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Summary.

This report describes an investigation of a procedure for automatic segmention,
The original procedure, as published by B.S. Atal, was written to reduce the
data rate when transmitting speech. The method describes the speech by a small
number of slowly varying and compact phi functions. Atal implies that these
functions each correspond to an articulatory gesture made 1in producing an
utterance, The current task is to modify this procedure, not to minimise bit
rates, but to find phonemes. The report firstly suggests reasons why this should
be possible. It then explains the original procedure, emphasis being placed on
its implementation., Next the report describes a number of problems dicovered
when trying to use the procedure to locate phonemes. Possible reasons for the
problems are discussed together with some solutions, or attempted solutions,
Finally alternative approaches to the main problems are suggested.
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Introduction.

At the Institute for Perception Research (IPO) Eindhoven, synthetic speech is
made by joining not phonemes but diphones. A diphone is a segment consisting of
the stable part of one phoneme and the transition until the stable part of the
next phoneme. The method was implemented for Dutch. With about 40 phonemes in
the Dutch language, over 1200 phoneme pairs had to be extracted by hand.

B.S. Atal of the Bell Laboratories recently published a paper entitled: "
Efficient coding of L.P.C. parameters by temporal decomposition." [1] In it he
describes a method to decrease the bit rate for transmitting speech. In this
method he tries to associate so-called phi functions with phonemes. This project
attempted to use this method not to obtain a reduction in bit rate, but to
locate phonemes automatically., With this method the tedious task of hand
segmentation of diphones can be automated. This would be a useful tool for
creating a speech database for other languages.
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1 Speech,

The overall aim of the analysis procedure is to break up speech by marking the
phonetic boundaries, This is by no means an easy task. Even defining what the
boundaries should be is difficult. Consider the dutch diphtong "el" ; is it one
phonetic sound or has it a boundary somewhere in the transition of "e" to "i'"?

First let us consider how we speak. Speech 1is produced by a physical system,
namely our vocal cords and the vocal tract. We produce different sounds by
changing the shape of our vocal tract., Each particular sound or PHONEME has its
own target position. Speech is made up of articulatory movements towards the
target positions of each of the sounds 1in an utterance. For example when we say
the word "bag'" there are three target positions., First we have a bilabial place
of aticulation where the lips close to produce the "b" sound. Next the vocal
tract opens as we pronounce the vowel. Finally the back of the tongue closes
against the soft palate for the velar consonant 'g".

Figure 1 shows the waveform of a small segment of speech 150 mSecs long., It is
the final "be" from the nonsense word 'beboobe" Notice how the waveform quickly
gains amplitude. This is where the mouth opens for the plosive "b". Fram this
data we can recounstruct the shape of the vocal tract. See figure la. The
interval between each diagram of the vocal tract is 100 mSecs. We can see in the
figure firstly, the mouth open from the previous consonant, then the mouth
closing for the plosive. Next there 1s a quick opening of the mouth where the
pressure built wup during the closure 1s released and finally the tract
positioning itself for the next vowel.,
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Because speech is a physical system it has an inherent inertia. We cannot change
the shape of our vocal tract instantaneously, There are transitions, In the
interval between two phonemes the shape of the vocal tract corresponds to
neither of the two phoneme’s target positions., In fact, especially for fast
speech, we may never reach the target positions, The tract starts to shape
itself for a sound, but before it is stable it starts to approach the position
for the next phoneme. A diphone takes into account the characteristic region
between two phonemes.

Normal sampling does not take advantage of the transitions in speech, In a
transistion region we may require about 10 mSecs per frame for good resynthesis,
while in the stable part of a sound, 100 mSecs per frame might be sufficient,
Atal’s bit rate reduction method tries to take advantage of this. The question
is whether the method can also be used for segmentation.

In order to detect phonemes the best approach would be to detect the transitions
towards and away from the phonemes. Basically this is what the method tries to
achieve,

For a piece of speech data to be analysed, ( an utterance ), we wish to
associate a so-called phi function for every speech event in that utterance. A
speech event could be defined as a distinct component of the speech. For
example, a silence section, a pure vowel, or a nasal consonant would all be
distinct speech events. The associated phl function should be zero until the
transition for that speech event begins. At this point the phi function should
track the transitions towards and away from that speech event, and then, remain
zero. Obviously, if we can get such phi functions, the segmentation of speech
would be rather simple. If speech can be described by a number of transition
functions, then this should be possible.
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2 Choice of Speech Parameters.

Before we can start analysing speech we must have 1t 1in a form easy to
manipulate, If you take a look at the waveform of the speech, you will very
quickly realize that it is hard to handle the raw data. In the original method
as proposed by Atal '"log area parameters' are used as a parametric description
of speech. Throughout my investigations I have been using log area parameters as
well., In general the analysis method should work on any type of parameters with
maybe small modifications. In spite of this I feel that the log area parameters
are best suited for the analysis,

2.1 What are the Log Area Parameters ?

Log area parameters are determined from a LPC analysis of speech [2]. The speech
output is modelled by an electrical source and an all pole filter,

The electrical source is either
1) white noise generator for unvoiced speech segments, or

2) an oscillator for voiced speech., The frequency of oscillation is set
equal to the pitch,

The filter coefficients are chosen so as to minimize, in the particular time
frame, the mean square error between the synthesized and actual speech. This is
done by a Linear Predictive Coding method [3]. The filter can be described in a
number of ways. The most common method is to describe the impulse response or as
a cascade of second order filters, There 1is a variety of ways of describing a
2-nd order filter. Two obvious ways are, the coefficients of the polynomial of
the filter in the frequency domain, or the resonant frequency and bandwidth ( Q
factor)., There are other ways. Each set of parameters 1is related by some
specific transformation. One such set of parameters 1s the set of log area
coefficients {4].

2.1.1 1Interpretation of Log Area Parameters.

Log area parameters describe an acoustic model of speech. The speech output can
be considered as arising from a sound source in a sound cavity. The source is
analogous to the electrical case:

1) a noise source for unvoiced speech, and

2) an oscillating source with a repetition frequency equal to the pitch
frequency for voiced speech.

For simplicity the cavity is considered as divided into a number of equally
spaced sections, Each section has its own cross sectional area. The log of the
ratio of areas of neighbouring sections define the log area parameters. The log
area parameters hence can be interpreted as describing a simplified model of our
vocal tract. This 1is shown on fig. 1. The last log area parameter describes the
ratio of areas in the throat near the vocal cords, while the first at the lips.
Figure 1 shows the mouth changing position as 1t articulates a word.
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Figure 2 shows for the speech segment of figure 1, the log area parameters
changing with time. Each set of log area parameters correspods to a interval of
10 mSecs. The plots are made by smoothing the 10 log area parameters over
"distance'", the position in the acoustic tube. This set of log area parameters
was used to derive the shape of the vocal tract in fig. la.
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Advantages of the Log Area Parameters.

1) They are easily interpreted as the shape of the vocal tract. Changes
in a log 4rea parameter means a movement 1in the vocal tract, This
nakes this set of parameters well suited for our analysis,

2) The parameters all have the same meaning. Unlike resonant frequency
and bandwidth, they can be treated as similar quantities. This means

we don’t have to worry about the effects of adding a bandwidth to a
frequency!

3) They have similar statistics. The mean and standard deviation are
approximately equal for each parameter. This allows them to be treated
simply in error calculations and minimizations, If on the other hand
the means were not equal, then the parameter with the highest mean
would be weighted the most for the error wminimization., Unless of
course, the method took this into account.

4) The parameters change rather slowly in time. This allows for greater
intervals between samples. As a consequence 1t saves computer time.

5) They are uniformally distributed over their range of values. This
minimizes the dynamic range and errors introduced due to truncation.

A disadvantage of the log area parameters, or LPC parameters in general is that,
unlike our vocal tract which has antiresonances as well as resonances, the LPC
parameters model only resonances,

My investigations are based on the temporal decomposition model for log area
parameters as described by B.S. Atal in the Proceedings of the ICASSP 1983 [1].
(This paper 1is supplied as an appendix to this report). The first problem 1is
understanding the method., While some of the theory for this method is described
in that paper, a lot of the practical details are missing, I present here my
interpretation of the procedure together with an outline of how this 1is
implemented.

10
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3 The Data

A segment of speech is first recorded on a reel to reel magnetic tape. Next we
digitize the speech at a sampling rate of 10kHz. The speech spectrum is assumed
to have a highest significant frequency component of 5kHz. The analog to digital

converter has a resolution of 12 bits. Each sample is an integer between -2048
and +2047.

The raw quantized data 1s passed to the program '"AALA". Here the speech is
firstly converted to LPC parameters. For the analysis a window of duration 25
mSec (250 samples) 1s used. Shifting the window 100 samples at a time, gives
frames of LPC parameters every 10 mSec. The speech is now decribed by a tenth
order filter through linear prediction. Other parameters extracted are the
voiced or a unvoiced source, gain, and, for a voiced source, its pitch.

S(t) = X(t).G(t).o(t)
where S(t) is the speech
X(t) is the excitation and can be either the voiced
or unvoiced source
G(t) is the gain
o(t) is the filter

In our case of tenth order analysis

o(t) = ajz (aj being the LPC parameters)
j=1

The AALA program then converts the LPC parameters to log area parameters., [4]

11
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4 The Analysis

The aim of the analysis is to descibe the data by phi functions, one phi
function for each speech event,

The speech data is represented by a pxN matrix, Y, where

p is the number of L.A. parameters (Log Area)

N is the number of frames of L.A. parameters in the utterance.
(The time dimension).

In my case p is set to 10

We can convert the L.A. parameters to other abstract parameters by a linear
transformation., This can be represented as

Y = A9 (1)

where
A is a pxm transformation matrix
m is the number of new parameters
¢ 1s the new data matrix consisting of
N frames of
m new parameters,

Note that that there are no time transformations.

The speech, in other words, is desribed by some linear combination of basis
functions, In our case we want the basis functions to have special properties,
namely to be phi functions. The number of parameter (m) is not known. This
depends on the number of speech events present in the utterance.

From 1 we can write

o= (ATa) ATy iff (ATa)7! exists (2)

For a speech segment of 1 to 2 seconds duration, it will contain about 20
to 30 speech events., So we can write

3
Y. = XY A,. ¢i for j= 1 top (3)

The rank of Y however, can be no greater than 10 (The number of log area

parameters). As a result we cannot find 30 phi functions with this one
utterance.

Instead we take a smaller time interval of data, say 300 mSec, where we expect
no more than 7 or 8 speech events. In this case the equation for the phi
functions is valid. The requirement can be restated as follows.

12
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The rank of the Y matrix must be greater than the number of speech
events (m).

To satisfy this requirement it is estimated that the length of speech should be
about

200 to 400 mSec.

4.1 Rank of the Speech Matrix,

From equation 2 we note that we can write

o

¢k(n) = .L wki Yi(n) 1<k<m, 1<n<N (4)

i=1
So the phi functions are simply a linear combination of the actual parameters.

The number of phi functions should be the same as the the rank of Y. This is
because 1f we want the phi functions to reconstruct the data, then the rank for

a segment of data can be no greater than the number of phi functions in that
segment,

In principle the number of phi functions 1s fixed by the number of speech
events, There will not be 10 phi functions for every speech segment we consider.
The problem is to determine the rank of the speech matrix. This is accomplished
by the singular value decomposition of Y:

YT = U D VT (5)
YT = the speech matrix transformed

UT = the left hand singular vectors

V™ = the right hand singular vectors

D = an array of eigenvalues

The decomposition transforms the log area parameters, Y to orthogonal ones, U.
The amount of information in each of the orthogonal components is specified by
the eigenvalue of that dimension.

If we take all the eigenvalues as significant, we maintain all the information.
However, taking only a limited number of eigenvalues as significant and the rest
as zero, we throw away some of the information, The elgenvalue is a measure of
the mean square error we would introduce by assuming that eigenvalue is =zero.
[5] Take only the m highest eigenvalues. The error introduced is

2 p
e = X Ai (6)
i=mt+1

For the log area parameters we can tolerate a 5 percent error. This percentage
is estimated from listening tests with resynthesised speech. It 1is possible to
reconstruct the speech after the complete decomposition has taken place with a
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5% feature loss. The resulting distortion is small, This percentage can and will
be varied later,

We take as significant the eigenvalues that add to 95% of the total sum of the
eigenvalues. The other eigenvalues are set to zero. Consequently some of the
othogonal vectors in U are multiplied by zero. This constitutes a decrease 1n
dimensionality, hence a decrease in rank. The important information stays.

For example if the 10 eigenvalues are:

10, 8, 7, 6, 3, 1, 0.5, 0.4, 0.2, 0.1

10

b Ai = 36,2 95 7% of 36.2 = 34.39

i=1
for a 57 error take the first 6
eigenvalues as siginficant

10

A, = 1.2

1=7 *

or a 1.2/36.2x100 = 3.3% error.

We consider as relevant data, only the first 6 orthogonal functions in U in
equation 5, The problem is now reduced to have a rank of 6.

4.2 Determining the Phi Functions.

The difficulty with determining phi functions is to decribe them mathematically.
What we do instead is to describe the properties of them.

If the basis of speech are the articulatory movements, these should be reflected
in the L.A. parameters. It is obvious that from equations 4 and 5 we can write

3

¢k(n) = 1£1bkiui(n) (7)

What we have to calculate are the "b" coefficients.

The conditions under which we calculate the b coefficients must reflect the
property of the phi function. Speech events last for a short time only,
Consequently phi functions should have short durations. The aim is to find a

linear transformation so as to obtain such functions. We reflect this property
by a measure of distance:

0(1) = [2(n-1)%%(n) /s 92(n)] V2 (8)

n n

This function tells us how concentrated the phi function is about the sample 1.

The smaller that (1) is, the better. Hence we try to minimize 9(l) with respect
to the unknown coefficients b.

14
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The requirement becomes:

¥30(L) ,
—STk—i' = 0 ].S_iim for each on (9)

This equation reduces to an eigenvalue problem:
Rb= Ab (10)

where
R is a mxm matrix and

 sen1y?
Rij = i(n 1) Ui(n)Uk(n)

b is the eigenvector corresponding to the unknown
coefficients

A is the eiggnvalue and it is equal to the minimum
value of 6°

The eigenvalue problem has m solutions and the solution to the minimisation
problem is the smallest eigenvalue.

4.3 Locating Phi Functions.

Although we have now defined a criterion for generating phi functious, we do not
know

1) How many phi functions exist

2) where they are located.

Consider equation 8, notice that the expression should be minimum if 1 is
somewhere around the middle of the phi function. At this location the derived
phi function should be close to the actual phi function. If 1 {s located
somewhere between two phi functions then these two will interact producing a
resultant, Although the function produces the minimum value of equation 8, it is
not any of the desired phi functions. If 1 is located near the centre of the phi
function, any other phi functions interacting should only have small effects,
because being away from 1, they are heavily weighted.

We define the location of a phi function by its centre of mass

L=y n.0’(n)/s ¢%(n) (11)
n n

The original procedure for locating phi functions is as follows. ©

1) Assume tliere is a phi function located about the first frame,l=1.
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2) Select a speech segment 30 mSec long, 15 mSec each side of the point 1
Problems with extending the data to always be able to have such a
segment will be discussed later.

3) Use equations 10 and 7 to calculate the phi functions. Consider only

the phi function associated with the smallest eigenvalue of equation
10. This corresponds to the function concentrated most about 1.

4) Calculate the phi function’s location: L. Define a new function, the
location function.

r(l) =L -1 (12)

5) 1=1+1, repeat stages 2 to 4 for all the frames.

Figure 3 shows the phi functions as they are calculated for the word "beboobe'.
Notice how the phi functions are similar in regions, but then move {into a
transition section before the next '"stable" phi region. The "oo" is broken in
two sections, first the pure "o" sound followed by the english "w'" sound. This

occurs because the vowel has a slight diphthong charateristic.
Figure 4a shows the location function v(1l). This function
1) Is positive when 1 is less than the location of the phi function.
2) 1s negative when 1 is greater than the location of the phi function.

3) Changes rapidly from negative to positive when 1 1is near the
transition regions of the phi functions.

Equation 12 can be used to find where and how many phi functions exist. At every

positive to negative zero crossing of v(l) we say that a phi function Iis
located, at that 1.

16
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4.4 A Better estimate of the Phi Functions.

The procedure as described by Atal recommends two methods for obtaining better
estimates of the phi functions.

4,4,1 Recomputation.

The phi functions are recomputed at every location point found. Instead of using
a window of 300 mSec, this time the window is adjusted to fit 5 phi functions.
That is a window that covers the phi function at the location and two others at
both sides. In this segment, the L.A., parameters will be a linear combination of
5 phi functions. To reflect this fact we set the rank of the Y matrix to 5. The

first 5 orthogonal functions from the singular value decomposition will be taken
as significant.

For the first two and the last two phi functions a smaller window length is

used. In these cases only 3 phi functions are included in the data segment. The
rank is set to 3.

4.4.2 An iterative Refinement Procedure.

The next stage is to fit the calculated phi functions to the original data. So
doing should give a much better estimate of the phi functions. The phi functions

are calculated at positions which are not necessarily optimal. Even so the
method of minimization produces distortions as it cannot correctly separate them

The iterative process comprises of two steps.

Step 1) With the calculated phi functions, find the A matrix to minimize the
mean square error defined as:

m 2
E = ﬁ[Yi(n)_Qilaikwk(n)] (13)

1<i<p, 1<k< # of phi functions.
We equate the derivative of E w.r.t. A (the unknown coefficients) to
zero, This simplifies to a set of simultaneous equations.

xaikxwk(n)wr(n) = 1Y, (n) ¢ (n) (14)
k n n

1 <r < # of phi functions, 1 <1< p
where p is the number of log area parameters.

Step 2) With the calculated A matrix, recalculate the phi functions to
minimize the mean square error again. This time we take the derivative
w.r.t, the phi function and equate that to zero. The resulting
expression for the phi function becomes:

19
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P ¢ p
¢ (n) = [ £ Y (n)a, -3 ¢, (n)sa, a, ]/ 5 at
r i=1 i irk#.rk i“j.r ik =1 ir (15)

This process is repeated until the error drop 1s smaller than some threshold.
Figure 4 shows the results of one run on the utterance 'beboobe'". Once again we
can see that the "oo" is in two overlapping sections. The segment for the closed
mouth section of the first "b" is unfortunately also in two sections. Most

probably because it is such a long section. Compare it to the second "b".

20
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5 Investigating the Procedure.

Originally 1t was thought that the method could be put directly to segmenting
speech., It did not take much investigation to show that this was far from the
truth., As the procedure stands, it has a lot of shortcomings. The main criticism
is the procedure’s sensitivity to various parameters., It was found that for a
good combination of parameters the results were also good. The problem lies in
the fact that every speech segment needed a different set of parameters. This is
not very good for automatic segmentation.

The first stage of the 1investigation was to establish the effects of a few
simple parameters on the process. These parameters were

1) The original window size for analysis

2) The amount of error tolerated for the singular value decomposition,

3) The number of log area parameters,
The third parameter was found to be fairly unimportant. Similar results were
obtained for 8 or more parameters. This suggests that most of the articulatory

information is in the first 8 or so L.A. parameters.

5.1 Varying the Parameters.

The procedure was first run on the speech segment ''mama". The aim was to see how
the phi functions change with some parameter variations. It was found that the

effects were dramatic. A simple change in one parameters could change not oanly
the location of phi functions but also the number.

The two parameters under investigation are:

1) The length of the speech used to analyse phi functions. This is called
the window length. It is the length in frames of a rectangular window

which multiplies our utterance to give the short speech segment for
analysis.

2) The amount of information allowed to be cut by reducing the
dimensionality of the speech, This is the 7 feature loss. It says how
much of the total information is lost.

The best way to judge the effects of these parameters is by the v function. This
is plotted in figure 5 for the values:

Window length = 100, 200, 300, 400 mSec
% feature loss = 2, 5, 10 %

As can be seen the locations and number of phi functions are different for every
set of parameters, (locations are indicated by vertical lines on the graphs,)

21
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In terms of segmentation this is disastrous. It basically means that as the
program stands, the parameters decide on the segmentation, not necessarily the
data. Oune can hardly hope to obtaln any relation between phi functions and
actual articulation this way.

At this point a closer investigation is required.

The first step is to study the procedure knowing what the outcome should be.

5.2 Investigations with Resynthesised Data.

To see how the program behaves, data constructed from phi functions was used.
The output of an analysis run was converted back to log area parameters. From
the phi functions and the A matrix, the L.A. parameters are obtained from
equation 1,

These resynthesised L.A. parameters were analysed as normal data. The same
parameter analysis as before leads to fig 6.

Now the location function is more consistent when considering parameter changes.
For window lengths of 200 to 300 mSecs and 7% feature loss of 2 to 5%, the
location functions are almost identical to each other,
From this some conclusions can be drawn.

1) If the % feature loss is high then some phi functions are not found.

2) The window length must be able to fit the biggest phi finction.

3) The window length wust remain small enough to maintain the rank
greater than the number of phi functions in the window.

A plot of the results for

300 mSecs
LYA

window length
“feature loss

]

is shown in figure 7. We see that the phi functions are almost identical to the
originals. The phi functions for the resynthesised data tend to be more spread
out. We can explain this by the feature loss. The phi functions are recalculated
for the data with reduced rank, and so some data loss. In actual data the
feature 1loss would involve mostly noise. There 1is no such nolse 1in the
resynthesised data! The iterative refinement wuses the original data. By
distorting the functions the refinement procedure compensates for the feature
loss. As would be predicted, for 0 7%feature loss there is no distortion.
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5.2.1 Procedure Modification with Resynthesised Data.

While still using the resynthesised data a few changes to the procedure were
tried.

5.2.2 Utilizing the Same Windowed Data for a Few Values of 1

The singular value decomposition is a necessary but expensive process., I tested
whether it was possible to have the window shifted by quarter of 1its length,
rather than by steps of one frame., One set of windowed data, and hence one
singular value decomposition is used for a few values of 1. The location of 1 is
always near the centre of the window.

Although this proved to save computation time, the method decrease the range in
which the parameters can vary. The plot of the location function for various
parameters 1s on figure 8. For most parameter settings extra phi functions are
found. The location of some of the phi functions has also changed. I do not
believe the saving in time is justified by the deterioration in results.
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5.2,3 Modifying the Location Function,

We wish to find the position in the phi function for which (1) is minimum.

Equation 12 can be rewritten as

p(1) = £(n-1)9%(n)/ 2o’ (n)

n .on
A better function could be
p . 2 2 2
v’ (1) = £sgn(n-1)(n-1)"¢"(n)/Z¢"(n) (16)
n n
where
( -1 for x <O
sgn(x) = ( 0 for x = 0
( 1 forx> 0

Intuitively the (n—-l)z factor should be an improvement because this finds the
point about which the function has symmetrical weighting. The results for this
new location function with different parameters 1is shown on figure 9. This shows
no improvement over the old location function. The number and location of phi
functions is the same as before, but the dynamic range of the function 1is
greater, This modification is not recommended.
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5.3 Modifying the Data.

From the previous section it appears that the data may not have the information
required for segmentation. Alternatively the information may be hidden.

In order to determine this a number of parameters of the data were changed.
These included

1) The window length for a frame of L.P.C. analysis
2) The number of log area parameters.,

I found that these had minimal effects., If the window length was too long
phonemes disappeared. They were averaged out over the surroundings. Similarly if
the number of L.A. parameters decreased then too much information was lost and
phonemes could not be located. Too short window lengths produced spurious phi
functions, as did a large number of log area parameters.

I did notice that the most unstable regions in the data were the instances when
the energy was the lowest. For example the silent part of a plosive. In these
cases the data 1is pure noise, not related at all to the rest of the data. The
L.A. parameters, descibing only the shape of the acoustic tube, have no
amplitude information. Noise data leads to totally random parameters which are
not easily distinguished from valid omes.

During the iterative refinement the error is minimized over the whole interval.
Even where the data is unreliable., The other problem is that there are numerous
phi functions produced to describe the '"noise" data. Generally these phi
functions can be considered as "out of character" as the data is not reliable.
The phi functions interact in the production and 1location of other phi
functions. "Noise" phi functions can therefore distort other phi functions.

5.3.1 Modified Parameters.

The first attempt to solve the problems with low energy was to multiply the log
area parameters with the log of the energy in the frame. The idea is that the
low energy regions should contribute only one phi function, the (1) function
being smallest for this section. Secondly when considering equations 13 and 14
in the iterative refinement, the low energy sections will have a small effect.
The L.A., parameters are small in the noise sections so they should not
contribute greatly to the error. Incorparating the energy to the data also adds
information that should help with segmentation.

The results did not however support these considerations. There was no visible
improvement. The phil functions obtained where just distorted versions of phi

functions in a normal analysis

5.3.2 Interpolating the Data

An alternative solution is to interpolate low energy L.A. parameter sections
between two high energy points, which s8hould provide reliable data. The
threshold between reliable and unreliable data was chosen as the point at which
the mean energy in a frame equals 500. The waveform is normalised to have values
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between -2047 and 2048, while the energy is calculated as the sum of the squares
of the sample values.

Any frame with with an energy level lower than 500 is thrown away. Instead the
values for these points are linearly interpolated. The interpolation uses the
two nearest calculated points either side of the low energy points.

Results show that this stabilizes the data somewhat. The problem now is that
these L.,A. frames do not match the rest of the data. For the low energy regions

the phi functions have characteristic straight lines. This contrasts to the
other phi functions.

5.3.3 Smoothing the Log Area Parameters

Another improvement for the data 1s to pass it through a low pass filter. A
three point moving average filter was used. The filter 1s non-causal with a
symmetric impulse response about 0., This introduces no phase delay and ensures
the L.A. parameters are synchronous with the original data.

The impulse response is given by:

h(n) = @§(nt+1)+(1-2a)8(n)+as(n-1) (17)

The optimum value of @ is about 0.15.

A comparision of the results with normal and enhanced L.A. paramters is shown in
figure 10. Clearly the phi functions belonging to phonemes are much easier
selected from the enhanced parameters,
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5.4 Investigation of the Phi Functions

To investigate the actual phi functions found, a program was written to produce
a three dimensional plot of the phi functions as a function of 1. Figure 3 shows

one such
magnitude
which the
truncated

plot. On the horizontal axis we have time. Vertically it 1s the
of the phi function., The axis into the page is 1, the position over
window is centred. For simplicity the phi functions are smoothed and
to their main lobes.

A few observations and modifications to the procedure resulted from the 3
dimension plot of phi functions.

Sidelobes.

Solutions.

It was realized that the phi functions found usually have side
lobes., However we are only interested in and use the main lobe of
the phi function., This has a few consequences. The side lobes have
an effect on the location function. Sometimes the side lobes vary
erratically and so does the location function.

Another problem is that, because there are side lobes present, the
main lobe 1is not the true phil function, Usually this effect is
minimal, The presence of side lobes, we can say, does not occur in
the desired phi function. This 1s because phi functions are to
represent one articulatory movement. A s8ide lobe can only be
interpreted as two movements, in opposite directions.

The effect is most noticeable in transitional regions. The calculate
phi function 1is the result of two or more equally coantributing
"desired" phi functions. In these cases a lot of the energy of the
phi function is in the side 1lobes.,

To wminimize the effect that side lobes have on the location
function, the phi functions are truncated to the main lobe before
evaluation of the location function. The main lobe is the section of
the phi function that has the same sign as that at the polnt "1".
Because the main lobe in most cases is stable the resulting location
function should not be so erratic.

The only successful way I have found to deal with phi functions in
the transition regions, is to ignore them. From equation 8 we notice
that resulting phil functions are normalized by

2 0%(n) = 1 (18)
n

If after truncation, the "energy" of the phl functions has a value
of 0.7 or 1less, then the phi function 18 ignored. Under these
circumstances we assume that the phi function calculated 18 a result
of two or more actual phi functions interacting.

The results for these modification are shown in figure 11 for the utterance
"bebuube". There are a few things to note. Firstly unlike '"beboobe', some of the
plosives are in two sections. A silence where the mouth is closed followed by
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the rapid opening of the mouth. The location function is smoother in the second
case. Here the last "e" 1is represented by one phi function as desired and the
mess between 500 and 600 mSecs has been cleaned up.
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5.5 Further observations.

A look at figure 3 shows that there are distinct regions of phi functions. In
these regions, all the phi functions are similar. Between these regions the phi
functions either change abruptly or smoothly. An abrupt change is prefered, as
from these it is easier to identify phi function boundaries.

In an attempt to obtain more abrupt changes, equation 8, the measure of
distance, was modified.

The (n—l)2 factor was changed to (n-l)4 and to ABS(n-1)

The resulting phi functions are plotted in figure 12 for the word "beboobe".
Compare this with figure 10. No significant advantage is seen in either of the

plots, For the ABS(n-1) factor the changes are less abrupt, but in the case of
(n-1) ', there is not much improvement.
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5.5.1 Begin and End of Utterances

Normally for phi analysis we use a symmetrical rectangular window., At the
beginning and end of segments this 1isn’t possible. The original program
shortened the window on the side where the data was missing. The window about
frame 2 would start at frame 1 and end at sample 17 (A normally 300 mSec window
with 10 mSec between frames). The result is a shorter unsymmetrical window.

We would obtain identical results when using the skewed window as when we use a
symmetrical window with the data zero before frame 1 and after the last frame. A
bad effect is that the first and last phi functions may not be found. This
happens because the phi function as calculated 18 actually zero over some

section. Before it is properly located the next phi function becomes predominant
in the measure of distance function (equation 8).

Several methods were tried to compensate this effect. Each of them involved
extending the data in some way.

1) Reflect the data about frame 1.

2) Reflect the data and multiply it by a decaying function.

3) Extend the first sample by two frames.

Peculiarly enough the 3rd method seems to work best. A comparison between
extended data and normal analysis 1s seen in figure 13. This in general is a bad
run for it misses a lot of phonemes. The important thing to observe is that with
the extended data the first phi function is located. Fig. 14 gives some idea why
this is a difficult segment of data. The plot of all phi functions shows only a
few regions where the phi functions are stable. However the first phi function
is clearly visible, but not found until the data is extended. On the resulting
analysis run, the first phi function is highly distorted. This arises from the
iterative refinement’s attempt to minimize the error.
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5.5.2 Other Problems

For a the utterance "pepaape" some more shortcomings of the system were noticed.
Figure 15 shows the 3 dimensional plot of all phi functions, while figure 16
shows the result of the complete analysis. Notice that for the first "P" and the
vowel phoneme there is no phi function found. Clearly there are phi functions
for this phoneme in the plot of all phi functions.

A possible explaination 1is that the sidelobes have a strong effect on the
measure of distance., The effects at the edge of the window may have a too big
influence on the procedure to find phi functions. The resulting phi functions
are primarily due to decreasing the effects away from the location point.

To counter this a Hamming window, instead of the rectangular window, was
employed to select small segments of the utterance, The results of using the

Hamming window are seen by the segmentation plot in figure 16. This time all the
phi functions are present,
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Yot another problem was noticed, Even though a phi function was found in the
location procedure ) the function never manifested itself in the output. The
reason has to do with the system’s sensitivity to the window length. In usiayg
the second window length of five functions, the phi function can  change
altogether. The solution is simple. Use the phi functions found using the fixed
window length. This may cause more steps to be taken 1n the iterative
refinement. The iterative refinement process seems powerful enough to handle
less than optimal starting tunctions and still produce decent results,
Computation time used by the extra steps in the 1iterative refinement is
compensated by not recalculating the phi functions,

5.5.3 Extra Phi functions.

Although the Hamming window does svlve a few problems it also creates some. The
Hamning window causes spurious phi functions to be located. (fig 14) Even when
the Hamming window is not used, spurious phi functions might be found. A few
techniques were tried to eliminate the spurious phi functions.

5.5.3.1 Smooth the Location Function.

The same moving average low pass filter as used for smoothing the log area data,
was applied to smooth the location function., This compensated for small
fluctuations in the found phi functions. By smoothing the location function,
truncating phis before evaluation of the phi functions and ignoring phi

functions with high side lobe energy, a lot of the spurious phi functions ar
eliminated. Sec figure 17.
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5.5.3.2 Elimination Based on Inproducts.

The inproduct between two phi functions is defind by

11’2 = i ¢1(n).¢2(n) (19)

We first normalize the phi function to have a peak value of l. Next we calculate
the inproducts
I

I I .

1,1° 1,2’ 72,2

The ratios

and I /

I ,2/1 1,2 (20)

Iy.2
tell us how much of phi function 1 or 2 respectively 18 contained in the other
phi function., We consider the greater of the two ratios. If the ratio is greater
then a threshold, that phi function is eliminated. The normal threshold used is
0.85 . A higher ratio indicates that one phi function virtually duplicates the
other phi function. This process works well but has one drawback. If two valid
phi functions (those representing phonemes) are closely overlapping, one will be
eliminated, This procedure 1s used for each phi function pair before every
iterative refinement step..

5.5.3.3 Elimination on Error Calculations

I noticed that, when phi functions are eliminated, the error in the next
iterative refinement step does not increase by a large amount. Sometimes it even
decreases, This suggested two other methods to find spurious phi function.

After the iterative refinement has finished, throw away each phi function in
turn., Perform an iterative refinement step after each phi function 1is thrown
away. If the error still decreases, eliminate that phi function. When there is
an increase 1in error, incorporate that phi function as a valid one. This
procedure however was not succesful.

The second method considers three consecutive phi functions in time. We perform
a step of the iterative refinement for the data covered by the middle phi
function, with the three phi functions. The step is then repeated with only two
outer phi functions, If the error is lower or only slightly higher the middle
phi function is eliminated.

Both of these methods don’t work. They eliminate phi functions corresponding to
phonemes, and maintain those which should be considered spurious.

5.6 Other methods to find phi functions.

Even with all the modifications outlined, the procedure does not work well.

Parameters can be set for utterances, These parameters have different optimal
values for different utterances.

Some other methods for locating phi functions were tried.
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5.6.1 Derivative of Log Area Functions.

Instead of the location function the sum of the first differences of the log
area parameters was used. Phi functions tend to be found where the log area
parameters all have peaks or throughs. Hence

P
v’ (1) = X Yi(l)-Yi(l-l) (21)
i=1

This proved to be a very erratic function. Figure 18 shows a smoothed version.
Even here the function is too wild to obtain useful information from it. Compare
this to figure 17.
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5.6.2 Phi detection by comparing Consecutive Phis,

In this method we base our detection of phi functions on the inproducts of
consecutive phi functions. After a phi function is calculated, at each value of
1, the functions are truncated to the main lobe. They are still normalized as
per equation 18. The following 1inproducts are calculated, for this and the
previous phi function.

1 1 S 11.2/ 1,1 12’2 (22)

1,27 “2,2° °1,2

The idea 1s that when we have a phi function that exists in the data, the
neighbouring phi functions are similar. We try to group phi functions that have
varied slowly. At the boundaries between phonemes the phi functions should
change quickly, as a result we expect S1 to be low. When we are near the
centre of a phi function S should be ﬁagh. In general this seems to hold
true. The phi function with Eﬁ% highest § of a stable group is chosen as the
best representative of that group of ph}’%unctions. The problem now becomes
interpreting the data. A few methods were tried to separate the stable and
transition regions.

1) By two threshold values. Once S goes above the first 1t |is
considered to be in a stable region. When S goes below the second
it is considered to be in the transition reéi%n until 1t goes above
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the first again.

2) As the first method, but this time the thresholds are differential.
That is the change in Sl 2 has to go above or below a threshold.
3

3) As the first method but now the thresholds are not fixed. The
thresholds are calculated as a certain amount above or below the
maximum or minimum value of Sl 1 reached in that group.

’
Of the three methods the third seems to work the best. For a trial of 18
utterances I found that the optimal threshold values depended on the data. In
some cases no values of the thresholds would locate all the phi functions. This
1s as the lower threshold had to be higher than the high threshold to locate all
phi functions. The third method was motivated by this fact. Phi functions found
using the normal location procedure could not always be found with this method.

5.6.3 Proposed Location Procedure,

The last location procedure motivated me to develop another method for locating
phi functions. "Inproducts" are still used, but in a different way. The
algorithm is as follows:

1) Calculate the phi functions about the frame 1l=1. Take this to be the
first phi function. Calculate I1 1
b

2) Calculate the phi function about the next location. (1=1+1). Calculate

12,2.
3) 1If I2 9 is less than 0.7 ignore that phi function and goto step 7.
’
4) Calculate 11’2.
5) If I is greater than 0.7 then assume that the phi functions belong

to thezsame group., Decide which phi function is better and maintain
that one as the representative of that group. Throw away the other.

6) If 1 is less than 0.7 then the phi functions belong to different
phonémg%. Save the first phi function as the phi function for the
first phoneme. Keep the second as an initial phi function for the
second phoneme. This function is used for comparison in step 3.

7) Goto step 2 for all frames,

5.6.3.1 Deciding the better phi function.

Decisions for which phi function is better is based on a score. The score is
based on tBe measure of distance function (Equation 8). We normalize the minimum
value of 67°(1l) so not to penalize wide phi functions. Normalization 1s based on
giving any two rectangular phi functions, symmetrical about 1, the same score.
We calculate the score thus:
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S(1) = 82, /((1-1B0.(1-IB-D+(IT-1)(IT-1-1)  (23)
Where IB is the first non zero frame of the phi function
and IT is the last non zero frame of the phi function.
This method was implemented. Time however did not permit me to fully investigate

this method. At first look it does look promising. The method tracks stable phis

and selects the phi function, as our criterion requires, that 1is the most
compact about 1.

5.7 1Iterative Refinement Procedure.

Most of my work has concentrated on locating phi functions, and the associated
problems. The iterative refinement procedure may need improvement as well,

The iterative refinement procedure suffers from two problems:

1) It tends to expand phi functions.

2) It often happens that the iterative refinement causes the error to
start increasing.

The fact that the iterative refinement 18 a two s8tep process, minimizes the
extent at which the phi functions expand.

The increase in error is often sharp and sudden. The first three steps may cause
gradual decrease in error, but the fourth, a significant increase. Unfortunately
there was not enough time for me to consider these problems.
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6 Performance of the Analysis Method.

To test how "well" the procedure works, the program analysed 18 utterances. The
utterances were chosen represent various classes of consonants and important
vowels, The utterance are all dutch nonsense words and are:

beboobe
bebeebe voiced plosives
bebaabe
bebuube

pepoope
pepeepe unvoiced plosives
pepaape
pepuupe

nenoone
neneene nasal consonants
nenaane
nenuune

sesoose
seseese unvoiced fricatives
sesaase
sesuuse

keklaake combinational consonants
seslaase

The performance with the standard location function works best for:

Window length = 250 mSecs
%feature loss = 5%

For plosives 1t was found that a smaller window length usually works better,
while for other consonants, longer window lengths can be advantageous. The same
combination of parameters works well with the last location procedure discussed.

The main problem areas seem to be plosives. Usually the plosive after the pause
{s too small for detection. It is sometimes smoothed out by the LPC analysis.
Other times the plosive appears as two parts: the silence and the actual
plosive. Fricatives being comprised of coloured noise are also hard to analyse.
As the signal is basically stochastic in nature the L.A, parameters are subject
to fluctuations., This often manifests itself as more than one phi function being
required to descibe the consonant,

Vowels are usually the easiest to detect. There are problems with long vowels.
During the vowel the log area parameters may start to change. This wusually
introduces an extra phi function. Alternatively a vowel may have a diphthong
nature, and once again be represented by two phi functions.
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7 Conclusions.

Automatic segmentation of speech by this method is still some way off., Numerous
problems have been detected, the solutions still not fully found.

The question remains, can this method segment speech? Indications are that it
can. There are too many phi functions found that correspond to phonemes, to say
definitely no. The problems associated in obtaining these phi functions are
numerous. It may be that a complete rethinking of the method is required before
automatic segmentation is achieved. Certainly the analysis with the
resynthesized data shows that if the data is made up of a series of articulatory
movements, then we can obtain segmentation with this method.

The method works well for speech coding. There are more phl functions than the
rank of speech matrix. This ensures that the iterative refinement can always
minimize the error to obtain good speech resynthesis. Detecting phoneme
boundaries 1is not so important for speech coding. It is harder to match phi
functions and phonemes, than to obtain phi fuctions to code speech.
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EFFICIENT CODING OF LPC PARAMETERS BY TEMPORAL DECOMPOSITION

Bishnu S. Atal

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes a method for efficient coding of LPC log
area parameters. 11 is now well recognized that .rample-by-mr,ph
quantization of LPC parameters is not very efficiens in minimizing
the bit rate needed to code these parameters. Recent methods for
reducing the bit rate have used vector and segment quantization
methods. Much of the past work in this area has focussed on
efficient coding of LPC parameters in the context of vocoders which
put a ceiling on achievable speech quality. The results from these
studies cannot be directly applied to synthesis of high quality
speech. This paper describes a different approach o efficient coding
of log area parameters. Our aim is (o determine the extent 1o which
the bit rate of LPC parameters can be reduced withous sacrificing
speech quality. Speech events occur generally at non-uniformly
spaced time intervals. Moreover, some speech everus are slow while
others are fast. Uniform sampling of speech parameters is thus not
efficiens. We describe a non-uniform sampling and interpolation
procedure for efficient coding of log area parameters. A temporal
decomposition technique is used 1o represent the conlinuous varia-
tion of these parameters as a linearly-weighted sum of a number of
discrete el tary comp ts. The location and length of each
comp f is tically adapted to speech evemts. We find 1hat

each elemeniary component can be coded as a very low information
rate signal.

INTRODUCTION

A long standing goal of speech research has been to develop a
simple and efficient description of speech cvents. Such a description
is important for many practical applications, such as speech coding,
speech synthesis, and speech recognition. For example, in speech
coding, our aim is to represent the speech wave by a small number of
time-varying parameters which are capable of regenerating speech at
low bit rates without significant distortion. Speech wave bas s
bandwidth of about 4 kHz. Speech parameters, such as a log ares
parameter determined by LPC analysis (1-4), can be limited in
bandwidth to about S0 Hz without introducing any additional distor-
tion due to band limiting {3,4). The total bandwidth for 12 log ares
parameters is thercfore 600 Hz, which is considerably lower than
4000 Hz required for the speech signal. A major source of redun-
dancy in LPC area parameters arises from the correlations between
successive time frames. These corrclations are caused by a3 number
of factors involved in bhuman speech production. Most obvious of
these is the smooth movement of different articulators in the vocal
tract.

A common method of coding log ares parameters is time sam-
pling followed by scalar or vector quantization [5,6]. If each param-
eter is band limited to 5O Hz, it can be sampled at 100 Hz witbout
loss of information. Scalar quantization of cach frame of log area
parameters typically requires 48 bits which yields a bit rate of 4800
bits/sec. What can be done to reduce this bit rate? One possibility
is to reduce the bandwidth of each parameter even more. For
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example, if the bandwidth is lowered 10 25 Hz, the parameters can
be sampled at 50 Hz yielding s bit rate of 2400 bits/sec. However,
bandwidth of 25 Hz is usually t00 small to represent fast variations
of short transient sounds accurately.

Speech eveats oocur generally at nos-uaiformly speced time
intervals. Moreover, articulatory movements for some speoch sounds
are fairly slow while for others they are relatively fast. Uniform
sampling of spoech psrsmeters is thus not efficient. With uniform
sampling, one is forced to use a small sampling interval to be able to
represent the fastest spoech event accurately. Nos-uniform sampling
of speech parameter variations is in general more efficient because
the sampling interval can be adapted 10 the nature of speech events.
Since speech sounds are produced in buman speech at an average
rate of spproximately between 10 and 13 sounds/sec, it should be
sufficicnt to specify the acoustic parameters at an average rate of less
than 15 frames/sec. In this paper, we present a procedure 10 break
up the continuous vaniation of log arca parameters into discrete units
of variable lengths located at non-uniformly speced time intervals.
Coding efficiency is achieved by coding these units rather than the
parameters themsclves.

TEMPORAL DECOMPOSITION MODEL
FOR LOG AREA PARAMETERS

Consider the variation of log area parameters as a function of
time. Let y;(n) be the ith log arca parameter at the mh sampling
instant. It is assumed that the parameters have been sampled at
closely spaced time intervals small cnough to represent accurately
even the fastest speech eveats. The sampling interval is typically | to
2 msec. The index i varies from | 10 p where p is the total number
of arca parameters determined by LPC analysis. The value of p is
typically 16 for speech sampied at 8 kHz. The index n varies from |
to N where n=] is the first sample in the utterance and A=N i3 the
last sample in the utterance. Figure | shows the first 8 log area
parameters for the utterance “Joe brought a young girl” spoken by a
male speaker. The rms amplitude is also shown oo the figure.

We repruea‘l yi(n) as
Piln) = Taua0:(n), 1€agN, 1€i<p, )

&=

where y,(n) is the approximation of y,(n) produced by the model,
@4 (n) is the kth interpolation function at the sampling iastant &, and
a, is the contribution of the kth iaterpolation function 10 the ith
area parameter. The value of m corresponds roughly to the number
of speech (and silence) events in the speech utterance in the time
interval n=1 to a=N.

Equation (1) can be expressed in matrix notations as
Y=4ao® Q
where Y is a pxN matrix whose (I a) clement (ith row and ath
column) is y,;(n), A is 8 pxm matrix whose (/ k) clement is a,. and
@ is 8 mxN matrix whose (k.x) clement is ¢, (n). We wish o

determine matrices A and & 10 that the bit rate required to represent
them is minimum.
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Fig. 1. Plot of first 8 log ares parameters and rms amplitude as & func-
tion of time for & sentence-length utterance, “Joc brought s young
girl”, spoken by a male speaker.

We will assume that the functions ¢,(n) are ordered with
respect to their locations in time. That is, the function ¢;(n) occurs
later than the function ¢,(n) and so on. Each ¢, (n) is suppased 10
correspond to a particular speech event. Since a speech event lasts
for a short time, cach ¢, (n) should be non zero only over a small
range of values of n. A typical ¢#(n) is sketched in Fig. 2. For
efficient coding, the matrix 4 should be a sparse matrix.

¢(n)

- N

Fig. 2. Idealized sketch of a typical interpolation function.

We illustrate the above point in the example shown in Fig. 3.
We show there three functions of time y (n), y;(n), and y,(n).
These functions were constructed by combining the three functions of
time ¢,(n), #:(n), and ¢;(n), shown in Fig. }(b), using three
different sets of coefficients a, in Eq. (1). Thus, all of the y(a) of
Fig. 3 follow Eq. (1) exactly. Since cach ¢(n) is limited to 8 much
shorter interval in comparison to any one of the y(n) and the
bandwidth of cach y(n) is the maximum bandwidtb of any one of
the ¢(n), it is obvivus that direct coding of y (a) will take more bits
than the coding of the ¢(n) and the cocfficients used to combine
¢(n) to form y(n).

As mentioned carlier, the value of m in Eq. (1) is related to the
duration of the speech segment and the number of sounds the speech
segment contains. In general, m is proportional to N. Consider 2
short segment of speech such that the rank of the matrix ¥ 3 m.
The maximum rank of the matrix Y is p, no matter how long the
speech segment. Previous work suggests that the rank of Y is about
10 even for very long utterances. To satisfy the requirement that
rank of the matrix Y 3 m, the duration of speech segment should be
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spproximately 0.2 t0 0.3 sec. Whenever the rank of Y 2 m, Eq. (2)
can be inverted to yield

*=('A)'AY, (6)]

which implics that

6w = Swuy ), 1<k<m, 1<AKN,
i-l
for some choice of the weights wy,. That is, each interpolation func-
tion ¢ is 8 linear combination of the y's.
The problems related to determining the rank of Y are casily
resolved by looking at the cigenvalues obtained from the singular-
value decomposition of Y. We represent Y as

YY=UDV, (s)

where U is 8 N xp orthogonal matrix, V is a pxp orthogonal matrix,
D is a diagonal matrix of eigenvalues, and the superscript ¢ on &
maltrix means its transpose. Typical values of the first ten cigen-
values, for a short speech segment 0.25 sec in duration, are 083,
0.52, 0.16, 0.13, 0.06, 0.03, 0.03, 0.02, 0.01. and 0.0i. respectively.
Assuming that an error of 0.05 in log areas is insignificant. the rank
of Yis 5. Wethensetm toS.

It is obvious {rom Eqs. (4) and (5) that an interpolation function
 (n) can also be represented as

)

o (1) = Tbyu ),

where u, (n) is the clement in the nth row and the ith column of the
matrix U and by, are a set of amplitude cocfficients.

6)

DETERMINATION OF INTERPOLATING FUNCTIONS
We define a measure of distance of ¢(n) from the sample n=/ as -
1) = (T (v - D) / T o'nl", (¥)]
where the sum over the index a extends over the duration of the
spoech segment. The optimum ¢(n) is chosen 50 a3 10 mimmize the
distance function 0(/).
Minimizgtion of 0{/)

Since the problem of minimizing #(/) is equivalent to the prob-
lem of minimizing In #(/), we set the derivatives of ln #(/) with
respect 1o the unknown amplitude coefficients by of Eq. (6) equal o
zero. We then obtain

) a2
? tw->D ”'0 (n) x? . ¢l (n), 1€r<m, ®)

where
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A=13 (n = D¥n) / T o' )] = 8, ©®
From Eq. (6), we can write

61n) = 3 Tbybyu, ()u, ), 10

=1 f=1
where the subscript k has been dropped. Then,

-——0’('1) - Zib,u,(n)u,(n), 1<r<m. an
b, =

On combining Egs. (8) and (11), one obtains
5T (n = D (u, (1) = A Tbi T w (W, (1) =N, (12)

=l =a - =a
Equation (12) can be expressed in matrix notations as
Rb = )b, a3

where the clement in the ith row and 7th column of the matrix R is
given by

R, = 3 (a = D%y (n)u, (n). (14)

Equation (13) has exactly m solutions. If all the \'s are different,
the solution corresponding to the smallest A provides the correct b.
In case they are not, the minimum value of A determines the
optimum b; although the choice of optimum b is not unique. The
nearest ¢{(n) is determined from the coefficients b,'s by using
Eq. (6). The location of the nearest ¢(n) is given by

() = [ (n - Do) / T $* ] as)

The function »{I) crosses the »(I)=0 axis from the positive side at
each sampling instant / which equals the location of one of the ¢, (n)
for some k.

Better estimates of ¢(n)'s are obtained by repeating the minimi-
zation for all values of / for which »(/)=0, and using a time interval
which contains exactly § speech events (m = 5). This indeed is
always possible except at the beginning or at the end of an utterance
which begins or ends with a silence. A lower value of m is used in
these shorter segments. The first and last ¢(n)'s correspond to
“silence™ segments.

Determination of amplitude coefficients ay

The amplitude coefficients a, of Eq. (1) are determined by
minimizing the mean-squared error £ defined by

M 2
E-zly,(n)-‘z‘ ap $: ()], @16)

where M represents the total number of speech events within the

range of index a over which the sum is carried out. On setting the
partial denivatives of £ with respect to the coefficients a; oqual to
2ero, we obtain a set of simultancous lincar equations

~
TanY o (n)e,(n) = T y,(n)e,(n). 1€r &M, 1€iLp, (17)

L) [

which can be solved for the unknown cocfficients a, .
Iterative Refinement of $,(n)’s and ay's

Figurc 4 shows a plot (solid line) of the interpolation functions
#,(n), obuined from the above procedure, for the example illus-
trated in Fig. 3. The actual functions ¢, (n) are siso shown as
dasbed curve on the same plot. The sgreement between the two is
close except for the presence of a number of small rippies and the
narrowing of the major lobe. The mean-squared criterion used for
the distance function shown in Eq. (7) is a contributing factor for
these differences. We discuss bere an iterative refinement procedure
for obtaining better estimates of ¢, (n) and a,. For a given set of

ICASSP 83, BOSTON

/‘I"“

,hlm

$3(n)

Fig. 4. Piots of the interpolation functs btained by 1 &
position of the curves shown in Fig. 3(a). mmuwmmm
actus] basis functions illustrated ia Fig. 3(b).

aa. we determine ¢, (n) to minimize the error E given in Eq. (16).
This is done by setting the partia! derivatives of E with respect to
#:(n) equal to zero. One then obtains

80 - Taamlnlla, =0, 1<r <M. (IB)
3, (n) =1 ‘ aet ) !

which further simplifies to

o0 =15y,0a, - Zaw Sone1/18a01 a9
(L]} {=l =1

Since the the coding of minor -lobes of ¢(n) can use s significant
number of bits, we retain only the major lobe of the interpolation
functions and set the functions equal 1o zero every where clse. The
resultant ¢, () are used again in Eq. (17) 1o obtain an even betier
estimate of a,. The procedure is repeatod until the decrease in error
E, as defined in Eq. (16), falls below a predetermined threshold
value. Four iterations sre usually sufficient to converge both a,; and
1 (n) to stable set of values.

OG‘ T 1Ty T T T T T Y

o TTITiERS nN\

ML L
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Fig. 5. Plot of the riming function »(/) for the utteramce “Joe brought
8 young giri” shown ia Fig. 1.

L]
RESULTS

The sbove procedure was carried out on scveral sentences spoken
both by male and female speakers. We present results bere for one
sentence “Joc brought a young girl” spokea by s male speaker. The
timing function »{/) defined in Eq. (15) is ibustrated in Fig. 5. A
pew value of #{/) was computed omce every 10 msec. Each zero
crossing from positive (0 ncgative values indicates the locatioa of a
spoech cvent. The zero crossings going from negative side to positive
side signify a rapid shift from one ¢(n) 10 the aext. This shifi is
very sharp as expeciod. The function »(/) heas i towl of 23
negative-going zero crossings. The interpolation fuscticas ¢(s)
located at thess time instants are shown ia Fig. 6 togetber with the
corresponding  spooch waveforms. As expected, the interpolstion
functions for short transient sounds last over a short time isterval
while the isterpolation functions for relatively stationary vowel
sounds last over s much loager time isterval.
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Figure 7 shows the first 8 log area parameters and the rms value
as a function of time for the utterance shown in Fig. 6. Th¢ solid
curve shows the original arcas determined by LPC analysis of the
speech wave. The dashed curve shows the approximation of each
yi(m) by the additive model defined in Eq. (1). The results for the
remaining 8 log areas are similar. As can be seen, the agreement
between the model and the actual results is very good.

Bist Rate Required 10 Encode Area Parameters

The interpolating functions in genecral vary smoothly as a func-
tion of time. We have determined the bandwidth of each interpolat-
ing function from its amplitude spectrum. An eflective bandwidth
for each spoctrum can be defined as the frequency at which the
amplitude spectrum falls to 1720 of its valuc at d.c. We find that an
average of 4 samples per ¢, (n) are noeded to sample the function at
the Nyquist rate.

It is sufficient to encode each sampie of ¢;(n) at 4 bits/sample
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Fig. 7. Plot comparing the model-goneratod area parameters (dashed
curve) with the actual arcas (solid curve) of Fig. 1.

10 keep the error in the log area parameters to be less thas 0.10.
Thus the total number of bits required 10 encode each ¢, (n) is 16
bits.

For each k, the coefficients ay need t0 be coded with the same
accuracy as a single frame of log arca psrameters. With scalar
quantization, we find that 48 bits/frame are sufficient {4). Recent
work on vector quantization suggests that aumber of bits/frame can
be roduced evea furtber {6).

The total information rate for eacoding of log area parameters
depends upon the aumber of speech cvents (or sounds) spokea per
second. For slow speaking rate, this number is abowt 10. Asswming
S bits to represent the location of each ¢, the bit rase for coding both
eu and ¢, (n) will then be (48 + 16 + 5) = 690 bits/sec. The bit
rate would increase 10 1035 bits/soc for a speaking rate of 13 sounds
per sec.
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