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Affine Parameter-Dependent Lyapunov Functions
for LPV Systems with Affine Dependence

Pepijn B. Cox, Member, IEEE, Siep Weiland, Member, IEEE, and Roland Tóth, Senior Member, IEEE

Abstract—This paper deals with the certification problem
for robust quadratic stability, robust state convergence, and
robust quadratic performance of linear systems that exhibit
bounded rates of variation in their parameters. We consider both
continuous-time (CT) and discrete-time (DT) parameter-varying
systems. In this paper, we provide a uniform method for this
certification problem in both cases and we show that, contrary to
what was claimed previously, the DT case requires a significantly
different treatment compared to the existing CT results. In the
established uniform approach, quadratic Lyapunov functions,
that are affine in the parameter, are used to certify robust
stability, robust convergence rates, and robust performance in
terms of linear matrix inequality feasibility tests. To exemplify
the procedure, we solve the certification problem for L2-gain
performance both in the CT and the DT cases. A numerical
example is given to show that the proposed approach is less
conservative than a method with slack variables.

Index Terms—Linear parameter-varying systems; Parameter-
varying Lyapunov functions; Stability of linear systems; LMIs.

I. INTRODUCTION

THE certification of stability and performance of a linear
system against uncertain and/or time-varying parame-

ters is of paramount interest [1]–[3]. Non-linear and/or non-
stationary effects can be represented by varying dynamic
behavior of a linear system description expressed as parameter
variations. This makes the so-called linear parameter-varying
(LPV) system representations widely applicable to model
physical or chemical processes. However, the certification of
robust quadratic stability, robust state convergence, and robust
quadratic performance for LPV representations becomes more
involved compared to the linear time-invariant (LTI) case.
There has been extensive research in this area, where the
parameter variations are assumed to be either time-invariant
in a constraint set or time-varying signals with possible
constraints on their values, rates of variations, bandwidths,
or spectral contents. For time-invariant parametric dependence
and arbitrary fast time-variations, a rich literature exists, e.g.,
see [3]–[5].

In a wide range of applications, systems exhibit bounded
parameter variations and bounded rates of variation. For these
systems, assumptions on arbitrary fast parameter rates are

P.B. Cox, S. Weiland, and R. Tóth are with the Control Systems Group,
Department of Electrical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands, e-mail: {p.b.cox,
s.weiland, r.toth}@tue.nl.

This paper has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 714663).

unrealistic and conservative. Formulation of stability con-
ditions taking the bounded rate of variation into account
can be accomplished, e.g., via integral-quadratic-constraints
(IQCs) [6]–[10] based on an equivalent linear fractional rep-
resentation (LFR) of the LPV system, Lyapunov theory based
on state-space representations or LFR forms [11]–[18], the
quadratic separator theorem for LFRs [19]–[21], or Finsler’s
Lemma [22]. However, these stability and performance for-
mulations result in an infinite set of linear matrix inequalities
(LMIs). To obtain tractable methodologies, a number of relax-
ation techniques can be applied. These include 1) vertex sep-
aration or convex-hull relaxation, including µ synthesis, D/G
scaling, and full-block multipliers, [6], [7], [9], [10], [19]–[21];
2) partial-convexity arguments [11]–[13]; 3) sum-of-squares
relaxation [21], [23]; 4) Pólya relaxation [8], [14]–[16];
5) slack variable methods (applied in discrete-time) [14], [16],
[17]; and 6) partitioning of the uncertainty space [1], [18].
The aforementioned overview is far from complete due to
the vast amount of literature on this topic. A summary of
various relaxation techniques in the continuous-time (CT) case
is found in [3], [24].

Many approaches presented in the literature for quadratic
stability, state convergence, and quadratic performance cer-
tification problems are either conservative or have a high
computational demand due to the large number of free pa-
rameters or the large number of LMIs. Furthermore, the CT
and the discrete-time (DT) cases are fundamentally different
for these problems. Indeed, in the DT case, the robust stability
analysis requires a significantly different relaxation technique
leading to more involved synthesis and verification results.
By neglecting this difference, the DT case remained mainly
unexplored under the claims that it trivially follows from the
CT results. We will demonstrate that this is not the case. The
goal of this paper is to provide a unified method for certifica-
tion of robust quadratic stability, robust state convergence, and
robust quadratic performance, in both the CT and DT cases,
for linear systems that exhibit parameter variations where
these variations have bounded rates. The certification problem
is solved using parameter-dependent Lyapunov functions. To
avoid large numbers of free parameters, to decrease the number
of LMIs, and to avoid conservativeness of the results, we
apply the partial-convexity relaxation argument inspired by the
results in [11]–[13].

More specifically, the contributions of the paper are the
following, for the CT case, we extend [11], [12] to include
a certificate on the exponential rate of decay of the state,
independent of the uncertain parameter. For the DT case, we
extend the partial-convexity argument to handle the third-order
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terms of the Lyapunov function without introducing additional
free parameters and we provide a less conservative robust
stability test, a state convergence guarantee, and a performance
test than other existing approaches. To the authors’ knowledge,
the only contribution using the partial-convexity argument in
the DT case is [13]. However, [13, Thm. 1] avoids the cubic
dependencies on the parameters by including additional free
parameters and by increasing the number of LMIs. Addition-
ally, we draw a parallel with LMI regions to show why the
DT case induces a more involved set of LMIs. In addition,
an illustrative example is provided comparing the proposed
partial-convexity results with a slack variable based method
in the DT case.

The paper is organized as follows. In Section II, the concept
of LPV systems, state-space representations, and the problem
setting are introduced. The analysis on affine quadratic stabil-
ity (AQS) is given in Section III. Section IV reveals how the
partial-convexity relaxation of the AQS certification problem
results in a finite set of LMIs for the CT and DT cases. In
Section V, an LMI based formulation for the affine quadratic
performance (AQP) analysis is derived for both cases. In
Section VI, an illustrative example is given for the DT case.
Concluding remarks are given in Section VII.

II. LINEAR PARAMETER-VARYING SYSTEMS

A. LPV state-space representation

Consider a system defined by the following LPV state-space
representation:

ξx(t) = A(p(t))x(t) + B(p(t))w(t), (1a)
z(t) = C(p(t)) x(t) +D(p(t))w(t), (1b)

where x : T 7→ Rnx is the state variable, p : T 7→ P ⊂ Rnp

is the time-varying parameter (i.e., the scheduling signal), w :
T 7→ Rnw is the general disturbance channel, z : T 7→ Rnz

denotes the performance channel, and t ∈ T defines time. For
the CT case, T = R and ξ = d

dt , i.e., ξx(t) = d
dtx(t) denotes

the time derivative of the state; and for the DT case, T = Z
and ξ = q is the time-shift operator, i.e., ξx(t) = x(t + 1).
The parameter-varying matrix functions A(�), . . . ,D(�) in (1)
are considered to be affine functions of p:

A(p(t))=A0+

np∑
i=1

Aipi(t), B(p(t))=B0+

np∑
i=1

Bipi(t),

C(p(t))=C0+

np∑
i=1

Cipi(t), D(p(t))=D0+

np∑
i=1

Dipi(t),

(2)

with known matrices Ai ∈ Rnx×nx , Bi ∈ Rnx×nw , Ci ∈
Rnz×nx , Di ∈ Rnz×nw for i = 0, . . . , np and pi is the i-th
element of the scheduling variable. Due to linearity from x to
z, asymptotic stability 1 of (1) is dictated by stability of the
fixed point at the origin of the autonomous part of (1), i.e.,

ξx(t) = A(p(t))x(t)︸ ︷︷ ︸
f(x(t),p(t))

, x(0) = x0, (3)

1An LPV system, represented in terms of (1), is called asymptotically stable,
if, for all trajectories of (w(t), p(t), z(t)) satisfying (1) with w(t) = 0 for
t ≥ 0 and p(t) ∈ P, it holds that limt→∞ |z(t)| = 0.

where x0 ∈ Rnx denotes the initial state. In this paper, we
assume that the scheduling variable and its rate are bounded:
A1 The scheduling signal p(t) and its rate of variation δp(t),

defined by δp(t) = d
dtp(t) in the CT case and δp(t) =

p(t + 1) − p(t) in the DT case, range for all t ∈ T in
the bounded set P × V, i.e., (p(t), δp(t)) ∈ P × V with
V ⊂ Rnp . Here P = co(P) and V = co(V) are defined
as the convex hulls of the hyper-rectangles

P =
{[

u1 · · · unp

]>
: ui ∈ {pi, pi}

}
, (4a)

V =
{[

v1 · · · vnp

]>
: vi ∈ {νi, νi}

}
, (4b)

with 2np vertices each.

B. Notation

Let Ivs denote the set of integers {s, s + 1, · · · , v} and Sn
the set of all n × n real symmetric matrices. The superscript
n is omitted if the dimension is not relevant for the context.
In addition, the inequalities A � B and A � B with A ∈ Sn
and B ∈ Sn mean that A − B is positive semi-definite and
positive definite, respectively. Let pc denote the center of P:

pc =
[

p
1
+p1
2 . . .

p
np

+pnp

2

]>
. (5)

In addition, we will denote multiple summations∑np

i=1· · ·
∑np

k=1 by
∑np

i,...,k=1. XZ is the standard notation for
the collection of all maps from Z to X. R≥0 denotes the set of
nonnegative real numbers and Z≥0 is the set of nonnegative
integers. T0 = R≥0 in the CT case and T0 = Z≥0 in the
DT case. With σi{A}, we denote the singular values of a
real matrix A where the largest and smallest singular values
are indicated as σmax{A} and σmin{A}, respectively. The
eigenvalues of A are denoted as λi{A}. The spectral norm
of A is defined as ‖A‖2 = σmax{A}. Furthermore, with ‖�‖q
we denote the vector q-norm. The Lq-norm of a continuous
signal w is ‖w‖q =

(∫∞
0
‖w(t)‖qqdt

)1/q
and for a discrete

signal w, the `q-norm is ‖w‖q =
(∑∞

t=0 ‖w(t)‖qq
)1/q

.

III. AFFINE QUADRATIC STABILITY

In this paper, asymptotic stability of (3) is verified under A1
by using a parameter-dependent Lyapunov function.

Definition 1 (Parameter-dependent Lyapunov function): The
function V : Rnx×P→ R is a parameter-dependent Lyapunov
function for (3) if:

(i) V (x, p) > 0 for all x ∈ Rnx with x 6= 0 and ∀p ∈ P;
(ii) V (x, p) = 0 for x = 0 and ∀p ∈ P; and

(iii) ∆V (x, p, r) < 0 for ∀(x, p, r) ∈ Rnx×P×V with x 6= 0.
In the CT case,

∆V (x, p, r) := ∇xV (x, p) ·f(x, p) +∇pV (x, p) · r, (6a)

where ∇y indicates the gradient of a function w.r.t. y and
· is the inner product. For the DT case,

∆V (x, p, r) := V (f(x, p), p+ r)− V (x, p). (6b)

Theorem 1 (Asymptotic stability): If a parameter-dependent
Lyapunov function for (3) exists, then the origin of (3) is an
asymptotically stable fixed point.
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Proof: See, for example, [25, Thm. 4.1] for the CT case
and [26, Thm. B.23] for the DT case.

In this paper, we consider quadratic parameter-dependent
Lyapunov functions of the form

V (x, p) = x>K(p)x, (7)

where the function K : P 7→ Snx is affine in p

K(p) = K0 +

np∑
i=1

Kipi, (8)

with unknown matrices K0, . . . ,Knp
∈ Snx .

Definition 2 (Affine quadratic stability): The representa-
tion (1) is affinely quadratically stable (AQS), if it admits
a parameter-dependent Lyapunov function of the form (7)-(8).

Let us provide sufficient conditions for AQS:
Theorem 2 (Sufficiency for AQS): The LPV representa-

tion (3) is affinely quadratically stable, if there exist np + 1
matrices K0, . . . ,Knp

∈ Snx such that

K(p) = K0 +

np∑
i=1

Kipi � 0, (9)

for all p ∈ P and, in addition, for the CT case, it holds that

Lc(p, r)=A>(p)K(p)+K(p)A(p)+K(r)−K0 ≺ 0, (10a)

for all (p, r) ∈ P× V or, for the DT case, it holds that

Ld(p, r)=A>(p)(K(p)+K(r)−K0)A(p)−K(p)≺0, (10b)

for all (p, r) ∈ P× V.
Proof: For the CT case, e.g., see [3, Thm. 2.4.6]. The DT

case can be obtained by similar arguments.
Theorem 2 results in an infinite set of matrix inequalities in

the unknowns Ki ∈ Snx . In this paper, we convexify (10) using
a partial-convexity argument to obtain a tractable solution
by a finite number of LMIs. Within the IQC framework,
it has been shown that relaxation by partial-convexity for
systems in the form (1) lead to a less conservative formulation
than a convex-hull relaxation [24, p. 9]. It is difficult to
make generic statements on the potential conservativeness of
various relaxation methods. However, the relaxation by partial-
convexity results in less decision variables when compared to
slack variable relaxation methods as discussed in [14], [16],
[17]. In Section VI, we demonstrate that relaxation by partial-
convexity is less conservative than slack variable relaxation.
Alternatively, the uncertainty space can be partitioned as
in [21], where the grid size leads to a trade-off between a
conservative solution and an increased computational burden.
Therefore, the partial-convexity argument potentially avoids
excessive number of free parameters and decreases the number
of LMIs.

IV. SUFFICIENCY FOR AQS WITH GUARANTEED
CONVERGENCE

A. Relaxation with partial-convexity

The functions Lc(p, r) in (10a) and Ld(p, r) in (10b) are
quadratic and cubic in p, respectively, while linear in r. Hence,
a relaxation technique is required for p only to obtain a finite

set of LMIs to verify AQS in Theorem 2. If the functions
Lc(�) and Ld(�) are negative definite on (p, r)∈P × V, then
the maximum of these functions must be negative. Therefore,
if it can be ensured that the maximum of Lc(�) and Ld(�)
is at the vertices P , then (10a) and (10b) reduce to a finite
set of LMIs that are required to be satisfied on P only. The
following lemma provides the conditions for this concept:

Lemma 1 (Maximum at the vertices): Consider the cubic
function L : P 7→ S defined by

L(p)=Q0 +

np∑
i=1

Qipi +

np∑
i,j=1

Qi,jpipj +

np∑
i,j,k=1

Qi,j,kpipjpk,

with matrices Qi, Qj,k, Qj,k,l ∈ S for i ∈ Inp

0 , j, k, l ∈ Inp

1 .
The function L(�) achieves its maximum at P if

1

2

∂2L(u)

∂u2i
=Qi,i+

np∑
j=1

(Qj,i,i+Qi,j,i+Qi,i,j)uj � 0, (11)

for all (i, u)∈Inp

1 ×P with P = co(P).
Proof: See Appendix A.

In fact, condition (11) implies that L(�) is a partial-convex
function:

Definition 3 (Partially convex function): A twice differen-
tiable function L : P → S is partially convex if P is convex
and

∂2L(p)

∂p2i
� 0, for all (i, p) ∈ Inp

1 × P. (12)

Note that positive semi-definiteness of (12) is along each
independent direction pi of the scheduling space. This is less
demanding than convexity with respect to p, which would
require the Hessian of L(�) to be positive semi-definite.

By applying the partial-convexity relaxation (11) in
Lemma 1, the maximum of Lc(�) and Ld(�) can be found
at the vertices and, therefore, the AQS test in (9)-(10) can
be reduced to a finite set of LMIs at the vertices only, i.e.,
Li(u, v) ≺ 0 ∀(u, v) ∈ P×V . This is the core idea introduced
in [11] for the CT case. This concept can also be applied in
the DT case, as highlighted in Section IV-B.

By taking into account the cubic terms in L(�), we differ
from the approaches presented in [11]–[13]. These cubic terms
are essential in handling the DT case.

B. The discrete-time case

Theorem 3 (Sufficiency for AQS in DT): Given an LPV
system defined by (3) with dependency structure (2) where
the scheduling variable p(t) satisfies A1.

If there exists an 0 < ε < 1, such that the eigenvalues of
A(pc) satisfy |λi(A(pc))| <

√
1− ε with pc as in (5), and

there exist np + 1 matrices K0, . . . ,Knp
∈ Snx parametrizing

K(�) in (8) that satisfy

Ld(u, v, ε)=A>(u) [K(u) +K(v)−K0]A(u)

− (1− ε)K(u) � 0, ∀(u, v) ∈ P × V, (13)

0 � A>(u)KiAi+A
>
iKiA(u), ∀(i, u) ∈ Inp

1 × P, (14)

then the LPV system corresponding to (3) is AQS. In particu-
lar, V (x, p) in (7) is a Lyapunov function with ∆V (x, p, δp) ≤
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−εV (x, p) and the state x robustly converges, i.e., ‖x(t)‖22 ≤
b
a (1− ε)t‖x(0)‖22 for any trajectory (p(t), δp(t)) ∈ P×V for
t ≥ 0 where

a = inf
u∈P

λmin

{
K(u)

}
, b = sup

u∈P
λmax

{
K(u)

}
. (15)

Proof: The proof has three parts: i) sufficiency of the
conditions for asymptotic stability, ii) showing that K(p) � 0
for all p ∈ P is implied by |λi(A(pc))| <

√
1− ε together

with (13)-(14) and iii) convergence of x(t). Combining i) and
ii) for 0 < ε < 1 results in a parameter-dependent Lyapunov
function V (�) according to Theorem 2 and AQS is proven.

Part i. The function Ld(p, δp, ε) in (10b) is affine in δp and
ε, hence, it is sufficient to evaluate (10b) at the vertices V for
an 0 < ε < 1, i.e.,

Ld(p, v, ε) ≺ 0, ∀p ∈ P, ∀v ∈ V, and 0 < ε < 1. (16)

To prove AQS, fix v ∈ V , fix 0 < ε < 1, and define R(v) =
K(v)−K0, then we can write (16) as

Ld(p, v, ε) = −(1− ε)K(p) +A>0 R(v)A0

+

np∑
i=1

A>i R(v)Aip
2
i +

np∑
i=1

(
A>0 R(v)Ai +A>i R(v)A0

)
pi

+

np∑
i,j=1, i 6=j

A>i R(v)Ajpipj +A>0 K0A
>
0 +

np∑
i=1

A>i KiAip
3
i

+

np∑
i=1

(
A>i K0A0 +A>0 KiA0 +A>0 K0Ai

)
pi

+

np∑
i,j=1

(
A>i KjA0 +A>0 KiAj +A>i K0Aj

)
pipj

+

np∑
i,j=1, i 6=j

(
A>i KjAi +A>j KiAi +A>i KiAj

)
p2i pj

+

np∑
i,j,k=1, i 6=j 6=k

A>i KjAkpipjpk ≺ 0. (17)

Based on the partial-convexity argument, Eq. (17) holds if it
holds on P and the following condition is satisfied

∂2Ld(p, v, ε)

∂p2i
= 2A>i R(v)Ai + 6A>i KiAipi

+ 2
(
A>i KiA0 +A>0 KiAi +A>i K0Ai

)
+

+ 2

np∑
j=1, i 6=j

(
A>i KjAi +A>j KiAi +A>i KiAj

)
pj � 0,

which can be rewritten as

A>i [K(p)+R(v)]Ai︸ ︷︷ ︸
�0

+A>(p)KiAi+A
>
i KiA(p) � (18a)

A>(p)KiAi+A
>
i KiA(p) � 0. (18b)

Note that the partial-convexity relaxation only requires to
be positive semi-definite on the interval P. Also see that,
A>i [K(p) +R(v)]Ai = A>i [K(p+ v)]Ai, therefore, (18a)
to (18b) is valid. As a consequence, the partial-convexity
argument (18b) becomes independent of v ∈ V . If (18b) holds

for all (i, u) ∈ Inp

1 × P then (13) is convex on the domain
(p, r) ∈ P × V and, by using Lemma 1, (13) should only be
tested on the vertices of the hyper rectangle.

Part ii. This part will be proven by contradiction. Since
δp=0 is admissible with 0<ε<1, we write (10b) as

A>(p)K(p)A(p)−K(p) ≺ 0. (19)

In addition, P is compact due to A1 and, therefore, K(p) is a
compact function on P. Let us assume that ∃p0∈P such that
K(p0) is singular and take x0∈ker(K(p0)) with x0 6= 0, then

x>0
[
A>(p0)K(p0)A(p0)−K(p0)

]
x0 =

x>0 A>(p0)K(p0)A(p0)x0 ≥ 0. (20)

However, (20) contradicts (19), hence, (19) ensures that K(p)
cannot be singular for all admissible p ∈ P. As |λi(A(pc))| <√

1− ε, K(pc) � 0 by the D-stability result [12]. Then, as
K(p) is compact on P, by continuity of the eigenvalues of
K(p), (19) assures that aI � K(p) � bI with 0<a≤ b<∞
as defined in (15) for all admissible p ∈ P and, therefore, (9)
is satisfied.

Part iii. We can find an 0<ε<1 such that

∆V (x, p, δp) + εV (x, p) =

x>
[
A>(p)K(p+ δp)A(p)− (1− ε)K(p)

]
x =

x>Ld(p, δp, ε)x ≤ 0, (21)

for all (p, δp) ∈ P × V and x(0) 6= 0. Eq. (21) provides
that V (�) is decaying along the solutions of (3) according to
V (x(t), p(t)) ≤ (1 − ε)tV (x(0), p(0)) for t > 0. In addition,
a‖x‖22 ≤ V (x, p) ≤ b‖x‖22 for all p ∈ P and x ∈ X since
K(p) is positive definite and bounded, hence, we can find that
‖x(t)‖22 ≤ b

a (1− ε)t‖x(0)‖22 for t ≥ 0.
Remark 1: It is an essential part of the proof of Theorem 3

(Part i) that the function Ld(�) in (17) includes third-order
terms in p. In [13, Thm. 1], these terms are reduced to
second-order by introducing additional variables and coupling
constraints. Therefore, the proof and the LMIs in Theorem 3
are fundamentally different from [13, Thm. 1]. Moreover, the
number of decision variables in [13, Thm. 1] is twice the
number of decision variables in Theorem 3.

To decrease the number of LMI conditions in Theorem 3,
a more conservative test for AQS can be derived:

Lemma 2 (Simple AQS in DT): Given an LPV system
defined by (3) with dependency structure (2) where the
scheduling variable p(t) satisfies A1.

If there exist an 0 < ε < 1 and np + 1 matrices
K0, . . . ,Knp ∈ Snx parametrizing K(�) in (8) that satisfy

L1(u, l, ε) = A>(u)K(l)A(u)− (1− ε)K(u) ≺ 0,

∀(u, l) ∈ P × P, (22)

K(u) � 0, ∀u ∈ P, (23)

then the LPV system corresponding to (3) is AQS. In particu-
lar, V (x, p) in (7) is a Lyapunov function with ∆V (x, p, δp) ≤
−εV (x, p) and the state x robustly converges as ‖x(t)‖22 ≤
b
a (1− ε)t‖x(0)‖22 for any trajectory (p(t), δp(t)) ∈ P×V for
t ≥ 0 with a and b given by (15).
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Proof: Note that (22) is equivalent to (10b), however,
in (22), qp ∈ P and p ∈ P are treated as independent variables,
which implies that νi = p

i
− pi and νi = pi − pi for i ∈ Inp

1 .
Note that the function L1(p, qp, ε) for p, qp ∈ P, 0 < ε < 1 is
affine in qp and ε, hence (22) holds if and only if

L1(p, l, ε) ≺ 0, ∀p ∈ P, ∀l ∈ P, and 0 < ε < 1. (24)

Fix l and ε, the partial-convexity on the domain p ∈ P gives

∂2L1(p, l, ε)

∂p2i
= A>i K(l)Ai � 0, ∀(i, l) ∈ Inp

1 × P. (25)

As (23) enforces K(l) � 0, (25) is satisfied. Hence, satisfy-
ing (22) and (23) results in AQS. Robust state convergence
can be proven similarly to Part iii of the proof of Theorem 3
and is therefore omitted.

Note that Lemma 2 does not depend on the rate of variation
δp, but we implicitly assume that δp cannot exceed the
difference between the extremes of P, i.e., νi = p

i
− pi and

νi = pi−pi for i ∈ Inp

1 . This approach can only be exploited in
the DT setting. The number of LMIs is decreased, however, the
feasibility test is more conservative compared to Theorem 3
as the range [νi, νi] is enlarged.

C. Generalization

Theorem 4 (AQS in CT and DT with guaranteed decay):
Given an LPV system defined by (3) with dependency struc-
ture (2) where the scheduling variable p(t) satisfies A1.

Define the following set of inequalities

Lk(u, v, α)=

[
I
A(u)

]>(
Mk(α)⊗K(u)

)[ I
A(u)

]
+Qk(u, v)�0,

∀(u, v) ∈ P × V, (26)

Nk(i, u, α)=m
[k]
22

(
A>(u)KiAi+A

>
iKiA(u)

)
+m

[k]
12KiAi+

m
[k]
21A

>
i Ki � 0, ∀(i, u) ∈ Inp

1 × P, (27)

where k∈{c,d} and m[k]
ij is the i, j-th element of Mk(α).

For the CT case with k = c, if there exists an α > 0 such
that Re (λi(A(pc))) < −α with pc as in (5) and there exist
np +1 matrices K0, . . . ,Knp

∈ Snx parametrizing K(�) in (8)
such that (26)-(27) are satisfied with

Mc(α) :=

[
2α 1
1 0

]
, Qc(u, v) := K(v)−K0, (28)

then the LPV system corresponding to (3) is AQS. Moreover,
V (x, p) in (7) is a Lyapunov function with ∆V (x, p, δp) ≤
−2αV (x, p) and the state x robustly converges as ‖x(t)‖22 ≤
b
ae
−αt‖x(0)‖22 for any trajectory (p(t), δp(t)) ∈ P × V for

t ≥ 0 with a and b given by (15).
For the DT case with k = d, if there exists an 0 < α < 1

such that |λi(A(pc))| < α with pc as in (5) and there exist
np +1 matrices K0, . . . ,Knp

∈ Snx parametrizing K(�) in (8)
such that (26)-(27) are satisfied with

Md(α) :=

[
−α2 0

0 1

]
, Qd(u, v) :=A>(u)[K(v)−K0]A(u),

(29)
then the LPV system corresponding to (3) is AQS. In particu-
lar, V (x, p) in (7) is a Lyapunov function with ∆V (x, p, δp) ≤

−α2V (x, p) and the state x robustly converges as ‖x(t)‖22 ≤
b
aα

2t‖x(0)‖22 for any trajectory (p(t), δp(t)) ∈ P×V for t ≥ 0
with a and b given by (15).

Proof: For the CT case, AQS is proven in [11, Thm. 3.2]
while robust state convergence is proven similar to [27, Prop.
5.6]. For the DT case, see Theorem 3.

Remark 2: Theorem 4 can also be applied for stability
analysis under the assumption of a time-invariant scheduling
signal, i.e., V = V = ∅ (robust analysis). In this simplification,
all elements in (27) with respect to the time-variation become
zero, i.e., Qc(�)=Qd(�)=0 in (28) or (29).

Remark 3: Theorem 4 implies that, for the CT case, the
real parts of the eigenvalues of A(p) are negative for fixed
values of p, i.e., Re (λi(A(p))) < −α ∀p ∈ P and, for the
DT case, the eigenvalues are within a disc of radius α, i.e.,
|λi(A(p))| < α, ∀p ∈ P. This connects to well-known results
on LMI regions, e.g., see [12]. Contrary to the LTI case, the
location of the eigenvalues are a necessary, but not sufficient
condition for stability in the parameter-varying case, as the
contribution of Qk(�) in (26) cannot be neglected.

V. AFFINE QUADRATIC PERFORMANCE

A. Concept of dissipativity and performance

The results on AQS of Section IV can be extended to
quadratic performance measures, including L2 performance,
positivity, and H2 performance.

The LPV system corresponding to (1) is strictly dissipative
for a given supply function s : Rnw ×Rnz → R if there exist
an ε > 0 and a storage function V (�) such that,

∆V (x, p, δp) ≤ s(w, z)− ε‖w‖22, (30)

for all (w, p, δp, x, z) ∈ Rnw×P×V×Rnx×Rnz , e.g., see [27].
In other words, the change of internal storage ∆V (x, p, δp)
will never exceed the amount of supply s(�) that flows into
the system. The inequality (30) should be satisfied in a point-
wise fashion, implying that (30) also holds for all admissible
trajectories that satisfy (1). Additionally, we take s(�) to be
the following quadratic supply function

s(w, z) =

[
w
z

]>
Ps

[
w
z

]
, Ps =

[
Qs Ss

S>s Rs

]
, (31)

where Ps ∈ Snw+nz is partitioned as Qs ∈ Snw , Ss ∈ Rnw×nz ,
and Rs ∈ Snz . By appropriately parametrizing (31), various
performance measures can be represented. We test feasibil-
ity of (30) with an affine parameter-dependent function (7),
hence, V (�) qualifies as a quadratic storage function for (1)
and (31). We say that the system (1) achieves affine quadratic
performance (AQP) for (31) whenever such a quadratic storage
function exists.

B. L2-Gain performance

To simplify notation, we use L2 to indicate L2 in CT and
`2 in DT.

Definition 4 (Induced L2-gain): Any finite γ that satisfies

sup
0<‖w‖2<∞
p∈PT0

‖z‖2
‖w‖2

< γ, (32)
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is an L2-gain upper bound where z : T0 → Rnz is the
response (performance variable) of (1) for t ≥ 0 under
x0 = 0, general disturbance w ∈ L2(Rnw ,T0) in CT or
w ∈ `2(Rnw ,T0) in DT, and scheduling p ∈ PT0 .

The L2-gain performance measure of Definition 4 can be
characterized by the supply function (31) by choosing Qs =
γ2I , Ss = 0, Rs = −I , and ε > 0 [27, Prop. 3.12].

Lemma 3 (L2-gain performance): Given an LPV system
defined by (1) with dependency structure (2) where the
scheduling variable p(t) satisfies A1.

If there exist a γ > 0 and np + 1 matrices K0, . . . ,Knp ∈
Snx parametrizing K(�) in (8) such that

K(p) � 0, ∀p∈P, (33) Lk(p, r) K(p)B(p) C>(p)
B>(p)K(p) −γI D>(p)
C(p) D(p) −γI

≺0, ∀(p, r)∈P×V, (34)

where Lk(p, r) as in (10), then the LPV system represented
by (1) is AQS and has an L2-gain performance bound γ.

Proof: See that the (1, 1)-block of (34) implies AQS
(Lemma 4). In addition, for ε > 0, Eq. (34) ensures that

∆V (x, p, δp) + z>z − γ2w>w < 0, (35)

for all admissible (w, p, δp, r, x, z). The choice of supply func-
tion implies the L2-gain performance bound of Definition 4
based on similar arguments as in [27, Thm. 5.16].

As (33) and (34) impose an infinite number of LMIs, we
make use of the partial-convexity argument to find an LMI-
based test for AQP.

Theorem 5 (Sufficiency for affine L2-gain performance):
Given an LPV system defined by (1) with dependency struc-
ture (2) where the scheduling variable p(t) satisfies A1.

Define the following set of inequalities and equalities 2Lk(u, v, α) K(u)B(u) C>(u)
B>(u)K(u) −γI D>(u)
C(u) D(u) −γI

�0, ∀(u, v)∈P×V, (36)

Nk(u, i, α) � 0, ∀(i, u) ∈ Inp

1 ×P, (37a)
KiBi = 0, ∀i ∈ Inp

1 , (37b)

where Lk(�) and Nk(�) are defined in (26) and (27).
For the CT case with k = c, if there exists an α > 0 such

that Re (λi(A(pc))) < −α with pc as in (5) and there exist
np + 1 matrices K0, . . . ,Knp

∈ Snx such that (36)-(37) are
satisfied, then the LPV system corresponding to (1) is AQS and
has an L2-gain performance bound γ. Moreover, V (x, p) in (7)
is a Lyapunov function with ∆V (x, p, δp) ≤ −2αV (x, p) and
the state x robustly converges as ‖x(t)‖22 ≤ b

ae
−αt‖x(0)‖22 for

any trajectory (p(t), δp(t)) ∈ P× V for t ≥ 0 with w(t) = 0
and a, b given by (15).

For the DT case with k = d, if there exists an 0 < α < 1
such that |λi(A(pc))| < α with pc as in (5) and there exist
np + 1 matrices K0, . . . ,Knp

∈ Snx such that (26)-(27) are
satisfied, then the LPV system corresponding to (1) is AQS

2In terms of condition (37b), if any Bi for i = 1, . . . , np is full row rank
then the corresponding Ki must be zero, hence, it can be removed from (36)
and (37). If all Bi are full row rank, then we obtain a parameter-independent
Lyapunov function.

with `2-gain performance bound γ. In particular, V (x, p) in (7)
is a Lyapunov function with ∆V (x, p, δp) ≤ −α2V (x, p) and
the state x robustly converges as ‖x(t)‖22 ≤ b

aα
2t‖x(0)‖22 for

any trajectory (p(t), δp(t)) ∈ P× V for t ≥ 0 with w(t) = 0
and a, b given by (15).

Proof: Sufficiency for affine L2-gain performance is
obtained with robust state convergence if (36) holds together
with the following set of inequalities:[
Nk(u, i, α) KiBi
B>i Ki 0

]
� 0, for all (i, u) ∈ Inp

1 ×P. (38)

This statement can be proven by straightforward application
of Theorem 4 and Lemma 3. Hence, in the remainder of the
proof it is shown that (38) is equivalent to (37).

For the inequality (38) to hold, the blocks on the diagonal
need to be positive semi-definite, i.e., Nk(u, i, α) � 0. The
matrix Nk(�) might be rank deficient, i.e., rank(Nk(�)) =
nN ≤ nx. Hence, after an appropriate congruence transform
on (38), we obtain the following partition of (38): Ñk(u, i, α) 0 Mi,1

0 0 Mi,2

M>i,1 M>i,2 0

�0 with Ñk(u, i, α)�0, (39)

where Ñk(u, i, α) ∈ SnN and [M>i,1 M
>
i,2]> is the partition

of KiBi after column and row re-arrangement with Mi,1 ∈
RnN×nw , Mi,2 ∈ Rnx−nN×nw . Note that, in case Nk(�) is
positive definite, Ñk(�) = Nk(�), Mi,1 = KiBi, and Mi,2 = ∅.
Then, perform a Schur transform on (39) to obtain that (39)
is equivalent to[

0 Mi,2

M>i,2 −M>i,1Ñ
−1
k (u, i, α)Mi,1

]
�0, Ñk(u, i, α)�0. (40)

Then (40) implies that the blocks on the diagonal are required
to be positive semi-definite, i.e., −M>i,1Ñ

−1
k (�)Mi,1 � 0. As

Ñk(�) is positive definite, the latter condition is met if and
only if:

M>i,1Ñ−1k (u, i, α)Mi,1 = 0 ⇐⇒ Mi,1 = 0.

Then, it follows from (40) that Mi,2 = 0. Next, the matrix
KiBi can be reconstructed from elementary matrix operations
based on Mi,1 and Mi,2 and we can conclude that KiBi = 0
(undo partition (39)).
To obtain the minimum of γ satisfying (32), we solve
minγ≥0 γ s.t. (36)-(37) hold. This convex optimization prob-
lem can be solved efficiently by numerical LMI solvers.

VI. NUMERICAL EXAMPLE

In this section, the AQS and AQP results are demonstrated
on the mass-spring-damper system from [11] with time-
invariant and time-varying parameters. For the simulation ex-
ample, Matlab 2014b with Yalmip and SeDuMi3 are used. The
system is discretized using a first-order approximation [28]:

x(t+ 1) = Ad (f(t), c(t))x(t) +

[
0
Ts

]
u(t),

Ad(k, c) = I + TsAc(k, c), Ac(k, c)=

[
0 1
−k −c

]
,

y(t) =
[

1 0
]
x(t),

(41)
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where Ts = 1/20 s is the sampling time and k > 0, c > 0 are
the stiffness and the damping coefficients, which are assumed
to be time-varying. The admissible trajectories of k and c are

k(t) = k0
(
1 + p1(t)

)
, c(t) = c0

(
1 + p2(t)

)
, (42)

where k0 = 1, c0 = 1, P = [−1, 1] × [−1, 1], and
V = [−δkmax, δkmax]× [−δcmax, δcmax]. The following three
experiments are performed:

1) For time-invariant c (δcmax = 0) and time-varying k,
the parameter box λP := {λp : p ∈ P} is uniformly
expanded with 0 < λ ≤ 1 to find the maximum λ for
which stability is guaranteed. This is done with respect
to values of δkmax ∈

[
10−5, 102

]
and ε ∈ [0, 1]. The

results are shown in Fig. 1.
2) For time-invariant c (δcmax = 0) and time-varying k, the

performance gain γ is computed for 0.2P. This is done
w.r.t. δkmax ∈

[
10−5, 102

]
and ε ∈ [0, 1]. The results

are shown in Fig. 2.
3) For time-varying k and c, the parameter box λP is

expanded to find the maximum λ for which stability is
guaranteed. This is done w.r.t. δkmax ∈

[
10−5, 102

]
and

δcmax ∈
[
10−4, 102

]
. The results are shown in Fig. 3.

Note that the case of time-invariant k (δkmax = 0) is not
considered, as it is pointed out in [11]: ‘the stability region
seems to be essentially determined by δkmax’.

Fig. 1 shows that the slack variable method [17] is indeed
more conservative (in line with [17, Thm. 1]). This difference
is clearly visible for small δkmax. For larger values of δkmax,
the maximum parameter box size coincides with the quadratic
stability test (δkmax = ∞), as expected. Furthermore, in the
region δkmax ∈ [0.03, 0.5], the slack variable method seems
to outperform the proposed partial-convexity argument based
method. Our method experiences numerical problems in the
orange area for ε = 0, see Fig. 1. In this area, neither feasibility
or infeasibility can be concluded. Hence, for the proposed
method, more research needs to be performed to improve
numerical properties, but it is unclear if the slack variable
method really outperforms the partial-convexity argument in
that orange area. A similar result is also obtained for the L2-
gain analysis in Fig. 2 (the area indicating numerical problems
is not displayed in the figure).

Fig. 1 is similar to [11, Fig. 1] (CT case) in terms of the
shape, as expected. However, the domain where the magnitude
of λ decreases is shifted by a factor 10, which is due to the
discretization of the model. Furthermore, Fig. 3 shows that the
maximum size of the parameter box is almost independent on
δcmax, as has also been seen for the CT case [11].

VII. CONCLUSION

In this paper, we have proposed an LMI-based analysis for
robust stability, robust state convergence, and robust perfor-
mance of linear systems against uncertain and/or time-varying
parameters. Affine quadratic stability is certified by finding
a Lyapunov function, which is affine in the parameter. In
order to get a tractable solution, the partial-convexity argument
of [11] is extended for third-order terms to handle the discrete-
time case. In our simulation example, the partial-convexity

10−5 10−4 10−3 10−2 10−1 100 101 102
0

0.2

0.4

0.6

0.8

1

ε = 0

ε = 0.01

ε = 0.02

ε = 0.03

ε = 0.04

δkmax [-]

λ
[-

]

Partial-convexity
Slack variable [17]
Quadratic stability [29]

Figure 1: Maximum of λ to guarantee AQS w.r.t. λP under
time-invariant c (δcmax = 0) and time-varying k, where ε
indicates the guaranteed rate of convergence of the state,
i.e., ‖xt‖22 ≤ b

a (1 − ε)t‖x0‖22 for all t > 0. The orange
area indicates numerical problems with the partial-convexity
method using ε = 0.

10−5 10−4 10−3 10−2 10−1 100 101 102
100

101

102
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ε = 0.01

ε = 0.02

ε = 0.025

ε = 0.0286
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ε = 0.0357

δkmax [-]

γ
[-

]

Partial-convexity
Slack variable [17]

Figure 2: Minimum of the L2-gain performance bound γ with
time-invariant c (δcmax = 0) and time-varying k. The dots
indicate the last point of feasibility.
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Figure 3: Maximum of λ to guarantee AQS w.r.t. λP for a
time-varying k and c with the partial-convexity method.
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argument seems to be less conservative than the quadratic
stability or the slack variable approach. For future research,
the DT results can be extended to Lyapunov functions with
quadratic dependence on the scheduling signal, similar to the
CT case in [30]. Alternatively, the DT result can be extended
to the incremental stability framework for LPV systems with
bounded rates of variations [31].
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APPENDIX

For sufficiency, let p∗ = (p∗1, . . . , p
∗
np

) be the global
maximizer of L(�) over P. Assume that p∗i is not at a vertex
of the hyper-rectangle, i.e., p

i
< p∗i < pi, then

g(pi) = L(p∗1, . . . , p
∗
i−1, pi, p

∗
i+1, . . . , p

∗
np

) =

F0,i + piF1,i + p2iF2,i +Qi,i,ip
3
i , (43)

where

F0,i=Q0+

np∑
j=1
j 6=i

Qjp
∗
j+

np∑
j,k=1
j,k 6=i

Qj,kp
∗
jp
∗
k+

np∑
j,k,l=1
j,k,l6=i

Qj,k,lp
∗
jp
∗
kp
∗
l ,

F1,i =
(
Qi +

np∑
j=1
j 6=i

(Qi,j +Qj,i)p
∗
j+

np∑
j,k=1
j,k 6=i

(Qi,j,k +Qj,i,k +Qj,k,i)p
∗
jp
∗
k

)
,

F2,i =
(
Qi,i +

np∑
j=1
j 6=i

(Qj,i,i +Qi,j,i +Qi,i,j)p
∗
j

)
.

Since p∗ is the global maximizer of L(�), it holds that

y>g(p∗i )y ≥ max(y>g(p
i
)y, y>g(pi)y), (44)

where y 6= 0.
On the other hand, Condition (11) imposes convexity of

g(pi) on [p
i
, pi], i.e., 1

2
∂2g(pi)
∂p2i

= F2,i+3Qi,i,ipi � 0 is implied
by (11). Therefore its maximum on that interval is on the edges
p
i
, pi. So,

y>g(p∗i )y ≤ max(y>g(p
i
)y, y>g(pi)y). (45)

Combining (44) and (45) leads to

y>g(p∗i )y = max(y>g(p
i
)y, y>g(pi)y). (46)

Concluding, the maximum of g(�) is obtained at the edges
{p
i
, pi} of pi in case (11) is satisfied. By repeating the

same argument for each i implies that the maximum of the
function L(�) is at a vertex of the hyper-rectangle P when
Condition (11) is satisfied.


