EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Concept, implementation, and evaluation of a multimodal
interaction style for music programming

Citation for published version (APA):
Pauws, S. C. (1998). Concept, implementation, and evaluation of a multimodal interaction style for music
programming. (IPO rapport; Vol. 1191). Instituut voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 19/10/1998

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/35514301-a890-4d52-8966-27a5e18393b0

IPO, Center for Research on User-System Interaction 19.10.1998
PO Box 513, 5600 MB Eindhoven

Rapport no. 1191

Concept, implementation, and
evaluation of a multimodal
interaction style for music

programming

Steffen Pauws

Voor akkoord:
Dr.ir. F.J.J. Blommaert

b.a. Ing. J.J.C.M. Ruis

T -
7z

/

© Copyright 1998 Technische Universiteit Eindhoven

Concept, Implementation, and
Evaluation of a Multimodal Interaction
Style for Music Programming

Steffen Pauws

Date of issue: 10/98

Title

Author
Reviewers

Project
Funding

Keywords

Abstract

Concept, Implementation, and Evaluation of a Multimodal Interaction Style for
Music Programming.

Steffen Pauws (IPO).

Don Bouwhuis (IPO),

Berry Eggen (USIT/IST),

Dik Hermes (IPO),

Erik Moll (USIT/IST).

Accessing large amounts of information in multimedia applications for home
entertainment environments aka Adaptive Multimodal Interaction (AMI).
Philips Research Nat.Lab. USIT/IST (group Collier)

multimodal interaction, software design and implementation, usability
evaluation, music selection and programming, nonvisual interaction,
learnability, mental model, tactual feedback by force feedback, auditory
feedback by non-speech audio and speech synthesis.

New media and portable devices afford to select and program favourite music from
a large music collection while one is on the move. However, contexts-of-use out-
doors are typically characterized by impoverished or even lacking visual display of
information. Moreover, visual inspection while listening to music may not be pleas-
ant; a music listener may want to devote complete attention to the music. If visual
display of information is inadequate or undesired, other nonvisual sensory modali-
ties have to compensate for that. This report describes the design, software imple-
mentation, and usability evaluation of a multimodal interaction style for music
programming. By means of user involvement, the conceptual model of the interac-
tion style evolved into a visual roller metaphor resembling a slot machine. In the
style, user control of the interaction proceeds entirely by manipulating the IPO force
feedback trackball (Engel, Haakma, van Itegem, 1990). Tactual feedback, mediated
by the trackball, mimics the feel of setting rollers into motion. Non-speech audio,
generated by software, imitates audible mechanical clicks of roller movements.
Speech synthesis gives status information of particular states of the interaction. The
evaluation investigated the level of efficiency and the learning of procedures of the
interaction style, in particular, in the presence and absence of visual display of
information. The participant’s task was to compile a music programme as quickly
as possible. Task performance was measured by compilation time and number of
actions. Score on procedural knowledge was assessed by a post-task questionnaire.
It was observed that participants performed equally efficiently, i.e., not significantly
different, in both visual display conditions, except for the first programming task.
In the first task, nonvisual interaction required significantly more time (approxi-
mately one additional minute) and more, but not significantly more, actions, proba-
bly due to exploring the interaction style for developing a mental model of the
interaction style. Foreknowledge about the visual display is not strictly necessay; at
least, it does not improve task performance in the absence of a visual dis-play. The
results of the evaluation demonstrate that tactual and auditory feedback can com-
pensate for the visual modality in contexts-of-use in which visual display of infor-
mation is impoverished or even lacking: portable devices, remote control, car
equipment. Continuing research effort in applying tactual feedback, e.g., by means
of force feedback devices, and auditory feedback, e.g., speech synthesis and non-
speech audio, in interaction concepts in user interfaces is justified.

Contents

Executive summary. Ceeereeeree e, e Cereeeaa R
Introduction............. e e Y
Funding . e e A
Software overview e e e e 4
throsofttechnology e e Y

COM e chereriiieees 005

ActiveX e e e e 5

DirectX i aaa 6

Software components e RN

A multimodal interaction style for music programming, e co...8
Designprocesso.... e e10
Interpretatlonoftrackball actions . A V1

Statecharts e e e e 14

Multimodal feedback e e R V4
Implementation............. e e ... 18
Musicdatabase. e e e ceenn22
Trackballwnthforcefeedback e i e ceee 026
Software for controlling the trackball. e e 0029
Concepts....... e e e e ceen 0.02.30
Lighthole e e e 1 |
TacServer e e e .31
TacServer Extension e e G 7.4
Implementation ool L0033

Controlling the trackball device e Cer e 33

Workspaces, tactual objects e35

Creation of tactual objects e ce...36

Software for streaming audio output............. e e38
AudioDevice e e I &
Interface at client applicationlevel e R |

Source codeexample e coe....42

Software for generating non-speechsound................ e Ceee e 43
Implementation N e ceee e 45
Specification file e e ceeeer v... .46

Interface at client applicationlevel e e 48

Source codeexample e ceee ee...49

Software for playing MPEG Audio................... e ceee 00050
Implementation e e 50
Interface at client apphcatlon level 1 |
Source code example e N ¥

Software for visualizingaroller............. e e e 54
Implementation e e55
Interface at client application level e58
Source code example e veeee60

Evaluation of a multimodal interaction style for music programming, coee...62
A multimodal interactionstyle e e 62
Learning to operate an interactive device Y X

Mental model e e e e e e64

Mental model in the absence of visual informationo...65
Ease-of-learning and ease-of-remembering........... RN 4

Skill acquisition e ceevee68
Declarative and procedural knowledge cier68
Hypotheses e B, e e 69
Measures e e e 69
Taskperformance................ e e 70
Transfer........ .. e70
Procedural knowledge ceeee 0070
Mentalmodell —{]
Drawing e a4 |
Structurediagram e e 71

Method e e e e e e e 72
Pre-test e e e e 72

Procedurecovviiiiiiiiiiiiniinnennes 0073
Resultsciviiiiiiiiii ittt iiiininnes 0. 78

Music programming experiment 75

Instruction i vee v0a. 75

Design . . e e 75

Testmatenalandequlpment Y

Procedureo i i i 76

Tasks ...oovvnniiiiii e e 77

Participants e e 77

Results e ceieee o079

Compllatlontlme e N £

Numberofactionsol Ll 81

Procedural knowledgel oL 82

Drawingscoiiiiiiiai.n, e e 84

Structure diagrams. e e e e 87

Spontaneous remarks from participants 88

Discussiono..L. e e e 89

Conclusion e e 91

References. e O

Appendix IInstructiontext............cooiiiiiiiiiiiiiiiiiiiinnn. el 97

Appendix II Transcription device............... e e e 99
Appendix III Pre-analysis of task performance measures. e e 101

Executive summary

A multimodal interaction style for music programming has been designed, implemented, and
evaluated on usability. The challenge during design was threefold: minimizing the number of
control elements without sacrificing usability, facilitating contexts-of-use with and without a vis-
ual display, and devising an interaction style in which music recommendations are provided.

The conceptual model of the interaction style comprises four rollers that can be manipulated by a
force feedback trackball. Each roller represents a concept in the music programming domain; so,
there is a roller for the music collection, the music recommendations, the music programme, and
the music styles. The pieces of music, which are represented by the title and performing artist,
are wrapped around a roller. By lateral roll movements of the trackball, the appropriate roller
can be selected. By forward and backward roll movements, the appropriate item can be put at
the front of the roller. Now, by pressing the ball, pieces of music can be added to the music pro-
gramme, or removed from it.

The presented multimodal interaction style consists of a manual input modality mediated by the
IPO force feedback trackball and three output modalities: the visual, tactual, and auditory
modality. The visual modality consists of a graphical and animated representation of the roller
metaphor; they show a jerky motion, when turned gradually, and a continuous movement, when
stroke more vigorously. The tactual modality is addressed by force feedback mediated by the
trackball; it imitates the feel of friction and compliance parts of roll movements. The auditory
modality is addressed by non-speech audio and speech feedback. Non-speech audio mimics the
quirky sounds of rollers; it is generated by software. Speech feedback gives some status informa-
tion on the interaction; it consists of the concatenation of pre-synthesized phrases.

Complete description of the design process, design decisions, and software is provided in this
document.

The purpose of the experimental evaluation was to assess the usability properties of the pre-
sented interaction style. In particular, the experiment investigated the level of efficiency, i.e., time
and number of actions, and the learning of procedures, i.e., score on post-task questionnaire,
while performing music programming in the presence and absence of visual display of informa-
tion. The experiment demonstrated that users were able to acquire such a proficiency after three
minutes of free exploration and without procedural instructions that they could complete a
given music programming task effectively in both visual display conditions. In addition, they
learned to perform the tasks more efficiently in both conditions; they needed less time and fewer
actions for each successive task.

Though nonvisual interaction indeed involves a considerable cognitive load, users who worked
without a visual display were able to perform as efficiently as, i.e., not significantly differently
than, users who worked with a visual display, already after the first task. The cognitive load is
mainly determined by the procedures that have to be explicitly revealed and memorized by the
user while interacting nonvisually. A first task without a visual display is probably devoted to
revealing procedures and incorporating them in a mental model of the interaction style. Fore-
knowledge about the visual display is not strictly necessary; at least, it does not improve task
performance.

It is demonstrated that the tactual and auditory modality can compensate for the visual modality
in contexts-of-use in which visual display of information is impoverished or even lacking: porta-
ble devices, remote controls, car equipment. The results justify a continuing research effort in
applying tactual feedback, e.g., by force feedback devices, and auditory feedback, e.g., speech
synthesis and auditory icons, in interaction concepts for user interfaces.

1 Introduction

This document describes the concept, design, implementation, and usability evaluation
of a multimodal interaction style for music programming. The interaction style is a
proof-of-concept prototype reflecting the design decisions made in the preparation of
the conceptual model, and not the design decisions that are driven by implementation
or hardware concerns (‘prototype’ definition by Harel (1992)).

The software aspects of the interaction style are addressed in Chapters 2 through 9; the
content of these chapters is summarized in Section 1.2. The usability evaluation of the
interaction style is described in Chapter 10.

1.1 Funding

This document reports the results of the concluding activities of the project which is for-
mally administered under the name ‘Accessing large amounts of information in multi-
media applications for home entertainment environments’, but often informally
referred to as ‘Turn on the Base (ToB)’ or ‘Adaptive Multimodal Interaction (AMI)’. The
project is based on a funding of Philips Research Nat.Lab. USIT/IST (group Collier).

The concept formulation, design, and implementation of the interaction style were car-
ried out during a 5 month visit at the USIT/IST group. The experiment and completion
of this document were done at the IPO (Centre for Research on User System Interac-
tion).

1.2 Software overview

The interaction style is targeted on the Microsoft Windows 98 platform. Therefore, a
brief summary of Microsoft technology is given in Section 1.2.1. The software is
described in Section 1.2.2.

1.2.1 Microsoft technology

It is hard these days to decipher to what comprehensible notions and interconnections
acronyms such as COM, ActiveX, and DirectX refer; are they products, technologies,
standards, brand names, or marketing strategies of Microsoft? It also seems that the
names stay, but to what it applies varies over time or vice versa. For any programmer,
novice to the Microsoft development tools, it is rather frightened what steep learning
curve booms up when he or she wants to familiarize even the rudiments of Microsoft
Windows programming. Any Microsoft product is nowadays permeated by the Com-
ponent Object Model (COM) technology, so it is recommended to acquire some under-
standing of COM’s underpinning. A highly condensed description of COM, ActiveX,
and DirectX follows in the next three sections.

1.2.1.1 COM

The Component Object Model (COM) is a specification standard which defines how
software objects or components interact with one another (Rogerson, 1997). An object
which complies to the COM standard is called a COM object. Compliance is simply
established by inheriting the so-called IUnknown interface and implementing the three
declared functions from that interface: QuerylInterface, AddRef, and Release. Clients, that
have a reference to an IUnknown interface, know that they have an ‘unknown interface’
for an implementation of an object, but also know that they are able to ask for the speci-
fication of that interface by calling Queryinterface. As multiple clients might have refer-
ences to the same COM object, COM objects cannot be destroyed at will. A COM object
has the responsibility to destroy itself when it ‘feels’ it is no longer needed. An object’s
life span is managed by maintaining the number of times it is referred to. An internal
reference count is decreased when the interface of a COM object is queried by a client. A
client is obliged to explicitly notify the COM object when it makes no longer use of the
interface by calling Release, which decrements the reference count. Whenever the client
makes a copy of the referred interface, it should also notify that fact to the COM object
by calling AddRef, which increments the reference count.

Knowing what three functions distinguish COM objects from other objects and what
obligations there are for clients to use interfaces of COM objects, we now come to the
point what privileges the COM standard actually grants. Essentially, COM facilitates
the development of component-based software architectures, in which components can
be easily replaced by others and reused in other contexts. In this respect, the component
is a coherent functional package in binary code, i.e., a mini-application, which connects
with other components at run time to form an full-fledged application. Snapping pieces
together in a flexible way puts heavy demands on software properties such as version
control of interfaces, polymorphism, dynamic linking, and language independence.
Components written to the COM standard fulfil these requirements; they come as
Win32 dynamic link libraries (DLL) or as executables (EXEs). In addition, Distributed
COM (DCOM) facilitates the interaction of remote components over a network includ-
ing security mechanism for authentication and encryption.

1.2.1.2 ActiveX

It all started with object linking and embedding (OLE) which viewed the desktop meta-
phor as document-centric. The world was made out of compound documents in which
for instance, spread sheet data could be manipulated within word processors. The first
version of OLE was based on dynamic data exchange (DDE), a now obsolete data-trans-
fer technique. The second version of OLE disregarded DDE and introduced Component
Object Model (COM) as its new foundation. As such, OLE was the first COM-based
product. For some while, OLE was tagged on any product or technology that had COM
ingredients. As the acronym OLE no longer stood solely for compound documents, the
name ActiveX was chosen to refer to the loosely defined set of COM-based technolo-
gies.

An ActiveX control is a COM object, i.e., a mini-application in the component-based
software architecture. Originally, its functionality was tailored for the desktop, but that
is no longer a necessity as it also applies to the domain of the internet. An ActiveX con-

trol is implemented as a dynamic link library (DLL) and the location of this DLL can be
looked up in the Registry. The Registry is the shared database of component locations
on Windows platforms. An ActiveX control needs to be embedded in a run-time envi-
ronment such as Visual Basic or a web browser to run. The methods of an ActiveX con-
trol are provided to Visual Basic client applications via Automation. Automation is the
reserved name for the way methods of COM objects are exposed by their interfaces to
interpretive languages such as Visual Basic. Behind this standardized interface, an
ActiveX control is allowed to virtually do anything.

1.2.1.3 DirectX

In contrast with ActiveX, the DirectX technology is rather an application programming
interface (API). It is an API for multimedia application programming on Windows plat-
forms. Different parts of DirectX provide interfaces for different multimedia domains
such as

stereo sound and sound in three dimensions (DirectSound),

rendering of simple graphics, animation by colour palettes (DirectDraw),
rendering of complex graphics (Direct3D),

input from devices and output to force-feedback devices (DirectInput), and

communication for multi-player network games (DirectPlay).

The near future promises that the DirectX API will be supported on any Windows plat-
form. It is marketed as a product that provides almost asynchronous low-level access to
multi media hardware in a device independent way without delay latency. All DirectX
object classes provide a functional set of methods on a variety of multi media platforms,
which interfaces are compliant to COM. If the underlying multi media hardware has the
appropriate capabilities, the implementation of these methods will directly call on the
hardware known as hardware acceleration. Otherwise, the methods will be emulated in
software and system memory (Bargen and Donnelly, 1998).

1.2.2 Software components

The presented interaction style is implemented in Microsoft Visual Basic 5.0. It com-
prises several components, i.e. ActiveX controls, as shown in Figure 1. All software
components including the trackball device and the music database are described in sep-
arate chapters. As the interaction style utilizes only pre-synthesized speech from an
external resource, no separate speech synthesis component was considered necessary to
meet the specific objectives of this project. Play back facilities for speech are imple-
mented in the non-speech sound generation component. Also, two other software com-
ponents are not addressed in this document, viz. SelectionWheel which is only a limited
version of SelectionBall, and ShadedRegion which renders a smooth curved surface by
using an illumination technique. The SelectionWheel component was considered too
similar to the SelectionBall for devoting a complete chapter to it. The functionality of the
ShadedRegion component was considered too minimal.

First, the interaction style itself is described in Chapter 2. However, to acquire a com-
plete overview and comprehension, the reader might need to jump back and forth in the
chapters. The music database design and content is described in Chapter 3. Some of the
mechanics and electronics of the IPO trackball with force feedback are highlighted in
Chapter 4. The control software of the trackball comprising three layered components
(Lighthole, TacServer, and TacServer Extension) is documented in Chapter 5. The audio
output part is described in three separate chapters, starting with the lowest level of
streaming audio (AudioDevice) in Chapter 6, followed by generating non-speech audio
in Chapter 7, and concluding with decoding MPEG audio in Chapter 8. The visualiza-
tion of a roller by the SelectionBall component is described in Chapter 9.

Trackball

Figure 1. The component-based architecture of the interaction style.

As might be clear from the considerable number of chapters, we have attempted to be as
complete as possible. Not all software components are implemented ‘from scratch’
within this project; we adopted a clever ‘borrow management’ of the deliverables from
other, but like-minded projects, and adapted the components to meet our needs. How-
ever, the components did not excel by level of documentation. In order to repair this
tiny imperfection from the past, to save our effort in survey research and reverse engi-
neering for those that will follow us, and to neatly compile the making of a multimodal
interaction style, we decided to make a complete reference to all software. The first sec-
tion of each chapter deals with the design decision of a software component. Subse-
quently, the chapter shades off into the implementation aspects of the software
component. Each chapter concludes with the interface of the component, i.e., how the
component can be integrated in a client application.

2 A multimodal interaction style for music
programming

Programming one’s favourite music is probably best described as an iterative search to
find multiple music options best suited for the intended purpose. Music listeners adopt
a particular choice strategy that incorporates both global aspects, e.g., eliminating all
items from further consideration that do not comply a pre-defined standard, and local
aspects, e.g., pair-wise comparison to resolve particular trade-offs in choice. At the out-
set of the project, three main requirements were stated to be met by the interaction style.

Minimal effort for the user to program music. Although dealing with music entails an
intrinsic enjoyment for many of us, music programming is often difficult. For in-
stance, music listeners must evolve an idea what musical content is available from
the collection, and must accommodate their choice strategy accordingly. As choice
strategies are intertwined with global and local aspects, an interactive system
should not further complicate the music programming task. The user of an interac-
tive system must experience full control over the applied strategies. The user must
be able to adequately monitor the progress of the music programming task, while
spending minimal effort to attain intended results and to learn how to operate the
interactive system.

Facilitate different contexts-of-use while programming music. There is no obligation to
do a music programming task solely at home. Surely by the advent of new media
and portable devices, music programming might equally well be performed out-
doors, for instance, when one is on the move. Whereas visual displays are likely to
be available at home, a portable or wearable device is far harder to equip with a
qualitatively acceptable monitor at a low price. A visual display requires visual in-
spection of information which may be unpleasant in a music programming task.
Also, the given context-of-use may prevent the listener from using a visual display,
because there is no visual display available or it is already used by others. To facili-
tate the context-of-use when no visual display is used, feedback of information
should not solely pass the human visual channel, but also the tactual or auditory
channel have to be employed, perhaps equally well, for that means.

Provision of music recommendations while programming. Previous studies showed that
an automatic music compilation facility such as PATS (Personalized Automatic
Track Selection) (Pauws and Eggen, 1996; Eggen and Pauws, 1997) is a feature that
enables faster selection of preferred music, or, at least, is considered a welcomed
variety to the music programming task (Pauws, Ober, Eggen, and Bouwhuis, 1996;
Pauws, Eggen, and Bouwhuis, 1997). In this respect, recommendations are defined
as music options that are suggested by the interactive system to be included in the
music programme. What recommendations are presented is however beyond di-
rect control of the user. The interaction style must provide a coherent framework in
which the music is recommended while the user is doing its programming task.

The proposed interaction style for music programming is considered a multimodal
interaction style in the sense that additional sensory ways of information display, con-
trol, and feedback are utilized. Multimodal interaction enables the user of an interactive
system to explicitly employ different (sensory) modalities to perceive and convey infor-
mation and to execute actions. If the choices of communication modalities are well coor-

dinated, it is often suggested that the attention to different facets of a task can be easily
divided amongst different modalities. Consequently, following the same line of
thought, interactive systems will be more usable and even more pleasurable to use.

It is demonstrated that the addition of tactual cues in simple motor control tasks
improves task performance. For instance, Nelson, McCandlish, and Douglas (1990)
showed that vibratory feedback additional to visual feedback reduces response times in
reaction time experiments. There is also evidence that tactile information leads to
increased velocity in finger movements, from which it is suggested that it reduces visual
load in completing tasks (Akamutsu, 1991). In studies involving the use of a mouse or
trackball with force feedback, movement times in target acquisition tasks were shorter
when tactual and visual feedback were provided than when only visual feedback was
provided (Akamatsu, and Sato, 1994; Engel, Goossens and Haakma, 1994; Akamatsu
and MacKenzie, 1996). Akamatsu, MacKenzie, and Hasbrouc (1995) reported that final
cursor positioning times were shorter for conditions with tactile feedback, and to a
lesser extent for conditions with auditory and colour feedback, than a normal condition
without additional feedback in a target acquisition tasks with a mouse. It is however
remarkable that only a few systematic usability studies are documented that addresses
the potential usability of multimodal interaction styles in complete interaction concepts
(see e.g. (Gourdol, Nigay, Salber, and Coutaz, 1992; Hauptmann and McAvinney, 1993;
Robbe, Carbonell, and Valot, 1997) for evaluations on the combined use of speech and
gestures/pointing).

EROURREB S

Stvles

Figure 2. The visual display of the interface.

As shown in Figure 2, the visual display of the interaction style resembles the physical
features of a slot machine. The interaction style displays four main rollers, on which the
music programme, the music styles, the music collection, and the music recommenda-
tions are projected. In the style, user control of the interaction proceeds entirely by
manipulating the IPO force feedback trackball (Engel, Haakma, and van Itegem, 1990).
The force feedback trackball was used to minimize the number of control elements
without sacrificing issues on effectivity and efficiency. Essentially, the trackball can be
moved in two dimensions, i.e., in lateral and back/forward directions. In addition, the
trackball can be pressed. By backward and forward trackball movements, rollers can be
set in motion to bring another item at the front. A small hand movement brings the next

item to the front of the roller. A somewhat faster hand-stroke covering a somewhat
longer distance skips the next two items. By lateral trackball movements, one can hop
from one roller to another roller. The tactual force feedback mediated by the trackball
conveys the feeling of setting rollers into motion or jumping from one roller to the other;
for instance, the discrete steps of a roller movement feel like bulges and notches while
carrying out the movement. By using the roll movements, a user can choose a particular
music style on the music styles roller and search further for pieces of music within that
style on the music collection and recommendation rollers. A single press on the track-
ball, i.e. single click, evokes information about the current music style to be uttered.
Double-pressing the trackball, i.e., double-clicking, means adding or removing a piece
of music to or from the music programme.

Rotating the roller step-wise also produces audible clicks. Larger roller movements pro-
duce a rattling sound. Synthetic speech feedback informs the user about states of the
interaction; the user is informed about which roller is currently in focus, how many
pieces of music are added to the music programme, what music style is selected, etc.

2.1 Design process

The design process followed a strategy in which a given conceptual model for interac-
tion was extended by adding required user actions and functions one-by-one. The con-
ceptual model was refined or completely revised when adding a function implied a
conceptual ‘breakdown’ or an inconsistency of operation. For instance, a conceptual
‘breakdown’ occurred when the addition of a function required user actions that had no
direct meaning with the conceptual model. To accomplish a high level of learnability,
operating the interaction style should be consistent. Consistency of operation means
that the same pattern of actions can be used in different situations, allowing the user to
learn such a pattern only once. As shown in Figure 3, several metaphors as a conceptual
model were considered, before arriving at the final one as shown in Figure 2.

It must be emphasized that the design process was not a pure top-down process. Some
constraints pertaining to restrictions on resources, capacity, and implementation feasi-
bility also influenced the design decisions.

Minimizing the number of control elements without sacrificing efficiency and effectivity
is assumed to improve learnability of an interaction style; the user then has to learn the
meaning of fewer terminals, e.g., button presses, of the interaction style. An expressive
interaction language is required to minimize the number of terminals. A force feedback
trackball is regarded a device with high expressive power; only one control element, i.e.,
the trackball itself, is present on which a repertoire of actions can be formed (see also
Section 2.1.1).

A ‘natural’ conceptual model in conjunction with the trackball is to visually represent
items, i.e., pieces of music, on a spherical object (see A in Figure 3). A roll movement of
the trackball then directly corresponds with a proportional rotation of the spherical
object. However, despite its intuitive appeal, rotating the sphere to put a particular item
at the front means also a change of the context, i.e., the locations of all surrounding
items change.

10

c L T 7 I T RECCHHENDATIONS

Figure 3. Previous conceptual models for interaction.

To avoid this recurring context change, the sphere was cut into slices. Each slice can
then be rotated independently (see B in Figure 3). However, it was concluded that a
sliced spherical object does not easily allow the representation of concepts in the music
programming domain.

By assigning each slice to a particular concept in the music programming domain, one
can jump back and forth from music programme, music collection, and recommenda-
tions by lateral roll movements of the trackball (see C in Figure 3). The slices evolved
into rollers. Each piece of music in the music collection contained a list of three recom-
mendations which were presented on a big roller in a horizontal fashion. However,
operation of the three rollers was inconsistent. Whereas backward and forward roll
movements of the trackball were required to roll to the next item on the programme and
collection roller, lateral roll movements were required to move across the items on the
recommendation roller. Backward and forward roll movements had even no effect on
the recommendation roller.

The obvious refinement was the use of three rollers with the same action characteristics
(see D in Figure 3). Also, a counter that indicated the number of pieces of music in the
music programme was added. To accommodate the selection of music styles, an addi-
tional roller was placed above the collection roller. Conceptual model D in Figure 3 was
implemented in a working prototype and worked out with user involvement; the previ-
ous concepts were only discussed with colleagues at the laboratory.

11

In an iterative fashion, two different users worked with the interaction style, and imper-
fections pertaining to usability were subsequently repaired. If neither user was able to
acquire such proficiency after five minutes of free exploration that he/she could per-
form a given music programming task effectively, it was concluded that learnability
was insufficient. Users spontaneously made suggestions for improvement. No more
than five iterations, i.e., 10 users, were necessary to master the interaction style; also, no
more important shortcomings or user complaints were reported. It was concluded that
no further refinements were considered necessary. The final interaction style is shown in
Figure 2. The prime imperfection was the location of the music styles roller; it could not
be manipulated directly, but only by ‘vigorous; roll movements when on the collection
roller. Again, this was an issue of inconsistency which was easily resolved by placing
the music styles roller at the level of the three main rollers.

It may be clear that the design process was primarily dominated by the development of
a visual metaphor,. Tactual and auditory feedback were designed to be in use of this
metaphor. Force fields were parameterized and laid out to convey the feel of setting
mechanical rollers in to motion. Non-speech sound was designed to mimic the impact
sound of a object made of a natural material (e.g., metal, wood, glass, rubber) been hit
by another object. Pre-recorded samples from four different speech synthesis applica-
tions were initially incorporated in the interaction style. Only one was retained on the
basis of its clear intelligibility. The quality of the tactual and auditory feedback were
informally evaluated in close cooperation with colleagues at the laboratory.

2.1.1 Interpretation of trackball actions

The actions originated from a trackball device can, in principle, be interpreted in two
distinct ways (see Figure 4). The actions can be absolutely mapped onto a cursor posi-
tion, i.e. a hot spot, or, the actions can be directly mapped onto the objects of interest,
i.e., the rollers in our case.

* Absolute mapping on location. The most common way is to consider the trackball just
as the way it is, as an absolute pointing device. The ball rotation movement is
mapped in an absolute way to the cursor movement. This absolute mapping gives
problems when the cursor tends to go ‘off-screen’. Obviously, the trackball can not be
taken from its housing and placed somewhere else as easily as a mouse can be tilted
from its mouse-mat.

If, so to say, the trackball is integrated into the well-known desktop metaphor with-
out further ado, it reveals some inherent limitations. For instance, the cursor has only
alocalized impact. As the regions of action are scattered in a workspace, there is only
a single cursor that has to do all the work. A trackball device is, by that, a notoriously
inefficient apparatus to perform target acquisition tasks by its absolute mapping
nature (Douglas and Mithal, 1997), which makes moving the cursor back and forth in
a complex navigation task difficult.

Another issue opens up when we consider nonvisual navigation. The crux of nonvis-
ual navigation is based on abilities to encode cues from other sensory modalities
about the workspace, to acquire an accurate and persistent mental representation of
the workspace, and to align and add new cues to this representation by inference
mechanisms (see also Section 10.2.2). By laying out these cues as landmarks in a two-
dimensional space and providing only a single probe (as is the case in the desktop

12

metaphor), it is likely that a user will get lost in navigational space. A user does not
only need to remember what cues or objects are relevant for a given task, but also
where, with respect to some current cursor position, these cues are located.

Direct mapping on objects. The actions originating from the trackball can also be
directly mapped on the objects of interest. As such, rolling the ball has an immediate
incremental impact on the representation of the object in focus and has, thus, direct
meaning. As actions simply happen in the world and their effects can be immedi-
ately perceived, it is proposed that this ‘direct engagement’ further shrinks the cogni-
tive effort to execute actions purposefully (Hutchins, 1989). It emphasizes causality
in the interaction style and may improve usability. Although the concept of a cursor
is still required for keeping track of the ball position behind the scenes, it is hidden
from the user’s perception. As a result, the user might experience the trackball device
merely as a means to execute gestures, i.e., instantaneous hand-finger movements,
than a means to point at things. Additionally, the user does not have to be aware of a
current cursor position and what task-relevant objects are nearby in navigational
space, which facilitates nonvisual navigation.

Figure 4. Two interpretations of trackball actions. The left-hand figure
represents the absolute mapping interpretation. The right-hand figure
represents the direct mapping interpretation.

In the interaction style, the trackball device is used to mediate actions directly on the
objects of interest (as shown in the right-hand figure in Figure 4). The objects of interest
in the proposed interaction style are rollers. The roller in focus is made salient by high-
lighting its visual representation. To enforce a ‘direct engagement’ with the rollers, the
trackball’s freedom of movement is constrained such that it is not possible to move the
ball diagonally. This is done by an appropriate lay out of force fields, i.e., tactual objects,
as shown in Figure 5. Rectangular force fields, feeling like small gutters, are placed in a
cross. This cross captures the ball and guides the movements of the ball along straight
lines. A global circular force field, i.e., a hole, surrounds this cross and slightly pushes
the ball towards the centre of the force field; it requires some hand-force for leaving its

13

centre. Force fields called bumps that feel like small raised borders are placed at the
ends of the cross. Moving across the bumps, the ball will be captured by small holes.
The configuration of a bump followed by a hole gives the felt sensation of a mechanical
click. When the ball is captured by one of these terminal holes, the roll movement is
considered to be finished. Immediately, the ball is positioned at the centre of the cross.
As shown in Figure 5, two additional terminal holes are placed at the vertical axis of the
cross. Their function will be clarified later on.

roll on through

roll on

L single click
L double click

roll right

roll back

. roll back through

Figure 5. The force fields are laid out such that the ball can only be
moved along straight lines.

In total, eight user input events are defined to originate from the trackball device. As
shown in Figure 5, six user input events have to do with roll movements: roll_left,
roll_right, roll_on, roll_down, roll_on_through, and roll_down_through. The other two
events occur when pushing or double-pushing the ball; they are denoted respectively as
click and doubleclick. Rolling the ball to the left or to the right,i.e., lateral roll move-
ments, corresponds to going from one roller to the other. Rolling the ball forward or
backward means rotating the roller itself.

The following two sections deal with the formal specification of the behavioural aspects
of the interaction style and the multimodal feedback.

2.1.2 Statecharts

The behaviour of the interaction style on the user input events is formally specified by
statecharts (Harel, 1987) (see Figures 6, 7, 8, and 9).

The statechart in Figure 6 mainly specifies the effects of the left and right roll move-

ments. It is considered the highest level of the interaction; first, the user has to indicate
at what roller he/she wants to do further. The four main rollers are represented by sep-

14

arate states in Figure 6: PROGRAM, STYLES, COLLECTION, and RECOMM. Initially,
the music style roller has the input focus, i.e., the system is in the STYLES state. By roll-
ing to the right or to the left, one of the other roller will be in focus, i.e., the system is
brought in one of the PROGRAM, COLLECTION, or RECOMM states. Additionally,
music will be continually played back which will be come more clear in Figure 8 and 9.
The music is stopped when entering the STYLES state. For that, there exists some glo-
bally defined variable currTr which holds the currently selected track. The music will
only be stopped by rolling back to the music styles roller. The hierarchical PROGRAM,
STYLES, COLLECTION, and RECOMM states are further decomposed in statecharts, as
shown in Figures 7, 8, and 9. ‘

roll_right

roll_lefu roll_left/

cunTr.swop

roll_left

roll_right

\ J

Figure 6. Statechart for roller navigation, i.e., lateral roll movements.

The STYLES statechart in Figure 7 specifies the effects of the roll movements within the
music styles roller. The statechart starts off in the CUR_STYLE state. In this state, it is
assumed that there exists the notion of a currently selected music style denoted by
currSt, which is projected at the very front of the roller. Clicking the ball in that state
causes some information of the currently selected style to be displayed (e.g., by speech
feedback). By a roll on or back movement, the system makes a transition to respectively
a NEXT_STYLE or a PREV_STYLE state. If now, no so-called roll through movement is
made within 300 ms, the system will simply consider the very next or previous style in
the list to be the currently selected one. The roller will be visually rotated accordingly. If,
however, the roll through movement is made, the system will skip two successive music
styles in the list and considers the third one as the currently selected one. This ‘power’
mechanism to go fast through the music styled explains the need for the
roll_on_through and roll_back_through events and their corresponding force fields in
Figure 5. Although the ‘power’ facility is activated by generating two events within a
certain short time interval, it is supposed that the user recognizes it as a single hand-
stroke that has to be executed more rapidly and to cover a larger distance than the
stroke to go along the style one-by-one.

15

Going from one music style to another also implies an update of the collection roller
and recommendation roller. The tracks that are contained in the newly selected style
have to be displayed on the collection roller. The recommendations of the probably

~a.

NEXT_STYLE
roll_onveough /

: currSt = nelNgStyle (3):
timeout(enNEXT STYLF cilctn, updaie {corrSt):;
clicin.update (c{‘ ., Temmiduns.updfre (currTr)
rcmmdtns.update (4
currSt = Init CUR_STYLE
click /
coreStinfo

roll_baf|

e
cumrrSt vStyle
clictn.u m ety :

Figure 7. Statechart for rotating the music styles roller.

newly selection track have to be displayed on the recommendations roller.

~a.
~.e

NEXT_TRACK

timeout(e{NEXT_TRAC
cunTr = nextTrack (3):
remmdins.update (¢

curtTr = Init:
currTe.play:

click /
doubleclick /
prgrm.add (currTr)

Figure 8. Statechart for rotating the music collection roller.

16

PREV_TRACK), 150}/
prevTrack (1): cunTr.play

PROGRAM ' click /
doubleclick / cunTr.info
prgrm.remove (cunTr)

Figure 9. Statechart for rotating the music programme roller.

The COLLECTION statechart in Figure 8 specifies the effects of the roll movements
within the collection roller. The same statechart also holds for the recommendations
roller, i.e. RECOMM state. The behaviour of the system closely resembles its behaviour
in the STYLES case. A currently selected piece of music denoted by currTr is assumed to
be displayed on the roller, which can be altered by the same roll movements. The cur-
rently selected music track is always made audible. A roll movement implies determin-
ing the new track, playing back that new track (after stopping the previous one), and
displaying the recommendations (rcmmadtns) of the new track. A double click of the ball
causes the addition of the currently selected piece of music to a globally defined music
programme.

The last statechart to be discussed is the PROGRAM statechart as shown in Figure 9. It
resembles the behaviour of the COLLECTION and the RECOMM statecharts, with the

exception that double clicking the ball now causes the removal of the currently selected
piece of music from the music programme. It is assumed here that there are at all times
tracks present in a programme.

2.1.3 Multimodal feedback

The statecharts in Figures 6, 7, 8, and 9 do not specify what precise system activities are
started, what precise feedback is given, or by what modality this feedback is provided.
It only specifies on what pre-defined input events and by what protocol the system will
react.

In principle, each system transition from one state to another state is notified by audi-
tory feedback. For instance, going from one roller to the other, or going from one item to
another on a roller are signalled by an auditory icon, i.e. non-speech audio (see also
Chapter 7). Each roller has its own set of qualitatively different sounding sounds. The
music styles roller is featured by sounds that are probably best described as sounds pro-

17

duced when a metal-like object is hit by another solid object. The music programme
roller produces sounds as hitting a glass object by another object. The music collection
roller produces wood-like sounds, and the recommendations roller sounds like rubber.
Rolling up or down a roller produces sounds from the same quality, but rolling up
sounds like a hit further away than a rolling down. The loudness of the sounds are
manipulated by adding different noise components, i.e., Poisson or regular pulses. The
roll through movements produce sounds of larger objects that are hit, i.e., sounds with a
broader spectral bandwidth.

Speech output is used to convey some status information about the interaction. The
speech feedback is also given at the system transitions, but with a small latency, to avoid
mixing up with other auditory cues. For instance, the system indicates which roller is
put into focus, when the ball is rolled to it. In addition, when entering the music pro-
gramme roller, the system utters how many pieces of music are already added to the
programme. The selection of another music style is made known by saying what music
style is left for another. At all times, by clicking the ball, the systems utters what music
style is currently selected, or to what music style the currently selected piece of music
belongs. Speech utterances are interrupted and stopped when their content is no longer
valid within the context of the interaction, i.e., when the system transfers to another
state.

The following set of utterances is used:

"Programme", "Styles", "Collection”, and "Recommendations”;

"all styles", and the names of 12 jazz music styles as found in the music collection;
“from to ", in which the slots are filled by names of jazz music styles;

..... track”, in which the slot is filled by "no" or "one";

"

..... tracks”, in which the slot is filled by the numerals "two" up to "twelve", or by
the phrase "more than twelve".

2.2 Implementation

The interaction style is implemented in Microsoft Visual Basic 5.0. The manual input
and tactual output is controlled by software for the IPO trackball with force feedback
and described in Chapter 4 and Chapter 5. For now, it is sufficient to know that force
fields have a designated region. When a cursor enters such a region, special events are
generated that are made known as mouse move events to the client application. Push-
ing the ball is passed on as mouse click events. The speech and non-speech audio out-
put are both produced by a component, named ImpactSound, described in Chapter 7.
Music is played back by a MPEG Audio player as described in Chapter 8. The general
streaming of audio is discussed in Chapter 6. The visualization of the rollers is imple-
mented in the ActiveX control SelectionBall to be discussed in Chapter 9.

As shown in Figure 10, a central role in the implementation is played by the class
OptionBall, which controls a single roller. It organizes the integration for auditory feed-
back and visual feedback. For that, it has a private instance to a SelectionBall control
(see Chapter 9). In total, three instances of the OptionBall class are created, one for each
roller containing music, viz., music programme, music collection, and recommenda-

18

tions. The styles roller is implemented on the basis of another class and the ActiveX con-
trol SelectionWheel, but with similar mechanisms. It can be generally stated that the
OptionBall class is an encapsulation of the statecharts in Figures 8 and 9. The actions to
control a roller are notified to the user by audio feedback. For that, it has references to
instances of the Impact class and the Utterance class. Both classes are wrappers to
access the ImpactSound DLL; one for playing back non-speech audio, the other for pro-
ducing speech output. The speech output is based on concatenation of pre-synthesized
speech loaded from file. Four resources for speech synthesis were considered, but only
the Lucent Text-To-Speech Engine for American English (http://www.bell-labs.com/
project/tts/voices.html) is fully implemented. Personal observations and informal dis-
cussions with speech researchers concluded that the Lucent speech technology is
among the best with respect to the segmental and prosodic quality. Other candidates
were

Spengi, the IPO in-house speech engine,

Laureate from BT Laboratories for British English (http://innovate.bt.com/show-
case/laureate/index.htm), and

WATSON from AT&T Research Labs for American English (http://www.re-
search.att.com/~mjm/cgi-bin/voices.cgi).

The pieces of music that must be projected by name on the roller are kept in a private
instance of the class MusicCollection. Obviously, a music collection contains tracks

referring to the music pieces.By calling the functions AddTrack or RemoveTrack this music
collection can be assessed.

H ' current®
' ProgrammeBall *~_ Track * A
N ccccceccena- N contains
:M icCollectionBall -)
¢ MusicCollectionBa ...
N eeeeas : ™ optionBa |~ A | MusicCollection
R L k4
' Pt InputFocus
¢ RecommendationsBull "oy
................... ! AddTape *
FillTape Impact b
CurrentTape ~«. DLL calls»
AddTrack play A
RemoveTrack stop S
TumToTrack A
—————< Woggle \ .4 impactSound
Unterance [*" pLL calts »
OCX calls
v play
stop
SelectionBaliControl
' MPEGAudio [~"-"""" MPEGPlayer
\ DLL calls DLL calls
v Excempt >
Start/StopPlay
SelectionBall StarvStopFF
StarvStopRew
Position
Memorize

Figure 10. The class OptionBall controls the roller and integrates
its actions with speech and non-speech audio feedback.

19

The list of music pieces is wrapped around the roller. The wrapping is done by the
SelectionBall component. By calling AddTape, a client can add a new empty list to be
wrapped around the roller. By calling FillTape, this list can be filled with items, i.e.,
pieces of music or tracks.

An OptionBall object has a reference to a track that is currently in focus. This current
track is displayed at the front of the roller, and its musical content will be played by a
global MPEGAudio instance. The MPEGAudio class is a wrapper of the MPEGPlayer
dil.

* The attribute data of the music collection is contained in a Microsoft Access database,
described in Chapter 3. As shown in Figure 11, the class MusicBase provides an easy
access to this database. It uses the Microsoft Jet engine and the Data Access Objects
(DAO,) library for retrieving data from the database. The member function QueryTracks
retrieves the essential data on music tracks from the database, and sets up an object dia-
gram which mirrors the object model of the database (see Chapter 3). In fact, it builds
the whole object structure, as shown in Figure 11, comprising dictionaries containing
persons and instruments, and a music collection of music tracks. To let other software
entities access this object structure, QueryTracks returns a reference to a global Music-
Collection object, which contains all music tracks in the database. The tracks are one by
one added as they appear in the result of the database query. The MusicCollection is an
extension of the VB class Collection. A track is composed of attributes such as title,
main artist, and music style. A track has also a list of recommendations, e.g. other
tracks, attached to itself. There are, in principle, no restrictions on what tracks are rec-
ommendations for others; the composition of the recommendation lists is beyond the
scope of this part of the project, but documented elsewhere (Pauws and Eggen, 1996).
The recommendations are not read in from the database, but from another resource file.

! theMusicBase | 1 MS Access :
L .l Al DAO culls » H :
MusicBase [---cc--ccccceesesccccea :
! music '
Open E database !
Close ' '
............... QueryTracks o -
' .
E theMusicCollection | -
RESEEEEEL) e Dictionary Utterance
- hashed »
A "
contains »
MusicCollection
title
* main_artist »
Add style
Remove
Tiem . Track \pnly&d_h# . n
id composed_ Person 7S Instrument
title >
main_artist
- solos_from » » Musician

Collection

recommendutions p

Figure 11. A single call to QueryTracks builds an entire object structure
representing the essential music database information.

20

The MusicBase object has several instances of the Dictionary class, i.e., hash tables,
taking care that there is only a single instance of a particular Person object, e.g, a person
carrying the name ‘Miles Davis, or a particular Instrument object, e.g., an instrument
known as trumpet. The ToBject class is used for several things; it can hold ‘track titles’,
‘music style names’, or ‘names of artists’. A ToBject instance can refer to a particular
Utterance object. Person and Instrument are both derived from ToBject. A Musician
is a many-to-many relation between a person and an instrument; Miles Davis plays the
trumpet, but occasionally keyboards. Trumpets and keyboards are played by many
other persons.

21

3 Music database

A music collection comprising 480 jazz music pieces extracted from 160 commercial CD
albums was assembled. A first-minute excerpt from each piece of music was com-
pressed (MPEG 1 Layer II 128 Kbps stereo). The collection was assembled by consider-
ing 12 popular jazz genres. These genres cover a considerable part of the whole jazz
period. Each genre contained 40 music pieces.

For each piece of music, an elaborate list of attribute data was collected by using infor-
mation found on the CD booklets and discographies such as ‘All Music Guide’
(Erlewine, Woodstra, and Bogdanov, 1994) and ‘Penguin Guide’ (Cook and Morton,
1994). Other data such as tempo, rhythmic structure, and melodic development were
acquired by careful listening.

All data of the music collection is put into a Microsoft Access database. An object model
of the database is shown in Figure 12. As MS Access is a relational database management
system, the complete object model is mapped onto tables (Rumbaugh, Blaha, Premer-
lani, Eddy, and Lorensen, 1991). By mapping objects onto table rows with primary keys,
and by mapping the binary one-to-many and many-to-many relations onto distinct
tables consisting of a primary key and two foreign keys, the resulting relational data-
base resembles a third normal form. This normal form guarantees a high degree of
entity and referential integrity but produces a large number of tables (in this case, 21
tables). A join query is declared which collects and returns the attributes and single-val-
ued relations of all tracks in the database in a single table. Additionally, a select query
with a track ID as key is defined for each one-to-many relation.

title *
Title Track Instrument
album

*
| *| year plc;yed_by >
Label [ecorded_by ::?o g L solas_from Musichn[
*| live
W numMusicians | * .
Place * | numSolos

4 \
excerpt
main_anist Person
* *) Iby »
Style

pro;luced_hy

Melody Rhythm

Figure 12. The object model of the music database.

In the object model, as shown in Figure 12, ten entities are defined. As the relations
between the entities are quite straightforward, only the entities are further explained.

Track - a recording of a piece of jazz music, with the following attributes
year - year of recording.

tempo - pace of the musical performance measured in beats per minute.

22

standard - indicates whether the recording is a commonly played tune by jazz musi-
cians that were already popular songs before the heyday of jazz, and thus not pri-
marily intended for jazz musicians.

classic - indicates whether the recording is a commonly played tune composed by a
jazz musician or not.

live - indicates whether the recording is recorded in front of a live audience or not.

numMusicians - number of musicians that play along on the recording, ensemble
strength (literally: number of instruments played on the recording).

numSolos - number of soloing musicians (literally: number of musicians playing the
musical theme of the head chorus in unison or individually).

excerpt - reference to a first-minute excerpt of the recording.
Title - song or album title; both song and album title are included.
Label - the record/distribution company of the recording.
Place - place of recording (e.g. studio, concert hall).
Instrument - an instrument played on a recording.

Person - any person who deserves credits for a recording (e.g., artists, composers, pro-
ducers).

Musician - a person who plays an instrument on a recording.

Style - the jazz style or era of the recording. The following styles are present:

Blues Jazz comprises rhythm and blues schemes incorporated into a swinging
context. Some typical musicians: Billie Holiday, Dinah Washington, Louis
Armstrong.

Swing comprises big bands and small groups (1930-1940) that were immensely
popular for dance. Some typical musicians: Ben Webster, Count Basie, Oscar
Peterson, Toots Thielemans.

Bebop comprises the beginning of modern jazz marked by complex harmonics,
up-tempos, and high skills (1940-1950). Some typicial musicians: Charlie Park-
er, Fats Navarro, Dizzy Gillespie, Stan Getz, Gene Ammons.

Cool Jazz (or West Coast Jazz) comprises the counterpart of bebop and a reac-
tion against its ideas. It is marked by soft melodies and less dynamics. Some
typicial musicians: Chet Baker, Gerry Mulligan, Bill Evans, Stan Getz.

Latin Jazz comprises latin rhythms (bossa nova, samba) on which jazz melo-
dies are superimposed. Some typicial musicians: Stan Getz, Jobim, Paquito
D’Rivera, Tania Maria, Mario Bauza.

comprises the return to a more bluesy, less technically demanding
melodies than the bebop but with the same intensity (1950-1960). Some typicial
musicians: John Coltrane, Miles Davis, Sonny Rollins, Thelonious Monk, Ron
Carter, Cannonball Adderley.

23

PostBop (Modal Jazz) comprises the innovative improvisations on open-ended
harmonics rather than strict popular chord schemes (1950-1960). Some typicial
musicians: Miles Davis, Herbie Hancock, Wayne Shorter, Dexter Gordon.

Fusion (Jazz-rock) comprises the melting of rock and funk elements with jazz
solo techniques. Some typicial musicians: Brecker Brothers, Weather Report,
John Scofield, Yellow Jackets, Casiopea.

PostModern (New Age) comprises the influence of world music, classical mu-
sic, and folk music into the jazz. The composition is far more important than
the improvisation. The result can be rather esoteric and atmospheric. Some
typicial musicians: Pat Metheny, Paul Bley, John Abercrombie, Bill Frisell,
Ralph Towner.

MBase (Avant Fusion) comprises the combination of complex funky rhythms
with rather angular melody lines. MBase is short for macro-basic array of struc-
tured extemporization. Some typicial musicians: Steve Coleman, Greg Osby,
Gary Thomas, Kevin Eubanks, Cassandra Wilson.

NeoBop (Neo classicism, Neo swing) comprises the new generation of young
players that find their influence in the acoustic bebop and postbop eras. Some
typicial musicians: Branford/ Wynton Marsalis, Joshua Redman, David
Kikowski, Keith Jarret, Ray Hargrove, Christian McBride.

Dance (DooBop, Jazz-dance, Acid-Jazz) comprises dance-oriented contempo-
rary funk, hip-hop or house. Some typicial musicians: Jazzmatazz, Me’Shell
Ndegeocello, Marcus Miller, Miles Davis, Mezzoforte.

Rhythm - rhythmic accompany which characterizes the rhythmic structure and accom-
paniment made by the rhythmic section of a group. The following categorical values are
defined:

3/4 fee] - waltz feel.
4/4 fee] - swing (walking bass) feel.
5/4 feel - ‘Brubeck’ feel.
ballad - slow, rubato feel.
latin - traditional latin rhythms such as mambo, samba, and bossa nova.
rock - straight feel, shuffle.
funk - groovy, modern dance-oriented, syncopated feel.
Melody - melodic/harmonic development which characterizes the relation of the chord

progression and melody (improvisation) lines of a recording. The following categorical
values are defined:

Progressive represents a strong relation between the melody (improvisation)
lines and the chords and scales that hold at that moment. The notes are neatly
stringed together and cover the whole chordal extension.

Blues represents a melody line (improvisation) linked closely to a former blues
chord progression.

Modal represents a very melodic melody line on a small chord progression
mainly stuck to basic chord notes.

24

Chromatic represents angular and chromatic melody lines played with some
notes outside the chordal context. Angular means large unusual tone interval
and chromatic means the opposite: playing notes separated only a single inter-
val.

Non-tonal represents the elimination of western tonality by getting rid of chord
scales and key centres. Chords are not played for their resolution but merely
for the overall sound.

Free represents the total elimination of chords or other conventions resulting in
an intense personal statement of the musician.

25

4 Trackball with force feedback

The IPO force feedback prototype devices (Engel, Haakma, and van Itegem, 1990) are
created in a close cooperation between the IPO and Philips Nat.Lab. in Eindhoven. The
one-DOF (degrees of freedom) devices are rotary dials which use either motor- or elec-
tromagnetic force feedback. The two-DOF devices are trackball devices with motors
attached at the axes of a ball, creating a two-dimensional force plane. Two such devices
exist and differ only in minor details. The three-DOF device is a similar trackball device,
but, in addition, it has a hinge mechanism with force feedback on which the whole
trackball unit can be moved up and down (Keyson, 1996).

Low-cost, smaller devices with a lower power consumption are derived from this tech-
nology. Two hand-held prototypes are developed within the programme of the Philips
Ease-of-Use Thematic Research for Sound & Vision 1997. These devices have a some-
what limited functionality with respect to the original trackball devices; they are espe-
cially designed for usage in a home entertainment environment. One device consists of
a small ball that can be rotated fully and freely in one direction. In the other direction,
however, the ball can only be moved by a discrete on/off switch. The other device con-
sists of two cylindric freely rotating chambers placed in a perpendicular configuration;
one chamber is designated for up/downward rotation, the other for left/right rotation.
Because of their small size and hand-held design, they can supplement the current
remote controls. Two other low-cost, early commercial versions of the two-DOF track-
ball are developed within the New Business Creation of Philips Nat.Lab. They are called
‘the Peepmouse’ and ‘the Frog’, and occupy only a small region of the desktop. For
making ‘the Peepmouse’, two small motors (from CD-ROM players) were mounted
within the housing of a Logitech trackball. ‘The Frog” has a housing that betrays the
contours of a frog-like creature; the ball is the frog’s head. Lied horizontally, this hous-
ing facilitates a comfortable rest of the hand, while the fingers are manipulating the ball.
Standing upright, ‘The Frog’ can be used as a game console for video games. For both
low-cost versions, similar, but smaller control hardware was used as the original IPO
trackball.

The mechanical structure of the original IPO ground-based trackball is patented (Engel,
Haakma, and van Itegem, 1990) and will be briefly described here for reasons of com-
pleteness. In Figure 13, a representation the trackball is shown; it shows both some of
the mechanical as the electronic components of the device. Some components, i.e. the
trackball unit, are mounted on a solid plate resting on shock-proof rubbers; the trackball
unit can be firmly placed on a desktop. Other components such as the amplifiers and 1/
O cards comprise another unit. In contrast, on new prototypes such as ‘the Frog’, the I/
O cards are placed within the housing of the device and the power supply for the
motors will be tapped directly from the PC. Due to its relatively powerful motors, the
original IPO trackball device requires more specialized hardware, i.e., the amplifiers,
that had to be placed outside the trackball unit. The trackball unit is covered by a Plex-
iglass surface on which the wrist can be rested comfortably while the fingers are manip-
ulating the ball.

The trackball is considered a motor input and tactual output device with two degrees of

freedom. The hard-plastic ball with a diameter of 57 mm rests on a ball-bearing mini-
mizing any friction. Underneath this bearing system, a contact switch is mounted that

26

enables the notification of discrete push movements executed vertical to the ball. The
apparatus is provided with two independent direct current motors, one for each degree
of freedom, i.e., the x and y component. Both rubber-rimmed shaft wheels, each driven
by a motor, are fastened at the perpendicular centre lines of the ball. Two small free-roll-
ing support wheels that are fixed at the opposite of each shaft wheel ensure that the ball
does not wander from its bearing. The orthogonally positioned shafts enables the crea-
tion of a two-dimensional force plane on the ball. Two optical position sensors placed at
the end of the motors sense the position of the ball.

e = Pc Lo

RTIB1S DAC

Figure 13. The mechanical and electronic components of the IPO force
feedback trackball.

Two independent power amplifiers produce the voltages provided to the motors. These
voltages are fixed at a constant level, when the input voltage of the amplifiers is con-
stant. As a consequence, the torque produced by the motor (i.e., the force exerted on the
ball) is proportional to the input voltage of the amplifier, but also proportional to the
current in the motors. To provide a constant force level on the ball, irrespective of the

27

ball rotation performed manually, the current in the motor need to be constant. How-
ever, a ball rotation that is induced from outside generates an undesired current in the
motor. This is compensated by a feedback loop with the amplifier. Voltages correspond-
ing to ball rotation speeds are measured by tachogenerators and voltage dividers and
fed back to the amplifier to adjust the voltage provided to the motor, keeping the cur-
rent level within the motor constant.

The input voltage of the amplifier, on the other hand, is derived from a digital set point
value. This set point value is a two-element vector and is interpreted by a Digital-to-
Analog Converter (DAC) card, the RTI815. As there is one set point value provided and
two motors to communicate with at each time instant, one digital input channel and
two analog output channels of the card are used. The RTI815 card can be controlled by
software.

One trackball device differs from the other by its motor independent ball positioning
sensors. Two optical position sensors, placed on additional wheels, ensure a finer moni-
toring of the ball position. The optical sensors, whether they are connected on addi-
tional wheels or at the end of the motors, are connected to a Quadrature I/0O card. The
card has a LS7066-chip which can be controlled by software. By means of this software,
two data lines (i.e., counters) can be defined representing the x and y component of the
ball position.

The hardware configuration of the trackball is controlled by a personal computer.

28

5 Software for controlling the trackball

The functional requirements of interaction styles have changed due to new demands on
integrating more modalities, i.e., peripheral devices, on the input as well as the output
side. A current approach in user interface design is an iterative process in which an
interaction style can be tested and adjusted ‘right-on-the-spot’ without an overhead of
programming. A rapid prototyping environment is therefore implemented that facili-
tates construction of an interaction style in which the trackball is incorporated, together
with other input and output modalities. If the prototyping environment is in ‘design’
mode, an interaction style for some application can be interactively developed, mainly
by a drag-and-drop philosophy. In run-time mode, the interaction style under construc-
tion can be tested. If the interaction style meets its specifications, an executable version
of it can be made for the purpose of evaluation, i.e., usage by end-users.

Lithle

TacServer

LS7066 | RTIB15

Figure 14. Component-based software architecture of the rapid proto-
typing environment.

The prototype environment is based on Microsoft technology. The environment cur-
rently uses two serially connected PCs; one PC which mainly runs the application and
one PC which controls the trackball device. The foreseen required resources for sup-
porting other input and output modalities justify the decision to divide the environ-
ment over two PC platforms. The division is not based on conceptual grounds; it can be
made undone without much effort.

A component-based design strategy is used, which facilitates easy change and exchange
of software, e.g., when other force feedback devices have to be connected to the environ-
ment. Three in-house software components are developed that make up the rapid pro-
totype environment, as shown in Figure 14. They were deliverables of the Philips Ease-
of-Use Thematic Research for Sound and Vision Programme 1997.

29

* LightHole, an ActiveX control component that can be directly incorporated in an
application without any hard-coding. This component facilitates the specification
where, when, and how force feedback is evoked in the application.

¢ TacServer, a static link library, which facilitates the communication between the two
PCs. Therefore, it communicates asynchronously (by a RS-232 connection) with the
PC that actually controls the trackball device.

¢ TacServer Extension, a program that runs on the separate PC dedicated to control the
trackball device by its RTI815 and LS7066 interfaces.

Before the components are described in more detail, the underlying concepts that
abstract from the low-level control of the trackball device are outlined.

5.1 Concepts

The addition of force feedback in an interaction style is based on the concept of laying
out tactual objects, i.e. TouchCons, in a workspace. Some of these objects evoke a local
force field when their designated region is passed through by a cursor. As such, these
objects have a certain definite region of action. Others call forth a global force field when
other conditions hold, such as timing conditions. Workspaces consist of a collection of
tactual objects that supply a certain functional coherence, but they can be interpreted in
various ways by UI designers. For instance, a workspace might refer to certain physical
regions on a visual display; a workspace maintains then a one-to-one correspondence
with the pixel coordinates on the visual display. But workspaces, i.e., Visual Basic forms,
might also refer to well-defined parts of a dialogue that can be called up during run-
time.

The control of the cursor is mediated by the trackball, but it can, in principle, be control-
led by any other input device. Although the tactual objects are represented by graphical
objects, the tactual objects do not to be visualized in the interaction style. Also, the cur-
sor may not be rendered on the display. The force feedback is mediated by a so-called
haptic output device, such as a force feedback trackball or force feedback joystick. In the
case of the trackball, the force is passed through as a system-driven ball movement in a
specific direction.

Tactual object names such as ‘hill’, ‘peak’, 'hole’, ‘path’, or ‘bump’ refer to real-world
objects that have a direct mental imagery, but they also have an association to their tac-
tual sensations. This iconic representation of tactual objects facilitates easy recall and a
common language among designers (Keyson and Tang, 1995; Keyson, 1996; Keyson and
van Stuivenberg, 1997). When rolling the ball, a ‘hill’ feels like moving up some inclina-
tion, until a turning point is reached. After this point, ball rolling is at best described as
‘running down the hill’. Whereas ‘hills’ have a convex inclination described by a curve,
‘peaks’ have a far more pronounced force field described by straight lines.

Technically, each tactual object represents a parameterized two-dimensional tactual
force field map. The map is described by geometrical formulas. The force field map of a
‘hill’ evokes a directional pulling-force away from its force field centre, when the cursor
is moved towards this centre. Definitions of some force field maps are described else-

30

where (Keyson and Tang, 1995; Keyson, 1996; Keyson and van Stuivenberg, 1997). Tac-
tual objects can be grouped to design more complex, but re-usable force field patterns.

5.2 Lighthole

The ActiveX control component LightHole enables a flexible integration of the tactual
objects in an application. Each instance of the ActiveX control represents a tactual
object. The controls themselves are visually represented by graphical draw primitives
such as circles and rectangles; their graphical representations can be hidden when the
interaction style actually runs. The controls can be declared by simply selecting and
placing them on the application’s workspace, i.e., Visual Basic forms. The control’s
parameters are editable by means of dialogue boxes, i.e., property pages, and corre-
spond to parameters of a tactual object. Obligatory parameters are the name of the
declared object (control), the position, size, and orientation of its force field, and the
maximum pulling-force.

A set of 12 tactual objects is currently implemented (Keyson and Tang, 1995; Keyson,
1996; Keyson and van Stuivenberg, 1997), but new objects can be integrated with little
effort, as will be illustrated in Section 5.4.1. Though it requires programming at all three
components, the software utilizes implementation inheritance which support easy inte-
gration of new tactual objects.

When the application runs, the LightHole component calls the TacServer library for
actually delegating the creation of the tactual objects and the corresponding force field
maps. After that, it handles and processes window events such as cursor position
changes, and button press events, in an ordinary window event processing function. As
will be described in Section 5.3, the relevant window events actually originate from
events of the trackball device. For instance, cursor positions (i.e. mouse movement
events) correspond to positions of the trackball.

5.3 TacServer

The static link library TacServer is a ‘service hatch’ between the LightHole component
and the TacServer Extension,; it serves as a bridge between two software component
which can vary now independently. An asynchronous communication protocol is speci-
fied between the TacServer and its Extension, in which the creation of tactual objects,
their parameters, their state, but also ball push events, and ball rotation speeds are
exchanged by packets (byte sequences).

At both sides, the communication protocol is encapsulated by commLink objects. Cli-
ents are allowed to invoke its member function sendPacket for sending a packet of a
specified size, or peekPacket for peeking a packet with a specified packet identifier. The
size of packet is not fixed, but depends on the content of the message. A packet that
communicates the latest cursor or ball position occupies only 5 bytes; a one-byte packet
identifier plus four bytes for transmitting the x and y coordinates. However, a packet
that communicates the request for a creation of a tactual object has a bigger size; its size
depends on the number of parameters to be transmitted. For instance, a ‘hill’ object is
specified by a relatively small number of parameters. It requires a 15-byte packet for

31

communication; a one-byte packet identifier that announces that the packet deals with
an object creation, one byte that specifies what object needs to be created, four bytes that
specify the centre of the hole, 8 bytes that specify the four radii of the hill’s elliptic
region of action, and one byte that specifies the maximum pulling-force at the centre of
the hole. The size of a packet is not explicitly encoded in the packet by client objects, but
is accounted for in the communication protocol. However, packets are not allowed to
exceed 256 bytes. At the recipient site, a maximum of 32 packets (32*256 = 8K) are
allowed to pent for further action of the recipient, otherwise a communication overflow
occurs.

TacServer contains an instance of the class Tpointer which has for each piece of infor-
mation, that needs to be exchanged, a designated member function. For instance, there
are member functions for creating a tactual object at the recipient site, or a member
function that asks for a peek at the control hardware of the trackball device, or (re)set-
ting the absolute position of the ball. Each such member function can be invoked after
the communication link is set up by instantiating a commLink object. The member
functions consist mainly of code to package the information and sending it off to the
TacServer Extension.

In addition, TacServer continually request the TacServer Extension to peek the control
hardware of the trackball device. To notify whether there are any changes with respect
to ball- or button presses, or to ball positions or speed, it peeks to received packets that
might contain such information. Any change in status information is immediately
coerced to MS-Windows events. Subsequently, these MS-Windows events can be inter-
preted by the LightHole component in its window event processing function. For
instance, ball positions coordinates are directly translated to cursor positions and ball
pushes simply correspond to mouse clicks.

5.4 TacServer Extension

The TacServer Extension is based on previous versions of a rapid prototyping environ-
ment for IPO trackball devices called TacTool which was developed at the IPO (Keyson
and Tang, 1995; Keyson and van Stuivenberg, 1997). The TacServer Extension is an
implementation of the tactual object concept to control the trackball device. As already
mentioned in Section 5.1, tactual objects are placed in so-called workspaces; this also
applies in a software-technical way. Only a single workspace is active at the time. When
active, a workspace receives all input events and all incoming communication packets.
However, another workspace can be made active by a switching mechanism. By this
way of working, workspaces have the potential to extend the physical proportions of a
display, creating some ‘virtual space’ beyond the visual display. Currently, for each Vis-
ual Basic form, LightHole creates a separate workspace. If new tactual objects are put
onto a form, it is checked whether this form is already associated with a workspace by
looking at its window handle. If not so, a new workspace is created. If an application
has placed tactual objects on a single form, only the default workspace is created.

User input events originate, in general, from the control hardware of the trackball
device. By peeking this hardware continually, one is notified by ball presses or changing
ball positions. These events, besides being communicated to the TacServer, are dis-
patched to the current active workspace. Subsequently, the events are directed to all tac-

32

tual objects within this workspace in a list order, i.e., in the same order as the tactual
objects are added to the workspace.

If the current ball position is within the tactual object’s region of action, the tactual
object acts on that by calculating a force vector. The value of the force vector is deter-
mined by the force field map of the tactual object. When all tactual objects have pro-
vided their force vectors, all force vectors are summed to arrive at a global force vector.
This vector is send off as the digital set point to the RTI815 card.

Visiting all tactual objects one-by-one implies that the dispatching of user input events
is dependent on the order in which tactual objects are created and added to the work-
space. However, sending off events this way has no undesired side-effects, because only
an overall force vector is calculated. User input events such as a ball-pushes are sent off
to the TacServer and the LightHole components. As the force calculation and the han-
dling of other user input events (and the execution of the application) take place at dif-
ferent PC platforms, synchronization facilities are built in that compensate for any
misalignments.

5.4.1 Implementation

The first thing that meets the eye when one looks more closely to the source code is the
profound use of inheritance for implementing all kind of list types. These list types are
all derived from a basic list type. They are specialized based on their constituent objects;
for each object class that must be contained in a list, there is a designated list class. In
this way, the list classes fulfil the role of wrappers that coerce undefined types of list ele-
ments to a well-defined type. Although this design pattern surely encapsulates type-
casting and type-coercion, it results into a considerable number of exotic list classes (the
‘ravioli effect’).

5.4.1.1 Controlling the trackball device

TacServer Extension is built around an instance of class TsmartBall which incorporates
all functional essentials as shown in Figure 15. It maintains all workspaces from which
only one is active. Additionally, it contains two instances of a communication class
TcommlLink; one for sending packets, and one for receiving packets.

The member function run is the core process of TacServer Extension. It is mainly an end-
less loop, waiting for flags to be put on, and subsequently react on these signals. Several
timers interrupt at a pre-defined time interval and invoke an interrupt handler that set
those flags. There are flags (and corresponding timers) for reading the ball position,
determining the ball speed, do some communication and so further. As an example, the
ball position is updated (i.e., read) 400 times per second. Immediately following a ball
position update, the force field in the current workspace is adjusted. If required, packet
communication can be done 25 times per second. Dependent on the received packets,
the TacServer Extension can perform the following actions:

¢ new tactual objects can be created and installed in the current workspace;

¢ tactual objects can be deleted and removed from the current workspace;

33

* new workspaces can be created and added to the collection of workspaces;
¢ workspaces can be deleted and removed from the collection of workspaces;
* aswitch from one workspace to another workspace can be made;

¢ the absolute position of the cursor can be set in the workspace;

¢ asynchronization measure between TacServer and its Extension.

In addition, the current ball (cursor) position is shared with the TacServer by packet
communication.

Tiist
Rt 3 insen
wsmarBall £ oo oo = TsmartBah | / remove
""""" TtackBall
—<>| n
needUpdateForce .
2 updateForce
updateCursor Force Vector
calcSpeed
TecommLink transmitStatus
collection
sendPacket * e
peekPacket [| = | T
peekPacketEnd TworkSpace
TIPOBall T308al |- Frog
updateForce
<] aewObject
)
deleteObject setForce
. setValid updateCursor
Thase v -
2. A
LS7066 RTIBIS
Se1L.S7066Count InitRTI81S
StanLS7066 ReseiRTI8IS
ReadLS7066 OutputToDAC(fx.fy)

Figure 15. The class diagram of TacServer Extension that incorporates
most functionality.

Functionality for controlling the trackball hardware is declared in the abstract class
TtackBall, also shown in Figure 15. It essentially abstracts an interface for specific con-
trol hardware, i.e., other trackball devices. This makes TacServer Extension independent
of the trackball hardware peripherals. Subclasses of TtackBall are specialized in specific
trackball devices such as the original IPO ball, i.e., TIPOBall, or its 3D equivalent, i.e.,
T3DBAall. Other devices such as ‘the Frog’ or ‘the Peepmouse’ can be easily integrated. A
single instance of one of these subclasses is created at run-time.

The TtackBall class is essentially a list; it contains references to force vectors currently
emitted by tactual objects. The Tlist class embodies an complete implementation of a
linked list data structure, which can hold references to objects of an undefined type. The
member function updateForce computes the sum of all inserted force vectors, and gives
this value to the DAC component RTI815 by the member function setForce. The member
function updateCursor calls on the LS7066 for retrieving the current ball position. The

34

two most recent ball position are used by calcSpeed to estimate the current rotation
speed of the ball. The current status of the ball, i.e. its x, y - position, is transmitted by
transmitStatus. It needs therefore a reference to a communication object TcommLink in
its argument list.

5.4.1.2 Workspaces, tactual objects

As already mentioned in Section 5.1, workspaces are the coherent building blocks of the
interaction style. They might refer to a portion of the screen, in which the cursor is
moved. As shown in Figure 15, a workspace holds a list containing all kind of tactual
objects (derived from Tbase) which together set up a global force field in the work-
space. Although we only refer to tactual objects, there are also other entities that can be
added to a workspace. As shown in Figure 16, the complete lists is as follows.

¢ Tactual objects (derived from Ttactilebase) set up a passive, local force field depend-
ent on the current ball position and a force field map description. Examples are
‘hole’, ‘bump’, or ‘hill’.

» Effect objects (derived from TeffectBase) set up a active, merely a global force field
that is applied at some time interval. The effect is described by a force field map.
Some effects objects are dependent on both current ball position and time. Examples
are ‘conveyer belt’ and ‘swirl’.

¢ Clipper objects (derived from TclipBase) set up a geometric clipping region. They
disallow regions to be reached by the trackball, by resetting the absolute position
each time a clipping region is entered. One can clip by line (also known as ‘the wall’),
circle, arc, or box.

¢ Trigger objects (derived from TtriggerBase) set up regions that notify the TacServer
upon entering or leaving. These objects are superfluous, as the events of entering or
leaving are handled by TacServer and LightHole.

¢ Group objects (TgroupBase) gather a set of objects and treat them as a unit.

Each tactual object class (e.g., TtactileHole) contain private data that specifies its force
field map and a private 2-element force vector. The force vector is calculated dependent
on the current x, y ball position and the force field map by the member function forceAt.
Upon calling updateForce in the workspace, the task is delegated to all tactual objects
added to the workspace. One-by-one, it is determined whether the current ball position
is within the reach of a tactual object (by means of hitTest) and the force vector is
updated. If the ball enters, so-to-say, a tactual object, a reference to the object’s force vec-
tor is inserted to the list of force vectors maintained by the Ttackball class (recall Ttack-
ball is a list structure as shown in Figure 15). If the ball leaves the region of a tactual
object, the reference to the object’s force vector is removed.

35

] T

TeffectBase TtriggerBase TiactileBase TclipBase TgroupBase

forceVec

updateForce (x.y)
hitTest (x,y)
forceAt (x.y)

TtactileHole TtactileHil o o TtactileBump

Figure 16. Several distinct tactual objects define a force field map that is
mediated through the trackball device.

5.4.1.3 Creation of tactual objects

Because TacServer Extension is responsible for creating tactual objects on-the-fly,
dependent on communication packets received from the TacServer, it can not predict
what tactual subclasses to instantiate. It knows only when to create an tactual object, and
to what workspace to add it, but needs to decode what kind of tactual object to create.
Therefore, the knowledge of which tactual object to create is encapsulated in a well-
known design pattern, the Factory Method (Gamma, Helm, Johnson, and Vlissides,
1994). In this pattern, tactual objects are created by specific builder objects, such as
shown in Figure 17 for the TtactileHole class. An abstract class TbaseBuilder declares
the build operator, which returns an object of type Thbase. But once a subclass of Thase-
Builder is instantiated, it instantiate the appropriate tactual objects without actually
knowing their class by overriding this abstract build operation. The build operation
receives the communication packets in its argument list; the creation of an tactual object
relies on unpacking this packet for its content (e.g., parameters of a force field map) and
directly calling the constructor of the tactual object class.

Also shown at the top of Figure 17, all builder objects are contained in a for-that-pur-
pose-appointed collection, i.e., TbaseBuilderCollection. This collection is a type-coer-
cion wrapper of a sorted list class which facilitates a binary search method for finding
list elements. The appropriate builder object is now looked up in the collection by
means of a tactual object identifier, i.e., OBJ_ID. The object identifier OBJ_ID is encoded
in the communication packet.

36

/ Tiist
P LT TN) TsortedList
| baseBuilders ===+ *! TbaseBuilderCollection]
! search (key, id)
lookup (OBJ_ID)o
\ returns
.
L]
Thase TbaseBuilder
build
TtactileBase
’l'lactilol'lalo|~. . TtactileHoleBuilder|
cream'\ i & o build

Figure 17. A concrete builder object redefines the abstract operation of
a build operation by returning an appropriate tactual object.

Obviously, the functionality of the design pattern as shown in Figure 17 could also be
implemented by an ordinary case statement structure, but this does not support easy
extension and reusability of software. Now, new classes of tactual objects can be added
to the TacServer Extension with little effort. It only needs adding the implementation of
a subclass to the class diagram as shown in Figure 16, writing its builder class as shown
in Figure 17, and slightly adapting the communication protocol between the TacServer
and TacServer Extension. Obviously, code for creating tactual objects in a client applica-
tion must also be added in the LightHole component.

37

6 Software for streaming audio output

As the requirements on control, speed, and the diversity of input/output modalities are
increasing for interaction styles, one must rely on software packages that provide fea-
tures that harmonize some of these requirements. The audio output requirements of this
project’s interaction style were rather harsh. Audio data streaming from distinct sources
at once, i.e., high-quality music audio, synthesized speech, and non-speech audio, had
to be mixed and made audible with low-latency and with a maximum control to inter-
vene the streaming. Streaming audio output is therefore implemented by using Direct-
Sound 5.0 object technology, one of the components of Microsoft’s DirectX package.

The DirectX package is the Windows’ multimedia application programming interface
(API) for developing graphics, animation, rendering, sound, input, force feedback, and
multi-player network games. The near future promises that this API will be supported
on any Windows platform. It is marketed as a product that provides almost asynchro-
nous low-level access to multi media hardware in a device independent way without
delay latency. All DirectX object classes provide a functional set of methods on a variety
of multi media platforms, which interfaces are compliant to the Component Object
Model (COM). If the underlying multi media hardware has the appropriate capabilities,
the implementation of these methods will directly call on the hardware known as hard-
ware acceleration. Otherwise, the methods will be emulated in software and system
memory (Bargen and Donnelly, 1998).

DirectSound functionality is built round the concepts of a primary sound buffer and a vir-
tually unlimited number of secondary sound buffers. Each secondary sound buffer con-
tains a single sound in the form of pulse code modulation (PCM) samples. The buffer
may contain a static sound or streaming sound. A static sound is put there once, stays
there for a while, and will be played back repetitively. Streaming sound, on the other
hand, needs to be transferred block by block into the buffer while playing simultane-
ously; it may be the result of another process, e.g., an audio decoding process, or the
data block is just too big to be copied at once. When a audio play back function is issued
on a secondary sound buffer, its content will be mixed with all other secondary sound
buffers that are currently playing. The resulting mix will be put into the primary sound
buffer and is directly sent off to the audio output device. Besides some privileged audio
output format setting, clients do not have access to the primary sound buffer. In general,
they are only allowed to fill or read from the secondary sound buffers.

Although DirectSound is used for this project to facilitate streaming audio output, it is
not yet a standard used by all software components from third parties such as speech
recognition engines. These components have their own hidden strategy for capturing
speech from an audio input device, e.g., by using the Win32 waveform APL. There is no
direct way to intercept these calls from speech recognition components, or to synchro-
nize it with calls to DirectSound. Up until now, any hardware conflict that arises from
the integration of software components that use different strategies to capture or write
audio must be resolved, literally avoided, by inserting an additional audio card.
Another remedy is to alternating requests to services of DirectSound and calls to third-
party software.

38

6.1 AudioDevice

Because DirectSound is loaded with a extensive set of features and requires a disci-
plined and defensive style of programming, an object class called AudioDevice is
wrapped around the DirectSound functionality. It provides a coherent set of functions
that abstracts from the DirectSound interface. Additionally, it takes away the responsi-
bility of defensive programming, i.e. continually checking for a possible error status,
from the client.

As shown in Figure 18, the class AudioDevice has transformed the concept of a second-
ary sound buffer into the concept of an audio port. An audio port class called Audi-
oPortinfo groups all variables and structures that are required to control a single
secondary sound buffer. It keeps a private instance to a WAVEFORMATEX structure,
which contain format information on the PCM data in the buffer (e.g., sample fre-
quency, precision, mono/stereo). It also has a private instance of both a secondary
sound write buffer (i.e., LPDIRECTSOUNDBUFFER) and read buffer (i.e., LPDIRECT-
SOUNDCAPTUREBUFFER). Associated with each write and read buffer, there are two
instances of respectively LPBUFFERDEC and LPCBUFFERDESC. These classes pro-
vide control parameters such as volume level and panning for processing the buffers
accordingly.

In fact, DirectSound 5.0 also provides an API to read, i.e., capture data from an audio
input device. Although the AudioDevice class works along similar mechanism for both
playing and reading audio, its DirectSound implementation currently lacks hardware
acceleration under Window 95. As it is now, the DirectSound API for capturing data is a
COM wrapper for the Win32 waveform API. Direct hardware access will be present in
Windows 98 and NT 5.0 (Bargen and Donnelly, 1998).

AudioDevice
AudioPortinfo [<>————— WAVEFORMATEX
AllocPort
WonePar ~ 16 | iopas <>——mmm LPDIRECTSOUNDBUFFER
WriteParams isPaused
WriteSamples ports isFlushing
ReadParams updatingPosition
ReadSamples readPos o
Flush writePos DSBUFFERDESC
Flushinmerval
ClosePort
FreePort
O_.ILPMRECTSOUNDCAPTUREBUFFER
T K>——| DSCBUFFERDESC
DIRECTSOUND
Tlm‘mry
LPDIRECTSOUNDBUFFER

Figure 18. The class diagram of the AudioDevice.

39

Upon creation, AudioDevice initializes a DIRECTSOUND object, which mainly man-
ages the primary sound buffer. Because only a single DIRECTSOUND object is pre-
ferred to persist during the life-span of an client application, there is also a single
instance of AudioDevice; the AudioDevice is a (static) singleton class. It is important to
know that DirectSound has defined four distinct cooperative levels that determine how
the audio output device is shared among multiple client applications, i.e., windows
(Bargen and Donnelly, 1998). AudioDevice has itself privileged to change the audio for-
mat of the primary sound buffer, thus to override the default setting. This may also
cause changing the output format of other applications. If a more cooperative level is
required in which the output format is not that easily altered by a client, necessary
changes to the code of AudioDevice has to be made. In addition, DirectSound requires a
direct binding with a window; it can serve only one client at a time. By default, Audi-
oDevice binds DirectSound to the foreground window. This binding can be overruled
by a client application by passing another window handle.

The AudioDevice class holds references to 16 audio ports; each port will be allocated
upon explicit request of the client application. The presence of a maximum of 16 audio
ports results into an equally number of secondary sound buffers. Thus, at maximum, 16
different sounds can be mixed together and made audible simultaneously.

The class AudioDevice only supports streaming audio. When data is provided to the
instance of AudioDevice, it is immediately played back; there is no facility that keeps
audio data permanently. The implementation of streaming audio within AudioDevice
is done by the DirectSound concept of circular secondary sound buffers. New blocks of
data need to be timely provided at the right place, before the mixing procedure, going
along circular buffers, revisits this place. Therefore, DirectSound has introduced con-
cepts like a ‘current play position’ and a ‘current write position’ in the buffers, which
respectively point out what region of the buffer is safe to write data to, and what region
is currently used for mixing. To investigate whether it is possible to place the next por-
tion of data, AudioDevice continually polls the current state of the play and write posi-
tions in a separate thread!. Instead of polling, one could also decide to use a notification
scheme or timer interrupts, but polling costs the least programming effort. Although
AudioDevice keeps track where and in what order to put the next block of data, it is
still the client’s responsibility to pass a timely next block.

A feature which is not explicitly available in the DirectSound APl is a flush facility. A
flush enforces pending audio data in the secondary sound buffers to be sent off to the
audio output device. Flushing is needed when all audio data is streamed to the Audi-
oDevice but is not yet processed, before audio ports can be freed to be used by other cli-
ents, i.e. threads. The function Flush is implemented by a busy wait mechanism and
does not return until all data is processed. The function FlushInterval, on the other hand,
only returns whether there is still some data that is currently processed; it provides a
finer control in multi-threaded environments.

1. Threads differ from conventional processes that they do not have a separate address or code
space. A thread shares code and address space with other threads and, because of that property, is
sometimes called a lightweight process. A thread does have an individual program counter and a
stack for local variables and arguments. Within software engineering, the names ‘task’ and ‘job’ are
reserved for referring to the static purpose that processes and threads have to fulfil; threads and
processes merely refer to run-time behaviour of software.

40

One of the imperfections of DirectSound 5.0 is its lack of an adequate sample rate con-
version. Whenever audio data in the secondary sound buffers comply to different audio
formats, DirectSound carries out a crude up- or downsampling technique to arrive at an
uniform audio format. This leads to an unacceptable audio quality. It is therefore recom-
mended to perform an explicit high-quality sample rate conversion to an uniform for-
mat before audio data is streamed to the AudioDevice.

6.1.1 Interface at client application level

The AudioDevice is compiled and linked into a Dynamic Link Library (DLL) which can
be used in C or C++ applications. The most important portion of the DLL interface is as
follows.

int AudioDevice_Reset (HWND *hWnd);

long AudioDevice_AllocPort(});

int AudioDevice_OpenPort(long portnum, char *mode);
int AudioDevice_ClosePort(long portnum);

int AudioDevice_FreePort(long portnum);

int AudioDevice_IsPortOpen(long portnum);

int AudioDevice_WriteParams{ long portnum, char *mode,

long numChannels, long sampleSize, long sampleRate);
int AudioDevice_WriteSamples(long portnum, void *buf,

long numSamples, int bLastOutput);
int AudioDevice_StopWriteSamples(long portnum);

int AudioDevice_ReadParams(long portnum, long *numChannels,
long *sampleSize, long *sampleRate);

int AudioDevice_ReadSamples(long portnum, void *buf,
long numSamples);

int AudioDevice_Flush(long portnum);
int AudioDevice_FlushInterval (long portnum);
int AudioDevice_Play(char *fileName, int wait);

All functions, except for AudioDevice_AllocPort, return an integer value indicating
whether errors have occurred while calling DirectSound. Because the number of error
types are quite numerous, AudioDevice intercepts these errors and sets the return value
to 1. Additionally, it pops up a small window in which the error description can be read
off. If the functions return 0, all went well.

A client might pass a window handle to the device by calling AudioDevice_Reset.
Consequently, the device dedicates all its resources to that window. As a side effect, all
audio ports are freed, i.e. de-allocated, from the current window.

Before any audio data can be streamed, an audio port has to be explicitly allocated. The
function AudioDevice_AllocPort returns an indentifier to an available audio port,
which can be used in subsequent calls to the device. If this function returns a port
number that is less than zero, the audio device was not capable of allocating an audio
port. Probably, all ports (from 0 up until 15) were already occupied. Subsequently, the
audio format for the audio port has to be specified by invoking
AudioDevice_WriteParams. Clients can query the audio format of an audio port by
calling AudioDevice_ReadParams. The audio format is specified by the intended
mode of usage (*w": writing or "r": reading), the number of channels (1: mono, 2:

41

stereo), the sample size (i.e., precision in number of bits: 8 or 16), and the sample rate
measured in Hertz (e.g. 8000, 16000, 32000, 44100). Then, the audio port needs to be
opened by indicating, again, its intended mode of use. After this initialization, the client
is free to stream audio data to the device, or read audio data from the device by using
respectively AudioDevice_WriteSamples or AudioDevice_ReadSamples. These
functions are asynchronous, i.e. they return immediately. Both functions need a pointer
(buf) to an allocated block of short integers, and the size of this block (numSamples).
Blocks in stereo format organizes left-channel and right-channel data points in alternat-
ing order per sample. When writing samples, the client is also obliged to inform the
device when the current block of data is the last block to be transferred by setting the
boolean bLastOutput accordingly. Playing back audio data at an audio port can be
immediately stopped at all times by invoking AudioDevice_StopWriteSamples.
When all data is streamed, one can flush the device, if necessary, before closing and free-
ing the audio port.

The additional function AudioDevice_Play circumvents above strategy. It can be
used when a client only wants to play back audio from an audio file in WAV-format.
The boolean wai t indicates whether this call must be asynchronous, i.e., starting up a
separate thread, or not. However, the effect of an asynchronous call can not be made
undone; playing back audio can not be interrupted.

6.1.2 Source code example

A C++ code excerpt for playing a 2-second 500 Hz sine wave sampled at 8 kHz, 16-bit
precision is as follows:

#include <math.h>
#include *adev.h" /* header file for AudioDevice */
#define M_PI 3.1415926535

int main(int argc, char **argv) (
int status = 0;
long pnum = -1;

pnum = AudioDevice_AllocPort(});
if (pnum < 0) status = -1;
if (status == 0)
status = AudioDevice_WriteParams(pnum, °w*, 1, 16, 8000);

if (status == 0)
status = AudioDevice_OpenPort(pnum, “w");

if (status == 0) {
short signal([16000);
inc i;

for(i = 0; i < 16000; i++)
signal(i) = (short) (10000.0 * sin{ 2.0 * M_PI * i / 16 });

status = AudioDevice_WriteSamples(pnum, signal, 16000, 1);

if (status == 0)
status = AudioDevice_Flush(pnum);

if (status == 0)
status = AudioDevice_ClosePort(pnum);

if (pnum >= 0)
AudioDevice_FreePort(pnum);

42

7 Software for generating non-speech sound

In recent years, the unclear role of non-speech sound and the requirements of hardware
and software resources have delayed the use of sound in interaction styles. However,
interpreting sound in a framework of everyday listening (Buxton, Gaver, and Bly, 1992;
Gaver, 1997), in which sound percepts are directly mapped to source attributes and real-
world events, seems to justify an appropriate use of sound, i.e. auditory icons, in an
interaction style. When sound is synthesized rather than pre-recorded and sampled, it
provides loss of storage requirements and a larger flexibility in sound design. When
sound is, in addition, synthesized by acknowledging sound sources and real-world
events, it gives an opportunity to instantiate theories on real-world sound perception.

The non-speech sounds, used in this project, are generated by means of a Constrained
Additive Synthesis technique (Buxton, Gaver, and Bly, 1992). This technique is based on
the addition of elementary signal components (or partials) such as sinus waveforms
(pure tones), block (square) waveforms, sawtooth waveforms, or triangle waveforms.
These components are described by parameters such as centre frequency, amplitude,
duration, or phase shift. According to Fourier theory, any complex sound can be decom-
posed into an indefinitely long list of sinus waveforms. Obviously, this also holds for
the signal components used in the synthesis technique. For instance, the rather harsh
sounding block waveform consists of a fundamental sinus waveform with the same
centre frequency and all its uneven harmonics with amplitudes in the ratio of 1/n.0n
the other hand, the flute-like triangle waveform is made out of the same components as
the block waveform, but the amplitudes of the harmonics are in the ratio of 1/n?.
Another harsh sounding waveform, the sawtooth waveform, consists of all harmonics
of a fundamental sinus waveform with amplitudes proportional to 1/n. It is thus suffi-
cient, in principle, to refer only to sinus components.

Each component has also an amplitude envelope which describes the amplitude onset
and amplitude decay characteristics. The envelopes are described by exponential or
gamma curves. Addition of these amplitude-adjusted components yields a finite signal
form which can be excited by a pulse train. Convolution with a pulse train (e.g., single
pulse, regular pulse train, Poisson pulse train) means, besides a amplification (or atten-
uation) factor, the positioning of multiple, possibly overlapping, signal forms in time.

Techniques, other than the Constrained Additive Synthesis, e.g., the Constrained Sub-
tractive Synthesis, are based on the application of filterbanks. Our applied technique is
however considered especially efficient for the generation of impact sounds; the sound
of striking or hitting an object on another material. Each signal component corresponds
to an excited eigen frequency, i.e., resonant mode, of the interaction between the object
and the material. Each resonant mode has its own logarithmic damping characteristic,
which is described by the amplitude envelope. The resonant modes convey properties
of the object and material and properties of the force or type of the impact. Some prop-
erties of objects are mass, length, hardness, the amount of deformation (or bending) at
the impact, and the measure of return to equilibrium after the impact. Gaver proposes
that several of these properties can be described by sound synthesis parameters. Some
studies have already shown that some type of information encoded by these parameters
can be quite accurately conveyed (Buxton, Gaver, and Bly, 1992; Hermes, 1998). In gen-

43

eral, the following parameters can be controlled during the synthesis process; their cor-
relations with real-world attributes are only suggested, not yet fully empirically tested.

¢ Varying the pattern of partial frequencies, i.e., composition of the sine waves, corre-
sponds to the altering of the stroke object’s shape;

¢ Varying the overall frequencies, i.e., the bandwidth, by adding or removing sinus
components, corresponds to varying the size of the hit object;

e Varying the pattern of initial amplitudes, i.e., the steepness of the amplitude enve-
lope at the onset of the sound, corresponds to the hardness of the hitting object;

¢ Varying the overall amplitude corresponds to the force or proximity of the hit;

¢ Varying the pattern of damping corresponds to the quality of the material, thus how
the material deforms or returns to its original state.

For instance, wood, rubber, and metal impact sounds are differentiated by their decay
rates; they produce qualitatively different deformation and recovery properties. In
addition, the components of metal sounds are more pronounced by the existence of
higher partials. Some preliminary empirical testing with the implemented synthesis
(Hermes, 1998) has already identified some synthesis parameters to be coupled with the
perception of materials. Glass impact sounds are characterized by partials with high
centre frequencies (higher than 4 kHz) and exponential decay characteristics with a rel-
atively small time constant (approximately 12.5 ms). Metal is characterized by partials
with moderately high centre frequencies (around 1.6 kHz) and fast decay characteris-
tics; the time constant is longer than 25-50 ms. Impact sounds of wood have partials
with low frequencies (approximately 4 kHz). Their partials have long decays with a
time constant of about 6.15 or 12.5 ms. Rubber sounds have even lower partials.

Not only understanding by what synthesis parameters information about the event is
conveyed in sound, but also solid knowledge on physics, acoustics, psycho-acoustics,
and signal processing pledge the way of generating natural sounding sounds. Subse-
quently, these natural sounds can be utilized as auditory icons in an interaction style
which stands for events occurring in the interaction. What sound can do for an interac-
tion style is documented elsewhere (Eggen, 1993; Gaver, 1997).

Besides knowledge on the synthesis parameters, some rules of thumb are helpful dur-
ing sound design. It is often proposed that harmonic sounds are relatively obtrusive
and annoy at long-term hearing or when the interaction style is used on a more regular
basis. As a guiding principle, a sound in an interaction style is considered well-
designed and appropriately utilized, when the user is not constantly aware of the
sound, but notices, on the other hand, any sudden change or disappearance of the
sound. Sinus components, for instance, sound ‘less tonal’ when shimmer is added to
their centre frequencies, i.e., adding noise to their phase. Another strategy, which also
renders other side-effects, is by adding sinus components with slightly inharmonic cen-
tre frequencies. To trade the burden of annoyance, one can randomly select synthesis
parameters, e.g., centre frequencies, from a pool of ‘allowable’ parameters (or from
some probability distribution) and synthesize the sounds accordingly. It results into
slightly different versions of a ‘prototypical’ sound. Another remedy is to add small
noise components to the sound.

7.1 Implementation

The synthesis algorithms are pioneered by Gaver (Buxton, Gaver, and Bly, 1992), but
extended and implemented at the IPO as part of the Philips Ease-of-Use Research Pro-
gramme for Sound and Vision 1997. Further extension and empirical testing of the algo-
rithms is going on at the IPO (Hermes, 1998). The implementation, as documented here,
is relatively primitive which results into the synthesis of sounds made by simple events
(e.g. a single strike or hit). For instance, time varying sound generation is not possible.
Although sound is an excellent medium to represent time varying events, the imple-
mentation does not yet allow interactive adaptation of the parameters during genera-
tion.

The class diagram is represented in Figure 19. The software hinges on the abstract class
Sound which contains the implementation of signal-analytical operations in the time
domain, such as addition, convolution, time-shifting, and multiplication. In addition, it
declares the function calcSound which generates a signal component. All components
such as periodic or noisy waveforms, but also envelopes, are derived from this abstract
class and implement the function calcSound. The synthesis parameters, e.g., centre fre-
quency, duration, are passed on at the creation of a signal component. Subsequently,
generated signal components are first multiplied with an envelope component, before
they are summed to arrive at a compound sound form. Finally, this sound form is con-
voluted with a pulse train.

The subclass Bouncing represents a pulse train which characterizes the repetitive
impacts of a bouncing object. The amplitude of pulses decay and the time interval
between two pulses decreases according to the ‘loss of energy’ law. In order to play back
sampled audio, e.g. pre-fabbed speech waveforms, files according to the Windows'’
native sound format (WAVE or WAV format) (Kientzle, 1998) can be read in and han-
dled as any other Sound object. The Emphasis subclass is a means to pre- or de-
emphasis other sound components, i.e. altering the spectral slope.

In principle, the generated sound can be played back immediately. The sound genera-
tion however introduces some latencies due to computation. These latencies are only
acceptable when the sound to be generated is not too complex, i.e., when it has a limited
number of components and has a short duration. If the sounds need to be played imme-
diately as prescribed by the client application, all sounds must be pre-generated during
initialization of the client application, and stored at a place from which they can be
retrieved easily. Sounds are therefore stored in an instance of a Dictionary class,
referred to by the instance SoundBook; it acts like an ordinary hash table. When
requested, sounds can be retrieved from this sound book, and played back with no
latency.

Playing back non-speech sound (and sound originated from WAV-files) is done in a sep-
arate thread. The audio samples have to pass some wrappers before it reaches the
DirectSound Dynamic Link Library (see also Chapter 6 for streaming audio). If several
audio output formats are used simultaneously at the DirectSound level, it is recom-
mended that all audio data comply to a uniform format to achieve an optimal output
quality. Therefore, sample rate conversion is required before the impact sounds are
played back by the audio device. On request of a client, impact sounds can be converted
and subsequently stored in the soundbook. Or if not so, the AudioDeviceWrapper

45

object converts the audio, if necessary. However, the latter possibility introduces some
delay.

! SoundBook ! SampleRateConvertor
"""" v Resample
L}
é é |—<> AudioDeviceWrapper . AudioDevice
play calls OpenPon
i Sound stop WriteSamples
ClosePort
add calculate '
atKey convolute [v
multiply Wav \ DLL calls
add]
hashed\ rers
*
scale \ DirectSound
Assoc play Emphasis
ey e \
\ Bouncing
Periodic Noise Envelop Gamma
/ '/ | \ \ \
Sinusoid Sawtooth PulseSeries Gauss Poisson Constant Exponential
Triangle Block

Figure 19. The class diagram of the Constrained Additive Synthesis
technique for the generation of impact sounds.

7.1.1 Specification file

The whole generation process is determined by a specification file. This file is read and
parsed, the required components are created with the specified parameters, and the
generation process starts off.

The following abbreviations are used for identifying the periodic signal components:

sin - sinus component,

tri - triangle component,

saw - sawtooth component,

blk - block component,

pls - pulse series component,
Their parameters are the following: sf - sampling frequency, c£ - centre fre-
quency, ph - phase, am - amplitude, du - duration, mf - modulation frequency, mi
- modulation index, sis - sigma (std.dev.) for shimmer distribution, sij - sigma
(std.dev.) for jitter distribution, and se - seed of random generator.

The following abbreviations are used for identifying noise components:

46

poi - Poisson noise component with parameters s f - sampling frequency, se - seed
of random generator, c£f - lambda of Poisson distribution, am - amplitude, and du
- duration.

gau - Gaussian noise component with parameters s £ - sampling frequency, se - seed
of random generator, si - sigma (std.dev.) of Gaussian distribution, and du -
duration.

The following abbreviations are used for the envelopes

gam - gamma envelope with parameters sf - sampling frequency, ga - gamma con-
stant, tc - time constant, am - amplitude, and du - duration.

exp - exponential envelope with parameters sf - sample frequency, tc - time con-
stant, am - amplitude, and du - duration.

con - constant envelope with parameters sf - sample frequency, am - amplitude, and
du - duration.

Abbreviation for the two remaining components are

emp - (pre- or de-) emphasis component with parameters sf - sampling frequency,
cf - lambda of emphasis, se - seed for random generator, am - amplitude, md -
modulation depth, mf - modulation frequency, and du - duration.

bou - bouncing pulse sequence with parameters sf - sampling frequency, si - start
interval of the bounce (negative value indicates a reversed bouncing sequence),
am - amplitude, and du - duration.

The following example is a specification of a sound which is generated by adding three
sinus component with rather low centre frequencies multiplied with a rather rapidly
decaying gamma envelope with a slow onset, and convoluted by a single pulse.

sin -cf 150 -ph 0.0 -du 0.05
gam -ga 2 -tc 0.005 -du 0.05
sin -cf 160 -ph 0.5 -du 0.05
gam -ga 2 -tc 0.005 -du 0.05
sin -cf 170 -ph 0.0 -du 0.0S
gam -ga 2 -tc 0.005 -du 0.05
pls -cf£ 1 -am 30 -du 0.001

The result of the generation is shown in Figure 20. It sounds like a rubber object hit by
some other solid object.

...

LA i it

ML

ol
H R

Figure 20. The generated sound of a rubber object hit by some other sol-
id object.

47

Another example is an impact sound made up of a larger set of sinus components with
high centre frequency and rather slowly decaying gamma envelopes with an immediate

onset.

sin
gam
sin
gam
sin
gam
sin
gam
sin
gam
pls

-cf 4000 -ph 0.0 -du 0.15
-ga 1l -tc 0.02 -du 0.15
-cf 4200 -ph 0.0 -du 0.15
-ga 1 -tc 0.02 -du 0.15
-cf 4300 -ph 0.0 -du 0.15
-ga l -tc 0.02 -du 0.15
-cf 4300 -ph 0.0 -du 0.15
-ga 1l -tc 0.02 -du 0.15
-cf 5200 -ph 0.5 ~am -1 -du 0.15
-ga 1l -tc 0.02 -du 0.15
-cf 1 -am 30000 -du 0.001

The result of the generation is shown in Figure 21. It sounds like a glass object hit by
some other solid object.

o)
o]
of
=
v
|
-
L
=
i

& sm @ em em em em e [T T 3

Figure 21. The generated sound of a glass object hit by some other solid
object.

7.1.2 Interface at client application level

The Constrained Additive Synthesis algorithms are compiled and linked into a
Dynamic Link Library (DLL) which can be used in applications, preferably running
under Visual Basic. Impact sounds or WAV sounds are referred to by an index, i.e., a
hash value, which allows to read specification or WAV files and store the sounds inter-
nally, to convert their sampling rate or stereo/mono format, and to play back or stop
playing back the sounds. Two additional interface functions indicate whether an impact
or WAV sound can be player or not. The following DLL interface is defined.

int
int
int
int
int

WINAPI ImpactSnds_AddImpactFile (char *index, char *fileName);

WINAPI ImpactSnds_AddWavFile (char *index, char *fileName);

WINAPI ImpactSnds_PlayImpact (char *index);

WINAPI ImpactSnds_StoplImpact (char *index):

WINAPI ImpactSnds_ConvertSampRate (char *index, int sampRate,
int numChannels);

void WINAPI ImpactSnds_SetWavPlayable (int on);
void WINAPI ImpactSnds_SetImpactPlayable (int on);

By declaring this interface at Visual Basic, these interface functions can be directly
accessed in a Visual Basic application.

48

7.1.3 Source code example

The following Visual Basic code excerpt plays back a pre-generated impact sound or a
wav-file sound at the same audio output format.

' Some declarations from the ImpactSound DLL

Declare Function ImpactSnds_AddImpactFile Lib *"ImpactSound® _
{(ByVal key As String, ByVal fname As String) As Long

Declare Function ImpactSnds_AddwavFile Lib *ImpactSound* _
{Byval key As String, ByVal fname As String) As Long

Declare Function ImpactSnds_PlayImpact Lib "ImpactSound® _
(ByVal key As String) As Long

Declare Function ImpactSnds_ConvertSampRate Lib "ImpactSound* _
(ByVal key As String, ByVal sampRate As Long, _
ByVal numChannels As Long) As Long

Private Sub Form_Load()
ImpactSnds_AddImpactFile "wood", "Wood.imp*
ImpactSnds_ConvertSampRate "wood”, 16000, 1
ImpactSnds_AddWavFile "bill*, *C:\\windows\\media\\The Microsoft Sound.wav*
ImpactSnds_ConvertSampRate "bill"”, 16000, 1
End Sub

Private Sub Commandl_Click()
ImpactSnds_PlayImpact "wood*
End Sub

Private Sub Command2_Click()

ImpactSnds_PlayImpact "bill*
End Sub

49

8 Software for playing MPEG Audio

Music audio is compressed according to the MPEG-1 Layer II audio format (stereo, 125
kbps). MPEG stands for Moving Pictures Expert Group, a consortium formed by the
ISO commiittee to develop a standard way to compress high-quality video and audio
sequences. As needs from a variety of industry converges, this has resulted in various
MPEG standards for applications ranging from satellites to consumer electronics. New
standardization processes are still going on. An introductory to MPEG Audio is pre-
sented by Pan (1995) and an implementation of MPEG-1 (de)compression is published
by Kientzle (1998). The World Wide Web is also a valuable resource on MPEG stand-
ards. (e.g., http:/ /drogo.cselt.stet.it/mpeg/ or http:/ /www.mp3.com/).

The MPEG standard comprises three layers; each layer provides a successively better
quality at the cost of a more complex and computationally intensive implementation.
For this project, Layer Il was considered a compromise between storage needs, compu-
tational needs, and accepted quality loss. Dependent on the audio content, compression
factors for MPEG-1 Layer II higher than 10 are common for music which is originally
sampled at CD quality (44.1 kHz, 16 bit precision, stereo).

8.1 Implementation

A complete explanation how the MPEG Audio Player works is beyond the scope of this
document. Moreover, the core of the decoder is based on loosely documented freeware
software, known as maplay. This freeware decoder is however a computationally effi-
cient C++ implementation and manages to decode all layers of the first two MPEG
standards. It can be compiled on a multitude of platforms (e.g. SPARC, AIX, HPUX,
Linux, Windows 32). The software is allowed to be (re)distributed under the GNU Gen-
eral Public License as published by the Free Software Foundation.

A global overview of MPEG audio decoding works as follows. A MPEG bitstream con-
sists of frames of compressed data. Each frame consists of a 32-bits frame header that
defines the format of the data in that frame. Decoding MPEG data is now tracking the
bitstream, identifying and parsing the frame headers, and use the information in the
headers to decompress individual frames into pulse code modulation (PCM) audio
data.

The MPEG Audio Player utilizes the freeware decoder as a black box in which the bit-
stream is inputted and audio as PCM samples is outputted. A MPEG_Args class serves
as a high-level control mechanism for controlling both the decoding process and the
playing of PCM data. The MPEG Player is, for obvious reasons, multi-threaded. The cli-
ent occupies the main thread, which starts up a designated decoding thread which
issues PCM samples, which are, in turn, played back in a separate thread.

As shown in Figure 22, the MPEG_Args class is an ‘ennobled’ C structure, that facili-
tates control from the outside. Therefore, it has flags such as pause/resume, stop, fast-
forward, and fastbackward that can be set by the client. Setting a flag can be done while
underlying decoding and play threads are running. Therefore, flag-setting is protected

50

by using mutual exclusion, i.e. mutex, techniques. After setting the flags, underlying
threads react accordingly.

The MPEG_Args class has also a reference to the bitstream and maintains the current
frame header. An instance of this class is fed into a decoding thread which utilizes the
bitstream. At the other side of the decoding process, an abstract class OBuffer declares
two functions called append and write_buffer. Derived subclasses of OBuffer facilitates
playing back audio samples on different platforms and audio card peripherals. Our
MPEG Player uses an instance of the Adev_OBuffer class that controls DirectSound.
The decoding thread has an instance to this class and appends PCM samples when
decoded. After a frame is decoded, it invokes a write_buffer operation notifying a frame
is completely decoded. However, Adev_OBuffer buffers more data internally; Direct-
Sound recommends buffers comprising, at least, 1 second of data to be passed on with-
out hearing noticeable artefacts (see also Chapter 6 for streaming audio). For a fine
control, Adev_OBuffer issues small chunks of data in a separate thread to the AudioDe-
vice.

i ares T---" MPEG_Args IBitStream
stop
fastforward
fastbackward
aesired_position MPEG
last_position
position_change L.

s
+ arguments
’

___________ SampleRateConvertor
maplay - RN PCM . o N
i PP Wi v P DirectSound
Decoding thread |4 - oB
-------- append .
ite_bu!
e AudioDevice
// """ \ OpenPort
WriteSamples
LinuxOBuffer| | MCI_OBuffer |« -- - Adev_Obutfer ClosePort

Figure 22. The class diagram of the essentials of the MPEG Audio Play-
er.

8.1.1 Interface at client application level

The MPEG Audio Player is compiled and linked into a Dynamic Link Library (DLL)
which can be used in applications, e.g., running under Visual Basic. A client that wants
to use the DLL interface of the MPEG Player needs to work as follows. First of all, the
MPEG player has to be informed about an incoming MPEG bitstream, which is some-
where located as a file, by invoking MPEGPlayer_SetMPEGPlayer. Subsequently, this
bitstream can be decoded and made audible directly by the designated play function.
Decoding and playing can be immediately stopped, or temporarily paused to be
resumed later on. In addition, the playing functionality can be forwarded or rewinded

51

at a fast pace. The current playing state of the MPEG Audio Player can be peeked at all
times, if necessary.

As the decoding process proceeds frame-by-frame, a client can ask for the current frame
that is currently processed by calling MPEGPlayer_CurrentFrame. To get an indica-
tion how far the decoding process has already reached, the client can assess the current
frame against the last frame in the bitstream. The function MPEGPlayer_LastFrame
returns the number of frames in the bitstream which indicates the total length of the cor-
responding file.

Frames can be spontaneously skipped back and forth during the decoding process by
using MPEGPlayer_SetPlayPos, while playing back MPEG audio. Its argument
playpos refers thus to a frame number. Facilities are built in to memorize the position
of a frame per bitstream. This frame position (e.g. indicating a starting play position)
can be recalled, when needed, or it can be simply ‘forgotten’. It must be emphasized
that only five frame numbers (i.e., playpos) are memorized in a cyclic manner, implying
that each new sixth frame number overrides the first frame number. Also, only one
frame number per bitstream is memorized; each new frame number of a bitstream over-
rides the previous one. Lastly, bitstream (i.e., MPEG file names) are referred to by an
integer value called trno. The coupling between file names and such integer values
need to be maintained by the client application.

int WINAPI MPEGPlayer_SetMPEGFile (char *fileName);

int WINAPI MPEGPlayer_Play ():;

int WINAPI MPEGPlayer_Stop ():

int WINAPI MPEGPlayer_Pause ();

int WINAPI MPEGPlayer_Resume ();

int WINAPI MPEGPlayer_isPlaying ();
int WINAPI MPEGPlayer_isPaused ();

int WINAPI MPEGPlayer_StartFastForward ();
int WINAPI MPEGPlayer_StopFastForward ();

int WINAPI MPEGPlayer_StartFastBackward ();
int WINAPI MPEGPlayer_StopFastBackward ();
int WINAPI MPEGPlayer_isFastForwarding ():
int WINAPI MPEGPlayer_isFastBackwarding(};

int WINAPI MPEGPlayer_CurrentFrame ();
int WINAPI MPEGPlayer_LastFrame ();

int WINAPI MPEGPlayer_SetPlayPos (int playpos);
void WINAPI MPEGPlayer_MemorizePlayPos (int trno, int playpos);
int WINAPI MPEGPlayer_RecallPlayPos (int trno);
void WINAPI MPEGPlayer_ForgetPlayPos (int trno):

8.1.2 Source code example

The following Visual Basic code excerpt utilizes the MPEG Audio player. It simply tog-
gles between playing and stop playing a piece of ‘Miles Davis’ MPEG audio. Playing
can also be fast-forwarded.

* Some declarations from the MPEGPlayer DLL
Declare Function MPEGPlayer_SetMPEGFile Lib "MPEGPlayer" _

(ByVal fname As String) As Long
Declare Function MPEGPlayer_Play Lib "MPEGPlayer® () As Long
Declare Function MPEGPlayer_Stop Lib *"MPEGPlayer® () As Long
Declare Function MPEGPlayer_isPlaying Lib *“MPEGPlayer® () As Long

52

Declare Function MPEGPlayer_StartFastForward Lib "MPEGPlayer* () As Long
Declare Function MPEGPlayer_StopFastForward Lib *MPEGPlayer () As Long
Declare Function MPEGPlayer_isFastForwarding Lib “MPEGPlayer" () As Long

Private Sub Commandl_Click()

If (Not MPEGPlayer_isPlaying) Then
MPEGPlayer_SetMPEGFile "Miles Davis.mp3*
MPEGPlayer_Play

Else
MPEGPlayer_Stop

End If

End Sub

Private Sub Command2_Click()
If (Not MPEGPlayer_isForwarding) Then
MPEGPlayer_StartForward
Else
MPEGPlayer_StopForward
End If
End Sub

53

9 Software for visualizing a roller

One of the ‘perceived affordances’ of a ball is its possibility to roll or rotate it along one
of its axes. To make use of this provision and to reinforce the interaction of scrolling
through a list of items, the list is virtually tapered round the ball, as shown in Figure 23.
Intuitively, this list is then visually represented as a roller. If the appropriate facilities are
built in, it is possible that any forward or backward ball rotation induces an immediate
corresponding scroll in the list. Force feedback and the sound of clicks might even bring
along a further immersion to the simple task of scrolling. Other actions on the ball, such
as pushing down the ball, can be programmed to cause the selection of an item. If, in
addition, the list is extended into a two-dimensional matrix of items, ball rotations to
the left or right might correspond to wandering along the columns of the matrix.

Figure 23. An infinitely long list of items is virtually tapered along a
ball.

The SelectionBall ActiveX control visualizes an indefinite list (or matrix) of items as a
cylindric roller. Properly speaking, it is capable of maintaining more than one list
(matrix) at the same time. The client application indicates what list is displayed and
what list is thus under its direct control. SelectionBall only renders that part of the dis-
played list that is currently at the front, and highlights the item that has the input focus.
At any moment, items can be added at any place in the list or removed from any place
in the list. Consequently, the visual representation of the roller will adapt itself to this
new situation. The SelectionBall does not provide any other output modality than the
visual one. The integration of sound, speech, or force feedback have to be dealt with at
the client application level. Although the SelectionBall was designed with having the
trackball in mind, there is nothing against using it with another input modality or
device.

54

9.1 Implementation

As might be expected after reading Chapter 6, the SelectionBall is not based on DirectX
technology. Its visualization is based on the Windows 32 GDI graphics APIL.

As shown in Figure 24, the implementation consists of two parts. A dynamic link library
(dl1) does the real job of visualization, list maintenance, and carrying out all requests
originating from the client application. The ActiveX part only interfaces between the cli-
ent application and the dll part; all client calls are directly delegated to the dll. In fact,
each instance of a SelectionBallControl has its own instance of a SelectionBall.

ActiveX control (OCX)

SelectionBaliControl

Additem
Removeliem
Clear
AddNewMatrix
DrawBall
Previous/Nextltem

<K>———1 nvallAngle

Dynamic Link Library (DLL)

SelectionBall

curltemX/Y

lightAngle
wrnTime

AddNewMatrix
SetCuremtMatrix
Addliem
Deleteliem

background
source p
target

TrueColorBitmap

pixels

DownSample

opy
BBl
GetPixels
WritePixels

SetRef/GeRef

SetFocus/NumltemsDisplayed
SetBallAngle/LightAngle/TumTime
Draw/Stop

TumToltemX/Y

Bw_me!W_osL_zr_
cunrent
all

Inatrices
{ordered}

*

pant_of.
displayed

TaperedMatrix

(indexed)
AnyCell
nd > -
Remove
At text
Taper reference
AdjustTaper

Figure 24. The SelectionBall consists of a ActiveX and a DLL part. All
‘intelligence’ is kept in the DLL.

An instance of SelectionBall class takes care of mapping, i.e., wrapping, matrices on
curved bitmap representations. The necessary Windows 32 GDI API calls are encapsu-
lated in the class TrueColorBitmap. This bitmap class declares and implements the
operations for manipulating bitmaps, such as creating bitmaps, copying whole bitmaps,
or bit block transferring (bit-blt) from one area to another within a bitmap. The bitmap
class also declares a DownSample method, which applies a median filter on its instance;
median filtering is required to avoid undesired blurring effects, i.e., aliasing effects, due
to wrapping a rectangular bitmap around a curved surface. By calling WritePixels, the
content of the bitmap is visualized in a so-called device context, a programmer’s handle

55

to freely access the GDI functions and data structures in a window. All bitmap calcula-
tions are done with Microsoft’s TrueColor RGB colour model.

As shown in Figure 24, the SelectionBall class has references to three instances of the
TrueColorBitmap class. The background instance refers to a background colour repre-
sentation which suggests the sphericity of the visual representation by using an illumi-
nation technique. The illumination is dependent on the angle of an incident light beam,
i.e., lightAngle. The source instance contains some textual information that must be
wrapped. The target instance refers to the final result consisting of the overlay of the
wrapped source bitmap on the background bitmap.

The SelectionBall class can maintain any number of matrices instantiated from the
class TaperedMatrix. The TaperedMatrix class is essentially an ordinary matrix with
holds references to instances of the AnyCell class. The matrix class simply allocates
memory when new instances (i.e., new columns and rows) are added and frees memory,
if it is allowed to do so. In addition, it declares two function Taper and AdjustTaper which
will be described later on. The class AnyCell contains a textual description and an inte-
ger value called reference, which can be used by the client application. In the sequel, the
terms ‘list’ and ‘matrix’ are used interchangeably to denote an instance of the class
TaperedMatrix.

The lists are built up by adding all items one-by-one by the client application while
switching from one list to the other. Adding a new list is done by calling AddNewMatrix,
which can be subsequently filled with items. Switching to another list is done by SetCur-
rentMatrix. The SelectionBall class holds a reference to the current matrix. As the lists
are kept in the same order as they are created, the client application should memorize
the sequence number of each list (which is also returned by AddNewMatrix). Adding an
item is done by the member function AddItem. As the items are positioned in a two-
dimensional matrix, a x and a y coordinate are required in the function call. Along with
the coordinates, a text string is passed in the argument list. This text string is the item'’s
first line of text that will be displayed. Subsequent calls to AddItem with the same coor-
dinates, thus referring to the same item, do not override previously passed lines of texts.
They add, on the other hand, extra lines of text to the item. As items refer to some
semantics at client application level (e.g., a piece of music), it is possible to attach a inte-
ger value that refers to the client’s semantics. By calling SetRef, the client can attach a
specific integer value to an item. By calling GetRef, the client can recollect the integer
value. Items can be simply deleted from the current list by Deleteltem. For clarity, items
are always referred to by their x and y coordinates. Preserving any list order (e.g., alpha-
betical) is the responsibility of the client application.

The core task of SelectionBall class is wrapping the items’ text on a curved surface,
render this representation, and updating the representation, when needed. The best
way to convey the process of wrapping the list is shown in Figure 25. The wrapping
process consists of three stages: determining a running window, writing the content of
the running window onto a bitmap, and wrapping this bitmap.

The SelectionBall class maintains a so-called running window over the indefinitely
long current list. This window, which is referred to by the displayed pointer (see Figure
24), keeps track what part of the entire list is candidate to be wrapped. At initialization,
the running window is determined by the Taper member function of the TaperedMatrix

56

class. Any adjustments to the running window (when the roller scrolls) are determined
by the AdjustTaper function. As a reference point, both tapering functions need to know
what current item is currently in focus, i.e. is at the very front of the roller. For that item
is held at the middle of the running window. The item in focus is maintained by the
SelectionBall class (curltemX and curltemY). The size of the running window can be set
by SetNumltemsDisplayed, and defines thus how many items are wrapped around the
roller.

The textual information of the items in the running window are written onto a ‘flat’ bit-
map referred to by source. Subsequently, this bitmap is subjected to a warp function and
superimposed on the background bitmap to arrive at a roller representation in the target
bitmap.

e s s
e tan

[Ty
st aen s

i Gas i
i ae

anas cans ens
ey

>

aaaas taas aane
e o ane

aanes as e
a0 a0 1ans

[T
naas age s

B I et et
“iff -revesscsansacsncasanananaaa-

Figure 25. A running window is placed on an indefinitely long list of
items. This window determines what portion of the list must be tapered
along a curved surface. For visualization, that part of the list is ‘cut out’
of the entire list before it is actually wrapped by ‘gluing together’ both
ends of the small list. Scrolling up and down the entire list now corre-

sponds with rotating up and down a roller.

Some details of the warp function are depicted in Figure 26. Analogue to enfolding a
sheet of paper around some cylindric object, the two ends of a rectangular bitmap come
together at the back of the object; the sight of the viewer is taken as the view plane as
shown in Figure 26. This implies that only half of the wrapped bitmap, i.e. half of the
items in the list, is visible from the viewer’s point. Thus, half of the original source bit-
map has to be projected upon the target bitmap. As shown in Figure 26, the variable bal-
IAngle indicates the displacement at what point, i.e., scanline, in the original source
bitmap the warping starts. Warping now means adding the mean of a bundle of scan-
lines from the source bitmap onto a single scanline of the target bitmap. The size of the
bundle is determined by an running arccosinus function. However, taking the mean of

57

several bitmap pixels causes considerable blurring, i.e., aliasing, in the warped repre-
sentation. Therefore, the warping transformation is done with bitmaps that are a factor
(e.g.,2, 4) bigger than the original bitmaps. After the transformation, the warped bitmap
is down-sampled to its original proportions. The item with the current input focus is
now at the very front of the roller and will be highlighted.

Several visual effects are implemented within the SelectionBall class: a continuous roll
movement, bouncing and woggling. It is not hard to imagine that these effects are
implemented by adding repetitively small offsets to the variable ballAngle, before the
bitmap is warped and rendered. A continuous roll movement is used when member
function TurnToltemY is called; it puts a given item in focus at the front of the roller. The
function TurnToltemX is provided when wandering along the columns of a matrix. The
duration of the roll movement when turning from one item to another can be specified
by SetTurnTime.

Figure 26. The variable ballAngle refers to the displacement at what
point the wrapping starts. At the back of the virtual roller, both ends of
the ‘running’ window are glued together.

As it takes some time to bring the visual effects to full prosperity, all member functions
try to start up a new thread and are asynchronous in nature. To some extent, the client
application can break up the current thread within a SelectionBall instance by calling
Stop. Only a single thread is allowed to be active within an instance of SelectionBall;
both code and address space are shared among multiple threads. In other words, a
member function that wants to create a thread within an object have to wait on other
threads, i.e., member functions, within that same object to complete. As this waiting is
done in the main thread, i.e., the processing time of the client application, the client
application’s ability to break into threads is limited.

9.1.1 Interface at client application level

The SelectionBall is compiled and linked into a Dynamic Link Library (DLL). Although
this library can be used in client applications by itself, an ActiveX control interface is
wrapped around it that facilitates the integration into a Visual Basic application. The
number of public properties and subroutines is quite numerous. The following public
properties are defined.

58

* properties for rendering the roller

¢ Background color

Public Property Get BackColor() As OLE_COLOR

Public Property Let BackColor (ByVal New_BackColor As OLE_COLOR)
« Incident light beam angle for illumination technigue

Public Property Get LightAngle() As Double

pPublic Property Let LightAngle(ByVal New_LightAngle As Double)
* The font type of the texts on the roller

Public Property Get FontName() As String

Public Property Let FontName(ByVal New_FontName As String)

* The intensity in which the item in focus is displayed

Public Property Get FocusLight() As Long

Public Property Let FocusLight(ByVal New_FocusLight As Long)

' The displacement angle from which wrapping starts off

Public Property Get BallAngle() As Double

Public Property Let BallAngle(ByVal New_BallAngle As Double)

‘ Parameters for deblurring the wrapping

Public Property Get AntiAliasing() As Boolean

Public Property Let AntiAliasing(ByVal New_AntiAliasing As Boolean)
Public Property Let UpSample(up As Integer)

' The size of the running window that is wrapped

Public Property Get NumItemsDisplayed() As Long

Public Property Let NumItemsDisplayed(new_NumltemsDisplayed As Long)
' The size of the bitmap (i.e. control) in pixels

Public Property Get width() As Long

Public Property Get height() As Long

* Returns what item is currently in focus
Public Property Get curltemX() As Long
Public Property Get curltemY() As Long

* Pime it takes for a roll movement
Public Property Let TurnTime(ByVal newTime As Double)
Public Property Get TurnTime() As Double

* Management for the tapered matrices (i.e. lists)

Public Property Get CurrentMatrix() As Long

Public Property Let CurrentMatrix{ByvVal New_CurMatrix As Long)
Public Property Get NumMatrices() As Long

* Number of rows and columns in the current matrix (i.e. list)
Public Property Get NumItemsY() As Long

Public Property Get NumItemsX() As Long

* Remember and recall the item in focus when matrices are switched
Public Property Let Memorize(ByVal New_Memorize As Boolean)

Public Property Get Memorize() As Boolean

+ Returns whether the control is busy with drawing
Public Property Get IsBusy() As Boolean

A client application can built up the content of the matrices by invoking the appropriate
public subs.

Public Sub AddNewMatrix()

Public Sub AddItem(ByVal x As Long, ByvVal y As Long, ByVal strl As String, _
Optional redraw As Boolean)

Public Sub RemovelItem(ByVal x As Long, ByVal y As Long, _
Optional redraw As Boolean)

Public Sub SetRef (ByVal x As Long, ByVal y As Long, ByVal aux As Long)

public Function GetRef (ByVal x As Long, ByVal y As Long) As Long

Public Sub Clear()

Manipulating the roller by turning over to the next item on the roller can be at best
invoked by the following public subs. The x coordinate defines the columns of the

59

matrix, whereas the y coordinate defines the rows of the matrix. If only a one-dimen-
sional matrix, i.e., a list, is used, only PreviousItemY () and NextItemY () need to
be called.

Public Sub NextItemX()
Public Sub PreviousItemX()
Public Sub NextItemY()
Public Sub PreviousItemY()

Additionally, a client application can invoke calls to woggle or bounce the roller. The
woggle routine requires two scale values (between -1.0 or 1.0) that specify by what neg-
ative or positive offset the wrapping should start. The boolean bWoggleAll specifies
whether the whole roller or only a portion should be moved. The bounce routine
requires a startInterval that specifies the time interval between the first two
bounces, and the total duration of the bounce. The nowait boolean specifies whether
bouncing should occur asynchronously. DrawBall simply displays the roller. Stop-
Ball stops the current thread within the SelectionBall control.

Public Sub Woggle(ByVal inx As Double, ByVal iny As Double, _
ByVal bWoggleAll As Boolean)

Public Sub Bounce(ByVal startInterval As Double, ByVal duration As Double, _
ByVal nowait As Boolean)

Public Sub DrawBall{()

Public Sub StopBall ()

9.1.2 Source code example

The following excerpt of Visual Basic source code utilized the ActiveX control of the
SelectionBall. Besides some command buttons and a textbox, it is assumed that an
instance of the control is dropped onto the VB form and can be referred to as
SelectionBallControll. The example first fills the control with three lists of 20
items each. By clicking on the command buttons, one can cycle through the lists, or go
to other items within a list. One command button displayes status information about
the control in a textbox.

Private Sub Form_Load()
Dim 1 as Long
Dim y as Long
Dim str as String

For 1 =1 To 3
For y = 0 To 19
str = "Item " & y+1
SelectionBallControll.AddItem 0, y, str, False
SelectionBallControll.SetRef 0, y, y+l
Next y
If 1 < 3 Then
SelectionBallControll.AddNewMatrix
End If
Next 1
End Sub

Private Sub Commandl_Click()
SelectionBallControll.NextItemY
End Sub

Private Sub Command2_Click()
SelectionBallControll.PreviousItemY

End Sub

Private Sub Command3_Click()
Dim newl as Long
Dim maxl as Long

newl = SelectionBallControll.CurrentMatrix + 1
maxl = SelectionBallControll.NumMatrices
If newl >= maxl Then
newl = 0
End If
SelectionBallControll.CurrentMatrix = newl
End Sub

Private Sub Command4_Click()
Dim str as String
Dim curl as Long
Dim itx as Long
Dim ity as Long
Dim ref as Long

curl = SelectionBallControll.CurrentMatrix
itx SelectionBallControll.CurltemX
ity = SelectionBallControll.CurlItemY
ref = SelectionBallControll.GetRef (itx,ity)
str = *Current list number " & curl & VbCrLf
str = str & "Item in focus " & itx & * * & ity & VbBCrLf
str = str & "Reference " & ref
TextBoxl.Text = str
End Sub

61

10 Evaluation of a muitimodal interaction style for
music programming

In this chapter, an experimental evaluation is presented of the usability properties of a
multimodal interaction style for music programming. The design and implementation
of the interaction style are reported in preceding chapters. The evaluation concentrates,
in particular, on the presence or absence of a visual display combined with a tactual and
auditory interface.

10.1 A multimodal interaction style

‘Freddie fresioader
Miles Davis

8. All blues
ies Davis

Figure 27. The visual display of the interface.

An interaction style is defined as the specific mode of communication that exists
between a user and an interactive device. The central theme of an interaction style is its
conceptual model for interaction. As already discussed in Chapter 2, the conceptual
model was refined by an iterative design-and-evaluation process before it was subjected
to the user experiment. Iteratively, two different users worked with the interaction style,
and imperfections pertaining to usability were subsequently repaired. If neither user
was able to acquire such proficiency after five minutes of free exploration that he/she
could perform a given music programming task, it was concluded that learnability was
insufficient. Users spontaneously made suggestions for improvement. No more than
five iterations, i.e., 10 users, were necessary to master the interaction style; also, no more
important shortcomings or user complaints were reported. It was concluded that no
further refinements were considered necessary.

The final interaction style evolved into a multimodal interaction style for music pro-
gramming, in which three output modalities (visual, auditory, and tactual) are com-
bined. The conceptual model consists of a metaphor or physical analogy of a slot
machine equipped with rollers. As shown in Figure 27, the visual display of the interac-
tion style contains four main rollers, on which the music programme, the music styles,
the music collection, and the music recommendations are projected. In the style, user
control of the interaction proceeds entirely by manipulating the IPO force feedback

62

trackball (Engel, Haakma, and van Itegem, 1990). The force feedback trackball was used
to minimize the number of control elements without sacrificing issues of effectivity and
efficiency. Essentially, the trackball can be moved in two dimensions, i.e., in lateral and
back/forward directions. In addition, the trackball can be pressed. By backward and
forward trackball movements, rollers can be set in motion to bring another item at the
front. A small hand movement brings the next item to the front of the roller. A some-
what faster hand-stroke covering a somewhat longer distance skips the next two items.
By lateral trackball movements, one can hop from one roller to another roller. The tac-
tual force feedback mediated by the trackball conveys the feeling of setting rollers into
motion or jumping from one roller to the other; for instance, the discrete steps of a roller
movement feel like bulges and notches while carrying out the movement. By using the
roll movements, a user can choose a particular music style on the music styles roller and
search further for pieces of music within that style on the music collection and recom-
mendation rollers. A single press on the trackball, i.e. single click, evokes information
about the current music style to be uttered. Double-pressing the trackball, i.e., double-
clicking, means adding or removing a piece of music to or from the music programme.

Rotating the roller step-wise also produces audible clicks. Larger roller movements pro-
duce a rattling sound. Synthetic speech feedback informs the user about states of the
interaction; the user is informed about which roller is currently in focus, how many
pieces of music are added to the music programme, what music style is selected, etc.

10.2 Learning to operate an interactive device

When users use an interactive device for the first time to attain a certain goal, they first
have to master, at least, the goal-relevant parts of the device’s interaction style. An inter-
action style is essentially a technological product that confronts users; it defines the spe-
cific mode of communication between user and device. In order to comprehend the
interaction style, user may develop an internal representation, i.e., mental model, of the
interactive device. As different mental models can give rise to different user behaviour,
it may be important that users assimilate the default conceptual model of the interaction
style as their mental model. In the absence of visual display of information, it is
assumed that first-time user have to resort to explorative behaviour using other nonvis-
ual sensory modalities to construct a mental model. In that case, providing the default
conceptual model to users may be helpful to attain goals efficiently. In general, it is often
observed that novices are unfamiliar or do not recognize, at least, parts of the interac-
tion style, as being relevant for attaining their goal. Especially in domains in which
users should perceive at a glance the goal-relevant parts of the interaction style such as
public electronic interactive services and consumer electronics, learnability is a funda-
mental usability issue. Learning to operate an interactive device is essentially the acqui-
sition of a skill, i.e., the coordinated behaviour between perception, cognition, and
motor action. It is commonly agreed that skill acquisition progresses through stages or
involves several stages simultaneously before users become skilled performers or
experts of an interactive device.

63

10.2.1 Mental model

It is generally believed that users assimilate some form of internal representation, i.e.,
mental model, of an interactive device which explains for them the device and helps
them to reason about procedures for controlling the device (Carroll and Olson, 1988;
Young, 1981; Halasz and Moran, 1983; Staggers and Norcio, 1993). Such a mental model
encompasses a individual conception of the interactive device, and how one should
deal with it. It is thought of containing essentially personal declarative and procedural
knowledge of a particular domain (Gentner and Stevens, 1983).

Because there is confusion about the terms in this area of research, we adopt the defini-
tions for which the names were re-arranged by Staggers and Norcio (1993), but the con-
tent was initially proposed by Norman (1983). However, it is noteworthy that some
definitions are still overlapping which does not resolve the problem of discerning the
terms.

The target system refers to the interactive device that comprises a desired function-
ality for the user. The user is expected to learn how to operate and control that in-
teractive device. At our study, the target system is denoted by ‘the multimodal
interaction style for music programming’.

The conceptual model refers to a representation of the target system that is devised
by the designer or experimenter. The conceptual model should be accurate, com-
plete, and consistent in helping the user to learn how to operate the target system.
Metaphorical instruction is a form of conveying a conceptual model. In this study,
the conceptual model is denoted by ‘the roller metaphor’.

The system image refers to all devices and materials that make up the target system.
In this study, the system image consists of the graphical, the sound, and interaction
design, the physical devices, the content of the music collection, and the experi-
mental instructions and setting.

The mental model refers to the internal representation of the target system that users
create when they interact with the device. The mental model helps them to compre-
hend the system. It also contains the cognitive processes while a user completes a
task with the target system. In this study, it is really an open question what users
make up of the target system.

The cognitive model refers to a framework for conceptualizing user behaviour and
knowledge acquisition. This framework includes the user’s cognitive processes for
memory, learning, attention, reasoning, etc. An experimenter attempts to construct
a cognitive model by observing user behaviour. In this study, as part of a cognitive
model, postulations are made how users think and act, when they interact visually
or when they interact nonvisually with the same interactive device.

The user model refers to the representation of the user as it is programmed within
the target system. It consists of elementary perceptual and cognitive abilities of us-
ers, or it takes account of preferences or custom settings of users. As such, the user
model is, for obvious reasons, biased by the user impressions and user expectan-
cies of the designer of the target system. A user model aims at improving the inter-
action between the user and the target system, and is used, for instance, in adaptive
system and natural dialogue systems. In this study, the music recommendation

functionality contains, indeed implicitly, a user model, because it has made some
assumptions how users select music.

The existence of a mental model is often inferred from problem-solving behaviour
between novices and experts in domains of physics such as motion in space, motion of
liquids, and mechanics (Gentner and Stevens, 1983). Mental model research in user-sys-
tem interaction however mainly focuses on performance differences between users who
are given, or are not given, a conceptual model of some interactive device. In this
respect, giving a conceptual model to users can be interpreted as a form of providing
foreknowledge to users; knowledge which refers to specific knowledge elements con-
cerning a specific application (Freudenthal, 1998). For the sake of convenience, it is
implicitly assumed that the provision of a conceptual model induces an appropriate
mental model at the user. Assuming the existence of a mental model provides then
explanations for different observed user performances. In this study, it is investigated
what mental model develops without the provision of a conceptual model.

In general, it appears that a conceptual model improves user performances in task com-
pletions. Starting with a conceptual model does not only help users in executing proce-
dures for completing tasks, but also helps them recover from errors, or learn novel tasks
(Kieras and Bovair, 1984). Metaphorical instruction about a command-driven device
appears to provide improved retention of the command language and to promote learn-
ing of distinctive procedures of command use (Payne, 1988). Metaphorical and proce-
dural instructions on an interactive device allow both the young and elderly to perform
better. No performance differences between the young and elderly exist, when they are
both devoid of such foreknowledge. Hence, it is suggested that lack of foreknowledge is
a major cause for the elderly performing worse than the young in controlling interactive
devices (Freudenthal, 1998). An internal representation developed at one system
appears to partly determine how efficient a user performs at another system (Payne,
Squibb, and Howes, 1990). However, as the mental model of a user is not directly
observable, the precise status of mental models with respect to their construction, mod-
ification, and content is still unclear. In this study, two methods were employed to infer
aspects of a mental model. The first method was to have participants produce a post-
task drawing of the interaction style for revealing relevant interaction aspects. The sec-
ond method was to have participants choose a structure diagram representing the
declarative organization underlying the interaction style.

10.2.2 Mental model in the absence of visual information

The visual conceptual model of the interaction style consists of a roller metaphor. Visual
exposure to and working with this conceptual model can be interpreted as a form of
foreknowledge for working with the same interaction style without visual display of
information afterwards. In the case when this form of foreknowledge is not provided,
users who interact nonvisually have to develop their private conceptual model, i.e.,
mental model, of the interaction style. Nonvisual sensory feedback, i.e., tactual and
auditory feedback, has to compensate for the lack of visual feedback to develop an
internal representation.

The first developments of a theory how users interact without visual information are
much inspired by work on navigation and locomotion without sight (Klatzky, Loomis,

65

and Golledge, 1997). The authors have a long-standing interest in the navigation abili-
ties for the blind, especially in developing a prototype navigation aid for blind people.

Just as is emphasized in the case of locomotion without vision (Klatzky, Loomis, and
Golledge, 1997), it is assumed here that non-visual interaction with a device is limited
by the lack of a mental representation. Nonvisual interaction grows out of knowledge
about the physical environment. Without a visual display of information, knowledge of
the spatial layout of the objects of interest is considered minimal information to act or
navigate purposefully. In this study, the objects of interest are the music programming
concepts represented by rollers in the interaction style. While the spatial layout comes
almost for free when displayed visually, the construction and modification of an inter-
nal representation when there is no visually displayed information is considered contin-
gent on the actual course of interaction. Without visual cues a user must rather rely on a
sort of dead reckoning process, in which each new state of the interaction is determined
by knowing the starting state and the consequences of the action. As the consequences
of the action and the current state of interaction cannot be visually observed, other sen-
sory modalities fed by auditory and haptic display need to compensate for that in a
stepwise fashion. In contrast with the dead reckoning style of nonvisual interaction, a
global visual perspective on the domain of interest facilitates planning ahead of actions.
Visually represented objects can act as landmarks allowing the user to globally deline-
ate the task along these landmarks. As the objects of interest can be literally pointed at
as landmarks, actions can be determined beforehand.

The lack of visual display of information produces more uncertainty in the conse-
quences of an action, and, consequently, in the current state of the interaction. In this
respect, uncertainty means the difficulty of anticipating what a consequence of an action
will be. Coping with these uncertainties will increase explorative behaviour with more
cognitive effort to align uncertain outcomes with intended purposes. Tactual feedback
is only present by performing an action, and is by definition absent when no actions
take place.

Users, especially those who interact with a device without visual display of informa-
tion, have to develop spatial knowledge, i.e., a cognitive map, of the environment in
which they interact (see, e.g., (Evans and Pezdek, 1980; Thorndyke and Hayes-Roth,
1982; Presson, 1987; Sholl, 1996) for research on the development and representation of
cognitive maps). Explorative behaviour enables the awareness of the objects of interest
and their spatial structure, and the acquisition of knowledge about the actions that
manipulates these objects and routes them across these objects.

Summarizing, the critical factor between visual and nonvisual, i.e., tactual and auditory,
interaction is human memory. Within the context of our interaction style, the conse-
quences of tactual and auditory feedback are momentarily and behave transiently,
whereas the consequences of visual feedback are continuous and persist. Hence, it is
expected that nonvisual interaction is less efficient than visual interaction, while hold-
ing the level of auditory and tactual feedback constant. Nonvisual interaction is
expected to consume extra time between actions, which might be ascribed to additional
cognitive processing for developing a cognitive map of the interaction style. Also, non-
visual interaction is expected to require a larger number of actions to complete a given
task, which might be ascribed to explorative behaviour for developing the cognitive
map, for explicitly inspecting the state of the interaction, and for monitoring the

66

progress of the task. However, as nonvisual interaction forces users to explicitly reveal
and memorize the actions for navigation and manipulation, they ultimately develop a
substantial body of procedural knowledge. It is hence expected that the score on proce-
dural knowledge after nonvisual interaction is higher than after visual interaction.

Prior visual exposure to the interaction style is expected to facilitate nonvisual interac-
tion afterwards. It is therefore assumed that users adopt a default conceptual model of
an interactive device as a result of the visual exposure. This imagined representation is
then used to retrieve information and to plan actions. More specifically, if users have
formed a cognitive map that is aligned with the default conceptual model, it is expected
that they benefit from this knowledge during nonvisual interaction with the same
device; it is expected that they will perform more efficiently. As it assumed that users
internalize and apply the default conceptual model as form of foreknowledge after vis-
ual exposure, it is expected that they use this foreknowledge to explain the interaction
style to others. More specifically, it is expected that they focus their explanation on
aspects pertaining to the visual representation of the interaction style. In contrast, users
who are refrained from this foreknowledge need to follow other ways to explain the
interaction style. Probably, they will devise their private metaphors or analogies for
explanation. As nonvisual interaction requires an explicit account of actions and their
consequences, it is expected that users tend to explain the interaction style by referring
to actions and their nonvisual sensory effects.

10.2.3 Ease-of-learning and ease-of-remembering

Usually, first-time users of consumer electronics attempt to operate the device immedi-
ately without the aid of instructions. The application area of consumer electronics dif-
fers from the professional area with respect to training and instruction (Eggen,
Westerink, and Haakma, 1996). Professional users are able to attend instructional and
training courses and can count on continuing coaching and education for a specific
complex device, whereas users of consumer electronics are offered no, or are simply not
willing to take, opportunities for formal training. Additionally, reading the instructions
or manual accompanying the product is often perceived too time consuming or too
effortful. In some occasions, the instruction manual is simply lost. Hence, learnability (or
ease-of-learning) is considered a fundamental usability criterion (Nielsen, 1993); the
user should perceive at a glance the most efficient and effective ways to work with the
product. This is certainly true for the domain of consumer electronics. It is of great con-
cern how complex consumer electronic devices can be learned to operate with only a
minimal need of instruction at the outset. Learnability is measured by the time or effort
it takes to let users attain a specified level of proficiency.

Users of consumer electronic devices can be characterized as being casual in their inter-
action behaviour. They are not expected to use a given device with a great deal of sys-
tematicity, and they are not expected to become an expert in using all kind of device
features. Brief, off and on interactions addressing a particular interest are considered
stereotypical in this domain. Memorability (or ease-of-remembering) is another impor-
tant usability criterion (Nielsen, 1993), especially for the domain of consumer electron-
ics. A user must be able to return to an interactive device after a period of not using it,
without the burden of re-learning it. Memorability is to a great extent determined by
learnability, but facing an interactive system for the first time is definitely different from

67

returning to it. First-time learning often requires outside instruction or the experience of
an illuminating moment in which the conceptual model is grasped. Once one realizes
the concepts of the interaction style, the interactive device becomes rather memorable to
use, or one may even be able to find novel procedures. A straightforward method to
measure memorability is by measuring the time or effort it takes to let users, who have
not used the interaction style for some pre-defined period, attain a specified level of
proficiency.

10.2.4 Skill acquisition

Learning to operate a complex device might partly be interpreted as a rote memoriza-
tion task; action sequences are simply memorized without attention for meaning. How-
ever, this type of learning is considered inadequate to deal with complex tasks and the
acquired skill is not expected to be transferable to other domains or conditions. Hence,
rote memorization is not addressed here. As described in Section, it is assumed that
users assimilate some form of internal representation which allows them to reason
about the device.

Cognitive, motor, and perceptual skills improve by practice. Hence, the qualitative
nature of interactive control also changes while practising. Three stages of skill acquisi-
tion are proposed (Rasmussen, 1986).

In early practice, control is more qualitative; attention is devoted to selecting the
appropriate strategies for executing component tasks. Interactive control can then
be interpreted as a problem solving task for selecting the appropriate strategies.

Later on, the selection of the strategies themselves have become routine which
leaves more attention span for the coordination of the actions within each strategy.
Although the problem solving aspect has become less, all actions that are required
to complete a task still need attentive behaviour to be performed smoothly.

At a last stage, automaticity is expected to come into play in which the physical ac-
tions seem to be triggered by themselves with no cognitive load. One has done the
task so often, that one does no longer need to concentrate on the task while doing
it. It is assumed that one may even carry out other tasks at the same time.

The experiment deals only with learning at the early stages of product use. Because rou-
tine behaviour occurs at an expertise level, the last stage in skill acquisition is not con-
sidered here.

10.2.5 Declarative and procedural knowledge

Atleast two types of knowledge are relevant for learning to use an interaction style:
declarative knowledge and procedural knowledge (Anderson, 1993). Declarative knowl-
edge refers to knowledge of knowing that, in the sense that we know domain objects
and relations between them. Procedural knowledge refers to knowledge of knowing
how, in the sense that we know what actions are required to attain a specific goal.

The acquisition of one form of knowledge does not necessarily directly follow from hav-

ing the other form of knowledge at one’s disposal. In general, it is assumed that the
objective of a task is well-known to the user, irrespective of whether this objective is an

68

outside instruction or is constituted at will. Additionally, users presumably possess
knowledge of the task domain, irrespective of whether it is learned by instructions or
learned by previous experience. However, novices encountering a new interaction style
often find difficulties to transfer their declarative domain knowledge and task objec-
tives to procedural knowledge on how to achieve the desired result. They are unfamiliar
with what actions or what procedure will realizes the task objective. As an interaction
style comprises the procedures of many tasks, the task space is perceived as infinitely
large. Users have to solve the problem of finding effective means to attain a desirable
end (Newell and Simon, 1972). However, in the initial stage of learning to operate an
interactive device, it is claimed that the emphasis lies on the discovery of means, i.e.,
actions, instead of finding strategies for using these means. Likewise, Kosotsky and
Simon (1990) claimed that the discovery of effective actions makes problems ‘really
hard’, though their focus was on puzzles. In the case of interactive devices, users simply
do not know or recognize what terminals (e.g. buttons, labels, switches, and toggles) are
relevant to their current task without explicit instruction. Hence, the initial problem that
first-time users have to overcome is to find out what exactly constitutes an action, what
consequences can be expected from an action, and whether this result is effective with
respect to their task objective. If the concept of an action and result, i.e., the ‘perceived
affordance’ of an action, is problematic to perceive instantly, the discovery of purposeful
actions induces a problem space and an associated cognitive load by itself.

In this experiment, users are informed about the music programming domain in a
declarative way, while being left uninformed about the existing procedures, i.e., no pro-
cedural knowledge. The question is now to what extent users are able to perform tasks,
i.e., procedures, to what extent users are able to acquire procedural knowledge, and to
what extent users are able to acquire declarative knowledge.

10.3 Hypotheses

The following hypotheses are defined:

(i) visual interaction is more efficient than nonvisual interaction, while leaving the
level of auditory and tactual feedback in both conditions constant;

(ii) users who have no visual display, while leaving the level of auditory and tactual
feedback in both conditions constant, have a higher score on procedural knowledge
than users who have a visual display;

(iii) users who are visually exposed to and worked with a visual display and are sub-
sequently transferred to a condition without a visual display perform more efficiently
than users who start working without a visual display;

(iv) users who have a visual display make a re-production of the interaction style that
contains more visual aspects, whereas users who have no visual display make a re-
production which contains more action-and-effect related aspects.

10.4 Measures

A measure of task performance is required to test Hypotheses (i) and (iii). Task perform-
ance is described in Section 10.4.1. A measure of transfer is required to test Hypothesis
(iii) and is described in Section 10.4.2. The score of procedural knowledge is assessed by

69

a post-test questionnaire containing questions about small interactive procedures with
the interaction style. It is required for testing Hypothesis (ii) and it is described in Sec-
tion 10.4.3. A device to measure the content of a user’s internal representation of the
interaction style is described in Section 10.4.4. It is used for testing Hypothesis (iv).

10.4.1 Task performance

In order to measure task performance, two measures, number of actions and compilation
time required to perform the task, are defined. All actions on the trackball (e.g., roll
movements, presses) are logged with a time indication, and written to a file for later
analysis. Number of actions and compilation time are measured between the first action
and the last action of the compilation process.

10.4.2 Transfer

In general, transfer is a measure of increased performance of an experimental group,
who experiences a change in experimental conditions, relative to another group who
receives no change (Woodworth and Schlosberg, 1965). For our experiment, it is
assumed that all tasks in the experiment are alike in difficulty. The transfer for this
experiment is defined as the difference of task performance scores between participants
who perform tasks with a particular interaction style after they have done tasks using a
first interaction style, and participants who start performing tasks using that particular
interaction style.

10.4.3 Procedural knowledge

Procedural knowledge is measured by means of two 20-item questionnaires handed out
half-way during the experiment, and at the end of the experiment. The two question-
naires contained a relatively large overlap of questions (16) as well as four

distinct questions. Half of the questions in each questionnaire represented questions on
procedures consisting of a single action (single step interaction). The other half repre-
sented questions on procedures that could be performed by 2 or 3 actions (multiple step
interaction). The order of questions in both questionnaires was randomized. The order
in which the two questionnaires were given was counterbalanced. This questionnaire
design allows measurement of transfer, minimizes item-learning, and treats all sensible
questions about procedures that could be constructed. Participants answered the ques-
tions in verbal form. The test supervisor coded the answer, making use of a short-hand
notation, elaborated in Appendix II. Answers to items could not be withdrawn or cor-
rected when concluded.

10.4.4 Mental model

Two methods were employed to infer some aspects of a mental model. The first method
was to have participants produce a drawing to reveal what aspects of the interaction
style are relevant. To derive the declarative content of the mental model, the second
method provided participants with structure diagrams to choose from. For experimental

70

convenience, participants chose a diagram from a set of alternatives, rather than make a
diagram themselves.

10.4.4.1 Drawing

Participants were asked to imagine a situation in which they had to explain the interac-
tion style to a person, who is unfamiliar with the interaction style (teach-back method
(Van der Veer, 1994). To aid the explanation, they were instructed to produce a free
drawing of the interaction style, containing all necessary details to explain the interac-
tion style. The test supervisor did not intervene while participant drew the interaction
style. After the drawing was completed, the participants were asked to explain their
picture to the test supervisor. This explanation was primarily for the experimenter to
interpret the drawing correctly.

10.4.4.2 Structure diagram

The declarative knowledge of the interaction style contains the particular organiza-
tional structure of the music collection. By letting participants choose a structure dia-
gram, which represents different ways of how the music collection might be organized,
a simple method is devised that indicates how accurate the declarative knowledge com-
ponent of their mental model is. The graphical notation of the structure diagram was
explained to the participants (see Figure 28).

The diagrams picture three alternative hierarchical relations between the concepts ‘col-
lection’, ‘styles’, ‘tracks’, and ‘recommendations’, in that order. Each relation between
these concepts can, in principle, be arranged in two different ways. Thus, in total, eight
structure diagrams are composed. Only one gave an accurate representation of the
music collection. Each structure diagram was assigned to a category, denoted by inte-
gers from 0 to 3; category 0 represents the correct diagram, categories 1 to 3 reflect the
alternative diagrams that have a corresponding number of wrong relations (see Figure
28).

If we compare the correct diagram and the most incorrect diagram (assigned to category
3), we observe three differences in the relations between the concepts. First, the incorrect
diagram lacks a music style that contains all other music styles (the upper oval in the
correct diagram). Second, the incorrect diagram makes it appear that pieces of music
belong to more than one music style. Third, the incorrect diagram makes it appear that
music recommendations of a particular piece of music belong to different music styles.

The structure diagrams were also shown half-way during the experiment and at the end
of the experiment. Each hand-drawn diagram was displayed on a separate A4 format
sheet of paper. The sheets of papers were labelled and laid out on the desk top. The lay-
out on the desk top was different when they were presented to the participants for the
second time. Participants were asked to choose the structure diagram from the eight
alternatives, as shown in Figure 28, that most closely matched the underlying structure
of the music collection.

71

Figure 28. Eight structure diagrams that each might represent the or-
ganizational structure of the music collection. The scores are shown in
the left-upper corner of each diagram, score 0 is reserved for the correct

one.

10.5 Method

10.5.1 Pre-test

In a pilot experiment, it appeared that participants needed additional training with the
IPO force-feedback trackball (Engel, Haakma, and van Itegem, 1990). When using the
IPO force feedback trackball for the first time, participants were unaware what basic
actions are possible and what tactual effect these actions induce. In addition, they were
unfamiliar how these actions are expected to be performed by what hand-finger move-
ment configuration, by what force, and by what level of accuracy. Second, the percep-
tion of force feedback is an experience that has to be explicitly learnt to be felt. Third, as
participants are unfamiliar with the basic actions of the trackball, they were simply not
able to perform complex tasks with it. So, participants were given a short introduction
on pressing and double-pressing the trackball. In the form of a pre-test, participants
were acquainted with the four main directions in which the trackball could be rolled
while experiencing force feedback. This type of roll movements was also present in the
interaction style. The tactual objects, i.e., force fields, were parameterized in the same
way as in the interaction style.

72

18

27¢

Figure 29. The four movement displacements measured in degrees cor-
respond to a right hand. The index and middle finger are considered
most comfortable for controlling the ball.

10.5.1.1 Procedure

The pre-test consisted of four movement displacement conditions: the trackball had to
be rotated 1/16th part of its circumference (approx. 1.5 cm at the surface) in four direc-
tions: forward at 0°, to the left at 90°, backward at 180°, and to the right at 270° . The
movement displacements for a right-handed participant are shown in Figure 29. Using
a two-alternative forced choice method (2AFC), a reference force or no force was pre-
sented in a random order while the participant was asked to rotate the ball in a pre-
defined direction. For all four directions, the reference force was held fixed as deter-
mined by a constant level of motor currents (i.e., set points). The fixed set point value of
400 equalled an actual force value of 86 grams (Keyson, 1996). The four movement dis-
placement were also randomized over 60 trials. No practice trials were conducted.

The participants were seated in a non-reverberant room in a comfortable chair, in front
of a monitor. The IPO trackball was placed at a small table next to the chair, in such a
way that the hand of the participant managed to control the trackball in a comfortable
way. The participants were instructed to place both the index and the middle finger in
parallel near the ball’s top, but just above its surface, at the outset of each movement. In
previous experiences, it was found that a configuration in which both the index and
middle finger are positioned on the trackball, as shown in Figure 29, provides a high
level of control.

Each trial consisted of two subsequent actions, one of which was accompanied by force
feedback. A 80 ms 900 Hz tone was sounded to indicate the start of the movement in
which either no force or the reference force was applied randomly. The participants
were instructed to rotate the ball in a smooth movement. When correct, a 80 ms 1300 Hz
tone was sounded. If they rotated the ball in an inappropriate direction, three 70 ms 300
Hz tones spaced 70 ms apart marked the erroneous movement; participants were then
allowed to repeat the movement. The participants were instructed to release the ball
after hearing the tones to prepare themselves for the next movement, by re-positioning

73

their index and middle finger. The second action proceeded identically, but was pre-
ceded and completed by two tones, rather than one. Participants then indicated in
which movement they had experienced a tactual force that was described as ‘feeling a
small rib’. After that, the words ‘Right’ or ‘Wrong’ appeared on the screen as feedback.

10.5.1.2 Results

The mean percentage correct responses per movement direction are shown in Figure 30.
As might be expected, the data show ceiling effects; the correct percentages closely
approach 100%. A logit transform of the proportion correct, while compensating for
ceiling effects by Bayes’ correction, is used in the analysis. More specifically,

C+1

. N+2
logit(p) = log m

N+2

where p is the proportion correct, C denotes the number of correct responses, and N
denotes the total number of responses.

100} -

% correct

50}

10}

0 90 180 270
movement direction (degrees)

Figure 30. Mean percentage correct responses of 2AFC experiment for
discriminating tactual force feedback in trackball movements.

An ANOVA analysis with repeated measured in which movement direction was treated
as a within-subject independent variable and the transformed proportion correct as
dependent variable revealed a significant movement direction effect (F(3,69) = 7.674, p <
0.001). Examination of the results, as shown in Figure 30, reveals that participants were
better in perceiving tactual cues when moving the index and middle finger forward or
backward on the ball (at 0° and 180°) than moving laterally (at 90° and 270°). In gen-
eral, participants could accurately perceive tactual cues in all directions as demon-

strated by the high number of correct responses; the size of movement direction effect is
only small.

74

10.5.2 Music programming experiment

10.5.2.1 Instruction

In order to provide declarative knowledge, participants were informed about the con-
cepts in the domain. In the music selection and programming domain, participants have
to comprehend domain objects such as the music collection, the music styles, the pieces
of music, and the music programme, the interrelationships between these objects, and
the conceptual actions that can be invoked on the domain to alter object states or rela-
tions between objects.

Participants read a short text about the music programming domain. They were left
uninformed how to manipulate the controls or how to navigate through the music collec-
tion, i.e., the procedural knowledge. A teach-back method (to the test supervisor) was
used to guarantee that the concepts were comprehended as intended; participants were
asked to rephrase the given short text in own words; any misconception of the music
programming domain was corrected by the test supervisor. The precise instruction text
is presented in Appendix L. In addition, participants received a text explaining the musi-
cal characteristics of the jazz styles in the music collection. Each explanation of a jazz
style referred to a small number of typical jazz musicians who had made contributions
to the development of the jazz style.

At the outset of each music programming task, participants received a written task
description. Participants were instructed to compile a music programme as quickly as
possible while paying no attention to their personal preferences or the order of pieces in
the resulting programme. The task was ended when the 10 firstly compiled pieces of
music were all distinct and were equally drawn from two pre-defined jazz music styles.
The precise task instruction text is presented in Appendix L.

10.5.2.2 Design

Four condition were applied that are shown in Table 1. In one control condition,
denoted by VAT (Visual, Auditory, Tactual feedback), participants completed four tasks
by using the complete multimodal interaction style, denoted by O. The four consecutive
tasks are denoted by task number. In the other control condition, denoted by AT (Audi-
tory, Tactual feedback), participants only worked with the interaction style without vis-
ual display, denoted by X, for all four tasks. At interaction style X, the display monitor
was physically removed. In the other two experimental conditions, participants worked
with both interaction styles, one after the other. The condition, denoted by VAT->AT,
there was no visual display for the last two tasks. In the last condition, denoted by AT-
>VAT, this was reversed.

10.5.2.3 Test material and equipment

A music collection comprising 480 first-minute excerpts of jazz music pieces (MPEG-1
Layer II 128 Kbps stereo) from 160 albums served as test material. The collection was
assembled by considering 12 jazz styles. These styles cover a considerable part of the
whole jazz period. Each style contained 40 pieces of music. The main test equipment

75

Table 1. Design of the experiment. VAT and AT refer to control conditions in which participants
worked respectively with and without a visual display. VAT->AT and AT->VAT refer to
experimental conditions in which participants both worked with and without a visual display,
one after the other. O and X respectively refer to the interaction styles with a visual display and
without a visual display.

task number
condition 1 2 3 4
VAT o o o o
AT X X X X
VAT->AT O o X X
AT->VAT X X o o

consisted of a Dell GXPRO-180, running under Window 95, on which the interaction
style was implemented. All music encoded as MPEG data was stored on the hard disc.
Real-time MPEG decoding was done by software. Digital audio was converted to ana-
log by a Soundblaster 16 audiocard. A second PC, a Dell 466/Le, was used for control-
ling the IPO trackball. Two 1/O cards, a digital-to-analog (DAC) and an analog-to-
digital converter (ADC) enabled communication between the PC and trackball. Both
computers communicated by the standard parallel communication ports (RS-232). The
audio was amplified by an audio amplifier (Philips DFA888) through a pair of high-
quality loudspeakers (Philips 9818 multi-linear 4-way).

Participants were seated in front of a 17-inch monitor (Philips Brilliance 17A), if present,
in a non-reverberant studio, originally designed for speech recordings. They were
seated in a comfortable chair. They could adjust the audio volume to a preferred level.
The IPO trackball was placed on a small table next to the chair, in such a way that the
hand of the participant managed to control the trackball in a comfortable way.

10.5.2.4 Procedure

Participants performed two experimental sessions on two separate days. They were
randomly assigned to one of the four conditions. Of the 24 participants, 17 returned on
two consecutive days, five participants had one day in between both sessions, one par-
ticipant had a weekend in between the sessions, and one participant returned 6 days
later for the second session. The first session started with an intake questionnaire for
obtaining mainly personal data and previous experiences with input devices. Subse-
quently, participants were accustomed to the required motor skills to control the IPO
trackball with force feedback in a familiarization phase, i.e., the pre-test. This phase took
approximately 15 minutes.

After this phase, participants were informed about the music programming domain by
reading the instruction. Participants ‘taught back’ the content of the text to the test
supervisor by explaining the text in their own words; any misconception was repaired
immediately. Next, participants could freely explore the interaction style (with or with-

76

out a visual display) for three minutes. The second session started immediately with a
3-minute exploration phase.

At the outset of each individual task, participants received a written task description.
Again, participants were asked to rephrase the task instruction to avoid any misconcep-
tions of the task.

The participants completed two music programming tasks during each session. Subse-
quently, participants were brought from the place of operating the interaction style to a
desk from which it was impossible to view the test equipment. First, they were given
the opportunity to make remarks on or to criticize the interaction style. Second, the pro-
cedural knowledge questionnaire was completed in a dialogue with the test supervisor.
Third, they were asked to draw and explain afterwards a sketch of the interaction style,
that would help in explaining the interaction style to a person who is unfamiliar with
the interaction style. Finally, participants were asked to choose the structure diagram
that most closely matched the inner organization of the music collection.

10.5.2.5 Tasks

Four music programming tasks were defined and counterbalanced. The tasks were
designed to be equally difficult; a successful and most efficient task completion
demanded 23 actions. The precise instruction of the tasks are presented in Appendix L.

The number of 23 actions can be clarified by considering the interaction style in more
detail (see Figure 27). The most efficient task execution accesses only the two rollers in
the middle: the music styles and the music collection roller. Each task starts at the music
styles roller. In addition, the music has to be selected that appears as first on the roller;
so, no searching for preferred music is allowed for efficiency reasons. The two music
styles, though all music styles differ in the four tasks, and the initial state of the music
styles roller were chosen in such a way that they were all ideally a single action apart
from each other. The first half of the most efficient task action sequence, now, consists of
one action to select a music style, an action to go to the music collection roller, five
actions to add music to the programme, alternated by four actions to go to the next
piece of music, and an action to go back to the music styles roller. This concludes the
first half of music programming task which took 12 actions. The second half comprises
11 actions starts again with an action to select a music style, an action to go to the music
collection roller, and 9 actions to compile music. Summing the two halves amounts to 23
actions.

10.5.2.6 Participants

Half of the 24 participants (18 male, 6 female) were recruited by advertisements and all
got a fixed fee. The other half consisted of colleague researchers working at the IPO.
Eight persons had already participated in former experiments on music programming.
The average age of the participants was 28 years (min: 21, max: 45). Participants were
not selected based on their musical preferences or musical education. All participants
had at least a higher level of vocational education. Two persons (not included in the
total number of 24 participants) experienced difficulties at the first compilation task.
One person did not acquire the required proficiency to control the interaction style after

71

the 3-minute exploration phase. Another person had interpreted the exploration phase
as a music listening phase and ‘forgot’ to discover facts about the interaction style; the
test supervisor had to instruct the participant on procedures during the first compila-
tion task. Data of both participants were excluded from the analyses; only data of the
remaining 22 participants were analysed.

H»
4

- = NN
n o
T T

(=]
'

(4.]
!

no. participants

RC mouse keyboard joystick trackball mike touchpad pen touchscreen

input devices

Figure 31. The number of participants that responded to be familiar
with a particular input device.

Participants were asked on the basis of a list with which input devices they had worked
before. All participants were familiar with using a remote control (e.g., for television
sets), mouse, or keyboard as shown in Figure 31. Eight participants had some experi-
ence in using a trackball; two of them had worked with the IPO force feedback trackball
before.

Five participants responded they possessed a collection exceeding 100 CDs; the other 19
participants had a music collection containing less than 100 CDs.

With respect to the frequency of CD programming facilities use on current CD players,
it appears that this functionality was rarely used. Twenty participants responded that
they never! or seldom used the programming functionality. If used, it was mainly for
making recordings on other media or for skipping non-favourite tracks. In general, par-
ticipants thought it took too much effort and was too time-consuming to program or to
learn to program a CD; they tend to play back a whole CD from its beginning until its
end, or just select one particular track at a time.

Of the 24 participants, two responded that they always played music in a random order.
The other group consists of 17 participants who never or seldom use the functionality,
and five participants who sometimes or frequently use the functionality. If used, it was
mainly for the surprise and variation effects. In general, participants responded they
rather liked listening to the music in the original order. Five participants simply did not
feel the urge to use it or never thought about it.

1. The questions on frequency of CD functionality use were posed by using the ordinally ordered
responses: never, seldom, sometimes, frequent, often, and always.

78

10.6 Results

This section describes the analysis results of the experiment. The first analysis concerns
the investigation of global features, trends, and extreme cases in the raw data: compila-
tion time and number of actions. Descriptive analysis for investigating trends and
extreme cases is elaborated in Appendix III.

One participant’s behaviour was suspected to consist of music exploration based on the
fact that he spend more than three times as much time and actions than the average on
three compilation tasks. In addition, the participant freely admitted that he had
searched for preferred music for the first three tasks. As the task objective was to per-
form the task as quickly as possible without taking care of personal music preference,
the data from this participant are excluded from the analyses concerning the compila-
tion time and selection effort. For the other analyses, the data of this participant were
considered still valid and were left unchanged.

Despite the short introduction on pressing the trackball, double-clicking the ball was
considered problematic for six participants. This problem is a shortcoming of the imple-
mentation; the trackball should not be moved while double-clicking it. If, during a dou-
ble-click, the trackball is only slightly rotated, two single clicks are registered. The
logging data was adjusted by replacing each sequence of multiple single clicks by a sin-
gle execution of a single click. Also, the time associated with these sequences was
removed from the data. This adjustment resulted in fewer actions and lower compila-
tion time, but had no consequences on the results of the analysis.

In the following two Sections 10.6.1 and 10.6.2, the data of compilation time and
number of actions over the different experimental conditions are analysed. Subse-
quently, the completed questionnaires assessing procedural knowledge are analysed in
Section 10.6.3. The drawings made by participants are analysed in Section 10.6.4. The
choices for structure diagram are analysed in the concluding Section 10.6.5. The sponta-
neous remarks of the participants are reported in Section 10.6.6.

10.6.1 Compilation time

Compilation time is defined as the time elapsed between the instants of the first action
and the last action that completed the task. The cell means and the marginal means for
the compilation time are shown in Table 2. A graphical representation of the mean com-
pilation time of the tasks in both the experimental and the control conditions is shown
in Figure 32.

An ANOVA with repeated measures was used with task number as within-subject inde-
pendent variable and the four conditions (two experimental and two control conditions)
as a between-subject independent variable, and compilation time as dependent varia-
ble. A significant task number main effect (F(3,57) = 3.642, p < .05) was found. Also, a sig-
nificant task by condition interaction effect (F(9,57) = 3.257, p < .005) was found. With
respect to the task main effect, the linear trend in the data was significant (F(1,19) =
5.965, p < .05) in a post-hoc polynomial contrast analysis. Inspecting the task marginal
means in Table 2, it can be concluded that the compilation time has decreases with task
number. Thus, participants needed less time to compile each successive music pro-

79

gramme. With respect to the task by condition interaction effect, a post-hoc contrast anal-
ysis revealed that the first task in the AT->VAT condition had a significantly higher
compilation time than the first tasks in other conditions (F(3,19) = 4.168, p < .05).

Table 2. Mean time to compile a music programme containing 10 pieces of music (seconds).
Marginal means are shown in the right column and bottom row.

task
number
condition 1 2 3 4
VAT 86.8 73.8 88.8 73.0 80.6
AT 184.5 168.5 115.5 145.3 153.4
VAT->AT 102.8 113.6 1394 110.4 116.5
AT->VAT 202.6 139.3 96.1 79.9 129.5
144.6 124.0 1133 100.7 120.6

To investigate the possible transfer effect caused by the visual display, the performance
of participants who worked without a visual display after they had done two tasks with
a visual display, i.e., the last two tasks in the VAT->AT condition, is compared with the
performance of participants who worked without a visual display in the first two tasks
in the AT->VAT condition. Only data from the experimental conditions was used in
order to keep the number of participants equal in both groups.

a. control b. experimental
5 5
s Tl
2 2 AT->VAT
g 3l- g a3t LN\ T
g g
g2 g2
8]
g 1 g 1} VAT-3AT - - -
1 2 3 4 1 2 3 4
task task

Figure 32. Mean compilation time (minutes). The left-hand panel (a)

shows the mean compilation time for all four tasks of the two control

conditions (AT and VAT). The right-hand panel (b) shows the mean

compilation time for all four tasks of the two experimental conditions.
The cross-bars represent standard error of the mean.

80

An ANOVA with repeated measures in which transfer was treated as a between-subject
variable, and the two tasks as a within-subject variable was carried out. Compilation
time was the dependent variable. A significant task number main effect (F(1,13) = 13.179,
p < 0.003) was found. Participants needed less time to compile a programme for each
successive task. Although two preceding tasks with a visual display decreased the
mean compilation time by 46 seconds for participants who subsequently worked with-
out a visual display, the transfer effect (F(1,13) = 3.251, p = 0.095) was not significant.

The ANOVA for investigating a possible transfer effect the other way around did not
produce significant effects.

10.6.2 Number of actions

The cell means and the marginal means for the number of actions are shown in Table 3.
A graphical representation of the mean number of actions for the tasks for both the con-
trol and experimental condition is shown in Figure 33.

An ANOVA with repeated measures was used with task number as within-subject inde-
pendent variable and the four conditions (two experimental and two control conditions)
as a between-subject independent variable, and number of actions as dependent variable.
Only a significant task number main effect (F(3,57) = 3.793, p < .05) was found. In partic-
ular, a linear trend in the data was significant (F(1,19) = 7.924, p < 0.05) in a post-hoc pol-
ynomial contrast analysis. In general, participants performed fewer number of actions
at each successive task, which can be at best seen in the marginal means for task number
in Table 3.

Table 3. Mean number of actions to compile a music programme containing 10 pieces of music.
The marginal means are shown in the right column and bottom row.
6

task
number
condition 1 2 3 4

VAT 533 38.8 50.3 335 439
AT 55.7 49.8 44.6 40.0 47.5
VAT->AT 49.1 50.9 443 37.6 45.5
AT->VAT 63.4 49.7 4.7 349 47.7
55.7 49.8 446 400 475

To investigate the possible transfer effect caused by the visual display, the performance
of participants who worked without a visual display after they had done two tasks with
a visual display, i.e., the last two tasks in the VAT->AT condition, is compared with the
performance of participants who worked without a visual display in the first two tasks

81

in the AT->VAT condition. Only data from the experimental conditions was used in
order to keep the number of participants equal in both groups.

a. control b. experimental
100 100

g 75 g 754 - A T->VAT
g g

8’ 50 8 S0l P
g 3 VAT->AT

€ 25 € o5

1 2 3 4 1 2 3 4
task task

Figure 33. Mean number of actions executed. The left-hand panel (a)
shows the mean number of actions for the four tasks in the control con-
ditions. The right-hand panel (b) shows the mean number of actions for

the four tasks in the experimental conditions. The minimal number of
actions to complete the task is 23 (horizontal line). The cross-bars repre-
sent the standard error of the mean.

An ANOVA with repeated measures in which transfer was treated as a between-subject
variable, and the two tasks as a within-subject variable was carried out. The number of
actions was the dependent variable. A significant main effect of task number (F(1,13) =
6.554, p < 0.05) was found. Fewer actions were performed for each successive task car-
ried out without a visual display. A significant transfer effect was found (F(1,13) = 7.602,
p < 0.05). The performance of two preceding tasks with a visual display seems to signif-
icantly decrease the mean number of actions in two successive tasks without a visual
display by 16 actions.

However, an improvement in performance between participants who carried out a third
and fourth task and participants who carried out a first and second task can also be
caused by mere practice. To investigate whether both a change in conditions and prac-
tice caused the performance improvement, the performance of participants at the last
two tasks in the VAT->AT condition was compared with the performance of partici-
pants at the last two tasks in the AT condition. An ANOVA analysis reveal no signifi-
cant main effect. The ANOVA analysis only revealed a significant task number by
condition interaction effect (F(1, 10) = 8.349, p < 0.05); relatively more actions were
needed in the fourth task in the AT condition.

The ANOVA for investigating a possible transfer effect the other way around did not
produce significant effects.

10.6.3 Procedural knowledge

The level of procedural knowledge was assessed by a questionnaire that contained
items asking what action sequence was required to fulfil a given sub-task. The items

82

were categorized into two equally sized groups: 10 questions concerning single step
interactions and 10 questions concerning multiple step interactions. The number of cor-
rect answers in the questionnaire determines the questionnaire score. Answers were
judged correct, if the responded action sequence actually fulfilled the sub-task (i.e.,
effective) and the action sequence was considered of minimal length (i.e., efficient).
Answers were judged incorrect otherwise. All correct answers were summed to arrive
at a questionnaire score. The questionnaires were completed at the end of the first and
second experimental session. The mean questionnaire scores for the different conditions
are shown in Table 4. A plot is given in Figure 34.

An ANOVA with repeated measures was used with session (2) and kind of question (2) as
the within-subject independent variables, and condition (4) as the between-subject inde-
pendent variable. The condition variable represents the two experimental and two con-
trol conditions. Questionnaire score was the dependent variable.

A significant main effect of session (F(1,40) = 7.809, p < 0.05) was found. Participants
were better in completing the questionnaire for the second time. Also, a significant main
effect of kind of question (F(1,20) = 11.94, p < 0.005) was found. Participants were better in
answering the questions concerning the multiple step interactions than the question
concerning the single step interactions.

The two-way condition by kind of question interaction effect (F (3,20) = 2.974, p = 0.056)
was just not significant.

The three-way session by condition by kind of question interaction effect was significant
(F(3,20) = 4.803, p < 0.05). As shown in Figure 34, participants who had worked without
a visual display, i.e., the AT and AT->VAT conditions, were better in answering the mul-
tiple step interaction questions in the first questionnaire than the participants who had
worked with a visual display, i.e., the VAT and VAT->AT conditions. In the second ques-
tionnaire, participants in the AT condition slightly improved in answering questions
about multiple step interactions. Participants in the AT->VAT condition did not
improve. On the other hand, participants in the VAT->AT condition improved gave
more correct answers on multiple step questions the second time.

Table 4. Mean questionnaire score (single step interaction +
multiple step interaction). The marginal means are shown in the right column and bottom row.
The maximum score is 20.
O

questionnaire score
condition 1 2
VAT 11.8 (6.0+5.8) 14.0(7.2 + 6.8) 12.8 (6.6 + 6.2)
AT 14.0 (6.0 + 8.0) 15.3 (6.5 + 8.8) 14.7 (6.3 + 8.4)
VAT->AT 13.3 (6.5 + 6.8) 145 (6.4 + 8.1) 13.8 (6.4 + 7.4)
AT->VAT 14.1 (6.1 + 8.0) 16.0(8.1+7.9) 15.06(7.1 + 7.9)
134 (6.2 +7.2) 15.0(7.1 +7.9) 14.3 (6.7 + 7.6)

B e e .

83

a. 1st questionnaire b. 2nd questionnaire

g 10 g 10
] 8
(4 ®
.‘é 7’5 "é 7.5 ,,,,,,,,,
s §
2 s} 2 st
3 g
o -4
825 § 25}
@
£ €
VAT AT VAT->ATAT->VAT VAT AT VAT->ATAT->VAT

Figure 34. Mean questionnaire score. The left-hand panel (a) shows the mean
questionnaire score for the control and experimental conditions at the end of the
first experimental session. The right-hand panel (b) shows the mean questionnaire
score at the end of the second experimental session. The white bars represent the
mean question scores for the single step interactions. The grey bars represent the

scores on the questions concerning the multiple step interactions. The vertical

lines go through points a single standard error (SE mean) above and below the
corresponding mean.

10.6.4 Drawings

At the end of each experimental session, participants were instructed to produce a
drawing to explain the interaction style.

Four drawings and explanations are shown in Figure 35. Some participants who had
worked without a visual display were rather creative in developing their own metaphor
(see Drawing A and B in Figure 35). In general, drawings between participants who had
worked with a visual display and participants who had worked without a visual dis-
play were qualitatively different. The drawings were analysed by judging whether typi-
cal aspects of the interaction style were present. This judgement was carried out after
the experiment was concluded. The following aspects were counted:

1 Action-related aspects (e.g., rolling, pressing, and double-pressing the trackball);

2 Domain object-related aspects (e.g., ‘collection’, ‘programme’);

3 Force feedback-related aspects (e.g., drawing a hole or ripple);

4 Relationships between domain objects (e.g., by drawing a structure diagram);

5 Aspects related to physical devices (e.g., a trackball device, or a monitor);

6 Non-speech sound related aspects (e.g., ‘hearing the sound of a creaking door’);

7 Visual aspects pertaining on the roller metaphor (e.g., rollers or a graphical menu
structure).

Parts of the results are shown in Figure 36; only aspects that were prominently present
in the drawing (with a proportion higher than 0.5) are shown. The reason that force-
feedback aspects are shown in Figure 36, despite its rare occurrence, is due to the fact
that only some participants who had worked without a visual display drew force feed-

84

back-related aspects. Drawing force fields is not obvious. It appeared that drawing
physical devices and relationships between domain objects rarely occurred. Both physi-
cal devices and the organizational structure of the music programming domain were
considered irrelevant to explain the interaction style. Only one participant wrote a sen-
tence about non-speech audio once. Again, drawing aspects related to non-speech
audio is difficult.

As shown in Figure 36, participants in both control conditions produced two consistent
drawings. This is however not true for the experimental conditions, in which partici-
pants received a change in conditions.

As shown in panel (a) of Figure 36, participants in the experimental conditions were
rather inconsistent in drawing action-related aspects. After having worked without a
visual display, more action-related aspects were drawn in the first drawing (6 out of 8)
than in their second drawing (4 out of 8). In contrast, participants who had first worked
with a visual display drew fewer action-related aspects in the first drawing (1 out of 8)
than in the second drawing (3 out of 8). However, a test on independent proportions
(McNemar, 1962; p. 52) showed that participants did not produce a change in drawing
action-related aspects when experiencing a change in visual display conditions (z =
0.633). In the first drawing, participant who had worked without a visual display drew
more action-related aspects (9 out of 12) than participants who had worked with a vis-
ual display (4 out of 12). A Fisher exact probability test (Siegel, 1956; p.96) just rejected
equal proportions for both groups (p = 0.0498). Thus overall stated, participants who
had worked without a visual display drew more action-related aspects.

As shown in panel (b) in Figure 36, participants in the experimental conditions tended
to draw fewer domain objects in the second drawing than in the first drawing (8 out of 8
in the first drawing, 6 out of 8 in the second drawing). A test on difference between non-
independent proportions showed that participants change their drawing of domain
objects under a change of visual display conditions (z = 3.464, p < 0.0005).

As shown in panel (d) in Figure 36, all VAT->AT participants drew visual aspects in the
first drawing. They however drew fewer visual aspects the second time (6 out of 8 in the
second drawing). Again, AT->VAT participants drew fewer visual aspects in the first
drawing (3 out of 8) than in the second drawing (6 out of 8). Surprisingly, two partici-
pants produced a roller metaphor themselves without ever having worked without a
visual display. A test on the difference between non-independent proportions showed
that producing visual aspects in drawings changed under a change in visual display
conditions (z = 2.111, p < 0.05). In the first drawing, participants who had worked with a
visual display drew more visual aspects (11 out of 12) than participants who had
worked without a visual display (3 out of 12). A Fisher exact probability test rejected the
hypothesis of equal proportions for both groups (p = 0.00138). Thus overall stated, par-
ticipants who had worked without a visual display produced fewer visual aspects of
the interaction style.

85

ReLa nEATA L7

5 5 Cishlomiy,

AUNIREY R

Figure 35. Four drawings made by different participants. Drawing A and B were made by partic-
ipants, who had worked without a visual display. Drawing C and D were made by participants,
who had worked with a visual display. Participant of drawing A explained the music collection
as a fruit tree, in which the branches represents the music styles, and the fruits carried by these
branches represents music tracks within a particular music style. Compiling a programme was
clarified as filling a barrow with fruit; one can go along the hard way by climbing the tree along
the trunk and reach for the fruit by shaking the branches, or one can decide to follow the easy path
of recommendations by climbing a ladder that directly leads to the fruit of interest. Only domain
objects and their interrelations were judged to be present. Participant of drawing B explained the
interaction style as a coin collector. Each slot in the collector, which could clearly be felt as such,
represents one of the concepts in the music programming domain. Being in one of these slot, one
is able to inspect and feel each coin, i.e., piece of music, one-by-one. Only domain objects, actions,
and force feedback were judged to be present. Participant of drawing C explained the roller met-
aphor accurately by telling how the rollers can be rolled, but without mentioning other output
modalities. Only domain objects, actions, and visual aspects were judged to be present. Partici-
pant of drawing D also explained the roller metaphor accurately, but extended the explanation
with references to the physical devices and how roll movements of the ball were aligned with the
rotation of the rollers. Only domain objects, actions, physical devices, and visual aspects were
judged to be present.

86

a. Actions b. Domain objects

Fad :
c 08 8 § z 08 8 §
g 11. . VAT AT VAT->AT AT->VAT S q}..VAT AT VAT-> T AT->VA]
5 g ‘
o075 remmm > ERC =075
2 <}
&8 os £ os}
. [
Q ©
2 oz2s G 0.25
o o
L3
Eied G Q ik i
istdrawing 2nd drawing istdrawing 2nd drawing
c ¢. Force feedback d. Visual aspects
c
2
g D CH l . § D ! . .
D 1| VAT ATVAT->AT AT->VAT °
3] 2
g [3]
B OIS} - 8_ 0.75
13 (7]
K] ©
0 P T o0
§ 0.5 g 05
o >
<025l B Emm o025t | |-
Q. Q
g N "N

istdrawing 2nd drawing istdrawing 2nd drawing

Figure 36. Proportions of aspects in the drawings. over the four condi-
tions. Panel (a) shows the proportion action--related aspects in both
drawings. Panel (b) shows the proportion domain object-related as-

pects in both drawings. Panel (c) shows the proportion force feedback-

related aspects in both drawings. Panel (d) shows the proportion visual
aspects in both drawings. Recall the experimental conditions have
twice as much participants than the control conditions.

10.6.5 Structure diagrams

The choices for the structure diagrams in the four conditions are shown in Figure 37.
Recall that all structure diagrams were assigned to a category, denoted by an integer
value from 0 through 3 (see also Figure 28). Category 0 contains the correct diagram,
whereas category 3 contains the most incorrect diagram.

It appeared that participants in the control conditions were consistent in choosing a
structure diagram. This is less true for participants who experienced a change in visual
display conditions, i.e., the experimental conditions. However, if only the choices for a
correct diagram (diagram category 0) are considered, a test on differences between non-
independent proportions did not reveal any possible improvement when participants
had experienced a change in visual display conditions (z = 1.732).

87

a. 1st session b. 2nd session

& 1| VAL AT VAT->AT AT->VAT, & 1] VAT AT VAT->AT AT->VAT
g g
O 0.75 © 0.75
§ §
T € e
§ 0.5 S 0.5]
S o]
5025 5025 g
0 1 2 3 0 1 2 3
diagram category diagram category

Figure 37. Proportion of chosen structure diagrams over the four condi-
tions. Panel (a) shows the proportion chosen structure diagram at the
end of the first experimental session. Panel (b) shows the proportion
chosen structure diagrams at the end of the second experimental ses-
sion. Recall the experimental conditions have twice as much partici-
pants than the control conditions.

In the first session, more participants (7 out of 12) who had worked with a visual dis-
play choose the correct diagram than those who had worked without a visual display (3
out of 12). A Fisher exact probability test however did not reject the null-hypothesis of
equal proportions for both groups (p = 0.107). Thus, working with or without a visual
display has no effect on choosing the correct structure diagram.

10.6.6 Spontaneous remarks from participants

The participants were invited to express their comments on the interaction style in a
spontaneous way. In total, 15 participants took the opportunity to convey some com-
ments by writing down a few words. Two persons only wrote that they were enthusias-
tic about the interaction style. Seven participants gave no remarks. This section is
devoted to a analysis by counting and grouping the written suggestions for improve-
ment.

ellser control.

Force feedback. Three participants responded that they had experienced the pres-
ence of force feedback as too prominent. As a result, they found the control too de-
manding for regular use at home.

Double-presses. Six participants responded that they had experienced trouble
with double-pressing the trackball, though participants were given a small tutori-
al and were notified of the critical action of double-pressing both by instruction
and practice (the trackball was not allowed to be moved during the interval inbe-
tween two rapidly adjoining presses).

88

e Auditory feedback. One person found auditory feedback unnecessary when one has
the disposal of visual representation. Two persons remarked that several audio
events (e.g., speech utterances, non-speech audio) were audible at the same time
which made listening to the relevant information harder.

Speech synthesis. Three participants had complaints about the quality of the
speech synthesis. One person found the speech unintelligible. Another person
would like the synthesis to sound more natural. Yet another person found the vol-
ume level of the speech too low with respect to the music.

Non-speech audio. Two persons would like a more prominent sound to notify the
event of adding or removing a piece of music to or from the music programme.

eSynchronization. Two persons remarked that the coupling between the actions, they
executed on the trackball, and the feedback they received from the various devices,
was not as direct as it could or should be. They experienced latencies between action
and effect and even among feedback events which felt rather "crumbly” to them.
Moreover, they felt obliged to wait for events. As a result, they were unable to "act
ahead" in order to perform the task as quickly as possible as they were instructed to
do.

eVisual representation. Five participants found the direction in which the visually rep-
resented rollers revolved counterintuitive. Rolling the trackball forth or back resulted
into a rotation of the roller in an upward or downward direction respectively. One
person was not happy with the graphical representation of the interaction style be-
cause of the lack of overview; one cannot disclose the content of the whole music col-
lection by a simple look.

eMiscellaneous. Two persons asked for additional functionalities such as scanning the
musical content, e.g., fast forward and rewind, additional information on the content
of the music pieces, or provisions to change the order of music pieces in a music pro-
gramme.

10.7 Discussion

The first hypothesis stated that the interaction with a visual display was more efficient
than the interaction without a visual display. However, no significant effects in both
compilation time and number of actions were observed between visual and nonvisual
interaction, except for the first music programming task. Participants who performed
the first task without a visual display required more time to complete a music program-
ming task (approximately one additional minute). They did not need to execute sub-
stantially more actions. In general, participants learned to perform the tasks more
efficiently in both conditions; they needed less time and fewer actions for each succes-
sive task.

The second hypothesis stated that users who had worked without a visual display
scored higher on procedural knowledge than users who had worked with a visual dis-
play. Indeed, users who had worked without a visual display at the first experimental
session were better in answering questions about interactive procedures. Also, partici-
pants who were transferred to a condition without a visual display at the second exper-

89

imental session tend to improve their answers to these questions. In general,
participants improved in answering questions on interactive procedures for the second
time.

The third hypothesis stated that users who had performed two preceding tasks with a
visual display performed more efficiently without a visual display than users who
started to perform the tasks without a visual display. No significant effects caused by a
change in visual display conditions were found for compilation time. However, partici-
pants, who had performed two preceding visual interactions, executed significantly
fewer actions and spent considerably, but not significantly, less amount of time to per-
form the tasks without a visual display. It was shown that this effect can entirely be
ascribed to practice. It appeared that users who were unfamiliar with the visual display
performed less efficient only because they had consequently performed fewer music
programming tasks.

The fourth hypothesis stated that users who had worked with a visual display made a
personal re-production of the interaction style that contains more visual aspects,
whereas users who had worked without a visual display made a re-production which
contains more action-and-effect related aspects. It appeared that participants who had
worked without a visual display indeed drew fewer visual aspects, and indeed drew
more action-related aspects. In addition, a change in visual display condition changed
the drawing of visual aspects. It appeared that once participants were visually exposed
to the roller metaphor of the interaction style, they were favoured by this metaphor
when explaining the interaction style to others. Further, it appeared that the drawings
between both conditions of participants were qualitatively different. Participants who
were unfamiliar with the interaction concept devised their own metaphor.

An assumption was that nonvisual interaction can not happen without a internal repre-
sentation. This internal representation should, at least, contain a spatial organization of
the objects of interest specified by their interrelations, i.e., a cognitive map. This imagi-
nary to navigate has to be developed mainly during the course of interaction. It is typi-
cal that nonvisual interaction requires significant more time and more, but not
significantly more, actions to complete a first music programming task than visual inter-
action, probably due to additional effort to develop an internal representation. These
effects tend to disappear in successive tasks. In this experiment, it appeared that nonvis-
ual navigation takes more time per action than visual interaction in the first task (non-
visual interaction: 3.2 seconds per action, visual interaction: 1.9 seconds per action).
This time difference might be partly ascribed to extra time for cognitive processing to
examine the nonvisual percepts resulting from an action, and incorporating them into
some internal representation. If we look more closely at the kind of actions that are exe-
cuted with the trackball at the first task (see Table 5), we observe more lateral roll move-
ments in nonvisual interaction than in visual interaction. These lateral movements are
actions to hop from one roller to the other roller. These actions represent navigational
act and are apt to explore the spatial relations between the objects of interest. The execu-
tion of more lateral movements with the trackball in nonvisual interaction may indicate
the required effort in explorative behaviour to explicitly develop a cognitive map of the
interaction style. These observations stress the importance of building up an internal
representation of the environment in which one interacts to act nonvisually and pur-
posefully in that environment.

90

Table 5. Mean number of actions categorized in single clicks, double clicks, lateral roll
movements, and forward /backward roll movements with the trackball for visual and nonvisual
interaction at the first task.

. Single Double Lateral Forward/
Interaction . . backward
clicks clicks moves
moves
Visual 5.58 10.0 7.92 27.0
Nonvisual 8.64 10.45 16.82 25.45

As users were assumed to be forced to explore the spatial organization of the interaction
style in nonvisual interaction in order to explicitly reveal and memorize actions pertain-
ing to navigation and manipulation, it was expected that they ultimately develop a sub-
stantial body of procedural knowledge. Indeed, the experiment demonstrated that
participants who performed the task without a visual display of information were bet-
ter in answering questions on interactive procedures. Making the task more difficult by
removing visual display of information induces indeed a higher cognitive load, but
excels the learning of procedures.

Another assumption was users internalize and apply the visual conceptual model after
visual exposure. Subsequently, it was expected that users use this conceptual model for
explaining the interaction style to others. The drawings for explanation of participant
who were familiar to the visual roller metaphor contained visual aspect pertaining to
this metaphor. In contrast, drawings of participants who were not familiar with the vis-
ual conceptual model were qualitatively different; their drawings contain private meta-
phors and analogies; action-related aspects were more prominent in the drawings. The
experiment indeed showed that participant were favoured by using the visual represen-
tation of the interaction style in their explanation, once they were visually exposed to
the visual representation. However, adopting the conceptual model as a form of fore-
knowledge did not improve their task efficiency in nonvisual interaction afterwards.

10.8 Conclusion

The purpose of the experimental evaluation was to assess the usability properties of the
multimodal interaction style for music programuming, in particular, on the presence or
absence of a visual display combined with a tactual and auditory interface. The experi-
ment demonstrated that users were able to acquire such a proficiency after three min-
utes of free exploration and without procedural instructions that they could complete a
given music programming task effectively in both visual play conditions. In addition,
they learned to perform the tasks more efficiently in both conditions; they needed less
time and fewer actions for each successive task.

Though using the interaction style without a visual display involves a considerable cog-
nitive load, users who work without a visual display were ultimately able to perform
not significantly less efficiently than users who work with a visual display. Only a little
practice will do, and foreknowledge about the visual display is not strictly necessary.
One person preferred the displayless interface, because "it contains all attractive fea-

91

tures that a novel has and a movie picture lacks; one is able to make an own interpreta-
tion and devise an own world." All others, who had worked with both versions,
preferred a visual display, just for convenience.

Retention tests, for which participants return for re-using the interactive system after a
specified amount of time, are often proposed for measuring memorability (Nielsen,
1993). Although participants had no difficulties in re-using the interaction style at the
second experimental session, the time for return in this experiment was too short and
uncontrolled to make valid conclusions. Memory tests by questionnaire are another
means to measure memorability (Nielsen, 1993). The participants in this test were good
at completing a questionnaire containing questions about procedures. However, assess-
ing memorability by a questionnaire assumes that users learn to operate an interactive
device explicitly, i.e., that they are able to justify their actions and decisions while oper-
ating the device, and that they are able to verbalize the acquired knowledge about the
device afterwards. Unfortunately, the basic idea that users always learn explicitly is
incorrect. For instance, the underlying structure, i.e., the syntax, of the interaction style
is deemed to be learned, to a large extent, implicitly and incidentally. A considerable
body of research is devoted to the distinction between implicit and explicit learning to
control an interactive device and the associated verbalizable knowledge (see, e.g.,
(Berry and Broadbent, 1984; Berry and Dienes, 1993; Dienes and Fahey, 1998). The gen-
eral observation in a particular class of control tasks is that practice improves task per-
formance but has no effect on the ability to answer related questions, whereas verbal
instruction improves ability to answer questions but has no effect on task performance.
Nielsen (1993) argues that the modern graphical user interfaces do not require users to
actively remember relevant aspects of the interaction, since the interface reminds users
of such aspects when necessary. In fact, Mayes, Draper, McGregor, and Oatley (1988)
showed that users were unable to recall the contents of graphical menus after conduct-
ing tasks, though they were able to use the same menus when doing the tasks. Summa-
rizing, another experiment controlled to assess memorability has to be conducted to
make any valid conclusions on memorability.

Some usability issues concerning user control of the force feedback trackball must be
emphasized here. A familiarization phase with the trackball was required to avoid mix-
ing up the experiment; novices are unfamiliar with the affordances of a force feedback
trackball. Despite a short introduction on manipulating the force feedback trackball,
double-clicking the trackball remained a serious usability problem. This problem is con-
sidered a mere software control deficiency to be repaired easily. However, the challenge
to minimize the number of control elements in an interaction style by using a force feed-
back trackball should be considered cautiously. Overloading the trackball with interac-
tive features may have a detrimental effect on the usability of an interaction style.

The visual conceptual model of the interaction style consists of a real-world analogy,
i.e., a roller metaphor of a slot machine. Familiar analogies may form a starting point to
comprehend an interaction style. As the actions simply happen in the analogy, the
effects of actions are directly perceivable and directly interpretable. This ‘direct engage-
ment’ is assumed to eliminate the referential distance in user-system interaction (Hutch-
ins, 1989). Referential distance refers to the gap that exists between the way actions have
to be expressed and the meaning of these actions. This distance is assumed a cognitive
principle underlying the apparent usability of graphical user interfaces (Hutchins,
1989). In order to establish a multimodal interaction style from a real-world analogy and

92

that should support ‘direct engagement’, the implementation should not violate
human’s parsimonious principle of perceiving and subsequently interpreting the world.
This principle states that humans interpret percepts, that occur close in time to each
other, as being caused by the same effect. Consequently, the software architecture
underlying a multimodal interaction style should allow timely synchronization
between an action and its multi-sensory effects. However, personal observation and
remarks from two participants revealed that there is still some room for improvement to
synchronize action and effect.

In this study, it is showed that the tactual and auditory modality can compensate for the
lack of a visual display in a multimodal interaction style. The results demonstrate the
added value of tactual and auditory feedback in interaction styles used in contexts-of-
use in which visual display of information is impoverished or even lacking. Conse-
quently, applications in which multimodal interaction styles can be particularly
designed for are portable devices, remote controls, and car equipment. The applications
do not have to be strictly focused on music selection and programming, but may also
address simple control tasks such channel switching, volume setting, or the selection or
programming of other media and content. As nonvisual interaction still involves a con-
siderable amount of cognitive load, results of this study should be carefully considered
in multiple tasks paradigm in which attention has to be devoted to an dangerous main
task, e.g., car radio and navigation. Summarizing, the results of this study justify a con-
tinuing research effort in applying tactual feedback, e.g., by force feedback devices, and
auditory feedback, e.g., by speech synthesis and auditory icons, in interaction concepts
for user interfaces.

93

References

Akamutsu, M. (1991). The influence of combined visual and tactile information on finger and eye move-
ments during shape tracing, Ergonomics, 35, 647-660.

Akamatsu, A., and Sato. S. (1994). A multi-modal mouse with tactile and force feedback, International
Journal of Human-Computer Studies, 40, 443-453.

Akamatsu, A., and MacKenzie, S.1. (1996). Movement characteristics using a mouse with tactile and force
feedback, International Journal of Human-Computer Studies, 44, 483-493.

Akamatsu, M., MacKenzie, S.I., and Hasbrouc, T. (1995). A comparison of tactile, auditory, and visual
feedback in a pointing task using a mouse-type device. Ergonomics, 38, 816-827.

Anderson, J.R. (1983). The architecture of cognition, Cambridge, MA: Harvard University Press.

Bargen, B., Donnelly, P. (1998). Inside DirectX. Microsoft Press.

Bemry, D.C., and Broadbent, (1984). On the relationship between task performance and associated verbal-
izable knowledge. The Quarterly Journal of Experimental Psychology, 36A, 209-231.

Berry, D.C., and Dienes, Z. (1993). Implicit learning: Theoretical and Empirical Issues. Lawrence Erlbaum
Associates.

Buxton, W., Gaver, W.W_, and Bly S. (1992). The use of non-speech audio at the Interface. Cambridge Uni-
versity Press.

Carroll, J.H., & Olson, J.R. (1988). Mental models in Human-Computer Interaction. Handbook of Human-
Computer Interaction. M. Helander (ed.), Elsevier Science Publishers B.V. p 45-65.

Cook, R., Morton, B. (1994). The Penguin Guide to Jazz on CD, LP & Cassette, Penguin Books.

Dienes, Z., and, Fahey, R. (1998). The role of implicit memory in controlling a dynamic system. The Quar-
terly Journal of Experimental Psychology, 51A (3), 593-614.

Douglas, S.A., and Mithal, A K. (1997). The Ergonomics of Computer Pointing Devices. Springer-Verlag.

Eggen, J.H., (1993). Sound at the User Interface. IPO-report 924.

Eggen, J.H., Haakma, R., Westerink, J.H.D.M. (1996). Layered Protocols: hands-on experience. Int. J. Hu-
man-Computer Studies, 44, 45-72.

Eggen, J.H., and Pauws S.C. (1997). A user-oriented multimedia presentation system for multiple presen-
tation items that each behave as an agent, Philips patent, PHN 15.703.

Engel, F.L., Goossens, P.H., and Haakma, R. (1994). Improved efficiency through I- and E-feedback: a
trackball with contextual force feedback, International Journal of Human-Computer Studies, 41,
949-974.

Engel, F.L., Haakma, R., and van Itegem, J. (1990). Trackball with Force Feedback. Philips patent PH-N
13522, 1990.

Erlewine, M., Woodstra, C., Bogdanov, V. (1994). All Music Guide: the best CDs, LPs & tapes, Miller
Freeman Books.

Evans, G.W., and Pedzek, K. (1980). Cognitive mapping: Knowledge of real-world distance and location
information. Journal of Experimental Psychology: Human Learning and Memory, 6, 13-24.
Freudenthal, D. (1998). Learning to Use Interactive Devices; Age Differences in the Reasoning Process,

Doctoral Thesis, Eindhoven University Of Technology.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Gaver, W.W. (1997). Auditory Interfaces. Handbook of Human-Computer Interaction. 2nd edition. M.
Helander, T K. Landauer, P. Prabhu (eds.), Elsevier Science, pp. 1003-1041.

Gentner, D. and Stevens, A.L. (1983). Mental Models. Hillsdale, NJ: Lawrence Erlbaum Associates.

Gourdol, A., Nigay, L., Salber, D, and Coutaz, J. (1992). Two case studies of software architectures for mul-
timodal interactive systems: VoicePaint and Voice-enabled Graphical NoteBook, Engineering for
Human-Computer Interaction, Eds. J. Larson and C. Unger, Elsevier Science Publishers, 271- 283.

Halasz, F.G. & Moran, T.P. (1983). Mental models and Problem Solving in Using a Calculator. CHI’83 Pr-
ceedings. p. 212-216.

Harel, D. (1987). Statecharts: a visual formalism for complex systems. Science of Computer Programming,
8, 231-274.

Harel, D. (1992). Biting the silver bullet. Computer (Jan. 1992), 8-20.

Hauptmann, A.G., and McAvinney, P. (1993). Gestures with speech for graphic manipulation, Internation-

94

al Journal on Man-Machine Studies, 38, 231-249.

Hermes, D. (1998). Auditory Material Perception. Submitted to ICAD’98, Glasgow.

Hutchins, E. (1989). Metaphors for Interface Design. The Structure of Multimodal Dialogue. eds. M.M.
Taylor, F. Néel, and D.G. Bouwhuis. Elsevier Science Publishers.

Keyson, D.V., and Tang, H. (1995). TacTool: A tactile rapid prototyping tool for Visual Interfaces. Sym-
biosis of Human and Artifact, Proceedings of the 6th International Conference on Human-Computer
Interaction, Tokyo, pp. 67-74. Amsterdam-Elsevier.

Keyson, D.V. (1996). Touch in User Interface Navigation, Doctoral Thesis, Eindhoven University of Tech-
nology.

Keyson, D.V., and Stuivenberg, L. van (1997). TacTool v2.0: An object-based multimodal interface design
platform, Proceedings of HCI International, San Francisco, CA, USA, August 24-27.

Kientzle, T. (1998). A Programmer’s Guide to Sound. Addison-Wesley.

Kieras, D.E., & Bovair, S. (1984). The role of a mental model in learning to operate a device. Cognitive
Science, 8, 255-273.

Klatzky, R.L., Loomis, .M., and Golledge, R.G. (1997). Encoding Spatial Representations through Non-
visually Guided Locomotion: Test of Human Path Integration. The Psychology of Learning and Mo-
tivation, VOL. 37, Eds. Douglas L. Medin, Academic Press, p. 41-84.

Kotovsky, K. and Simon, H.A. (1990). What makes some problems really hard? Explorations in the prob-
lem space of difficulty, Cognitive Psychology, 22, 143-183.

Mayes, J.T., Draper, S.W., McGregor, A.M., and Oatley, K. (1988). Information flow in a user interface:
The effect of experience and context on the recall on the recall of MacWrite screens. In Jones, D.M.,
and Winder, R. (Eds.), People and Computers IV, Cambridge University Press, Cambridge, UK.,
275-289.

McNemar, Q. (1962). Psychological Statistics. Third edition. John Wiley and Sons.

Nelson, R.J., McCandlish, C.A., and Douglas, V.D. (1990). Reaction times for hand movements made in
response to visual versus vibratory cues, Somatosensory and Motor Research, 7, 337-352.

Newell, A. and Simon, H.A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.

Nielsen, J. (1993). Usability Engineering. Academic Press.

Norman, D.A. (1983). Some observations on mental models. In D. Gentner & A.L. Stevens Eds. Mental
Models. pp. 15-34, Hillsdale, NJ: Lawrence Erlbaum Associates.

Pan, D. (1995). A Tutorial on MPEG/Audio Compression. /[EEE MultiMedia, Vol. 2, No. 2, 60-74.

Pauws, S.C., and Eggen, J.H. (1996). New functionality for accessing digital media: Personalised automatic
track selection, In: A. Blandford and H. Thimbleby (Eds.) HCI-96, Industry Day & Adjunct Proceed-
ings, Middlesex University, UK.

Pauws, S.C., Ober, D., Eggen, J.H., and Bouwhuis, D.G. (1996). A comparative evaluation of strategies for
compiling music programmes. /PO Annual Progress Report, 31, 50-58.

Pauws, S.C., Eggen, J.H., and Bouwhuis, D.G. (1997). Explorative strategies while compiling music. IPO
Annual Progress Report, 32, 79-88.

Payne, S.J., Squibb, H.R., and Howes, A. (1990). The nature of device models: The yoked state space hy-
pothesis and some experiment with text editors. Human-Computer Interaction, 5, 415-444.

Presson, C.C. (1987). The development of spatial cognition: Secondary uses of spatial information. In N.
Eisenberg (Ed.), Contemporary topics in development psychology (pp. 7-112). New York: Wiley.

Rasmussen, J. (1986). Information processing and human-machine interaction: An approach to cognitive
engineering. Amsterdam: North-Holland.

Robbe, S., Carbonell, N., and Valot, C. (1997). Towards usable multimodal command languages: Definition
and ergonomic assessment of constraints on users’ spontaneous speech and gestures. Eurospeech
'97, 1655-1658.

Rogerson, D. (1997). Inside COM. Microsoft's Component Object Model. Microsoft Press.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-Oriented Modeling
and Design. Prentice-Hall International.

Sholl, M.J. (1996). From visual information to cognitive maps. In J. Portugali (Ed.), The construction of
cognitive maps (pp. 157-186). The Hague: Kluwer.

Siegel, S. (1956). Nonparametric Statistics. McGraw-Hill.

95

Staggers, N. and Norcio, A.F. (1993). Mental models: concepts for human-computer interaction research.
International Juornal of Man-Machine Studies 38, p. 587-605.

Thorndyke, P.W., and Hayes-Roth, B. (1982). Difference in spatial knowledge acquired from maps and
navigation. Cognitive Psychology, 14, 560-589.

Van der Veer, G.C. (1994). Mental models of computer systems: visual languages in the mind. In Tauber
at all (ed.): Cognitive aspects of visual languages and visual interfaces. Elsevier Science, Amster-
dam.

Woodworth, R.S., & Schlosberg H. (1965). Experimental Psychology (3rd ed.). Methuen & Co. Ltd.

Young, R.M. (1981). The machine inside the machine: Users’ mental models of pocket calculators. Inter-
national Journal of Man-Machine Studies, 15, 51-85.

96

Appendix | Instruction text

In order to provide declarative knowledge, participants were informed about the con-
cepts in the music programming domain by means of the following text (translated
from Dutch).

The aim of the experiment is to compile a music programme by means of an interac-
tive system. A music programme contains a list of 10 pieces of music, that is com-
piled on the basis of your personal preferences. Therefore, the compilation of a
music programme demands the making of music choices. The interactive system
enables you to add pieces of music to your music programme or, if desired, to
remove pieces of music from your music programme in order to conclude with a
preferred music programme.

The pieces of music can be chosen from a music collection, consisting of 480 pieces
of music, in total, recorded by a variety of jazz musicians. The music collection is
divided into 12 popular jazz styles; each jazz style comprises 40 pieces of music and
each piece belongs to only one jazz style. An exception to this rule is determined by
the definition of a jazz style called ‘all styles’ in which all other jazz styles, and,
thus, all 480 music pieces, are collected. The interactive system enables you to select
a particular jazz style, through which you can choose between the music pieces that
belong to the selected jazz style.

Beside the music collection, you have the disposal of so-called music recommenda-
tions. A recommendation is a piece of music that also resides in the music collec-
tion. Each piece of music in the music collection has attached to it 4
recommendations, that are provided by the interactive system on the basis of some
commonality. It is unimportant to know on what grounds this commonality is
based, but you can trust that a piece of music and its 4 recommendations belong to
one and the same jazz style. The interactive system enables you to add recommen-
dations to your music programme.

At all times, you are allowed to get informed by the interactive system to what jazz
style a particular piece of music belongs, or what jazz style is selected. Music is
played back automatically.

97

At the outset of each music programming task, instruction about the task was provided
by means of a text. Important criteria were stressed by emphasizing, underlining, and
bold-facing words in the text. Four different task instructions were used that differ only
in the jazz styles the participants were restricted to select from. The following text was
provided (translated from Dutch).

You are given the opportunity to compile a music programme by means of the
interactive system. Your music choices may be selected from the music collection as
well as from the music recommendations.

However, three requirements apply, that your personally compiled music pro-
gramme has to satisfy.

1. The music programme has to contain exactly 10 pieces of music.
2. All pieces of music in the music programme have to be distinct.

3. The music programme has to contain pieces of music from 2 different jazz styles:

a. 5 pieces of music from blues (mbase, bebop, neobop)
b. 5 pieces of music from swing (dance, hardbop, fusion)

You are instructed to compile your music programme as quickly as possible. It is
not important that the pieces of music in the music programme are preferred. Also,
the order of pieces within the music programme is not important.

98

Appendix Il Transcription device

The level of procedural knowledge is assessed by means of a questionnaire containing
question about small interactive procedures. In order to transcribe the answers, the test
supervisor used a device for constructing augmented regular expressions over actions
terms. All eight actions were represented by a symbol which were combined with the
following operators: () - parentheses, + - sequence, + - selection, * - repetition (in
decreasing order of precedence). The symbols are shown in Table 6. The semantics of
the augmented regular expressions are summarized in Table 7, where X and Y are arbi-
trary action expressions.

Table 6. The actions represented by symbols as defined by the transcription device.

symbol action

« roll to the left

- roll to the right
T roll forward
! roll backward
Ll roll forward through
U roll backward through
® click

o0 double-click
? any unfamiliar action

Table 7. The semantics of the operators as defined by the transcription device.
S

expression operator meaning
(X) parentheses X is grouped and overrules order of precedence
XY sequence X is followed by Y; Y follows X
X+Y selection X or Y can be selected
X% repetition Zero or more times of X

e =

Procedural knowledge is knowledge about what actions are required for a successful
control of the interaction style. Each item of the questionnaire asks what physical action
sequence of minimal length is required for a given effect. One half of the items addressed
procedural knowledge on single actions (one-step interaction); the other half addressed
procedural knowledge on action sequences of length 2 or 3 (multiple-step interactions).
A one-step interaction comprises the execution of a basic action (e.g., adding a track to
the programme), but also the use of compound actions (e.g., a fast scroll mechanism). A
compound action is a single action which stands for a sequence of basic actions. Since a

99

multiple-step interaction involves the formulation of a longer action sequence to
achieve a purpose, forward and backward chaining reasoning mechanisms to contrive
such sequence are required. However, the one-step interactions items are not consid-
ered less difficult to answer; it is assumed that the compound actions are not easily dis-
covered and directly comprehended.

An example of a one-step interaction item (a compound action) reads as follows (trans-
lated from Dutch):

You are currently listening to a music piece in the collection. What action(s) do you
need to execute to go as quickly as possible to another piece of music within the col-
lection by a step size of 3?

Although many syntactic variants are possible, a correct answer might sound like:

A fast hand-stroke executed on the ball in a forward or backward direction covering
a somewhat longer distance.

The test supervisor had to transcribe this answer as follows

T+l

An example of a multiple-step interaction item reads as follows (translated from
Dutch):

You are currently listening to a recommended piece of music. You have just added
two distinct recommended pieces of music to your music programme. The music
programme contains two pieces of music. What action(s) do you need to execute to
remove as quickly as possible the firstly added piece of music from your music pro-
gramme?

A correct answer to this question consists of no more than three actions that might
sound as follows.

Roll the ball to the right, until you ‘fall into’ the music programme. Then, roll the
ball back or forth, only once, to get at the firstly added piece of music. Conclude
with a double-click on the ball to remove the piece.

The transcription of this verbal protocol is as follows
->(T+!l) 00

In order to derive a quantitative measure of the level of procedural knowledge, all tran-
scribed action sequences were counted that met a pre-defined correctness criterion.
Action sequences were considered correct if they were effectivity, i.e., whether the
action sequence led to the intended result, and if they were efficient, i.e., if the action
sequence was of minimal length.

100

Appendix lil Pre-analysis of task performance measures

The distributions of the number of actions and compilation time were positively
skewed; some participants required an extreme high value in effort and time to com-
plete a task. The possible causes of these extreme cases had to be revealed. A first sug-
gestion is that some participants had not obeyed the task description as intended.
Although the task objective was to compile a music programme as quickly as possible
without taking care of personal music preference, it is likely that some participants
were, in spite of it, tempted to select preferred music, and consequently explored the
music collection in search for good music.

The number of actions is a summation of all kind of actions on the trackball device: for-
ward and backward roll movements within the four rollers, lateral roll movements from
one roller to another, single clicks, and double clicks. More specifically,

number of actions = #clk + #dclk + #nvg + #prg + #sts + #msc

where #clk denotes the number of single clicks, #dclk denotes the number of double
clicks, #nvg denotes the number of lateral roll actions for navigation, #prg denotes the
number of roll actions within the programme roller, #sts denotes the number of roll
actions within the styles roller, and #msc denote the number of roll actions within both
the music collection and recommendation rollers.

Table 8. The number of distinct actions per effort category.

effort mean time
#ask #uks time #clk #dclk #nvg #prg #sts #msc per
category effort .
action
ideal . 10 . 0 10 3 0 2 8 23
23-30 7 106 599 186 100 343 0 529 814 2871 209
31-40 32 131 826 484 1006 559 006 694 884 3634 227
41-50 22 162 1121 945 1027 745 059 736 1045 4559 246
51-60 10 234 1556 112 10.6 78 1.6 9.3 16.1 56.6 275

281 1627 1211 1133 1433 278 1122 140 65.78 247
413 183 875 10 14.25 2 13 2775 75.75 245
353 2603 12 10.75 19 275 195 205 84.5 3.08

61-70

71-80

81-90

>100 638 3438 2567 1 2383 067 2083 4683 128.83 267

9
4
4
91-100 2 47 2855 12 12 24 3.5 155 245 91.5 312
6
96

221 1351 894 1041 935 0.9 938 1437 5335 2.53

]

An inventory of what kind of actions constitutes the total number of actions and how
these constituent actions behave at an increasing number of actions is made and shown
in Table 8. For that, task executions were assigned to an effort category indicating a typi-
cal range of the number of actions executed. Each category was assigned a certain

101

number of task executions (#task). Executing a task with the minimum of 23 actions was
considered ideal. While executing a task, participants came across, i.e., listened to, a cer-
tain number of pieces of music (#trks). Also, they spent a certain amount of time, i.e.,
compilation time, to complete the task (time measured in seconds). Further, the mean
number of actions within each effort category is decomposed into its constituents: mean
number of clicks (#clk), mean number of double clicks (#dclk), mean number of lateral
roll movements (#nvg), mean number of roll movements within a programme (#prg),
mean number of roll movements within the styles (#sts), and mean number of roll
movements within the music collection and recommendations (#msc). The table con-
cludes with the mean number of actions executed and mean time per action spent (com-
pilation time/mean number of actions executed).

At least, three observations can be made from Table 8. First, the compilation time is pro-
portional to the number of actions executed by a factor of approximately 2.53. The mean
time per action remains almost constant over the effort categories (see the column at the
right-hand side of Table 8). Hence, irrespective of how many actions are executed, it
seems that a fixed amount of time is spent for each single action.

Second, as the number of actions increases, so will the number of music pieces listened
to. In particular, #msc, and to a lesser extent, #sts and #nvg are suspected to be caused
by this music exploration. These components increase proportionally with increasing
number of actions executed, whereas other components remain constant. As the
number of actions executed is coupled with the number of music pieces listened to, it is
likely that participants who performed relatively many actions actually explored the
music collection in search for preferred music. If that is the case, they did not however
allocate extra time to music listening and judgement, because the mean time per action
remains constant at increasing number of actions executed. It seems that they only took
a brief notice of each piece of music, but listened to many pieces successively. Whether
participants were actually exploring the music collection or not can not be directly,
stated from the raw data, because there were no explicit actions that refer to music lis-
tening; music was always audible in the experiment. On the other hand, instead of sus-
pecting participants of music exploration, participants could also experience troubles in
performing the tasks. Also these participants are forced to execute a large number
actions, and consequently come across a lot of music, rather unintentionally.

Third, the number of single clicks (#clk) is rather erratic in the different effort categories.
A large number of single clicks can be partly ascribed to faulty executions of double
clicks. A faulty execution of a double-click resulted into two unintended single clicks. In
fact, six participants explicitly reported that they experienced difficulties in double-
clicking the trackball.

Music exploration and unintended single clicks are undesired features in the data.
Whereas attenuating the music exploration effect is troublesome, the unintended single
clicks can be easily removed from the data by holding only the first single click in a
sequence of single clicks, i.e, by replacing each sequence of multiple single clicks by a
single execution of a single click. The removed single clicks are thus interpreted as being
unintentionally. The time intervals associated with these unintended single clicks are
also removed from the total compilation time.

102

Additional time and actions that are devoted to music exploration can not be traced
back from the raw data. However, one particular participant’s behaviour was highly
suspected to be dedicated to music exploration. The participant, assigned to the AT-
>VAT experimental condition, spent almost nine minutes (526 seconds) and almost
exactly nine minutes (542 seconds) to complete respectively the first and second task,
whereas the mean compilation time for all tasks in the condition was 2 minutes and 42
seconds (162 seconds). In addition, the participants performed 155, 175, and 137 actions
for respectively the first, second, and third task, whereas the mean number of actions
executed was about 59 actions. Because the above mentioned cases were considered
outliers (they fell almost 3 times above the interquartile range) and the participant freely
admitted to search for preferred music while performing the first three tasks, the data
associated with this participant were excluded from the task performance analyses. For
the other analyses, the data of this participant were considered still valuable and were
left unchanged.

103

