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We investigate protein purification operations conducted by biomanufacturers and pharmaceutical compa-

nies as part of their research and development efforts. Purification of these proteins involve unique challenges,

such as, balancing the yield and purity trade-offs, dealing with uncertainty in the starting material, and

estimating the impact of several interlinked decisions. We develop a Markov decision model and partition

the state space into decision zones that provide managerial insights to optimize purification operations.

We develop practical guidelines to quantify financial risks, and characterize the optimal operating decisions

based on specific production requirements. The optimization framework has been implemented at Aldevron,

a contract biomanufacturer specializing in proteins, and has resulted in 25% reduction in the total lead times

and 20% reduction in the costs of protein purification operations on average.
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1. Introduction

Recent advances in biomanufacturing have led to novel proteins used in the treatment of cardiovas-

cular diseases, autoimmune disorders and cancer. In this paper, we focus on protein manufacturing

operations in the pharmaceutical research and development. These proteins are often engineered

for a specific end use or application. For example, a pharmaceutical company could subcontract

the manufacturing of a recombinant protein to a biomanufacturing firm as part of its research

and development efforts. Manufacturing of this protein at the biomanufacturing firm would then

involve specialized fermentation operations followed by several purification operations. Our scope

in this paper is the protein purification operations. In practice, purification of engineered proteins

could be challenging for several reasons. For example, individual proteins have unique chemical and

physical properties, and their end use sets constraints on the production methods needed to satisfy
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Table 1 Current and proposed workflow for purification development

Current workflow Scouting runs → Validation runs → Production run
1 week, $3x cost 1-2 weeks, $3x cost 1-2 weeks, $4x cost

Proposed workflow Scouting runs → Optimization Model → Production run
1 week, $3x cost ≤ 1 day, ≤ $0.1x cost 1-2 weeks, $4x cost

rigorous approval processes. Further, a purification order often has an associated yield requirement

(i.e., the desired amount of the protein of interest) and a purity requirement (i.e., the minimum

acceptable quality). The customer typically would not purchase the batch of proteins if it fails to

meet the purity requirement. However, they might be willing to accept yield shortages at a penalty

cost as long as the purity requirement is satisfied.

Table 1 presents a typical workflow to purify an engineered protein. Upon the receipt of an

order, the scientist at the biomanufacturing firm starts performing scouting runs at small scale.

Scouting runs represent a set of experiments where the scientist collects data about the purification

attributes of this protein on several alternative chromatography techniques. Once the performance

of available chromatography techniques have been identified with respect to the protein of interest,

the scientist performs validation runs. The role of the validation runs is to mitigate risks and

quantify the yield and purity expected in the subsequent production runs at larger scale. For

this purpose, the scientist conducts several what-if experiments to explore the performance of

alternative operating policies that could potentially achieve the specific requirements on yield and

purity. Once the best operating policy is identified, the production run is performed at larger

scale to achieve the end product that satisfies the specific production requirements. The overall

process often takes 3 to 5 weeks due to the experimental nature of the purification development.

Further, the scouting and validation runs could be as expensive as the production runs themselves.

While the scouting and production runs are inevitable for engineered proteins, we believe that the

intermediate validation runs present a significant opportunity for reducing lead times and costs

through application of the operations research techniques. One of the main objectives in this study

is to develop an optimization model that uses the information obtained from scouting runs and

identifies the optimal purification polices for the production runs, thereby reducing costs and lead

times. As shown in Table 1, reducing the time spent in the validation runs could improve the total

cost and lead time up to 33% while also freeing up the associated capacity.

Protein purification operations involve several operational challenges in practice, such as, yield

and quality trade-offs, randomness in the starting material, expensive labor and equipment costs,

and large penalty costs when the production requirements are not satisfied. Randomness in the

starting material along with the limitations in chromatography techniques impose significant chal-

lenges in meeting the predetermined requirements on purity and yield. For example, if the starting
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material does not have enough protein and/or has excess amount of impurity, then the specific

requirements on the final purity and yield might never be satisfied, even though the biomanu-

facturer takes the optimal courses of purification actions. In such circumstances, committing to

the purification order could substantially hurt both the client and the biomanufacturing firm. As

pointed out by our industry collaborator, Tom Foti, the Vice President of Aldevron, predicting the

failures “earlier than later” is critical.

In this paper, we provide an optimization framework that quantifies the risks and costs in protein

purification operations and answers the following questions: (i) For a given starting material, can

the biomanufacturer use the information from scouting runs to determine whether the purity and

yield requirements specified by the customer are achievable at all? Can we provide performance

guarantees for achieving these specific production requirements? Can we develop guidelines on the

starting material to predict the batch failures? (ii) How easy or complex is the purification process

likely to be, based on the starting material and purification capabilities of the chromatography

techniques? How can the total profit be maximized for each purification order? By answering these

questions using an optimization framework, we believe that biomanufacturing firms can signifi-

cantly improve their profitability and reduce their lead times in protein purification operations.

To answer these questions, we analyze the protein purification problem using the dynamic pro-

gramming approach. Our contributions are as follows: First, we investigate the structural properties

of the state space, and partition the state space into decision zones having similar financial char-

acteristics. More specifically, the decision zones provide a rigorous and formal assessment of the

starting material, manufacturing capabilities and business risks at the beginning of each chro-

matography step. Next, we propose a zone-based decision making approach which is particularly

useful in practice since it provides optimal policies based on the condition of the starting material.

Insights from the structural analysis are then used to develop a state aggregation and an action

elimination scheme that leads to computational advantage in solving realistic industry problems.

A key aspect of our work is that we not only provide optimal purification policies using stochas-

tic optimization, but also provide guaranteed performance using a worst-case analysis approach to

generate the decision zones. We adopt this strategy because of the randomness, high operating

costs, and penalty costs involved in industry practices. Biomanufacturing companies often need

guaranteed performance measures to ensure profitability and customer satisfaction. Our optimiza-

tion model provides practical guidelines to evaluate the profitability and failure risk of a starting

material provided by a customer. To our knowledge, such guaranteed performance measures have

not been investigated yet in the context of biomanufacturing.
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Figure 1 Typical manufacturing stages in biomanufacturing

This research is an outcome of an ongoing multi-year collaboration with Aldevron (2013-2016).

Aldevron (www.aldevron.com) is a contract biomanufacturing firm specializing in a variety of ser-

vices including plasmid DNA, protein production services and antibody development. At Aldevron’s

daily operations, the optimization framework has been in use for all R&D protein purification

projects since October 2014. The implementation has resulted in an average of 25% reduction in

the total lead times and 20% reduction in operating costs required in protein purification, as dis-

cussed in Sections 7-8. Our research outcomes have also been shared and validated with a larger

biomanufacturing community (BioWGS 2014, BioForward 2016). Through industry implementa-

tion, we observe that the optimization framework has the potential for significantly reducing if

not eliminating the validation runs. Our study is one of the first attempts to apply operations

research concepts to purification of engineered proteins, and combines the knowledge from chemical

engineering and stochastic modeling to derive guidelines that improve industry practices.

The remainder of the paper is organized as follows. Section 2 provides a background on purifi-

cation operations and introduces the trade-offs and challenges. We develop a mathematical model

in Section 3, and analyze its structural properties in Section 4 and Section 5. We present a state

aggregation and action elimination scheme in Section 6. We discuss the implementation of the

optimization model in Section 7 and Section 8, and provide concluding remarks in Section 9.

2. Background in Protein Purification

A typical biomanufacturing process consists of upstream fermentation operations where bacteria

or eukaryotic cells produce the proteins of interest, and downstream purification operations where

these proteins are purified through multiple chromatography steps (See Figure 1). The primary

output of fermentation is a batch mixture that includes the protein of interest and significant

amount of unwanted impurity derived from the host cells or fermentation medium. After fermen-

tation, this batch must be purified using multiple chromatography steps (typically, 2 to 6 steps)

based on specific production requirements. The objective of each chromatography operation is to

separate the protein of interest from unwanted impurity to achieve the desired purity level. In this

paper, we focus on optimizing protein purification decisions related to chromatography operations.

We first provide a brief background on chromatography operations, and then introduce the process

trade-offs and operational challenges in practice.
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Figure 2 An example of chromatography output

2.1. Chromatography Operations

Chromatography is one of the most common but also most challenging operations in biomanu-

facturing (Polykarpou et al. 2011, Liu et al. 2014). The objective of chromatography operations

is to separate the protein of interest from unwanted impurities to meet a predetermined purity

requirement specified by the end use or application. Purity represents the ratio of the total amount

of protein of interest to the total amount of both protein and impurity contained in a batch. Purity

requirement is defined by the end use or application of the purified protein. For example, a protein

used in the treatment of a disease must be highly pure (i.e., 99.9% purity), whereas a protein used

for a feed study in biomanufacturing could have lower purity requirement (i.e., 85% purity).

Chromatography operations are performed in a cylindrical column that is packed with special

resins that bind to either the protein of interest or impurities. Chromatography techniques rely on

the difference in physico-chemical characteristics between the proteins and impurities to separate

one from other, i.e., difference in molecular weight, shape, charge, hydrophobicity, and affinity for

a ligand. For example, gel filtration chromatography separates the target protein from impuri-

ties based on differences in size and shape, whereas ion-exchange chromatography relies on the

difference in electric charges. Most purification projects in research and development involve 2

to 3 chromatography steps, but in some cases they could require up to 6 chromatography steps.

Each chromatography step often takes 6 to 8 hours or more, depending on the physico-chemical

characteristics of the starting material, production requirements, and the process conditions.

Figure 2 (a) presents an example of chromatography data. This example uses the differential

affinity of proteins to divalent metal ions as the separation principal. The y-axis in Figure 2 (a)

denotes the molecular size. Each column on the x-axis is called a lane, and can be thought as
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equivalent to a discrete time interval (i.e., close to 1 minute in practice). Each lane consists of some

amount (mass) of the protein of interest and impurity. The size of the white pixels in Figure 2 (a)

is correlated with the amount of the protein of interest and impurity contained in each lane.

The chromatography data in Figure 2 (a) is often translated into Figure 2 (b). The y-axis in

Figure 2 (b) represents the expected fraction of the total mass of protein and the expected fraction

of the total mass of impurity at each lane. For example, the second lane in Figure 2 (b) is expected

to contain 3% of the total protein mass and 25% of the total impurity mass. Note that the sum

of expected fractions at a specific lane does not necessarily need to be equal to 1. However, the

sum of expected fractions over all lanes need to be equal to 1 for the protein of interest, and

similarly for the impurity. The first and third lane in Figure 2 represent the load and the marker

lane, respectively. These lanes serve as a reference point for data analytics, and do not represent

the actual outcome of a chromatographic separation. Therefore, both of the protein and impurity

fractions in these lanes are plotted as zero in Figure 2 (b).

2.1.1. Yield and Purity Trade-offs The scientist performing the chromatography step must

decide which lane to ‘pool’. In this example, the scientist can choose to pool any consecutive lanes

between lanes 4 and 13. For instance, lanes 5-10, lanes 6-9, and lanes 7-8 are examples of candidate

pooling windows. In practice, the scientist often confronts with a challenging trade-off between the

yield and purity at each chromatography step (Ngiam et al. 2003, Muller-Spath et al. 2013, Subra-

manian 2014). For example, consider lanes 6-9 and lanes 7-8 in Figure 2. Lanes 6-9 are expected to

yield 16.4 milligrams (mg) of protein and 18.3 mg of impurity, leading to 47% purity. On the other

hand, lanes 7-8 are expected to result in 10.2 mg of protein and 10.5 mg of impurity, leading to 49%

purity. If the scientist pools the lanes 6-9, she collects larger fraction of protein along with larger

fraction of impurity. However, if she pools the lanes 7-8, she collects smaller fraction of impurity

at the expense of smaller fraction of protein. This illustrates one of the main trade-offs related

with yield and purity of a chromatography step. Depending on the outcome of a chromatography

step, the scientist could make decisions regarding the chromatography technique and the pooling

window for each chromatography steps. In fact, identifying the sequence of chromatography tech-

niques itself is a separate optimization problem. However, we consider purification settings where

this sequence is predetermined based on scouting runs, and focus on the problem of selecting the

best pooling window at each chromatography step.

2.1.2. Challenges in Practice Main challenges in chromatography operations can be sum-

marized as follows: (1) Yield and purity trade-offs. Each order is associated with predetermined

yield and purity requirements. However, the scientist often needs to compromise on the protein

yield to achieve the desired purity level. (2) Engineered proteins. Each order is unique such that
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the scientist re-engineers and manufactures each order for the first time. This requires to eval-

uate each order independently, unlike mass production. (3) Uncertainty. The amount of protein

and impurity obtained at each chromatography step involves uncertainty due to the underlying

biology and chemistry of the purification process, (4) Interlinked decisions. Purification involves

multiple chromatography steps in series. The output of each step affects the possibility of suc-

cessfully attaining the yield and purity requirements. (5) Starting batch. The starting material is

manufactured through fermentation, and the scientist involved in purification might have limited

control over it. Fermentation operations often use bacteria or eukaryotic cells to manufacture the

starting material. The use of live cells introduces variability in the amount of protein and impurity

obtained from the fermentation operation. These in turn affect the subsequent chromatography

decisions. (6) Problem size. The problem involves large state and action spaces, challenging the

decision making in practice. For example, the state space is typically in terms of milligrams and

the action space increases exponentially in the number of chromatography steps.

2.2. Prior Work

Relevant prior work belongs to two categories: the literature on dynamic programming and the lit-

erature on chromatography operations. Bertsekas and Rhodes (1971), Puterman (1994), Bertsekas

(2012) provide excellent overview of the dynamic programming approach. However, applications of

the stochastic optimization methodologies in the context of protein purification are limited in the

existing operations research literature. Therefore, the rest of our literature review mainly focuses

on relevant optimization models from the chemical and biological engineering literature.

Several studies quantify the trade-off between purity and yield in chromatographic separation

using physicochemical data of protein mixtures (Ngiam et al. 2001, 2003, Salisbury et al. 2006,

Kraattli et al. 2013, Muller-Spath et al. 2013). Such process trade-offs obtained from chromatog-

raphy data are often used as input for optimization models. For example, Vasquez-Alvarez et al.

(2001) develop two mixed integer linear programming (MILP) models to determine the optimal

synthesis of multi-step chromatography operations. One of the proposed MILP models focuses on

minimizing the number of chromatography steps to achieve a desired purity level, whereas the other

MILP model maximizes the final purity of a batch. Vasquez-Alvarez and Pinto (2003) extend this

work by incorporating the yield and purity trade-off in a MILP model that identifies the optimal

choice of chromatography techniques to achieve specific purity and yield requirements. Polykarpou

et al. (2011) consider the problem of identifying the optimal pooling window, and develop a MILP

model that minimizes the number of chromatography steps through optimal starting and finishing

cut points. The proposed optimization model is then extended in Polykarpou et al. (2012) using
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approximation techniques to overcome computational challenges. Note that aforementioned stud-

ies aim to minimize the number of chromatography steps but do not account for costs related to

shortage (lost sale) and failures. Furthermore, MILP models assume that the outcome of a chro-

matography step is certain but our industry collaborators indicate that they all have a degree of

uncertainty which challenges the decisions in practice.

In addition to the MILP models, there are studies that investigate cost reduction strategies in

chromatography operations. For example, Simaria et al. (2012) propose a multi-level metaheuristic

procedure that minimizes production costs by optimal column sizing decisions. Similarly, a mixed

integer nonlinear programming model is developed by Liu et al. (2014) to minimize production

costs through optimal chromatography sizing and sequencing decisions (i.e., the optimal choice

of resins, column diameter, etc.). However, we observe that these studies focus on deterministic

settings, and develop strategies that reduce only production costs through optimal process design

(i.e., column sizing) or facility design decisions (Papageorgiou et al. 2001, Lakhdar et al. 2005).

Stochastic models for chromatography operations typically involve simulation of the biological

and chemical dynamics to predict the yield and purity outcomes (Zhou et al. 2005, Chhatre et al.

2007, Nfor et al. 2009). There are only a few studies that capture the risks and uncertainties

in biomanufacturing operations to determine cost reduction strategies. For example, Farid et al.

(2007) develop a hierarchical framework for modeling biomanufacturing operations using a simula-

tion software. The proposed framework is used to evaluate different alternatives on facility design,

process design and capacity allocation decisions based on several performance parameters, such as,

operating cost, lead time, and resource utilization. Similarly, Chhatre et al. (2006) develop a simu-

lation model to assess the sensitivity of product yields and process times to several chromatography

parameters such as affinity flow rate and matrix volume. Lim et al. (2006) and Martagan et al.

(2016) develop models to evaluate the risks and production economics of fermentation systems. In

the context of stochastic models, we observe that existing studies largely focus on simulation mod-

els to evaluate the risks and costs in biomanufacturing. Such simulation studies are not equipped

to answer critical research questions identified in Section 1, namely those related to providing

performance guarantees and determining optimal policies.

In this paper, we formulate a Markov decision model to optimize pooling windows and stopping

decisions in chromatography operations. We investigate the structural characteristics of the model,

and establish novel guidelines for practitioners. These guidelines provide a formal procedure to

assess the starting material based on uncertainties and costs involved in chromatography opera-

tions. To our knowledge, such guidelines and performance guarantees have not been studied in the

literature. We demonstrate the application of the model through implementation at Aldevron.



9

3. The Model

In this section, we formulate a finite horizon Markov decision model for purification decisions.

Decision epochs: T = {t : 1, . . . , T −1} denotes the set of decision epochs. Each decision epoch

t ∈ T represents the beginning of a chromatography step. Note that there are finite number of

chromatography steps, and its sequence is predetermined based on scouting runs. We let T be the

terminal step that corresponds to the end of the planning horizon. At step T , no chromatography

operations are performed, and the batch is either shipped to the customer or scrapped.

States: The state space is defined as X = P × I ∪∆. The state pt ∈ P denotes the amount of

protein of interest available in the batch at the beginning of tth chromatography step. Similarly,

state it ∈ I represents the amount of impurity at the beginning of tth chromatography step. Note

that the starting material of the purification project is (p1, i1) ∈ P × I and corresponds to the

protein and impurity amounts obtained from fermentation operations. A batch has the maximum

possible amount of protein and impurity at the beginning of the first chromatography step, and

hence 0≤ pt ≤ p1, 0≤ it ≤ i1 at t ∈ T ∪ T . In practice, the amount of protein and impurity often

ranges between milligrams and grams depending on the end use or application. The state ∆ is

defined as the stopping state for the project, and represents a batch which is either ready to be

shipped to the customer or scrapped. The state ∆ is an absorbing state with no rewards.

Actions: The action space is defined as At =Wt ∪ S. Let at(pt, it) denote the action selected

at state (pt, it) at the beginning of chromatography step t ∈ T . The action wt ∈Wt denotes the

pooling window wt corresponding to the chromatography step t∈ T . Let Lt denote an ordered set

of lanes available at each chromatography step t, where Lt = {1,2, . . . ,Lt}. Then, a pooling window

wt corresponds to a subset of consecutive lanes from the set Lt, where the set of all possible pooling

windows at a chromatography step t ∈ T is Wt =
{

(i, . . . , j) ⊆ Lt : j = i+ k, i = {1, . . . ,Lt}, k =

{0,1, . . . ,Lt − i}
}

. The total number of possible pooling windows at each chromatography step

t ∈ T is denoted by Nt. Note that Nt is finite and bounded. The action S represents the action

of stopping the purification process. Once the purification stops, the batch is either shipped or

scrapped. The operator can decide to stop the purification at the beginning of any chromatography

step t ∈ T . Note that, at the terminal step T , the only available action is to stop, aT (pT , iT ) = S

for all (pT , iT )∈P ×I. Similarly, at(∆) = S for all t∈ T ∪T .

Transitions: The transition probabilities are defined based on the mathematical models for

chromatography operations (Vasquez-Alvarez et al. 2001, Salisbury et al. 2006, Polykarpou et al.

2011). We adopt these models to identify the amount of protein and impurity that remain in the

batch after completion of the chromatography step t ∈ T . At each chromatography step t ∈ T , a

random fraction Ψt|wt of the impurity is carried over the next chromatography step t+ 1 when
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the pooling window wt is selected, implying that the remaining amount of impurity was eliminated

by the chromatography step t. The random fraction Ψt|wt has distribution gt(·|wt) with finite

support [ψlt|wt,ψut |wt] for all wt ∈Wt, t∈ T . If the scientist chooses the pooling window wt at the

chromatography step t and the realization of the random fraction is ψt|wt, then the impurity state

at the beginning of the chromatography step t+ 1 is

it+1 = (ψt|wt)it. (1)

Similarly, at each chromatography step t∈ T , a random fraction Θt|wt of the protein of interest

is carried over the next chromatography step t+1 when the pooling window wt is selected, implying

that the remaining amount of the protein was eliminated during that chromatography step. The

random fraction Θt|wt has distribution ft(·|wt) with finite support [θlt|wt, θut |wt] for all wt ∈Wt, t∈

T . Therefore, if the scientist pools the window wt at the chromatography step t and the realization

of the random fraction associated with the protein is θt|wt, then the protein state at the beginning

of the chromatography step t+ 1 is

pt+1 = (θt|wt)pt. (2)

The probability density functions ft(·|wt) and gt(·|wt) and their finite support can be different for

each chromatography step t∈ T , depending on physico-chemical characteristics of the proteins and

impurities, and specific chromatography technique used at each step. We assume that Θt and Ψt

are independent based on the fact that proteins of interest and impurities have distinct physical and

chemical characteristics (Vasquez-Alvarez et al. 2001, Polykarpou et al. 2011). Chromatography

techniques mainly differ in terms of how they exploit these unique characteristics to separate

proteins from impurities. In practice, the probability density functions ft(·|wt) and gt(·|wt) and

their finite support can be determined from scouting data collected as per recommended guidelines

(Ellison and Willams 2012, ISO21748 2010).

One of the key performance measures for a chromatography technique is its purification capability

under a pooling window. The purification capability is determined based on the fractions of protein

and impurity that remain in the batch after performing a chromatography step. For example,

(θut ,ψ
l
t|wt) represents the best possible purification capability of the chromatography step t under

the pooling window wt. Whereas, (θlt,ψ
u
t |wt) denotes the worst possible purification capability of the

chromatography step t under the pooling window wt. We define (θ̄t, ψ̄t|wt) as the mean purification

capability of chromatography step t under pooling window wt. The purification capabilities are used

to generate performance guarantees in Section 4 and Section 5. Note that the system transitions

from state (pt, it) ∈ P ×I to the stopping state ∆ when the purification project is terminated at
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chromatography step t∈ T or at the terminal step T . This ensures that the decision making process

is finalized since the state ∆ is an absorbing state with no rewards.

Purity Requirement and Costs: The quality of a batch at chromatography step t is measured

in terms of its purity, defined as γt = pt
pt+it

for (pt, it)∈P×I and t∈ T ∪T . Batch purity is a critical

performance measure, and a minimum purity level γd is part of the production requirement specified

by the end use or application. Customers would not purchase the batch if it does not satisfy the

purity requirement (i.e., γt < γd). Therefore, only batches that meet the purity requirement (i.e.,

γt ≥ γd) are shipped to the customers. The purity requirement could range from 85% to 99.9% based

on specific characteristics of each order. Biomanufacturing firms often do not receive additional

rewards for attaining purity levels higher than the minimum requirement γd.

Operating costs of a chromatography step t is denoted by ct, and include raw material costs

(resins and buffers), equipment and labor costs, and quality control costs (HPLC, analytics, doc-

umentation). Operating costs could be different at each chromatography step t based on the type

of resin, buffer, column, and other specifications of chromatography techniques used at each step

(Farid 2007, 2009). If the batch does not meet the minimum purity requirement after the comple-

tion of a purification project, a penalty cost of failure cf is incurred. The failure cost cf could vary

from company to company, and represents penalties associated with lost sales, loss of reputation

and its impact on future orders.

Yield Requirement and Stopping Costs: In addition to the purity requirement γd, each

order has a predetermined yield requirement pd specified by the end use or application. At the

completion of a purification project, the final reward obtained from a batch depends on its purity

and yield. Let r(pt) be a function that represents the revenue obtained from pt units of protein,

and c`(pd − pt) be a function that denotes the yield penalty cost in case pt < pd. Then, the final

reward rS(pt, it) obtained from stopping the purification process at state (pt, it)∈P ×I is

rS(pt, it) =

−cf if γt <γd,
r(pd) if γt ≥ γd and pt ≥ pd,
r(pt)− c`(pd− pt) if γt ≥ γd and pt < pd,

(3)

for t∈ T when at(pt, it) = S, and for t= T .

Equation (3) indicates that if the purity requirement is not achieved (i.e., γt <γd), the bioman-

ufacturer incurs a penalty cost cf . If the final batch satisfies the purity requirement and contains

more protein than the yield requirement (i.e., γt ≥ γd and pt ≥ pd), then the biomanufacturer

obtains a fixed revenue, r(pd), regardless of the protein amount manufactured in excess. This means

that the client does not pay for proteins produced in excess of the yield requirement. However,

if the batch meets the purity requirement but fails to achieve the yield requirement (i.e., γt ≥ γd
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and pt < pd), then the biomanufacturer obtains a revenue r(pt) which is a function of the protein

amount produced, and incurs a yield penalty cost c`(pd − pt) for the amount of protein in short.

The function r(pt) is non-decreasing in pt, and c`(pd − pt) is non-increasing in pt for pt < pd and

γt ≥ γd at chromatography step t∈ T ∪T . The term r(pt)− c`(pd− pt) can be negative depending

on the amount of protein in short when γt ≥ γd and pt < pd at t∈ T ∪T . Note that r(pd)< cf and

0< r(pd)−
∑T−1

t=1 ct. The stopping state ∆ is an absorbing state with no rewards, rS(∆) = 0. This

implies that if the purification project is terminated at chromatography step t ∈ T or at the end

of the planning horizon T , then the stopping costs described in Equation (3) are incurred, and the

system transitions to the stopping state ∆ where the decision making process terminates.

The Value Function: We formulate a finite horizon non-discounted Markov decision model

with the following value function Vt(pt, it) for all (pt, it)∈P ×I:

Vt(pt, it) = max
wt∈Wt

{
rS(pt, it), −ct + E

θt,ψt|wt

Vt+1(θtpt,ψtit)
}
, for t= {1, . . . , T − 1}, (4)

VT (pT , iT ) = rS(pT , iT ), (5)

where the expectation is based on the probability distribution f(·|wt) and g(·|wt), i.e.,

E
θt,ψt|wt

Vt+1(ptθt,ψtit) =

∫ ψu
t |wt

ψl
t|wt

∫ θut |wt

θlt|wt

ft(θt|wt)gt(ψt|wt)Vt+1(θtpt,ψtit)dθdψ. (6)

Note that Vt(∆) = 0 for t ∈ T ∪ T . Let π∗t denote the optimal purification policy from step t ∈ T
until the end of planning horizon T . If w∗t maximizes the right hand side of Equation (4) for each

(pt, it) and t, the policy π∗1 = {w∗1, . . . ,w∗T} is optimal (Puterman 1994).

The purity and yield requirements are not modeled as explicit constraints in the mathematical

model. Instead, they are captured through the stopping cost structure in Equation (3), which

leads to a more realistic and flexible approach than imposing constraints on the final state. In

practice, customers often understand the challenges involved in biomanufacturing operations, and

they would be willing to compromise on the yield requirement at a certain penalty cost. In alignment

with practice, the model allows shortages at the cost of penalty cl(·), and implicitly captures the

stringent purity requirement via the failure cost cf . The model allows flexibility in stopping the

purification project without meeting the customer requirements, which aligns with the notion of

‘failing earlier than later’. We do not consider the discount factor in our model formulation because

purification operations represent a short-term planning horizon compared to the overall protein

manufacturing lead time. In this setting, discounting the value function could lead to a bias in

decision making. Further, a finite horizon optimization model for each batch is reasonable since

the motivating industry setting involves contract biomanufacturers where each batch represents an

engineered protein uniquely made for a customer order.
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4. Structural Analysis of the State Space: Decision Zones

In this section, we investigate the structural properties of the state space and provide guidelines to

quantify risks and costs associated with chromatography operations. We partition the state space

into decision zones (namely failure zone in Section 4.1, target zone in Section 4.2 and risk zone in

Section 4.3) and establish performance guarantees based on these zones. To do so, we first establish

some important structural properties of the value function in Proposition 1.

Proposition 1. The value function Vt(pt, it) is nondecreasing in pt ∈P for a given it ∈ I, and

nonincreasing in it ∈ I for a given pt ∈P, for all t∈ T ∪T .

Proof See Appendix.

Monotonicity of the value function in Proposition 1 implies that the optimal profit obtained

from a batch never decreases as the protein amount increases, and never increases as the impurity

amount increases. Note that Proposition 1 holds for any probability density functions ft(·) and

gt(·) as long as they are well behaved (i.e., finite moments). In subsequent sections, we use the

monotonicity of the value function to identify several structural properties of the state space.

4.1. Failure Zones

We analyze the minimum purity and yield required at the beginning of chromatography step t∈ T ,

such that, the biomanufacturer has no financial incentives to perform the purification if the batch

does not meet these minimum requirements.

Theorem 1. [Failure Zone] The optimal policy has the property that for some (p′t, i
′
t) ∈ P × I

where p′t
(p′t+i

′
t)
< γd, the optimal action is a∗t (pt, it) = S for all pt ≤ p′t and it ≥ i′t at chromatography

step t∈ T .

Proof See Appendix.

Theorem 1 indicates that the biomanufacturer should stop the purification and scrap the batch,

if the starting material does not satisfy some requirements on the amount of protein and impurity

needed prior to running the chromatography step. More specifically, Theorem 1 shows that there

exists some threshold values (p′t, i
′
t) at chromatography step t∈ T , such that, it is optimal to stop

the purification if the state (pt, it) of the starting material is pt ≤ p′t and it ≥ i′t. Note that Theorem 1

does not require any specific knowledge of the probability density functions ft(·) and gt(·); and

only uses the monotonic behavior that follows from Equations (1)-(2), i.e., pt+1 is non-decreasing

in pt for a given θt|wt at chromatography step t ∈ T . Based on the insights from Theorem 1,

we define the failure zone Ft of chromatography step t ∈ T as a set of states (p′t, i
′
t) where the

optimal action is to stop the purification for all pt ≤ p′t and it ≥ i′t despite p′t
p′t+i

′
t
< γd. Therefore,
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Figure 3 An example of the zones for a chromatography step using industry data

Ft = {(p′t, i′t) ∈ P × I : a∗t (pt, it) = S for all pt ≤ p′t and it ≥ i′t;
p′t

(p′t+i
′
t)
< γd} is the failure zone at

chromatography step t∈ T . Figure 3 illustrates an example of the failure zone using industry data.

Next, Proposition 2 characterizes the failure zone Ft at chromatography step t ∈ T in terms of

the costs and the best purification capabilities of chromatography steps t, t+ 1, . . . , T − 1.

Proposition 2. A batch state (pt, it) ∈P ×I with pt
(pt+it)

< γd belongs to the failure zone Ft at

chromatography step t∈ T , if either of the following conditions hold:

(i) it > pt
1− γd
γd

∏
wj

(θuj |wj)
(ψlj|wj)

for all πt = (wt,wt+1, . . . ,wT−1),and j = {t, . . . , T − 1},

(ii) r
(
pt
∏
wj

(θuj |wj)
)
− cl

(
pd− pt

∏
wj

(θuj |wj)
)
< ct− cf and it ≤ pt

1− γd
γd

∏
wj

(θuj |wj)
(ψlj|wj)

for all πt = (wt,wt+1, . . . ,wT−1),and j = {t, . . . , T − 1}.

Proof See Appendix.

Condition (i) in Proposition 2 represents the case where the purity requirement lies outside the

purification capability of all possible pooling windows wj ∈Wj available in the subsequent chro-

matography steps j = t, . . . , T − 1. Condition (ii) corresponds to the case where none of the purifi-

cation strategies wj available in the subsequent steps j = t, . . . , T − 1 provide adequate financial

incentives for continuing the purification process. Note that Proposition 2 provides a performance

guarantee using the best possible realizations of the purification outcomes (θut ,ψ
l
t|wt) across all

pooling windows wt at all chromatography steps t ∈ T . This analysis yields a conservative clas-

sification of states in Ft, i.e., it identifies the states where failure or abandoning the purification

is the best action. In practice, the value of the failure zone is to acknowledge the failure prior to
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committing resources. Identifying the failure zone can help the biomanufacturer convince the client

that failure is unavoidable, and might help redefine the expectations from the project.

4.2. Target Zones

We characterize a particular subset of the state space called the target zone Tt at chromatography

step t ∈ T . The target zone Tt represents a set of states (pt, it) ∈ P × I, such that, if (pt, it) ∈ Tt
at the beginning of chromatography step t ∈ T , then both of the yield and purity requirements

can be achieved with certainty by the end of the planning horizon T given that the optimal

pooling windows are chosen at each chromatography step t, . . . , T −1 (See Section 5 for a discussion

on the optimal pooling windows). Such guaranteed performance measures are critical in most

biomanufacturing applications to justify customer expectations and guard against manufacturing

inefficiencies. To characterize the target zone Tt at chromatography step t, we use recursion based

on the worst possible outcomes corresponding to each pooling window wt ∈Wt at chromatography

steps t, t+1, . . . , T−1. First, we define the terminal zone S of the purification project in Definition 1.

Definition 1. The terminal zone S corresponds to the set of protein and impurity states that

meet both of the yield and purity requirements specified by the end use or application, i.e.,

S=
{

(pt, it)∈P ×I : pt ≥ pd,
1− γd
γd

pt ≥ it
}

at t∈ T ∪T. (7)

It follows that, if the batch is in the terminal zone at the beginning of chromatography step t∈ T ,

i.e., (pt, it)∈ S, then the purification can be stopped at the chromatography step t, and the batch

can be shipped to the customer since it satisfies both of the yield and purity requirements. Clearly,

based on the terminal zone S in Definition 1, the target zone TT at the end of the planning horizon

T is TT =
{

(pT , iT ) ∈X : pT ≥ pd, 1−γd
γd

pT ≥ iT
}

. Next, we let X = [0, p1]× [0, i1] and characterize

the target zone Tt at each chromatography step t∈ T in Proposition 3.

Proposition 3. The target zone Tt at chromatography step t∈ T is defined as

TT =
{

(pT , iT )∈X : pT ≥ pd,
1− γd
γd

pT ≥ iT
}
, (8)

Jt,w =
{

(pt, it)∈X : pt =
pt+1

θlt|w
, it =

it+1

ψut |w
, (pt+1, it+1)∈Tt+1

}
for w ∈Wt, (9)

Tt =
⋃
w∈Wt

Jt,w for t= 1, . . . , T − 1. (10)

Proof See Appendix.

The target zone Tt in Proposition 3 is obtained recursively using the worst-case outcomes

(θlt,ψ
u
t |wt) for all pooling windows wt ∈Wt available in chromatography steps t, t+ 1, . . . , T − 1.

This enables to establish performance guarantees. Therefore, Proposition 3 implies that if a batch
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(pt, it) belongs to the target zone Tt at the beginning of chromatography step t, then there exists a

sequence of actions that will guarantee that both the yield and purity requirements can be achieved

by the end of the planning horizon T . Figure 3 demonstrates an example of the target zone for a

chromatography step using industry data. The following characteristics of the target zones follow

from Proposition 3, and provide important managerial insights (Bertsekas and Rhodes 1971):

(i) At the beginning of tth chromatography step, if the starting material (pt, it) belongs to the

target zone Tt, then the scientist can always guarantee that there exists at least one purification

strategy that leads to the terminal zone S by the end of the planning horizon T .

(ii) The target zone provides some threshold values (p̂t, ît) on the starting material (pt, it) at

chromatography step t, such that, if (p̂t, ît)∈Tt then (pt, it)∈Tt for all pt ≥ p̂t and it ≤ ît at t∈ T .

The characteristics listed above have practical implications for managing chromatography oper-

ations. For example, item (i) indicates that target zones provide performance guarantees in terms

of achieving both of the purity and yield requirements. Item (ii) indicates that the target zone

has a threshold-type structure, and hence can be easily interpreted and implemented in practice.

Due to limitations and inherent uncertainties of chromatography operations, such performance

guarantees are valuable for both the biomanufacturer and its client. For example, the potential for

eventual success provides visibility in the production pipeline and ensures customer satisfaction.

Most customers recognize the challenges involved in biomanufacturing operations and highly value

the analysis of such performance guarantees.

4.3. Risk Zones and Bounds on the Value Function

As a direct consequence of the target zone Tt and failure zone Ft at chromatography step t ∈ T ,

we define the risk zone, Rt =
{

(pt, it)∈P ×I : (pt, it) /∈ Ft and (pt, it) /∈Tt
}

at t∈ T . The risk zone

includes all states (pt, it) ∈ P ×I that are neither in the target zone Tt nor in the failure zone Ft
at the beginning of chromatography step t ∈ T . Next, we characterize the bounds on the optimal

value function V∗t (pt, it) based on the zones at each chromatography step t∈ T as follows:

V∗t (pt, it) =−cf for all (pt, it)∈ Ft, t∈ T . (11)
T−1∑
j=t

−cj + r(pd)≤V∗t (pt, it)≤ r(pd) for all (pt, it)∈Tt, t∈ T . (12)

−cf ≤V∗t (pt, it)≤ r(pd) for all (pt, it)∈Rt, t∈ T . (13)

Note that Equation (11) is a direct consequence of Theorem 1. Similarly, the cost bounds on

the target zone in inequality (12) follow from Proposition 3 and the stopping cost structure in

Equation (3). The cost bounds on the risk zone in inequality (13) follow from the monotonicity

of the value function in Proposition 1 and the definition of the failure and target zones. These
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bounds provide managerial insights to quantify the risks and costs of states within each zone. For

example, a stating material which an element of the failure zone will result in large penalty cost

−cf ; whereas a starting material in the target zone can lead to a large reward up to r(pd). On the

other hand, a batch that is in the risk zone Rt at chromatography step t could either achieve the

purity and yield requirements or fail to do so leading to large penalties associated with shortage

costs or quality failures. Insights from the bounds are used in the structural analysis of the optimal

purification policies in Section 5, and also provide basis for a state aggregation scheme in Section 6.

5. Structural Analysis of the Optimal Policy

In this section, we identify the structural properties of the optimal policies by exploiting the

structural properties of the state space discussed in Section 4.

5.1. Optimal Policies in the Failure Zone and Risk Zone

Recall that, if the starting material is (p′t, i
′
t)∈ Ft at chromatography step t∈ T , Theorem 1 indicates

that the optimal policy is a∗t (pt, it) = S for all pt ≤ p′t and it ≥ i′t. In this section, we analyze the

structural properties of the optimal policy when the starting material is in the risk zone Rt at

chromatography step t∈ T . To do so, we first define the effective purity set Pt at chromatography

step t∈ T that corresponds to all protein-impurity pairs which can lead to the purity requirement

by the end of the planning horizon T . Let X = [0, p1]× [0, i1], then the effective purity set Pt at

chromatography step t is defined in Proposition 4.

Proposition 4. The effective purity set at the beginning of the chromatography step t is

PT =
{

(pT , iT )∈X :
1− γd
γd

pT ≥ iT
}
, (14)

Kt,w =
{

(pt, it)∈X : pt =
pt+1

θut |w
, it =

it+1

ψlt|w
, (pt+1, it+1)∈ Pt+1

}
for w ∈Wt, (15)

Pt =
⋃
w∈Wt

Kt,w for t= 1, . . . , T − 1. (16)

Proof See Appendix.

Note that if the state (pt, it) belongs to the effective purity set Pt at chromatography step t∈ T ,

then there exists at least one purification policy πt = {wt,wt+1, . . . ,wT−1} that could achieve the

desired purity level under the best purification capabilities. Note that Proposition 4 uses the best-

case realizations (θut ,ψ
l
t|wt) to ensure that the set Pt includes all states (pt, it) at chromatography

step t ∈ T from which the final purity requirement can be achieved by the end of the planning

horizon T . Proposition 4 is used to identify the characteristics of the optimal policy in Theorem 2.

Theorem 2. [Risk Zone] If (pt, it) ∈Rt at chromatography step t ∈ T and γt < γd, the optimal

action has the property that a∗t (pt, it) =
{
w∗t ∈Wt : (pt+1, it+1| pt, it,w∗t )∈ Pt+1

}
for all t∈ T .
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Theorem 2 indicates that if the batch state is in the risk zone Rt at chromatography step t,

then the optimal policy selects the pooling windows in such a way as to keep the batch state

(pt+1, it+1) within the effective purity set Pt+1 of the next chromatography step t+1∈ T . Theorem 2

provides guidelines to choose the best candidates for pooling windows in the risk zone. We note

that the purification example in Section 8 illustrates the lack of threshold-type optimal policies for

industry data. However, the guidelines obtained from Theorem 2 can help the scientists evaluate

and understand which pooling windows are good or bad choices for a chromatography step.

5.2. Optimal Policies in the Target Zone

We explore the optimal policies when the starting state of the batch is in the target zone at the

beginning of chromatography step t∈ T , i.e., (pt, it)∈Tt. We break this analysis into two cases: In

Case 1, the biomanufacturer is committed to meeting both of the purity and yield requirements,

and yield shortages are not allowed when (pt, it) ∈ Tt. In Case 2, yield shortages are permitted

even though the batch state is in the target zone, i.e., the biomanufacturer might meet the purity

requirement but not the yield requirement at the expense of incurring shortage penalties. First, we

define the problem of reachability of a target set (Bertsekas and Rhodes 1971), and then use the

characteristics of the reachability problem to identify the optimal policies in Case 1 and 2.

Definition 2. The target set TT is said to be reachable at step T from the state (pt, it) at chro-

matography step t∈ T , if there exists at least one sequence of pooling windows πt = (wt, · · ·wT−1)

such that the state (pT , iT ) of the dynamic system (pt+1, it+1) = (Θtpt,Ψtit|wt) is contained in TT
at step T for all possible purification outcomes at chromatography steps t, t+ 1, . . . , T − 1.

Definition 2 indicates that both of the yield and purity requirements are said to be reachable from

state (pt, it) and chromatography step t∈ T , only if there exists a pooling policy that attains these

minimum requirements by step T , despite incurring the worst possible purification capabilities in

all chromatography steps. As a direct consequence of Definition 2 and Proposition 3, we make the

following observation (Bertsekas and Rhodes 1971):

Observation 1. The target zone TT is reachable at step T from all points of the target zone Tt
defined in Proposition 3 for t= {1, . . . , T − 1}.

Observation 1 indicates that the yield and purity requirements can be attained by step T as long

as the batch state at the chromatography step t ∈ T is an element of the target zone Tt defined

in Proposition 3. Consequently, the reachability problem from chromatography step t to step T

can be reduced to the reachability problem from chromatography step t to chromatography step

T −1. Therefore, if the batch state (pt, it) is in the target zone Tt at step t∈ T , then there exists a
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sequence of actions such that the subsequent states (pt+1, it+1), . . . , (pT , iT ) are always in the target

zones Tt+1, . . . ,TT regardless of the disturbances in chromatography steps.

Optimal Policy for Case 1 (Yield shortage not allowed): We first investigate a special case

of the problem where the scientist has to perform chromatography steps in such a way as to satisfy

both of the yield and purity requirements at the end of the planning horizon T , if the starting

state (pt, it) at chromatography step t∈ T is an element of the target zone Tt. Then, the problem

is equivalent to the problem of reachability of a target set described in Definition 2. Characteristics

of the reachability problem are used to analyze the optimal pooling policies in Theorem 3.

Theorem 3. [Target Zone, Case 1] If (pt, it)∈Tt at chromatography step t∈ T and γt <γd, the

necessary condition of the optimal policy is a∗t (pt, it) =
{
w∗t ∈Wt : (θltpt,ψ

u
t it|w∗t )∈Tt+1

}
for t∈ T .

Proof See Appendix.

Theorem 3 provide guidelines to select the optimal pooling window wt at a chromatography step

t∈ T . Theorem 3 indicates that the optimal action at chromatography step t∈ T is to perform the

purification in such a way as to stay within the target zone Tt+1 of the next chromatography step

t+ 1 ∈ T when the batch state is in the target zone Tt at the beginning of chromatography step

t∈ T . Recursive application of Theorem 3 to all remaining chromatography steps indicates that, if

the batch state is (pt, it)∈Tt, then the optimal policy is to select the pooling windows in a way as

to ensure that the subsequent states (pt+1, it+1), . . . , (pT−1, iT−1) are in their respective target zones

Tt+1, . . . ,TT−1 in all subsequent chromatography steps t+1, . . . , T −1. Note that, if the initial state

of the batch is in its target zone, then the definition of the target zones in Proposition 3 ensures

that there exists at least one optimal policy that satisfies Theorem 3. Also note that the optimal

policy is to stop if the state (pt, it) is in the terminal zone S at chromatography step t∈ T .

Optimal Policies for Case 2 (Yield shortage allowed): We define a new reachability

problem by allowing yield shortages (i.e., pT ≤ pd) despite the batch state (pt, it) being in the target

zone Tt at chromatography step t∈ T . Compromising on yield might not be ideal, especially when

it is know that the batch state (pt, it) is in the target zone Tt. However, compromising on yield

could help reduce the number of purification steps in practice due to the purity-yield trade-off

described in Section 2. To analyze the optimal policies in Case 2, we relax the yield requirement

from Case 1. Then, the structural analysis becomes similar to Section 5.1, except that, we establish

guaranteed performance for achieving the purity requirement in Theorem 4. Let P̂T =
{

(pT , iT ) ∈

X : 1−γd
γd

pT ≥ iT
}

and Gt,w =
{

(pt, it) ∈X : pt =
pt+1

θlt|w
, it =

it+1

ψu
t |w

, (pt+1, it+1) ∈ P̂t+1

}
for w ∈Wt, and

hence P̂t =
⋃
w∈Wt

Gt,w for t= 1, . . . , T − 1. Then, Theorem 4 provides the necessary condition of

the optimal policy in the target zone (Case 2).
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Theorem 4. [Target Zone, Case 2] If (pt, it)∈Tt at chromatography step t∈ T and γt <γd, the

necessary condition of the optimal policy is a∗t (pt, it) =
{
w∗t ∈Wt : (θltpt,ψ

u
t it|w∗t )∈ P̂t+1

}
for t∈ T .

Proof See Appendix.

Note that Theorem 4 provides guaranteed performance for achieving the final purity require-

ment since it takes into consideration the worst-case realizations of the purification capabilities,

i.e., (θlt,ψ
u
t |w∗t ) for all wt ∈ T and t ∈ T . Note that the optimal policy is to stop when γt ≥ γd at

chromatography step t ∈ T . In Case 2, although the biomanufacturing firm has the capability of

achieving both the purity and yield requirements by T , the optimal policy can choose to reduce the

number of chromatography steps (and hence operating costs) at the expense of shortage penalties.

In practice, in order to maintain good long-term relationships with the customers, the biomanu-

facturing firm might decide to meet both of the yield and purity requirements whenever they can

– even if this decision might not be the best decision that increases the expected profit of a par-

ticular order. In such cases, the decision maker will proceed with the optimal policy suggested in

Theorem 3, instead of Theorem 4. In practice, note that the optimal policies and the optimal value

function can be determined for each protein and impurity pair contained on the state space by

solving the MDP model; whereas the target zones are generated based on the worst-case analysis

to establish performance guarantees.

6. State Aggregation, Action Elimination and Ordering Scheme

We use insights from the structural analysis of the state space to construct a state aggregation and

action elimination procedure for the Markov decision model to improve computational efficiency.

Recall that the state space is continuous, and the size of the action space increases exponentially in

the number of purification steps. Therefore, a state aggregation and action elimination procedure

could provide computational advantage in solving industry problems. Additionally, we define a

stochastic ordering scheme for the pooling windows wt ∈W at a chromatography step t∈ T . This

action ordering scheme provides a consistent method for labeling the pooling windows.

6.1. State Aggregation

The state aggregation scheme groups certain subset of the original system states into a single

aggregate state. We first define an aggregate state called the failure state dt at the chromatography

step t∈ T , and characterize the aggregation scheme for the failure state dt in Proposition 5.

Proposition 5. All batch states (pt, it) ∈ P × I that are an element of the failure zone Ft at

chromatography step t ∈ T can be grouped and viewed as a single state called the failure state dt

with reward r(dt) =−cf .
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Proof See Appendix.

Proposition 5 indicates that all original system states that are in the failure zone Ft can be

grouped and viewed as a single state, the failure state dt at the chromatography step t∈ T . Hence,

in the original problem, the failure state is an absorbing state with reward r(dt) =−cf .

Note that the bounds on the value function derived in Section 4.3 indicate that the optimal value

V∗t (pt, it) is constant over the (sub)set
{
1pt≤p′t,it≥i

′
t
|(p′t, i′t) ∈ Ft

}
of the original state space P × I

at each t∈ T ∪T , where 1 is the indicator function. More specifically, we have V∗t (pt, it) =−cf for

all (pt, it)∈ {1pt≤p′t,it≥i′t |(p
′
t, i
′
t)∈ Ft}. Since all protein and impurity pair that satisfy Proposition 5

are already an element of the failure zone Ft, the aggregation scheme in Proposition 5 is exact, in

the sense that the aggregate state dt encompasses subsets of the original system states that have

equal costs and transitions (Bertsekas 2012).

6.2. Action Elimination and Ordering

Next, we discuss an action elimination procedure in Proposition 6, which is then used to develop

a stochastic ordering scheme for pooling windows wt ∈Wt at chromatography step t∈ T .

Proposition 6. Let wit and wjt be two distinct pooling windows at chromatography step t ∈ T ,

such that, Ft(θ|wit) ≥st Ft(θ|w
j
t ), Gt(ψ|wit) ≤st Gt(ψ|wjt ), and (θlt|wit) < (θlt|w

j
t ), (θut |wit) < (θut |w

j
t ),

and (ψlt|wit)> (ψlt|w
j
t ), (ψut |wit)> (ψut |w

j
t ). Then,

(i) Vt(ptθt,ψtit|wit)< Vt(ptθt,ψtit|w
j
t ) for all (pt, it)∈P ×I at t∈ T .

(ii) The pooling window wit is said to be strictly dominated by the pooling window wjt at step

t∈ T , such that, a∗t (pt, it) 6=wit as a direct result of part (i), for all (pt, it)∈P ×I at t∈ T .

Proof See Appendix.

Conditions in Proposition 6 ensures that the pooling window wit leads to lower amount in protein

and higher amount in impurity compared to the pooling window wjt , given that both wit and wjt

have the same starting condition (pt, it) at the chromatography step t∈ T . Proposition 6 indicates

that the pooling window wit is expected to result in strictly lower profits than the pooling window

wjt for all (pt, it)∈P ×I at the chromatography step t∈ T , i.e., Vt(ptθt,ψtit|wit)< Vt(ptθt,ψtit|w
j
t ).

As a direct outcome, the pooling window wit can be eliminated from the set of actions Wt at the

chromatography step t. Let Ŵt denote the set of actions at step t∈ T obtained after executing this

action elimination procedure, i.e., Ŵt ⊆Wt at chromatography step t∈ T .

Figure 4 shows an example of a strictly dominated pooling window using industry data described

in more detail in Section 8. Consider two pooling windows wi and wj with the following characteris-

tics: The window wi pools the lanes 7 to 11, and its purification capability is (θ̄, ψ̄|wi) = (0.71,0.53)
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Figure 4 Example of a dominated pooling window (based on chromatography data from Aldevron)

with the bounds (θl,ψl|wi) = (0.64,0.47) and (θu,ψu|wi) = (0.78,0.58). The window wj corre-

sponds to the lanes 5 to 8 with the purification capability (θ̄, ψ̄|wj) = (0.73,0.52), and the bounds

(θl,ψl|wj) = (0.65,0.46) and (θu,ψu|wj) = (0.80,0.51). Also, we note that there exists a stochastic

dominance in the probability distributions of these two pooling windows, i.e., Ft(θ|wi)≥st Ft(θ|wj),

Gt(ψ|wi) ≤st Gt(ψ|wj). Therefore, the conditions in Proposition 6 are satisfied, and pooling the

lanes 5 to 8 is better off than pooling the lanes 7 to 11. Hence, the pooling window wi is strictly

dominated by wj in this specific chromatography step.

Next, we provide a stochastic ordering scheme for ranking and labeling the pooling windows wt ∈

Ŵt at chromatography step t ∈ T . Let N̂t be the number of pooling windows at chromatography

step t∈ T after performing the action elimination procedure in Proposition 6. Let the action index

n denote the position of the pooling window wnt in our ordering scheme, i.e., the pooling window wnt

is the nth pooling window among N̂t windows that are stochastically ordered at chromatography

step t∈ T . Property 1 and Assumption 1 provide necessary conditions for a stochastic ordering of

pooling windows wnt ∈ Ŵt at chromatography step t∈ T .

Property 1. (θlt|wn−1
t ) < (θlt|wnt ) < (θlt|wn+1

t ), (θut |wn−1
t ) < (θut |wnt ) < (θut |wn+1

t ), and

(ψlt|wn−1
t )< (ψlt|wnt )< (ψlt|wn+1

t ), (ψut |wn−1
t )< (ψut |wnt )< (ψut |wn+1

t ) for all wn−1
t ,wnt ,w

n+1
t ∈ Ŵt at

chromatography step t∈ T .

Assumption 1. Ft(θ|wn−1
t ) ≥st Ft(θ|wnt ) ≥st Ft(θ|wn+1

t ) and Gt(ψ|wn−1
t ) ≥st Gt(ψ|wnt ) ≥st

Gt(ψ|wn+1
t ) for all {wn−1

t ,wnt ,w
n+1
t } ∈ Ŵt, and t∈ T .

Property 1 indicates that the bounds (θlt,ψ
l
t|wnt ) and (θut,ψ

u
t |wnt ) of the pooling window wnt at

chromatography step t ∈ T increase in the action index n. When Property 1 and Assumption 1

hold together, it results in a stochastic ordering scheme where the pooling windows having higher



23

action index n at chromatography step t ∈ T lead to stochastically higher amount of protein and

impurity at that chromatography step. In this ordering scheme, a pooling window wnt ∈ Ŵt is said

to be larger window as its action index n approaches to N̂t, and smaller window as its action index

n approaches to 1 at chromatography step t∈ T . This ordering scheme is indeed in alignment with

what is observed in practice at Aldevron. Property 1 and Assumption 1 formalize the well-known

trade-off between purity and yield involved in chromatographic separation, and also align with the

chemical engineering literature (Ngiam et al. 2001, Vasquez-Alvarez et al. 2001, Ngiam et al. 2003,

Muller-Spath et al. 2013, Subramanian 2014). In practice, Property 1 and Assumption 1 have been

validated using scouting data obtained from Aldevron.

Note that the structural analysis and insights in Section 4 and Section 5 hold regardless of

the state aggregation, action elimination and ordering schemes. These schemes are developed to

facilitate the numerical analysis in Section 8. For example, the application of the action ordering

procedure enables a consistent mechanism for ranking and labeling the pooling windows in practice.

7. Implementation at Aldevron

In this section, we elaborate on the implementation timeline and results at Aldevron.

7.1. Timeline

The optimization framework has been constructed, revised, validated, and implemented over a

three-year period (2013-2016) through continuous interaction with Aldevron’s protein purification

team and senior management. Our research collaboration with Aldevron started in February 2013.

Through weekly company visits, we observed operational challenges that are typical to the bioman-

ufacturing operations, collected data, validated our models, carried out the implementation, and

quantified the savings. The purification optimization model was built during August 2013-February

2014. Data collection and revisions were performed during February-June 2014. Results obtained

from the mathematical model were validated during June-September 2014 by various test runs

comparing the current practice with the optimal policies. Insights obtained at Aldevron were shared

with a broader biomanufacturing community through series of working group sessions (BioWGS

2014, BioForward 2014), followed by the actual implementation and use of the model in Aldevron’s

daily operations since October 2014.

7.2. Implementation Results

Three years into collaboration, the optimization model has been currently in use for all R&D

protein purification orders. Since the implementation of the optimization framework, Aldevron has

realized lead time and cost reductions. On average, the implementation has led to 25% reduction
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in total lead times and 20% reduction in operating costs involved in R&D protein purification.

These lead time and cost savings were mainly due to the following three factors:

1. Reduction in the number of the validation runs. The optimization model has allowed to reduce

the number of validation runs needed prior to full scale production. For the majority of purifi-

cation projects, the scientists were able to take the process information obtained from scouting

runs, and then feed this information directly into the optimization model. In minor instances, the

scouting experiments indicated some potential issues with variability and stability of the proteins.

In such cases, the scientists kept performing the validation runs to gain further data and process

understanding.

2. Formal assessment of the risks and better understanding of manufacturing capabilities. The

optimization model provides a rigorous and formal assessment of the business risks at the beginning

of each chromatography run. This information is especially critical in communicating the manu-

facturing challenges with the customers. For example, one of the major challenges in purification

operations is the variability in the starting material. Without formal assessment of the manufac-

turing capabilities and risks, it is very difficult to predict and react to the challenges in attaining

the production requirements. The optimization framework provides an improved understanding of

the business risks and financial trade-offs involved in protein purification operations. The proposed

zone-based decision making approach provides a quick and reliable analysis of the manufactur-

ing capabilities leading to better and easier communication with the clients. The knowledge on

“guaranteed performance” or “guaranteed failure” obtained by the end of scouting runs has been

invaluable for both the clients and the biomanufacturing company.

3. Process economics taken into consideration. Prior to the use of the optimization framework,

potential operating policies were assessed based on historical experience. Given the combinatorial

nature of the pooling strategies, it was inevitable for the scientist to take shortcuts to avoid getting

overwhelmed with the number of available pooling choices at each step. As a result, the scientists

often used to focus on meeting the purity requirement, and did not consider the overall financial

implications while making pooling decisions. In contrast, the optimization model provides a formal

framework that captures the uncertainties in purification outcomes, financial trade-offs, and the

limitations in manufacturing capabilities. As a result, the purification policies suggested by the

optimization model are based on the process economics as well as chemical characteristics (i.e.,

scouting data), and hence has led to lower costs and shorter lead times.

Cost and lead time reductions were determined in two phases: 1. Validation phase (June-

September 2014): During the Summer 2014, we collected scouting data for all engineered purifi-

cation orders, and then identified the decision zones and optimal operating polices based on this
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information. However, the optimal policies and decision zones were generated only for validation

purposes, and were not implemented in daily practice. In this phase, the scientists kept performing

the purification operations based on their expertise. For validation purposes, the policies proposed

by the optimization model were compared against the ones adopted by the scientists. This infor-

mation was used to quantify potential savings (costs and lead times) that could have been achieved

if the optimal policies were used instead of the current practice. 2. Implementation phase (since

October 2014): Once the optimization framework was implemented, savings obtained as a result

of the framework were quantified through a policy evaluation mechanism. For each purification

project, we collected information about the operating policy that the scientist would have used

if the optimization model was not implemented. Then, we used this information to evaluate the

performance of that specific policy associated with that specific order (i.e., evaluate the value

function for a given policy), and then compared it against the performance of the optimal policy.

Since protein purification operations require high costs and limited resources, it was not possible

to conduct both the optimal policies and other business practices simultaneously in the laboratory

for the purpose of quantifying the savings.

7.3. Feedback from Biomanufacturing Community and Implementation Challenges

Feedback from the broader biomanufacturing community beyond Aldevron has been a core part

of the problem definition, analysis and validation. For example, we organized a series of work-

ing group sessions with the local biomanufacturing firms during various phases of this research

(BioWGS 2014, BioForward 2016). The objectives were to understand problem characteristics, val-

idate assumptions, define managerial questions and identify relevant optimization techniques. Our

models and insights have also been shared with a larger biomanufacturing community (BioFor-

ward 2014, 2016). Application of operations research tools to solve these problems are new to the

industry, and the response has been more of cautious enthusiasm. This is mainly due to the fact

that biomanufacturing processes are highly regulated, and changing their current practice impacts

the regulatory approval process. Feedback from the community is that as more companies embrace

the application of operations research models to optimize operations, both biomanufacturing firms

and regulatory authorities are likely to view such approaches as being essential for reducing costs

and lead times. Operations research implementations at Aldevron have already started to gain an

important visibility in the Wisconsin’s bioscience community through BioForward and the Wis-

consin Economic Development Corporation (WEDC 2014, BioForward 2016).

Understanding the theory of Markov decision processes and computing the zones and optimal

polices could be challenging for most purification scientists. To facilitate the industry implementa-

tion, we developed a decision support tool using Java. The tool provides a user-friendly interface
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for the purification scientists to easily enter the problem parameters (including the results of the

scouting experiments). The tool takes this information as input, applies the theory described in

the paper, and computes the decision zones. The tool also generates a file where the optimal pool-

ing policies and the optimal value function are reported for each state. Using this tool does not

require any specific knowledge on stochastic optimization, and hence the purification scientists

were comfortable with using this tool to generate the zones and optimal policies in practice.

Other implementation challenges were related to the formatting of the scouting data required to

run the optimization model. Initially, the data obtained from scouting runs were in the format of

gel pictures as shown in Figure 2 (a). A special biomanufacturing image processing software was

used to convert these gel images into the protein and impurity amounts corresponding to each lane.

This information was stored in a table format at MS Excel, and then used as input for the Java

tool to run the optimization model. Although the resulting data was reliable, the overall process of

converting the gel images into a data format compatible with our optimization tool was laborious.

To overcome this challenge, we automated this process using the Java tool. Special training sessions

were conducted to get the buy-in of all purification scientists and also help them in getting familiar

with the optimization framework. Overall, the protein purification team has been very satisfied

with the way how the tool helped their decisions.

8. A Case Study Illustrating Results for an Engineered Protein

Since each purification order is custom-engineered and unique, each order has its own operat-

ing policies and managerial insights. Therefore, we believe that it would not be useful to explain

the optimal policies and insights for every single protein considered in the implementation pro-

cess at Aldevron. Instead, we elaborate on one of the custom-engineered purification orders that

involves two chromatography steps (Section 8.1), and explain the way how the optimization frame-

work was implemented at Aldevron for that order. More specifically, we demonstrate the decision

zones, identify the optimal policies, compare the optimal policies with current practice, and discuss

the managerial insights (Sections 8.2-8.3). Furthermore, we briefly provide another example from

Aldevron that involves three chromatography steps (Section 8.4), and conclude with quantifying

computational savings due to action elimination and state aggregation (Section 8.5). To protect

client confidentiality, actual data and cost information obtained from Aldevron are masked.

8.1. Problem Setting and Parameters

The protein of interest considered in the implementations are all engineered proteins used for in

vitro studies in biomanufacturing. In this section, we consider a protein purification problem with

two chromatography steps, as shown in Figure 5. The first step uses the binding affinities between
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Figure 5 Two step chromatography outputs

proteins and metal ions as a separation principle, and the second step uses separation based on

electric charge. Figure 5 shows that the first step has 10 candidate lanes (starting from lane 4 to 13)

leading to 55 candidate pooling windows. The second step has candidate 12 lanes (from lane 6 to

17) leading to 78 candidate pooling windows. In this case study, statistical analysis of the scouting

data indicates that the purification capabilities are uniformly distributed within 10% of their mean

(θ̄t, ψ̄t|wt) for all wt ∈Wt at the chromatography step t∈ {1,2}. In the first chromatography step,

the smallest pooling window w1
1 has the mean purification capability (θ̄1, ψ̄1|w1

1) = (0.010,0.003),

and the largest pooling window w55
1 has (θ̄1, ψ̄1|w55

1 ) = (0.939,0.745). In the second chromatography

step, the smallest pooling window w1
2 corresponds to (θ̄2, ψ̄2|w1

2) = (0.047,0.003), and the largest

pooling windows w78
2 has (θ̄2, ψ̄2|w78

2 ) = (0.928,0.671). We note that the scouting data is collected

and analyzed as per recommended guidelines (Ellison and Willams 2012, ISO21748 2010). All

pooling windows satisfy the data characteristics and assumptions in Section 6.

The production requirement is 8 milligram (mg) of protein with a purity level equal or greater

than 85%. The actual cost information obtained from Aldevron is masked for confidentiality, and

representative values are used instead. The operating costs of a chromatography step is ct = $15 for

t∈ {1,2}. These include costs associated with labor, materials, equipment, inspection and analytics.

The revenue structure is r(pt) = $5×pt for pt < 8 mg and r(pt) = $40 for pt ≥ 8 mg. Shortage cost is

cl(pd−pt) = $48−$6×pt for pt < 8 mg, cl(pd−pt) = 0 otherwise. Penalty cost of failure is cf = $48,

which is equivalent to the maximum possible shortage cost considered in our purification setting.

The state space is discretized based on the least count measured in each project, and the model

is solved using the backward induction algorithm. During industry implementation, sensitivity

analysis is conducted to ensure that the decision zones, the optimal value function, and the optimal

policies are robust to finer discretization levels. We note that Proposition 2 and Proposition 3 also

allow to generate the zone-based performance guarantees without discretizing the state space.
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Figure 6 Optimal value function for the first step: (1) V∗1 (p1, i1) =−48, (2) −48 < V∗1 (p1, i1) < 10, (3-6)

10≤V∗1 (p1, i1)≤ 40, and the solid line for V∗1 (p1, i1) = 0. Optimal value function for second step: (1)

V∗2 (p2, i2) =−48, (2) −48 < V∗2 (p2, i2) < 25, (3-4) 25≤V∗2 (p2, i2)≤ 40, and the solid line for V∗2 (p2, i2) = 0.

Table 2 Summary of the insights based on Figure 6

Region Range of V∗t (pt, it) Business Implications

Step 1 (1) V∗1 (p1, i1) =−48 Stop and scrap the batch.
(2) −48< V∗1 (p1, i1)< 10 Risk zone with high potential losses. Can meet the purity,

but will incur high operating and shortage costs.
(3) V∗1 (p1, i1) = 10 Can meet both purity and yield requirements in two steps.
(4) 10< V∗1 (p1, i1)< 25 Can meet both purity and yield requirements in two steps.

However, financially better off with single step, despite shortage costs.
(5) V∗1 (p1, i1) = 25 Can meet both purity and yield requirements in one step.
(6) V∗1 (p1, i1) = 40 Stop. Desired terminal state.

Step 2 (1) V∗2 (p2, i2) =−48 Stop and scrap the batch.
(2) −48< V∗2 (p2, i2)< 25 Risk zone with high potential losses. Can meet the purity,

but will incur high operating and shortage costs.
(3) V∗2 (p2, i2) = 25 Can meet both purity and yield requirements in one step.
(4) V∗2 (p2, i2) = 40 Stop. Desired terminal state.

8.2. Decision Zones and Their Financial Implications

We investigate the financial implications of a starting material obtained from fermentation. For this

purpose, we analyze the structural properties of the optimal value function, and characterize the

failure, risk and target zones for each chromatography step. Figure 6 presents the decision zones

and the optimal value function at each chromatography step. All managerial insights discussed

below are derived from Figure 6, and summarized in Table 2.

In Figure 6, the region (1) corresponds to the failure zone Ft of the chromatography step t∈ {1,2}.

This region represents the protein and impurity pairs where the biomanufacturing firm is better

off with abandoning the purification. As expected, the failure zone in the second chromatography

step is observed to be larger than the one in the first chromatography step.
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Region (2) in Figure 6 represents the risk zone Rt of the chromatography step t ∈ {1,2}. When

the starting material is an element of the risk zone, the biomanufacturing firm can expect to

incur financial losses due to combined impact of shortage costs and operating costs. For example,

the solid line passing through the risk zone in Figure 6 corresponds to all protein-impurity pairs

(pt, it) having V∗t (pt, it) = 0 for t = 1,2. The states to the left of the solid line correspond to a

region where the firm should expect financial losses due to combined impact of shortage costs and

operating costs. Due to the monotonicity of the value function (Proposition 1), the expected profit

is nondecreasing in protein amount pt for a given impurity level it. Hence, the solid line in the first

chromatography step has an important managerial implication: if the state of the starting material

is on the left hand side of the solid line, then the firm might prefer to scrap that starting material,

rework in-house or request the provider to send a new starting material.

Regions (3−6) in the first chromatography step and regions (3−4) in the second chromatography

step represent the target zone Tt where the firm is capable of meeting both the purity and yield

requirements at t∈ {1,2}. For example, if the starting material (p1, i1) is in the region (3) of the first

chromatography step, the firm can expect to achieve the final yield and purity requirements through

two chromatography steps using the optimal policies, resulting in V∗1 (p1, i1) = 10. However, the

optimal policy in region (4) of the first step suggests that the firm might be better off compromising

on yield to achieve the final purity requirement at the end of the first step, despite incurring some

shortage penalties. In this case, the operating cost of the second step is greater than the expected

shortage costs. Note that although both the yield and purity requirements could have been met

in the region (4), it is financially better off to choose pooling windows that can achieve the purity

requirement but also lead to yield shortages by the end of the first step, i.e., 10< V∗1 (p1, i1)< 25.

In practice, intangible costs associated with loss of goodwill may motivate the firm to choose

pooling windows that keep the batch state within the target zone of the next step (Theorem 3),

with V∗1 (p1, i1) = 10. In the region (5), the firm can expect to achieve the final purity and yield

requirements at the end of the first chromatography step, V∗1 (p1, i1) = 25. In this case, the second

step chromatography is not required. In Figure 6, note that the size of the target zone expands

while the failure zone shrinks in the first chromatography step compared to the zones in the second

chromatography step. Region (6) in the first step and region (4) in the second step represent all

protein-impurity pairs meeting the specific requirements on purity and yield.

8.3. Optimal Policies and Comparison with Current Practice

We present the optimal policies for the batch states p1 ∈ [10,30] mg and i1 ∈ [0,20] mg. In this case

study, the actual starting material processed at Aldevron contained (p1, i1) = (27.5,17.5). Figure 6

indicates that the starting material is in the risk zone of the first chromatography step. Therefore,
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the firm can not provide any guarantees for achieving the production requirements in this specific

example. We quantify the risks and costs associated with the starting material, and compare the

optimal policy with the one used in practice.

State-dependent optimal policies: Let π∗ denote the optimal policy, and V∗t (pt, it|π∗) rep-

resent the optimal value function at chromatography step t. Table 3 presents a snapshot of the

optimal policy for the first chromatography step. Table 3 only displays the optimal policies at

selected states (i.e., in the intervals of 2.5 mg) to improve readability. In Table 3, S represents

the stopping action. For other actions in Table 3, we present the starting lane, ending lane, and

the corresponding action index assigned based on the action ordering procedure in Section 6. For

example, L6-8 (21) means pooling the lanes 6-8, and this action is the 21st action out of 55 pooling

windows at the first chromatography step. Cells colored in gray represent the target zone based on

Figure 6, and the entries in bold correspond to the failure zone.

Table 3 A snapshot of the optimal pooling policies for selected states (First chromatography step)

Protein (mg) 10 12.5 15 17.5 20 22.5 25 27.5 30

Impurity (mg)
20 S S S S L4–13 (36) L7–8 (17) L7–8 (17) L6–8 (21) L7–9 (19)

17.5 S S S L7–8 (17) L4–10 (29) L6–9 (24) L7–8 (17) L6–8 (21) L7–10 (20)
15 S S L7–9 (19) L7–9 (19) L4–10 (29) L4–9 (26) L6–9 (24) L4–8 (23) L6–12 (30)

12.5 S S L4–8 (23) L4–8 (23) L4–13 (36) L5–10 (28) L4–9 (26) L4–10 (29) L5–10 (28)
10 S L5–10 (28) L6–10 (27) L4–9 (26) L6–9 (24) L5–8 (22) L7–8 (17) L7–10 (20) L7 (13)

7.5 L6–8 (21) L4–9 (26) L4–9 (26) L4–9 (26) L5–10 (28) L5–8 (22) L7–9 (19) L7–8 (17) L7–8 (17)
5 L4–10 (29) L5–10 (28) L5–12 (33) L7–8 (17) L6–7 (16) L6–8 (21) L7–8 (17) L7–10 (20) S

2.5 L4–9 (26) L4–8 (23) S S S S S S S
0 S S S S S S S S S

We make the following observations regarding the optimal policy. First, we observe that the

optimal action is to stop the purification process when the batch state is in the failure zone F1

(i.e., top left of Table 3) or in the terminal zone S (i.e, bottom right of Table 3). Second, we see

that the optimal policies in the target zone T1 do not have any threshold-type structure, but they

do satisfy the necessary conditions in Theorem 3-4. Third, in the risk zone R1, we can observe

a non-decreasing trend in the action index as the impurity amount decreases for a given protein

amount. For example, at p1 = 17.5, the optimal policy chooses actions with higher index as the

impurity amount decreases. However, this monotonic trend is not present for all protein-impurity

pairs. For example, at p1 = 20 mg and i1 = 20 mg, the optimal policy suggests to pool lanes 4− 13

with the action index 36. When i1 ∈ {15,17.5}, it adopts a smaller window (lanes 4− 10 with the

action index 29). However, at i1 = 12.5, it switches back to lanes 4 − 13 with the action index

36. We also observe the lack of threshold-type policies as the protein amount increases for a fixed

impurity level. Such deviations in optimal policies are also observed in the second step.



31

For our starting material (p1, i1) = (27.5,17.5), the optimal policy π∗ suggests to pool lanes 6−8

in the first chromatography run, and lanes 6 − 9 in the second chromatography run, with the

optimal value function V∗1 (27.5,17.5|π∗) = $9.

Comparison with current practice: Based on the scouting and validation experiments,

Aldevron decided to pool lanes 6− 9 in the first chromatography step, and lanes 7− 10 in the

second chromatography step. Characteristics of these pooling windows are as follows: 0.747≤Θ1 ≤

0.913, 0.545 ≤ Ψ1 ≤ 0.666, and 0.524 ≤ Θ2 ≤ 0.640, 0.204 ≤ Ψ2 ≤ 0.250. We let π′′1 = {Lanes 6−

9,Lanes 7− 10} denote the pooling policy used in practice, with the value function V1(p1, i1|π′′1 ).

As a result of the policy π′′1 , 13.3 mg of protein and 2.2 mg of impurity were obtained at the end

of the production run. Therefore, the yield and purity requirements specified by the end use or

application (8 mg of protein with ≥ 85% purity) were satisfied for this order. However, when we

compare the realization of purification capabilities during the production run against the supports

derived at scouting runs, we observe that the realizations were in favor of the biomanufacturing

firm for that specific production run (i.e, closer to the mean, with realizations θ1 = 0.832, ψ1 = 0.602

and θ2 = 0.582, ψ2 = 0.210). Therefore, we evaluate the performance of the policy π′′1 even though

yield and purity requirements were satisfied in our example production run. We observe that the

value function associated with the current practice is V1(27.5,17.5|π′′1 ) = $7.2, whereas the value

function of the optimal policy is V∗1 (27.5,17.5|π∗1) = $9. Therefore, for the stating state (27.5,17.5),

we observe that 25% improvement in the expected profit is achieved through optimization.

8.4. Three-Step Chromatography Example

It is most common to adopt two or three step protocol in practice, however, difficult proteins may

require several additional steps (Healthcare 2010). Since the implementation of the model, purifi-

cation orders received at Aldevron required either two or three chromatography steps. Therefore,

we provide another example from Aldevron involving three chromatography steps. The protein of

interest considered in this example is used for in vitro studies. Each chromatography step sepa-

rates the protein of interest based on its charge, hydrophobicity, and size, respectively. Scouting

experiments indicate that purification capabilities are uniformly distributed within 10% of their

mean values (θ̄t, ψ̄t) for t∈ {1,2,3}. Total number of available pooling windows in each chromatog-

raphy step is 153,120 and 105, respectively. The production requirement is 7.5 mg of protein with

at least 90% purity. Information about pooling windows and costs are masked for confidentiality,

and representative values are used instead. Operating cost is ct = $15 for t∈ {1,2,3}. The revenue

structure is r(pt) = $12× pt for pt < 7.5 mg and r(pt) = $90 for pt ≥ 7.5 mg, t ∈ {1,2,3}. Shortage

cost is cl(pd − pt) = $108− $14.4× pt for pt < 7.5 mg, cl(pd − pt) = 0 otherwise. Penalty cost of

failure is cf = $108.
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Figure 7 Decision zones for a purification project with three chromatography steps: (1) failure zone, (2) risk

zone, (3) target zone, (4) terminal zone, and the solid line for V∗t (pt, it) = 0.

Figure 7 represents the decision zones of each chromatography step. We observe that the size of

the target zone expands while the failure zone shrinks as t approaches to the first chromatography

step. The behavior of target and failure zones in Figure 7 is intuitive and aligns with the structural

analysis since each additional step offers an opportunity to eliminate the remaining amount of

impurity. In this case study, the decision zones associated with the first chromatography step

indicate a promising business case for processing this order since the failure zone is relatively small

compared to the target zone. In practice, several factors might affect the sizes of the decision

zones (e.g., the number of chromatography steps, purification capabilities at each step, production

requirements, etc.). If the sizes of both failure and target zones are small due to specific process

parameters, then the starting material is more likely to belong to the risk zone, and this would

still be an important insight for both the biomanufacturer and the client.

In this example, the starting material is in the target zone of the first step with 9.5 mg protein

and 17 mg impurity. The scientist managed to achieve both purity and yield requirements using

this starting material in practice. However, comparison of the optimal value function against the

value function associated with current practice reveals 14% improvement in the expected profit. In

addition, the biomanufacturer is capable of providing performance guarantees using our decision

support tool since the starting material is in the target zone. Such promise on guaranteed success

provides significant advantage to both the client and the biomanufacturer.

8.5. Impact of State Aggregation and Action Elimination

Using the state aggregation scheme in Proposition 5 and the action elimination procedure in

Proposition 6, we obtain significant savings in the computational effort required to obtain solutions

to industry size problems. For example, applying the state aggregation scheme to the purification

project presented in Section 8.1 has led to grouping 35.5% of the state space into a single aggregate

state in the first step, and similarly 43.5% of the state space in the second step. After eliminating
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strictly dominated actions at each chromatography step based on Proposition 6, the total number

of pooling windows reduced from 55 to 36 windows in the first step, and from 78 to 20 windows

in the second chromatography step. The combined impact of the state aggregation and action

elimination procedures resulted in 54% reduction in the CPU time. In the three-step example

presented in Section 8.4, the total number of actions reduced from 378 to 197 pooling windows, and

the combined impact of the state aggregation and action elimination resulted in 50% reduction in

the CPU time. In general, the cardinality of the state space ranged between 40,000−80,000 during

implementation at Aldevron. All computations presented in this paper have been executed on a

system with 2.9 GHz CPU and 16 GB of RAM. The CPU time is 21.1 seconds for the purification

project in Section 8.1, and 56.2 seconds for the project in Section 8.4. Overall, the CPU time has

been between 10 seconds to 60 seconds during implementations at Aldevron.

9. Conclusions

We focus on protein purification operations conducted by biomanufacturers and pharmaceutical

companies. Each order for the engineered protein has specific purity and yield requirements defined

by the end use or application, and the biomanufacturer incurs penalty costs when these specific

requirements are not achieved. However, achieving both of the purity and yield requirement is chal-

lenging due to the purity and yield trade-off involved in chromatography operations. Furthermore,

the starting material often involves variability in terms of the protein and impurity amounts, which

affects subsequent purification decisions. Limitations in the available chromatography techniques

further challenge the purification decisions. Due to high penalty costs and strict requirements on

purity, biomanufacturers need help with two levels of decisions: (i) determine whether the purity

and yield requirements specified by the customer are achievable at all, and if so, (ii) determine

the optimal purification strategies that maximize the expected profit. This paper addresses both

issues and provides guidelines for practitioners.

We develop an optimization framework which captures the yield and purity trade-offs, uncer-

tainty in the starting material, limitations in the purification capabilities, and interlinked decisions

involving multiple purification steps for engineered proteins. Our structural analysis partitions the

state space into decision zones (i.e., failure zone, risk zone and target zone) that provide a strong

basis to analyze the financial trade-offs and business risks associated with the starting material. The

decision zones also establish the nature and type of performance guarantees that can be provided in

practice. For each zone, we then provide practical guidelines for optimal purification decisions that

maximize the expected profit. The proposed zone-based decision making approach is particularly

easy to implement in practice.
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The optimization framework has been developed and implemented at Aldevron. Furthermore,

the model and managerial insights have been shared and validated with a larger industry group

(BioWGS 2014, BioForward 2014). Implementation insights at Aldevron indicate an average of 25%

reduction in lead times and 20% reduction in operating costs. Our optimization framework provides

a rigorous analysis of the risks and financial trade-offs involved in chromatography operations.

Applications of operations research techniques are mostly new to the biomanufacturing commu-

nity. As more companies like Aldevron embrace operations research and integrate it into practice,

regulatory authorities might mandate the use of such approaches to improve the biomanufacturing

research and development.

Future research could explore the interaction between fermentation and purification decisions.

For example, some R&D projects require the biomanufacturer to first produce the starting mate-

rial through fermentation, and then perform the purification operations. In such projects, the

scientist can benefit from a comprehensive framework that links the complex dynamics between

fermentation and purification operations. Furthermore, the model assumes that the sequence of

chromatography techniques is predetermined based on scouting runs, which could be a limitation

for the decision maker. As another future research direction, one could explore the optimal number

of chromatography steps and the optimal choice of chromatography technique in each step.
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Appendix

Proof of Proposition 1 We prove the monotonicity of the value function using proof by induc-

tion. We first investigate the value function VT (pT , iT ) at the step T . Note that VT (pT , iT ) =

rS(pT , iT ). It is easy to observe that stopping costs rS(pT , iT ) in Equation (3) are nondecreasing in

pT ∈P for a given iT ∈ I; and nonincreasing in iT ∈ I for a given pT ∈P.

Next, we assume by induction hypothesis that Vt(pt, it) is nondecreasing in pt ∈ P for a given

it ∈ I, and for all t∈ T . First, we proceed with investigating the monotonicity of the value function

in pt for a given it ∈ I. Let p−t < pt, p
−
t , pt ∈ P for t ∈ T . By definition of the value function in

Equations (4)-(6), we have, for it ∈ I and t∈ T ,

Vt(pt, it) = max
wt∈Wt

{
rS(pt, it),−ct + E

θt,ψt|wt

Vt+1(θtpt,ψtit)
}

≥ max
wt∈Wt

{
rS(p−t , it),−ct + E

θt,ψt|wt

Vt+1(θtpt,ψtit)
}

(17)

≥ max
wt∈Wt

{
rS(p−t , it),−ct + E

θt,ψt|wt

Vt+1(θtp
−
t ,ψtit)

}
(18)

= Vt(p−t , it) (19)

where, Equation (17) follows from the stopping cost structure in Equation (3), and Equation (18)

is obtained from the induction hypothesis. Proof for monotonicity of the value function in it ∈ I

for a given pt ∈P at t∈ T is entirely analogous, and hence omitted. �

Proof of Theorem 1 It is sufficient to show that if a∗t (p
′
t, i
′
t) = S then a∗t (pt, it) = S for all pt ≤

p′t and it ≥ i′t at t∈ T , pt ∈P, it ∈ I.

Note that at the end of the planning horizon T , the only available action is to stop with rewards

VT (pT , iT ) = rS(pT , iT ). Next, assume by contradiction hypothesis that a∗t (p
′
t, i
′
t) = S but a∗t (pt, it) =

w for a given (pt, it)∈P ×I where pt ≤ p′t and it ≥ i′t, t∈ T , w ∈Wt and w 6= S. This implies that,

rS(p′t, i
′
t)>−ct +

∫ ψu
t |w

ψl
t|w

∫ θut |w

θlt|w
ft(θt|w)gt(ψt|w)Vt+1(θtp

′
t,ψti

′
t)dθdψ (20)

and

−ct +

∫ ψu
t |w

ψl
t|w

∫ θut |w

θlt|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt,ψtit)dθdψ > rS(pt, it) (21)

which together imply

rS(p′t, i
′
t)− rS(pt, it)

>

∫ ψu
t |w

ψl
t|w

∫ θut |w

θlt|w
ft(θt|w)gt(ψt|w)Vt+1(θtp

′
t,ψti

′
t)dθdψ

−
∫ ψu

t |w

ψl
t|w

∫ θut |w

θlt|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt,ψtit)dθdψ. (22)
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Note that rS(p′t, i
′
t)− rS(pt, it) = 0 due to stopping cost structure in Equation (3). Theorem 1

defines (p′t, i
′
t) such that γd >

p′t
(p′t+i

′
t)

. Hence, rS(p′t, i
′
t) =−cf , and also rS(pt, it) =−cf since (pt ≤

p′t, it ≥ i′t). Therefore, inequality (22) indicates that the term on its right hand side is negative.

However, ∫ ψu
t |w

ψl
t|w

∫ θut |w

θlt|w
ft(θt|w)gt(ψt|w)Vt+1(θtp

′
t,ψti

′
t)dθdψ

−
∫ ψu

t |w

ψl
t|w

∫ θut |w

θlt|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt,ψtit)dθdψ (23)

≥
∫ ψu

t |w

ψl
t|w

∫ θut |w

θlt|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt,ψtit)dθdψ

−
∫ ψu

t |w

ψl
t|w

∫ θut |w

θlt|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt,ψtit)dθdψ (24)

= 0.

Therefore, the term on the right hand side of inequality (22) is non-negative, which contradicts

the inequality (22), and hence the proof follows. Note that Equation (24) follows from the mono-

tonicity of the value function in Proposition 1, and the fact that EVt+1(θtp
′
t,ψti

′
t) is negative by

the contradiction hypothesis, and note that pt ≤ p′t and it ≥ i′t. �

Proof of Proposition 2 We prove Proposition 2 by induction. First, we focus on condition (i).

Let (pt, it)∈P×I with γd >
pt

(pt+it)
at chromatography step t∈ T . Assume by induction hypothesis

that (pt, it) at t ∈ T satisfies the condition (i) for all πt = (wt,wt+1, . . . ,wT−1). Then, in the last

chromatography step T − 1, we have,

VT−1(pT−1, iT−1)

= max
wT−1∈WT−1

{
rS(pT−1, iT−1),−cT−1 + E

θT−1,ψT−1|wT−1

rS(θT−1pT−1,ψT−1iT−1)
}

= max
{
− cf ,−cT−1− cf

}
(25)

= −cf .

Note that Equation (25) follows from the induction hypothesis and the stopping costs structure

defined in Equation (3).

Similarly, at the chromatography step t∈ T , we have,

Vt(pt, it) = max
wt∈Wt

{
rS(pt, it),−ct + E

θt,ψt|wt

Vt+1(θtpt,ψtit)
}

≤ max
wt∈Wt

{
rS(pt, it),−ct +Vt+1(θut pt,ψ

l
tit|wt)

}
(26)

≤ max
{
− cf ,−ct− cf

}
(27)

= −cf
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where, Equation (26) follows from monotonicity of the value function and indicates the best-case

analysis of purification capabilities, and Equation (27) follows from the induction hypothesis and

stopping cost structure as condition (i) holds. Hence, abandoning the purification at state (pt, it)

and step t∈ T leads to less financial losses than continuing the purification under condition (i).

Next, we investigate the condition (ii) in Proposition 2. Let (pt, it) ∈ P × I with γd >
pt

pt+it
at

chromatography step t ∈ T , and assume by the induction hypothesis that condition (ii) holds for

all πt = (wt,wt+1, . . . ,wT−1). In the last chromatography step T − 1, we have,

VT−1(pT−1, iT−1)

= max
wT−1∈WT−1

{
rS(pT−1, iT−1),−cT−1 + E

θT−1,ψT−1|wT−1

rS(θT−1pT−1,ψT−1iT−1)
}

≤ max
wT−1∈WT−1

{
rS(pT−1, iT−1),−cT−1 + rS(θuT−1pT−1,ψ

l
T−1iT−1|wT−1)

}
(28)

= max
wT−1∈WT−1

{
− cf ,−cT−1 + r

(
θuT−1pT−1|wT−1

)
− cl

(
pd− θuT−1pT−1|wT−1

)}
(29)

= −cf . (30)

Note that Equation (28) follows from the monotonicity of the value function and represents

the best-case analysis of purification outcomes. Equation (29) and Equation (30) follow from the

induction hypothesis and the stopping cost structure as condition (ii) holds.

Similarly, at the chromatography step t∈ T ,

Vt(pt, it) = max
wt∈Wt

{
rS(pt, it),−ct + E

θt,ψt|wt

Vt+1(θtpt,ψtit)
}

≤ max
wt∈Wt

{
rS(pt, it),−ct +Vt+1(θut pt,ψ

l
tit|wt)

}
(31)

≤ max
wt∈Wt

{
− cf ,−ct + r

(
pt

T−1∏
j=t

(θuj |wj)
)
− cl

(
pd− pt

T−1∏
j=t

(θuj |wj)
)}

(32)

= −cf (33)

where, Equation (31) follows from monotonicity of the value function and indicates the best-case

analysis of purification capabilities, and Equation (32)-(33) follow from the induction hypothesis

and the stopping cost structure as condition (ii) holds. Therefore, stopping the purification at state

(pt, it) and chromatography step t∈ T leads to less financial losses than continuing the purification

under condition (i) or (ii), and hence the proof follows from Theorem 1. �

Proof of Proposition 3 We use backward induction. By definition, the target zone at the end

of the planning horizon T is

TT =
{

(pT , iT ) : pT ≥ pd,
1− γd
γd

pT ≥ iT
}
.
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At T − 1, for the state (pT−1, iT−1) to be element of TT by step T , we have

JT−1,w =
{

(pT−1, iT−1)∈X : pT−1 =
pT

θlT−1|w
, iT−1 =

iT
ψuT−1|w

, (pT , iT )∈TT
}

for w ∈WT−1, (34)

TT−1 =
⋃

w∈WT−1

JT−1,w. (35)

Repeated application of the same procedure leads to

Jt,w =
{

(pt, it)∈X : pt =
pt+1

θlt|w
, it =

it+1

ψut |w
, (pt+1, it+1)∈Tt+1

}
for w ∈Wt, (36)

Tt =
⋃
w∈Wt

Jt,w for t= 1, . . . , T − 1. (37)

which is equivalent to Equation (10) in Proposition 3. �

Proof of Proposition 4: We use backward induction to generate the effective purity set Pt. By

definition, the effective purity set at the end of the planning horizon T is

PT =
{

(pT , iT )∈X :
1− γd
γd

pT ≥ iT
}
.

At T −1, for the state (pT−1, iT−1) to be an element of PT by step T , it is sufficient that we have

KT−1,w =
{

(pT−1, iT−1)∈X : pT−1 =
pT

θuT−1|w
, iT−1 =

iT
ψlT |w

, (pT , iT )∈ PT
}

for w ∈WT−1, (38)

PT−1 =
⋃

w∈WT−1

KT−1,w. (39)

Using backward induction, repeated application of the same procedure leads to

Kt,w =
{

(pt, it)∈X : pt =
pt+1

θut |w
, it =

it+1

ψlt|w
, (pt+1, it+1)∈ Pt+1

}
for w ∈Wt, (40)

Pt =
⋃
w∈Wt

Kt,w for t= 1, . . . , T − 1. (41)

�

Proof of Theorem 2: Theorem 2 identifies the characteristics of the optimal policies for states

in the risk zone Rt at chromatography step t ∈ T . We note that all protein and impurity pairs

where a∗t (pt, it) = S at t∈ T are classified as (pt, it)∈ Ft by the definition of the failure zone.

First, we classify the pooling actions into two distinct sets: W̄t = {w̄t ∈Wt : (θut pt,ψ
l
tit|w̄t) 6∈ Pt+1},

and W̌t = {w̌t ∈Wt : (θut pt,ψ
l
tit|w̌t) ∈ Pt+1} for all t ∈ T . An example of action type w̄t could be

a pooling window that leads from the risk zone to the failure zone over the next decision epoch;

whereas an example of action type w̌t is a pooling window that keeps the system state within the
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risk zone of the next decision epoch. Hence, the value function and the stopping cost structure of

this revised problem can be rewritten as:

Vt(pt, it) = max
wt∈{W̄t∪W̌t}

{
rS(pt, it),−ct + E

θt,ψt|wt

Vt+1(θtpt,ψtit)
}

(42)

and

VT (pT , iT ) = rS(pT , iT ) (43)

where, at the end of the planning horizon T , we have

rS(pT , iT ) =

−cf if (pT , iT ) 6∈ PT ,
r(pd) if (pT , iT )∈ PT and pt ≥ pd,
r(pt)− c`(pd− pt) if (pT , iT )∈ PT and pt < pd.

(44)

As a result of Equations (42)-(44), we observe that the optimal pooling actions at step T − 1

have the characteristic of keeping the system state in the effective purity set of the next period,

i.e., a∗T−1(pT−1, iT−1) = {w̌T−1 ∈ W̌T−1 : (pT , iT |pT−1, iT−1, w̌T−1)∈ PT} for all (pT−1, iT−1)∈RT−1.

At step t ∈ T , by the definition of the desired purity set in Proposition 4, we observe that a

batch state {(pt+1, it+1) 6∈ Pt+1|(pt, it) ∈Rt} has no chance of meeting the final purity requirement

by step T , even under the best-case realizations of the purification capabilities. Hence, the cost

structure in Equation (44) indicates that Vt+1(pt+1, it+1) = rS(pt+1, it+1) =−cf for all (pt+1, it+1) 6∈

Pt+1. As a result, the optimal action at step t∈ T has the characteristic that a∗t (pt, it) =
{
w̌t ∈ W̌t :

(pt+1, it+1|pt, it, w̌t)∈ Pt+1

}
for all (pt, it)∈Rt at chromatography step t∈ T . �

Proof of Theorem 3 Theorem 3 analyzes the necessary condition of the optimal policy for

(pt, it)∈Tt, t∈ T in Case 1. We use backward induction. At the end of the planning horizon T , we

have VT (pT , iT ) = rS(pT , iT ) where

rS(pT , iT ) =

−cf if γT <γd,
r(pd) if (pT , iT )∈TT
r(pt)− c`(pd− pt) if γT ≥ γd and pt < pd.

(45)

Hence, the optimal pooling action at T − 1 is to perform the purification in such a way as

a∗T−1(pT−1, iT−1) =
{
w∗T−1 ∈WT−1 : (θlT−1pT−1,ψ

u
T−1iT−1|w∗T−1) ∈ TT | (pT−1, iT−1) ∈ TT−1)

}
for all

(pT−1, iT−1) ∈ TT−1 with γT−1 < γd. Note that the structure of the target zones in Proposition 3,

Definition 2 and Observation 1 ensure that there exists at least one such policy. Analysis at

step t ∈ T proceeds similarly. Note that the bounds on the value function in Section 4.3 indicate

that V∗t (pt, it) =−cf for all (pt, it) ∈ Ft at t ∈ T , and
∑T−1

j=t −cj + r(pd)≤ V∗t (pt, it)≤ r(pd) for all

(pt, it)∈Tt at t∈ T . Hence, based on the bounds of the value function, the necessary condition for

the optimal pooling policy is a∗t (pt, it) =
{
w∗t ∈Wt : (θltpt,ψ

u
t it+1|w∗t ) ∈ Tt+1 | (pt, it) ∈ Tt)

}
for all

(pt, it)∈Tt at t∈ T . �



43

Proof of Theorem 4 Since Case 2 is relaxing the yield requirement from Case 1, The proof is

analogous to that of Theorem 3, and hence omitted. �

Proof of Proposition 5 Let (p′t, i
′
t) ∈ Ft and the (sub)set

{
Ipt≤p′t,it≥i′t

}
represent all protein-

impurity pairs satisfying Proposition 5. Note that the conditions in Proposition 5 correspond to the

failure zone. Therefore, based on Theorem 1, we have V∗t (pt, it) =−cf for the states
{
Ipt≤p′t,it≥i′t

}
specified in Proposition 5. Hence, the aggregate failure state dt can be modeled as an absorbing

state with reward r(dt) =−cf , and the aggregation scheme is exact since the failure state dt encom-

passes subsets of the original system states that have the same costs and transitions. The proof

follows from Bertsekas (2012), Vol.1, page 321. �

Proof of Proposition 6: First, we fix any protein-impurity pair (pt, it) ∈ P × T at chromatog-

raphy step t ∈ T . Let wit and wjt be two distinct pooling windows at chromatography step t ∈ T ,

such that, Ft(Θ|wit)≥st Ft(Θ|w
j
t ), Gt(Ψ|wit)≤st Gt(Ψ|wjt ), and (θlt|wit)< (θlt|w

j
t ), (θut |wit)< (θut |w

j
t ),

and (ψlt|wit)> (ψlt|w
j
t ), (ψut |wit)> (ψut |w

j
t ), as specified in Proposition 6. Next, we evaluate the value

function Vt(pt, it|wjt ) of state (pt, it) under the pooling action wjt at chromatography step t∈ T :

Vt(pt, it|wjt ) = max
{
rs(pt, it),−ct +

∫ ψu
t |w

j
t

ψl
t|w

j
t

∫ θut |w
j
t

θlt|w
j
t

ft(θt|wjt )gt(ψt|wjt )Vt+1(ptθt,ψtit|wjt )dθdψ
}

> max
{
rs(pt, it),−ct +

∫ ψu
t |w

i
t

ψl
t|w

i
t

∫ θut |w
i
t

θlt|w
i
t

ft(θt|wit)gt(ψt|wit)Vt+1(ptθt,ψtit|wit)dθdψ
}
(46)

= Vt(pt, it|wit).

Note that Equation (46) follows from the conditions in Proposition 6 and the monotonicity of the

value function in Proposition 1. Hence, for any (pt, it) ∈P ×T at the chromatography step t ∈ T ,

the value function Vt(pt, it|wjt ) under the pooling window wjt denotes strictly higher profit then the

value function Vt(pt, it|wit) under the pooling window wit. Hence, wit is said to be strictly dominated

by wjt at chromatography step t∈ T since Vt(pt, it|wjt )> Vt(pt, it|wit), and thus a∗t (pt, it) 6=wit. �


