems powerful enough to handl1.: 
less than optimal starting functions and still produce decent n•sults. 
C,0m1JUtation time used by the extra steps in the iterative refinement is 
compensated by not recalculating the phi funct ions. 

5.5.3 Extra Phi functions. 

Although the Hartming window does sulve ,1 few pr,,blems it also creates somc. Tlw 

Jlarruning window causes spuri.ous phi functions to be locate<l. (fig 14) Even whc'.11 

tht• Hamming wiudow is not used, spurious phi functions might be foun<l. A f<-'w 
techniques were tried to el i1ainate the spur ious phi functions. 

5.5.1.1 Smooth the Location Function. 

The same mnving average low pass filter as used for smoothing th<~ log area dat,1, 
was applie<l to smooth tl1e location fu11ction. This C<llllpens;1ted f,Jr sm.1ll 
fluctu:itions in the foun<l phi functions. By smoothi11g the location functiun, 
truncating phi:~ before evaluation of the phi funct ions and i.gnoring plti 
functions with high si.de lobe t'nergy, il lot <Jf the sp11rio11s phi functi,ins ,11·, 
L'l i.minated. Sec figure l7. 
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5.5.3.2 Elimination Based on Inproducts. 

The inproduct between two phi functions is defind by 

(19) 

We first normalize the phi function to have a peak value of 1. Next we calculate 
the inproducts 

I · I · I 11' 12' 22 , , , 
The ratios 

(20) 

tel1 us how much of phi function 1 or 2 respectively is contained in the other 
phi function. We consider the greater of the two ratios. If the ratio is greater 
then a threshold, that phi function is eliminated. The normal threshold used is 
0.85 • A higher ratio indicates that one phi function virtually duplicates the 
other phi function. This process works well but has one drawback. If two valid 
phi functions (those representing phonemes) are closely overlapping, one will be 
eliminated. This procedure is used for each phi function pair before every 
iterative refinement step •• 

5.5.3.3 Elimination on Error Calculations 

I noticed that, when phi functions are eliminated, the error in the next 
iterative refinement step does not increase by a large amount. Sometimes it even 
decreases. This suggested two other methode to find spurious phi function. 

Af ter the iterative refinement has finished, throw away each phi function in 
turn. Perform an iterative refinement step after each phi function is thrown 
away. If the error still decreases, eliminate that phi function. When there is 
an increase in error, incorporate that phi function as a valid one. This 
procedure however was not succesful. 

The second method considers three consecutive phi functions in time. We perfonn 
a step of the iterative refinement for the data covered by the middle phi 
function, with the three phi functions. The step is then repeated with only two 
outer phi func tions. If the error is lower or only slightly higher the middle 
phi function is eliminated. 

Both of these methods don't work. They eliminate phi functions corresponding to 
phonemes, and maintain those which should be considered spurious. 

5.6 0ther methods to find phi functions. 

Even with all the modifications outlined, the procedure does not work wel 1. 
Parameters can be set for utterances. These parameters have different optimal 
values for different utterances. 

Some other methods for locating phi functions were tried. 
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5.6.1 Derivative of Log Area Functions. 

Instead of the location function the sun of the first differences of the log 
area parameters was used. Phi functions tend to be found where the log area 
parameters all have peaks or throughs. Hence 

v'(l) 
p 
l: Y (l)-Yi(l-1) 

i=l i 
(21) 

This proved to be a very erratic function. Figure 18 shows a smoothed version. 
Even here the function is too wild to obtain useful information from it. Compare 
this to figure 17. 
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5.6.2 Phi detection by comparing Consecutive Phis. 

In this method we base our detection of phi functions on the inproducts of 
consecutive phi functions. After a phi function is calculated, at each value of 
1, the functions are truncated to the main lobe. They are still normalized as 
per equa tion 18. The following inproducts are calculated, for this and the 
previous phi function. 

(22) 

The idea is that when we have a phi function that exists in the data, the 
neighbouring phi functions are similar. We try to group phi functions that have 
varied slowly. At the boundaries between phonemes the phi functions should 
change quickly, as a re sult we ex peet s

1 
_ 

7
_ to be low. When we are near the 

centre of a phi function S should be tflgh. In genera! this seems to hold 
true. The phi function with ~,-te highest S of a stable group is chosen as the 
best representative of that group of phl •~unctions. The problem now becomes 
interpreting the data. A few methods were tried to separate the stable and 
transition regions. 

1) By two threshold values. Once s
1 2 

goes above the first it is 
considered to be in a stable reg ion! When S goes below the second 
it is considered to be in the transition reki~n until it goes above 
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the first again. 

2) As the first method, but this time the thresholds are differential. 
That is the change in s

1
,
2 

has to go above or below a threshold. 

3) As the first method but 
thresholds are calculated 
maximum or minimum value of 

now the thresholds are not fixed. The 
as a certain amoun t above or below the 
s

1
,
1 

reached in that group. 

Of the three methods the third seems to work the best. For a trial of 18 
utterances l found that the optimal threshold values depended on the data. In 
some cases no values of the thresholds would locate all the phi functions. Tuis 
is as the lower threshold had to be higher than the high threshold to locate all 
phi functions. The third method was motivated by this fact. Phi functions found 
using the normal location procedure could not always be found with this method. 

5.6.3 Proposed Location Procedure. 

The last location procedure motivated me to develop another method for locating 
phi functions. "lnproducts" are still used, but in a different way. The 
algorithm is as follows: 

1) Calculate the phi functions about the frame l•l. Take this to be the 
first phi function. Calculate 1

1
,
1

• 

2) Calculate the phi frmction about the next location. (l•l+l). Calculate 
12 2· , 

3) lf l is less than 0.7 ignore that phi function and goto step 7. 
2,2 

4) Calculate l 
2

• 
1 , 

5) lf Ih 
2 

is greater than 0.7 then assume that the phi functions belong 
to t è same group. Decide which phi function is better and maintain 
that one as the representative of that group. Throw away the other. 

6) If 1
1 

_ 
7 

is less than O. 7 then the phi functions belong to different 
phonéafës. Save the first phi function as the phi function for the 
first phoneme. Keep the second as an initial phi function for the 
second phoneme. This function is used for comparison in step 3. 

7) Goto step 2 for all frames. 

5.6.3.l Deciding the better phi function. 

Decisions for which phi function is better is based on a score. The score is 
based on t~e measure of distance function (Equation 8). We normalize the minimum 
value of 0 (1) so not to penalize wide phi functions. Normalization is based on 
giving any two rectangular phi functions, symmetrical about 1, the same score. 
We calculate the score thus: 
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S(l) = 8 2
1 /((l-IBO.(l-IB-l)+(IT-l)(IT-1-1) (23) 

m m 

IB is the first non zero frame of the phi function 
IT is the last non zero frame of the phi function. 

This method was implemented. Time however did not permit me to fully investigate 
this method. At first look it does look promising. The method tracks stable phis 
and selects the phi function, as our criterion requires, that is the most 
compact about 1. 

5.7 Iterative Refinement Procedure. 

Most of my work has concentrated on locating phi functions, and the associated 
problems. The iterative refinement procedure may need improvement as well. 

The iterative refinement procedure suffers from two problems: 

1) It tends to expand phi functions. 

2) It often happens that the iterative refinement causes the error to 
start increasing. 

The fact that the iterative refinement is a two step process, minimizes the 
extent at which the phi functions expand. 

The increase in error is often sharp and sudden. The first three steps may cause 
gradual decrease in error, but the fourth, a significant increase. Unfortunately 
there was not enough time for me to consider these problems. 
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6 Performance of the Analysis Method. 

To test how "well" the procedure works, the program analysed 18 utterances. The 
utterances were chosen represent various classes of consonant& and important 
vowels. The utterance are all dutch nonsense words and are: 

beboobe 
bebeebe 
bebaabe 
bebuube 

pepoope 
pepeepe 
pepaape 
pepuupe 

nenoone 
neneene 
nenaane 
nenuune 

sesoose 
seseese 
sesaase 
sesuuse 

keklaake 
seslaase 

voiced plosives 

unvoiced plosives 

nasal consonants 

unvoiced fricatives 

combinational consonants 

The performance with the standard location function works best for: 

Window length = 250 mSecs 
%feature loss= 5% 

For plosives it was found that a smaller window length usually works better, 
while for other consonants, longer window lengths can be advantageous. The same 
combination of parameters works well with the last location procedure discussed. 

The main problem areas seem to be plosives. Usually the plosive after the pause 
is too small for detection. It is sometimes smoothed out by the LPC analysis. 
Other times the plosive appears as two parts: the silence and the actual 
plosive. Fricatives being comprised of coloured noise are also hard to analyse. 
As the signal is basically stochastic in nature the L.A. parameters are subject 
to fluctuations. This often manifests itself as more than one phi function being 
required to descibe the consonant. 

Vowels are usually the easiest to detect. There are problems with long vowels. 
During the vowel the log area parameters may start to change. This usually 
introduces an extra phi function. Alternatively a vowel may have a diphthong 
nature, and once again be represented by two phi functions. 
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7 Concl usions. 

Automatic segmentation of speech by this method is still some way off. N\DDerous 
problems have been detected, the solutions still not fully found. 

The question remains, can this method segment speech? Indications are that it 
can. There are too many phi functions found that correspond to phonemes, to say 
definitely no. The problems associated in obtaining these phi functions are 
numerous. It may be that a complete rethinking of the method is required before 
automatic segmentation is achieved. Certainly the analysis with the 
resynthesized data shows that if the data is made up of a series of articulatory 
movements, then ~ can obtain segmentation w:f.th this method. 

The method works well for speech coding. There are more phi functions than the 
rank of speech matrix. This ensures that the iterative refinement can always 
minimize the error to obtain good speech resynthesis. Detecting phoneme 
boundaries is not so important for speech coding. It is harder to match phi 
functions and phonemes, than to obtain phi fuctions to code speech. 
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A Word of Thanks. 
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ABSTRACT 

Tllis paper dtscri/Hs a tMtllod /or tflicitlll codlnf of LPC lo, 
ana poramtttrs. /t is now Wflll rtcopiztd tllat sample-by-sample 
quantization of LPC poratMttrs Is ltOl wry tflicitltl In minimizlnf 
tlle bit rat, nndtd to codt tllut poramtttrs. Rttelll tMtltods /or 
nducinf tlle bit ratt /un,r ustd wctor and stf'Mlll qwantlzatlOII 
wutllods. Mwcll of tllt past worlr. In tllis arH lias /OCIUSed 0ft 

tflicitlll codinf of LPC parameters in tlle contut of vocodtr1 wlllcll 
pwt a ui/int °" acllinablt spe«II qwality. Tlle_ rtswlts _/rom tlltH 
11wdits caMOI 1H dir«tly applitd to sy1t11lesrs of 111111 qwallty 
sp«ell. Tllis paper d,scri/Hs a difftrelll appr~cll to tflicitlll codi_n1 
of toi ana poratMUrl. 0w aim is to dtterm1M tllt uttltl to wlucll 
tllt bit ratt of LPC parameters can be ndwud witllowt sacrificinf 
sp«ell qwality. Spe«II ntltls occwr ftMrally at --wni/ormly 
spactd time iltltrvals. Mortovtr, some spe«II nrltls art slow wllilt 
otllers arr /ast. Uniform samplinf of spetcll paramtttrs IS tllus ltOf 

tflicitlll. Wt d,scribe a rt0n-wni/orm samplin1 and 11t1erpola1lon 
proctdurt /or tflicitnl codinf of lo, arta paratMttrs .. A ttmporal 
d«omposition ttcllniqw is ustd to rtpres,nt tM contrnwous varra­
tiOII of tMst poramettrs as a /in,arly-Wf!ifllttd swm of a nwmbtr of 
discrttt tlttMlllary compoMnlS. TM location and ltnffll of tacll 
compo,vltl is awtomDticolly adapttd to spe«II twltls. Wt find tllat 
tacll eltmentary compoMnl can be codtd as a vtry low information 

ratt sipal. 

INTRODIXTION 

A long standing goal of speech research bas been to develop a 
1implc and efficient dcscription of speech evcnu. Sucb • dcacription 
is important for many practical applications, sucb as speech ooding, 
1peecb syntbcsis, and speech reoognition. For cumplc, in speech 
ooding, our a,m is to rcpre,cnt tbc speech wave by a small number of 
timc-varying parametcn wbicb are capablc of regcnerating spcccb at 
low bit ratea without significant distortion. Spcccb wave bu a 
bandwidtb of about 4 lr.Hz. Speech parameten, sucb as a lot area 
panmctcr dctcrmincd by LPC analysis ( 1-41, can be limitcd in 
bandwidtb to about 50 Hz without introducing any additional distor• 
tion duc to band limiting ( 3,4). Tbc total bandwidtb for 12 lot area 
panmctcn is tbcrcforc 600 Hz, wbicb is considcrably lowcr tbaa 
4000 Hz requircd for tbc speech signal. A major source of redun• 
dancy in LPC area paramctcn ari.sea from tbc corrclations bctwoca 
aucccuive time frames. TbCle corrclationl are caused by a numbcr 
of faeton involvcd in human spcccb production. M01t obvious ol 
tbeae is tbc smootb movcmcnt of dilfcrcnt articulaton in tbc voc:al 
tract. 

A common mctbod of ooding log area parametcn is time aam• 
pling followcd by scalar or voc:tor quantization (S,61. lf cacb panm• 
eter is band limitcd to SO Hz, it can be samplcd at 100 Hz wit bout 
101a of information. Scalar quantization of cacb fnmc of los area 
panmctcn typicaUy requirea 48 bill which yicldl a bit nte of 4800 
bill/lOC. Wbat can be done to reduoe Ibis bit rate? One pouibility 
ia to roducc tbc bandwidtb of cach parameter CYCII men. For 

2.6 

eumple, il tbc bandwidtli ia lowered to 25 Hz. lbo parametcn cu 
be samplcd at SO Hz yiekling a bit ratc ol 2400 bill/sec. H-ever. a 
bandwidth ol 25 Hz il uually too amall to repraeal fut variatioal 
or abort transÎClll IOUnda accurately. 

Speech ...U occ:ur gcnenlly at --uai(ormly lpaccd limc 
intcrvala. M«-. articulatory -nll l'or - apeecb IOWlds 
are fairly alow wbile rcw otben tliey are rclatiYCly ruL Uniform 
sampling ol apaecb parameten ia th1&1 not clicieat. Witb uniform 
aampling, one ia rorced to uc a amaU sampling interval to be ablc to 
repreaent tbc ruteal apc,edl evcat aoc,intely. Noa-aniform sampling 
of apcech panmctcr nriatioal il in acnenl more dllc:ient because 
tbc sampling inlerYal caa be adaptod to the uture ol apoec:à evcatl. 
Since spcccb IOllnds are produced in human speech al an 1vcraae 
rate of appro&imately bctween 10 and IS IOUndallOC, it sbcMald be 
aufficicnt to speciry tbc aCCN1tic panmeten al an avcragc rate of laa 
tban 1 S fnrna/sec. In tbia paper, wc prae■I a procedure 10 brcalr. 
up the C011tin110U1 variation ol ioa area parameten into diac:rete uniu 
of variable leqtba locatod at non•uniformly spac,od time intervab. 
Coding cfllciency il achievcd by ooding theae units ratbcr tban the 
paramcten 1bemlelvea. 

TEMPORAL DECOMPOSITION MODEL 
FOR LOG AREA PARAMETERS 

Consider the variation of lot area paramcten as I function of 
time. Let y, (11) be the ilh lot area parameter at the 11th samplin1 
instant. lt il uaumcd tbat the panmeten bav.: bce1I aamplcd at 
cl01ely spaced time intervala small ennugh to repraent accuratcly 
even 1he futeat speecb eveats. The sampling interval is typically I to 
2 INCC. The inde& 1 varia from I to p •bere p il the total number 
of area parameten determined by LPC analyail. The vahae of p is 
typically 16 for spccch samplod at I lr.Hz. The inde1 11 varia from 1 
10 N •here 11-1 il the 6n1 sample in tbc uucrance and 11-N il 1bc 
lalt sample in the u1tcrance. Figura 1 shows 1bc fint I lot area 
parameten for the utteranc:c M Joe broughl a youn1 girl" spoten by a 
male speaker. The f1III amplitude il aJao abowa on lbo figure. 

We~ty,(11)u -;,<,,) - :2;a,a ♦a(n), t<11<N, t<l<p, (1) •-1 
wbcre y, (11) ÎI the approa.imation ol -,, <,,) produced by tbc modd, 
•• <,,) is lbo lr.tb interpolation functioa at tbc sampling iut.anl 11, and 
a" ia tbc contribtitioa ol lbo lr.tb iaterpolatioa functioa to lbo itli 
area parameter. The value ol"' conwponda roqbly to lbo numbcr 
ol apeecb (and lilenc:c) CYCGts in tlie apeocb utteraDce ia tbc time 
interval 11-1 to 11-N. 

Equatioa (1) can be upreuod ia matri& notatioaa u 

U) 

wbcre Y ia a pxN matris •baae (1,11) element {;tb row and lltb 
column) ia y,Cit), A ia a P"'"' matrill wboae (J,J:) element ia a,., and 
• il a "'"'N matris •bme (lr.,11) element ia ♦tC.). We wilh to 
delenn.iae matricN A and • ao tbat tlie bit ntc required to repreacot 
tbem il miaimum. 
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Fia. 1. Plot or 6rst I loa area paramcten and nns amplitude u a runc­
tioll or time for a sentcncc-lengtb utterancc, "Joe broupl a )'OU"I 

airl", spoken by a male speaker. 

Wc will assumc tbat tbc functions ♦1 (11) are ordcrcd witb 
respect to their locations in time. Tbat is, tbc function .;1(11) OCC\ln 

later than the function ♦ 1 (11) and so on. Each ♦1 (11) is supposed to 
corrcspond to a particular speech event. Sincc a speech event lasts 
for a short time, cacb •• (11) sbould be non zero only over a small 
range of va lues of 11. A typical .;(11) is skctchcd in Fia. 2. For 
cfficicnt coding, the matrix ♦ sbould be a spane matrix. 

q,(nl 

' 
-n 

Fi1. 2. ldc.aliu,d sketch or a typical interpolation runction. 

Wc illustratc tbc abovc point in tbc c:umplc sbo,vn in Fi1. 3. 
Wc show thcrc tbrcc functions of time y 1(11), y 1(11), and y 1Cn). 
Tbcsc functions wcrc constructcd by combining tbc thrcc functions of 
time .;1(11), ~(11), and ♦1 (11), sbown in Fi1. )(b), usin1 tbrcc 
different sets of cocfficicnts a" in Eq. (1). Tb111, all of the y(11) of 
Fia. 3 follow Eq. ( 1) c:uctly. Sincc cacb .;(11) is limitcd to a mucb 
■bortcr interval in comparison to any one of tbc y (11) and tbc 
bandwidtb of cacb y (11) ia tbc maximum bandwidtb of any one al 
the ,;(11), it is obviuUa tbat direct codin1 of y (11) will take more biu 
lban tbc coding of tbc ,;(11) and tbc cocfficicnu used to combine 
,;(11) to form y(11). 

As mentioncd carlicr, tbc valuc of m in Eq. (1) is relatcd to lbc 
duration of t be speech segment and tbc number of sounds tbc speech 
1e1mcnt contains. In gcncral, m ia proportional to N. Considcr a 
short segment of speech sucb lbal the rank of tbc matrix Y ;,i, "'. 
Tbc maximum rank of tbc matrix Y ia p. no matter bow lon1 tbc 
■pcccb segment. Prcvious work suggcsts tbal tbc rank of Y ia aboul 
10 even for vcry long uttcranca. To satisfy tbc requircmenl tbat 
rank of tbc matrill Y ;,i, '", tbc duration of speech scsmcnt sbould be 
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~ 
A•·tnl 

frr'"' (a) (b) r'(_' /'({nl _/'"'\. r---<1 1nl 
V 
-n -n 

Fi&- ]. (a) Tbree difl'ereat linear cocnbiMlioal ol tllc buis runctioal 
1bown oe llle ript and (b) tllc buil ruc:tioM. 

approximatcly 0.2 to 0.3 IOC. Wbcncvef tbc rank al y;,i,,,., Eq. (2) 

can be invcrtod to yicld 

(l) 

wbicb implia tbat 

♦6 Cii) - };w-.y1(11), l<li:<m, l<11<N, (4) 
1-1 

for somc cboi<:c al tbc weiabu ..,_,. Tut ia, cacb interpolalion func­
tion ♦ ia a lincar combination of the , 'a. 

Tbc problcm■ relatcd to detcnninina tbc rank of Y are cuily 
raolvod by looking at tbc eigenvalua obtained from tbc sin1ular­
value dooompoai1ion al Y. Wc reprCICDI Y u 

wbere U ia a N•p ortboaonal matrix, Via a p•p ortqonal matrix, 
D il a diaaonal malrill al ei1envaluca, and tbc supcncript r on a 
matrix mcans its tra111po■c. Typical valuca of the fini ten ci1cn­
valucs, for a short speech segment 0.25 sec in duration. are 0 8 ), 
0.52, 0.16, 0.13, 0.Of,, 0.03, 0.03, 0.02, 0.01. and 0.01. rcspect,vcly 
Asaumin1 that an error of 0.05 in lot arcu is insianificant, tbc rank 
of Y is 5. Wc tbcn set '" to 5. 

h ia obvioua frorn Eqa. (4) and (5) tbat an interpolat1011 function 
•• (11) can also be reprcsentcd u -••(11) - 2:;b..,w1 Cii), (6) 

1-1 
wbcrc w, (11) ia tbc clement in tbc II tb row and tbc i tb column of 1bc 

matrix U and b" are a set of amplitude coct'/icients 

DETERYIIN4TION or INTERPOUn,G Fl.'NCTIO"'iS 

We dcfinc a mcasure of distancc al ♦(11) from tbc 11mplc 11-/ u 

IUl -12; c,. - l)l♦JC-l / 2; .;l" I". (7l 

wbcrc tbc sum O\'er tlic index II cxlencb - tbc duration al tbc 
1.,-:b sc1111C11L Tlle optimum ♦Cn) ia cbolcn sou to mirumiu tll,c 
dia la nee funclioa 1(/). 

Ml111mizp1/a11 oflU) 

Sincc tbc problem of minimizin1 1(/) is equivalent to tbc prol>­
lcm of minimwn1 In 1(/), wc ICI tlic dcrivativa of ui 1(/) •ith 
respect to tbc unknown amplitude a>dllcicnts b,- ol Eq. (6) equal to 
zero. Wc tbea obtain 

~ c,. - n2..!...•1<n> - >.~ ..!...•1<11>. • "' "'"· <•> . .., .... 
wberc 
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From Eq. (6), wc can writc 

♦1(n) - i ib,b1111 (nlu1 (n), (IO) 
1-1 J-1 

wbcrc tbc subscript Ic bu been droppcd. Tbcn, 

a • 
8b♦1 (n) - 2 :2";b1111(n)11,(n), 1 .;, <m. (11) , ,-1 

On 00mbinin1 Eqa. (8) and (11), one obtaina 

ib,:2";(n -1)111,(n)u,(n) -Aib,:2";u1Cn)u,{n)-)J,,. (12) 
,-1 • ,-1 • 

Equation ( 12) can be cxpresscd in malrill notationa u 

Rb-Ab, (Il) 

wbcrc tbc clement in the i tb row and rtb column of tbc matrix R i, 
given by 

(14) 

Equation (Il) has cuc:tly m solutions. lf all the A's are different, 
the solution 00rrespondin1 to the smallcat A providca tbc 00m:,c:t 11. 
In case tbcy are not, tbc minimum valuc or A dctcnninea tbc 
optimum b; ahbougb tbc choice or optimum b i, not unique. Tbc 
ncareat ♦(n) ia dctcrmincd rrom tbc 00Cfficicnts b,'1 by 111in1 
Eq. (6). Tbc location or tbc ncarcst ♦(n) is givcn by 

.,(1) -1:2"; (n - 0♦2 (n) / :2"; ♦2 (nll. (IS) 

Tbc (unc:tion ,(/) crosses tbc ,(1)-0 uis (rom tbc posilivc sidc at 
cacb sampling instant / wbicb c,quals tbc location or one or tbc ♦1 (n) 
for somc Ic. 

Bcttcr estimatca or ♦(n) 's are obtaincd by rcpcating the minimi­
r.ation for all valuca or/ ror wbicb ,(/)-0. and using a time interval 
wbicb 00ntains cuc:tly S speech cvcnts (m - S). Tbis indeecl is 
alwayi possiblc cxcept at tbc bcginning or at tbc end or an uttc'.ance 
wh,cb bcgins or cnds witb a silcnce. A lowcr valuc or '" is uscd in 
these shortcr scgmcnts. Tbc fint and last ♦(n)'a oorrapond to 
w,ilcncc" scgmcnts. 

~urmiNJtion of amp/itud~ cMffici~nu ai,t 

Tbc amplitude 00Cfficicnts a11 or Eq. ( 1) are dctermincd by 
minimizing tbc mcan-squarcd error E dcfincd by 

M 2 
E - :2"; (y1 (n) - :2"; a,1 ♦1 (n )1 , (16) 

•-• 
wbcre M rcprcscnts tbc total number or speech cvcnts witbin tbc. 
range or indcll n over wbicb tbc sum is carricd out. On setting tbc 
partial dcrivativea or E witb respect to tbc 00Cfficicnts alt c,qual to 
zero, wc obtain a set or simultaneous lincar c,quationl 

M 
:2";a1t:2"; ♦,(n)♦,(n) - :2";y1 Cn)♦,Cn), 1.;,.;.v, t<t<p,(17) 

·-· . 
whicb can be solvcd ror tbc unltnown 00Cfficicnta a,.. 

l1n-a1iw R~fi,wr,wn, of ♦, {n) 's and a,. •• 

Fi,ure 4 shows a plot <solid line) or tbc intcrpolation runc:tiona 
♦, (11), obtained rrom tbc abovc proc:odure, ror tbc cumplc i11111-
trated in Fig. l. Tbc ac:tual runc:ti0111 ♦,(11) are allO sbowa u 
clubed curve on tbc samc plot. Tbc agn,cmcnt bct- tbc two ia 
ckllc cllccpt ror the prcacncc or a numbcr or small ripplea and tbc 
nanowing ol tbc major lobe. Tbc mcan-tquared criterioa uaed ror 
tbc distancc r11action sbown in Eq. (7) il a contributina rac:tor ror 
tbac dill"crellCCI. Wc dilcusl bere an itcrative rc611C111C11t procedure 
ror obtainin1 bettcr eatimatca ol ♦, {n) and ,.,. . For a giva 1et ol 
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f"11. 4. P1ota cl lbc ialcrpllau.. (IIIIC:liom obtaiaed "7 tanponl ~ 
paoiu.. cl tbc c,a,- sltowa ia f"11. J{a). n. llubed aana an: tbc 

1ct11al b&lil runcuo. ilh11u-aled ia Fia. J(\,). 

a,., wc dctcnninc •• (11) to minimizc tbc error E aiYffl in Eq. ( 16). 
Tbis ia donc by 1ettin1 tbc partial dcrivativea ol E witb respect to 
•• (11) c,qual to zero. One tbcll obtaina 

...._aE() -2l;(y1{n)- ~•1.t ♦t<nlla.,-O, t<,<M. (Il) 

.... , Il ,_, •-· 

wbicb (11rtbcr aimplifica to 

♦,(11) -1 D,(11)01, - 1; ♦, (11) }; .... .,) / I };•1"J. (19) ,-1 .,,,, ,-1 ,_, 
Sincc tbc tbc coding ol DIÎIICII' ·lobea ol ♦(11) can usc a signifiant 
number or bits, wc rctain only tbc major lobc or tbc intcrpola1,on 
fünc:tionl and act tbc runc:tiolll c,qual to zero CYery wbcre cllc. Tbc 
rcaultant ♦,Cn) are uscd apin in Eq. (17) to obtaia an even bcttcr 
catimatc or •1t. Tbc procedure is rcpcatcd until the dccrcaac in error 
E, u dcfined ia Eq. <t6l, rails bclow a predctcnnincd tbrcsbold 
valuc. F011r itcratiolll are usually aulliàcnt ID 0011vcrac bocb a" and 
•• (11) to atablc ICl ol valuca. 

TIM( IS[C 1 

Fia. 5 Plal ol lbc liawtt r1111Ctioa ,U) rar t11c uttcrucc • Joe broup1 
a )'Ollftl air!- lllowll i■ fla. 1. 

RESULTS 

Tbc above procedure wu carried a.t on ~ scalellcla spoten 
both by male ud rcmalc apcalr.cn. Wc praat -111 11icrc ror -
ICDICIICC M Joe hro9pt a Y'OUDI girt" apokea by a awc apcalr.cr. Tbc 
timin1 (uactioa r(/) de6ncd in Eq. (1 S) il iD1111111ted ia f"ll- S. A 

DCW val11c ol .,(/) wu -pated - -, 10 -· ~ zero 
crauiq (rom paaitive ID ... tive ftl- illdicata tlM l«atiaa ol a 
apeecll evmL Tbc zero croainp aoilll rrom DCplive sidc to paaitive 
llidc aipiry • rapid alliR rrom - ♦Cn) to tlM aal. Tü allift ia 
-, 111arp u apec:led. na r•DCCioa r(J) 11M a toca1 o1 n 
NPtive•aoiDI lll'O c:raaiap. Tbc iatcrpnlatioo r•IIClica •<-l 
l«ated al daas tiaM imtanll an alaowa ia fil. 6 taptha wi" tllc 
-.e•poodiaa l(INCII n..Cana M apllCted, tlM iinarpnlatioo 
r.llCÜOGI r. a11ort ua....a .._ 1u1 - • a11ort ua. iaccnaJ 
wllile tba Îlltapoiatioo (IIIIC:ta r. nlalrfllly ltatiaaary _.. 
--lua-•llltdlooaarliaMiatcrtal. 

IS 



2 

0.0-0.2 

6 7 8 

0.2-0.4 

9 10 Il 

0.4-0.6 

17 

0.8-1.0 

1.0-1.2 

1.2-1 4 

F"ia. 6. Plou ol 1poecb waveform for the uttcnnce N Joe broup& a 
JOIUII ,;,, .. and tbc Yarioua intcrpolatioll runcti<xD clelcnninad by tlle 
tcmponl d«ompmition tecllniquc. 111c time illtcnall (in ■-:a> r" tlN 
clilrcra11 ■clfflCDII are marud in tbc lel\ marJÎII in cac:11 cue. 

Fi1urc 7 1bowa tbc first 8 loa area panmeters and the rt111 value 
u a function of time for the utteranoe 1bown in Fia. 6. Tbé IOlid 
curve sbow1 the original arc:as determincd by LPC analysil ol the 
1s-;b wave. Tbe dubcd curve 1bowa tbe approiumatioa ol eacb 
y1(11) by tbe additive model defincd in Eq. (1). Tbe raulu for the 
remainin1 8 loa areu are 1imilar. Al can be seen, tbe aareement 
between tbe model and tbc actual raulu il very aood-

BIi Rot, R,qa,ir,d to ENod, A1'H Porom1t,r, 

The interpolatin1 functiou in aeneral vary smootbly u a func­
tioa of time. We have determincd the bandwidtb of eacb 1nterpolat­
in1 function from iu amplitude spectrum. AJI elfoctivc bandwidtb 
for eacb spoctrum can be de6ncd u the frcquency at wbicb the 
amplitude spoctrum rails to 1 /20 of iu value at d.c. We 6nd tbat an 
avenge of 4 samples per ♦a (11) are necded to sample the functioo at 
the Nyquilt rate. 

lt il 1ullicient to ena>de eacb sample ol ♦a (11) at 4 bits/sample 
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,/. ~~ ~-~ =:<:' 
00 o.s 10 ,s 

TIII[ IS(Cl 

F"ia. 1. Plac oamparina 111c e d 1 ... ni.d .,. pua-.n lcluW 
CIUft) wi~ tlN actul .,_. <aalid au..) ol fla, 1. 

to keep the error in tlle los area panmeten to be laa tlla■ 0.10. 
Thua tbe tolal 1111mber ol biu required to _,. e■cb ♦a (JI) is 16 
biu. 

For eac:b k, tlle CXJdfic:icnu ._ aecd to be coded witb tbe same 
aceuracy u a aiqle rn- ol los area para--■n. Witb -lar 
qu,ntization, wc filld tbat 41 bits/frame are sdiciat (4). Rec,ent 
wort on •octor quotizatia■ sugau tllat oumber of bits/fn- cu 
be reduced eva furtller (6). 

The toeal i■lonlatiall nte for CllllOdina ol los area paralllden 
dcpeada upo■ the DUll'lber of apecb -" (or -.dl) lpokn per 
aecoad. For llow 1peû:iq ra&c, tbis 1111111ber ia aboat 10. Aaamin1 
5 biu to repracat tlle locatiall ol eacb ♦• tbe bit ra1s for oodi■a bod! 
•ia and ♦a (JI) will tlle■ be (41 + 16 + 5) • 690 bits/sec. The bil 
nte would i-.. to IOJS bitl/soc for a apakint nte of IS -nc1a 
perNC. 
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