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Abstract 

At the Institute for Perception Research (IPO) still images can be processed using Khoros. This 
report is created to show all the results obtained from implementing an image compression al
gorithm in Khoros . The algorithm that was implemented is called 'The Zerotree Compression 
Algorithm'. Normally, the algorithm uses hierarchical decompositions , but it has been altered to 
work with both polar and cartesian decompositions. The way it works and the implementation 
in h:horos is described thoroughly. Unfortunately, there was no time left to do some extensive 
tes ting for different input images and filtering types. Since the algorithm seems very promising, 
it is recommended to do more research on this algorithm and possible varia tions . 

The project itself has been done in accordance with my study 'Elect rical Engineering' at t he 
Eindhoven University of Technology. It was carried out from March 1996 ti ll October 1996 at. 
IPO . 
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Chapter 1 

Introduction 

At the lnstitute for Perception Research (IPO) algorithms are clesigned for image processing. A 
part of this processing is about compressing images . Why would one want to compress images, 
you might ask? Well, because of the enormous amount of data involved with high quality pictures, 
they tend to be so space consuming that they overloacl computer systems everywhere. The most 
important answer to this space consumption is compression. Compressecl images can be created 
and regained by a ( de )cocling program, which operates accorcling to a specific scheme. In the 
course of time many different schemes have been developed and testecl. 

In 1993, a coding scheme called 'The Zerot ree Compression Algorithm ' , was published ([Sha93]). 
Since it seemed to work so well , it was deciclecl that the algorithm had to be implementecl in Khoros, 
so that it could be used at IPO. Khoros is a software library with a number of programs that 
enables users to easily process images. 
Here is where I come into account. I accepted to implement the algorithm in I,,:horos so that it 
coulcl be used as a reference to their own research and to gain more insight in how to obtain highly 
compressed images with a quality that is still sufficient. To gain more insight in the algorithm , I 
will extensively describe it in Chapter 2. 

In the paper that was published, one can fine! a cl escription of a fully embcclclecl coder, which 
clecomposes images into local coeffici ents, codes these coeffi cients into a bytestream and comprcsscs 
the bytestream arithmetically. Since at IPO Khoros is in use, there a lreacly a re a number of 
programs that are, for instance, able to clecompose images in (local) coefficients. Arithmetical 
compression is also implemented in Khoros , so it only was necessary to produce a program that 
could translate the decomposed image to a bytestream. The way the algorithm is implementecl, 
can be reacl in Chapter 3. The C-cocle of the program is also added (Appendix B). 

Since the paper is not too clear about some aspects of the cocler, there are some differences 
between the cocler I implementecl and the one in the paper. In Chapter 4 these clifferences and 
the comparison between my results and the ones in the paper are clescribecl. This leads to some 
conclusions of course, which can be found in Chapter 5 together with a few recommendations 
for further research. While working at IPO, I could not help but notice the pleasant working 
atmosphere of which, among others, something will be tolcl in Chapter 6. 
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Chapter 2 

The zerotree algorithm 

In 1993, J .M. Shapiro published a compression algorithm for single images, called ' the zerotree 
algorithm ' ([Sha93]) . The paper he published , also contains a description of the fu lly embedded 
coder , he developed. This coder has certain properties I will describe and obtains high compressiou 
rat ios. 

2 .1 The embedded co der 

The coder , described in [Sha93], consists of a number of operations which are applied after each 
other. This can be seen in figure 2.1 

Transformation Quantization Compression 
Image Transform Symbol Bit 

Samples Presumably Coefficients All Stream Efficient Stream 
- Lossless - Inform ation - Loss less -- Loss Occurs - Representation -

Decorrelates Here of Symbol 
Samples Stream 

Figure 2.1: Basic components of a low-bi t rate coder. 

To create a low-bit rate coder, three basic components a re required: a transform ation, a 
quantizer and lossless data compression . These a re the components shown in fi gure 2.1 and 
described in the next three sec tions. 

2.1.1 The transformation 

The goal of the transformation is to produce coeffi cients that are decorrelated . When this trans
formation is performed, one obtains an image decomposition , which is an array of coefficients tha t 
contains the same amount of information as was present in the original image. The decorrela tion 
occurs, because the transformat ion removes sta tistica! redundancies. 

The transformation which was originally intended to be used with the zerotree algorithm 
is identical to a hierarchical subband system, where the subbands are logarithmically spaced 
in frequency and represent an octave-band decomposition (see also chapter 14 of [RJ91]) . To 
obtain a hierarchical decomposition , first the image has to be divided in four subbands which are 
critically subsampled and second the subband with the low frequencies is again subdivided in four 
subbands according to the first step. If you repeat these steps three times for instance, you might 
get something like figure 2.2 when you would use the 'Lena' picture as can be seen in Appendix A 
as the original image. 
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Figure 2.2 : A 3 th order hierarchical decomposition of the 'Lena' original. 

It is obvious that the lowest frequency subband contains wavelet coefficients that represent 
information on the coarsest scale. The design of filters to obtain decompositions as mentioned 
before, has been discussed by many authors and will therefore not be treated here. 

It is assumed that the transform is lossless as opposed to the quantization , which is lossy. Why 
this is t he fact and how, can be read in the next section. 

2.1.2 The quantization 

When the quantization is started , the zerotree algorithm comes into account . Essentially, the 
zerot ree is a data structure that is defined to represent certain amounts of data. The idea to 
use zerotrees is based on the hypothesis tha t if a coeffi cient a t a coarse scale is insignificant with 
respect to a given threshold T, then all coefficients of the same orientation in the same spatial 
location at finer scales are likely to be insignificant , too. So what we have now, is that coeffi cients 
at a finer scale are related to coeffi cients at a coarser scale. The coefficient at the coarse scale 
will be called a parent and the ones at finer scales are called children. When looking at a certain 
parent , the set of coeffi cients a t all finer scales of simila r orientation can be called descendants. The 
above statements can be used to define so-called Parent-Child dependencies. These dependencies 
describe in what way the subbands are related to each other (see Section 3.2). To make it more 
clear , the Parent-Child dependencies for a hierarchical decomposition are plotted in figure 2.3. 

To detect the zerotrees in a decomposition, we need an algorithm or a scheme according to 
which can be searched through all the wavelet coefficients. To gain more insight in the a lgorithm 
a flowchart is presented in figure 2.4 according to which the search is clone. 

First you start with the top-left subband, which is the one with the lowes t frequency compon
ents. For every coefficient you have to decide whether it is significant (POS/NEG) (the absolute 
value should be equal or greater than the current threshold) and if not, what kind of zero it is: 
a zerotree root (ZTR) , a descendant of a zerotree root (dZTR) or an isolated zero (IZ). The way 
you have to code these symbols to get a bytestream is described in the next section. 

The flowchart shows us how the algorithm finds the location of important coefficients and 
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Figure 2.3: The hierarchical Parent-Child relations. 

retains them in a space-saving way. Doing this for one specific threshold is called the Dominant 
Pass. After a Dominant pass , a Subordinate Pass is performed. This Subordinate Pass takes 
care of the accuracy of the representation of the coefficients. Every time a Subordinate Pass is 
started , it will write the next less significant bit of the coefficients that were already found during 
the Dominant Pass This means that, starting with a Dominant Pass, the passes are alternated 
until a certain condition is met . This condition can be anything: a bit-rate, a quality factor or a 
signal-to-noise ratio, for instance. 

2.1.3 Lossless data compression 

In the introduction it is described why one would need compression. In this case lossless com
pression is necessary, because the lossy compression occurs in the quantizer part . By getting rid 
of less important information , an amount of information remains that is much smaller in size. 
This remainder has to be stored correctly, otherwise strange artifacts might occur. The correct 
storage of the remaining information in as small a space as possible, can be done with lossless 
data compression. In the preceding section there was a first step towards this compression. The 
symbols that are necessary to code the so-called significance map are already mentioned: POS , 
NEG , ZTR and IZ. The symbol dZTR is not coded, but is used to determine all descendants, as 
will be explained in Chapter 3. Now four symbols remain. If they occur in equivalent amounts, 
it is obvious to choose for 2-bit codes. According to empirica! evidence, this is almost the case, 
so the choice is easy. lt appears that the zerotree root symbol occurs more often, but when you 
choose a 1-bit code for ZTR, it means that at least two of the remaining three symbols will have 
3-bit codes. This increase in bits is so high that it is unwise to do so. The final result can be 
found in Table 2.1. 

When it is necessary to code a number of coefficients in the highest frequency bands, there is 
obviously no way that a zerotree root or an isolated zero can be detected, because there are no 
descendants. So, further optimisation can be achieved by choosing a zero (Z) symbol, to be coded 
with an 'O' for the sole use of coding insignificant coefficients in the highest frequency bands. 
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Co<le 

Positive 
symbol 

YES 

Co<le 

Ncgative 
symbol 

tnput Loerr11:1ent 

NO 

Code 

lsolatcd Zero 
symbol 

Code 

Zerotree Root 
symbol 

Pre<lic.:tably 
lnsignitkant. 
Don t Co<le 

Figure 2.4: A flowchart representing the 'Dominant Pass ' of the algorithm. 

Symbol POS NEG ZTR IZ 
Code 11 10 00 01 

Table 2.1: The translation of coded symbols to bits . 

To create an even smaller output bytestream, it is possible to code the symbolstream arith
metically. About this subject many articles are written, for instance [IW87]. 
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2.2 The implemented (de)coder 

As already mentioned , at IPO Khoros is being used to do image processing. Some of the operations 
that a re necessary in the embedded coder, are also available from the Khoros library. A number of 
these programs are developed a t IPO, so they might not be available to everyone. In the following 
three sections I will describe what can and cannot be done with the currently available programs 
and how I solved the discrepancies that occurred . 

2.2.1 The transformation 

The transform as mentioned in section 2. 1.1 cannot be performed by the current software at IPO. 
T here a re quite a number of transforms available, bu t none of a hierarchical form. Tirnt would 
run too short to fully implement all the necessary software myself, so it was decided to implement 
the zerot ree algori thm for standard cartesian and polar decompositions with cartesian ordering of 
the coefficients. To take a look at an example of those kinds of clecomposit ions, see figure 2.5 . 

Figure 2.5: T wo typical decomposit ions. (left: cartesian and right : polar) 

The pictures in fi gure 2.5 a re produced with the standard software available a t IPO . T his also 
means that no further research has to be clone in this cl irection, in this case. The contents of fi gure 
2.2 were created with Cantata, which is a GUi that can be used to easily interconnect and use the 
different kinds of programs available from the Khoros software library. As can be seen in figure 
2.6 it is qui te an elaborate job to produce this kind of decompositions with the currently available 
software. 

Synthesizing the original image from a hierarchical decomposition is even more elaborate with 
this software, so I will not discuss it here. 
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Figure 2.6: A Cantata workspace that produces 3th order hierarchical decompositions. 
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2.2.2 The quantization 

As for the quantization, the other kinds of decompositions mean that there has to be a different 
way of defining the Parent-Child clependencies , because the hierarchical relations do not fit here. 
A possible definition of the relations is shown in figure 2.7. 

Figure 2.7: Possible 'Parent-Child' relations for cartesian and polar decompositions. 

Another goal in this project was to clevelop an easy method of clefining the Parent-Chilcl 
dependencies. For certain kinds of research here at IPO it is necessary to be able to omit some 
sub bands from coding. Soa fl exible way of defining the depenclencies in an input file was developed 
as described in section 3.2. 

The way the zerotree a lgorithm behaves, does not change for these kinds of decompositions , 
but one disadvantage is very clear. The number of descendants of a certain parent will only grow 
linearly instead of exponentially when looking down along the dependencies at higher frequency 
components. This might be quite ineffi cient compared to quantizing hierarchical decompositions. 

2.2.3 Lossless data compression 

The representation of the symbols which was chosen in section 2.1.3 , does not need any changes 
and is used as is in the developed software that can be found in Appendix B. 

In Khoros , a number of arithmetic coders is available, soit is not necessary to do any research on 
this. The only problem is , that in the paper the arithmetic coder is integrated into the bytestream 
conversion, which is not possible here, because it is a separate program in Khoros. This puts some 
constraints to the options that are to be passed to the program . The resulting constraints can be 
found in section 3.1. 
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2.3 An example 

To gain more insight in the way the algorithm behaves, an example will be shown . Since the 
transfonnation and the arithmetic coding are not within the boundaries of this project, only the 
quantization will be demonstrated. We start with apart of a hierarchical transform (as shown in 
fi gure 2.8) of the 'Lena' original (see Appendix A) . 

63 -34 49 10 7 13 -12 7 

-31 23 14 -13 3 4 6 - 1 

15 14 3 -12 5 -7 3 9 

-9 -7 - 14 8 4 -2 3 2 

-5 9 -1 47 4 6 -2 2 

3 0 -3 2 3 -2 0 4 

2 -3 6 -4 3 6 3 6 

5 11 5 6 0 3 -4 4 

Figure 2.8: A part of a hierarchical de
composition. 

Figure 2.9: The order of importance of 
the subbands. 

A little intermezzo as for the initia! threshold: this threshold is the largest power of two that 
is still smaller than the largest magnitude in the set of coefficients. For example, in the above set 
of coeffi cients 63 is the largest magnitude available. The initia! threshold will be T i ni = 32. 

2 .3 .1 The first Dominant Pass 

Now, we can start scanning through the decomposition in order of importance. This order is 
expressed in figure 2.9. We start with 63, which is significant and positive, so a POS symbol is 
coded. Next , -34 will be coded as a NEG symbol. The coefficient -31 is not significant, but one 
of its descendants is significant (47) so in this case a IZ symbol will be coded. Now we arrive 
at coefficient 23. As can be seen, none of the descendants is significant in respect to our current 
threshold . A ZTR symbol is generated, so that none of the descendants will require further coding 
in this pass. This coding can be continued, until all coefficients can be reconstructed when using 
a decoder. When reconstructing the coefficients, it is only sure that when a POS or NEG symbol 
occurs , the original coeffic ient had a magnitude in the range of [32,63]. lt was chosen to reconstruct 
with a magnitude that represents the middle of the interval, in this case 48. For the first Dominant 
Pass this leads to: see Table 2.2. 
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Coefficient Coded Reconstruction Coeffi cient Codec! Reconstruction 
Value Symbol Bit(s) Value Value Symbol Bit(s) Value 

63 POS 11 48 -9 ZTR 00 0 
-34 NEG 10 -48 -7 ZTR 00 0 
-31 IZ 01 0 7 z 0 0 
23 ZTR 00 0 13 z 0 0 
49 POS 11 48 3 z 0 0 
10 ZTR 00 0 4 z 0 0 
14 ZTR 00 0 -1 z 0 0 
-13 ZTR 00 0 47 POS 11 48 
15 ZTR 00 0 -3 z 0 0 
14 IZ 01 0 2 z 0 0 

Table 2.2: Code generatecl by the first Dominant P ass . 
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2 .3.2 T he firs t Subordinate Pass 

Next a Subordinate Pass is performed. For all significant coeffi cients it bas to be decided whether 
their magnitude is in the interval [32,48) or in the interval [48,64) . The upper interval will be 
coded with a '1' and the lower interval with a 'O' . This results in : see Table 2.3 where 32 is 
subtracted , so that we only have to detect whether the coeffi cient magnitude is greater than or 
equal to 16 or smaller. Why this is more convenient will be made obvious in the next Subordinate 
Pass(es ). 

Coefficient Coded Reconstruction 
Magnitude Bit Sign Value 

63-32=31 1 POS 56 
34-32=2 0 NEG -40 

49-32=17 1 POS 56 
47-32=15 0 POS 40 

Table 2.3: Code generated by the first Subordinate P ass . 

As can be seen in Table 2.3 the reconstructed values a re subdivided in two different magnitude 
levels, 40 and 56. These values represent the middle of the two intervals [32,48) and [48,64). The 
reconst ruction of the coeffi cients 47 and 49 gets a lot worse, but in la rge decomposit ions these 
differeuces will be equally distributecl . 

2.3 .3 Remaining D ominant P asses 

All the remaining Dominant Passes are performed in a similar way as the first one. T here is only 
one important difference. The coeffi cients tha t already have been found are treated as zero in the 
next Dominant P asses . This can be seen in fi gure 2.10 where all found coeffi cients are represented 
with O* . 

o* o* o* 10 7 13 -12 7 

-31 23 14 -13 3 4 6 -1 

15 14 3 -1 2 5 -7 3 9 

-9 -7 -14 8 4 -2 3 2 

-5 9 -1 o* 4 6 -2 2 

3 0 -3 2 3 -2 0 4 

2 -3 6 -4 3 6 3 6 

5 11 5 6 0 3 -4 4 

Figure 2.10: The decomposition after the first Dominant Pass. 

When the next Dominant Pass starts , the threshold has to be altered to the next level of 
precision. In this case that would mean that T = 16. The results are shown in Table 2.4. 
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Coefficient Coded Reconstruction Coefficient Codec! Reconst ruction 
Value Symbol Bit(s) Value Value Symbol Bit(s) Value 

o· IZ 01 0 -9 ZTR 00 0 
o· ZTR 00 0 -7 ZTR 00 0 
-31 NEG 10 -24 3 ZTR 00 0 
23 POS 11 24 -12 ZTR 00 0 
15 ZTR 00 0 -14 ZTR 00 0 
14 ZTR 00 0 8 ZTR 00 0 

Table 2.4: Code generated by the second Dominant Pass. 

2.3.4 Remaining Subordinate Passes 

The subordinate passes are always performed the same. All previously found coeffi cients receive 
an extra bit for higher precision . This means that they will be subdivided in the intervals [16,24), 
[24,32), [32,40) , [40,48) , [48,56) and [56,64). This can be achieved, by subtracting the current 
threshold value from the coefficients that are already known , when their magnitude is greater 
than that of the current threshold. The resulting magnitudes only have to be compared to the 
new threshold, which would be T = 8. This results in: see Table 2.5. 

Coefficient Codec! Reconst ruction 
Magnitude Bit Sign Value 

63-32-16=15 1 POS 60 
34-32=2 0 NEG -36 

49-32-16=1 0 POS 52 
47-32=15 1 POS 44 
31-16=15 1 POS 28 
23-16=7 0 POS 20 

Table 2.5: Code geuerated by the second Subordinate P ass. 

This is for as far as the example will be discussed . In the next chapter the transla tion of the 
algorithm to data structures and code will be described . 
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Chapter 3 

lmplementation in the Khoros 
system 

As a lready mentioned , the most important goal of this project is to implement the zerotree com
pression algorithm in Khoros . This means that programs need to be written in C and that certain 
extra information needs to be added . The input and output options are defined in a so-called . 
pane-file (see Appendix C) which describes the interface that can be used in Cantata. Cantata 
is a GUi (Graphic User Interface) which can be used to interconnect programs from the Khoros 
library and execute them in an easy way. Because the implementation is not of an embedded type 
like the one developed by J .M. Shapiro, some differences are inherent and will also be described 
in this chapter. 

3.1 Global properties 

When talking about global properties, one could think of the different attributes that can be used 
to start the program and what these a ttributes mean. Looking a t the . pane-file, where all the 
possible at tributes are shown , might not be to clarifying. The interface tha t is prescribed by this 
. pane-file, looks like what can be seen in figure 3.1. 

Some of the a ttributes, as shown above, might be clear to everyone at first sight , but others 
might need some clarification . On the next list, all the items will be mentioned and described . 

• The 'Input fil e': The filename of a nonquantized image decomposition when coding and the 
filename of a coded bytes tream when decoding. 

• The 'Parent-Child file ' : The filename of a description of the Parent-Child dependencies , 
which will be described more extensively in the next section . 

• The 'Output fil e': Almost the opposite of the 'Input file', which is the filename of a coded 
bytes tream when coding and the filename of a (non)quantized image decomposition . 

• The 'Gading direc tion ': The choice between coding ( decomposition _,. bytes tream) and de
coding (bytestream _,. decomposition) . 

• The 'Conversion type': The type of input (or output) decomposition, where you can choose 
between 'Polar ', 'Cartesian' and 'Hierarchical'. 

• The 'Length of bytestream (Kb}' : The length of the uncompressed bytestream in kilobytes, 
to be used when coding/decoding when lossy compression should be obtained . 

• The 'Quality (threshold} ': A number that prescribes the number of alternating Dominant and 
Subordinate Passes. ' l' stands for maximum quality ( code till threshold is two ). The highest 
number possible depends on the maximum size of the coefficients in the decomposition . 
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IPO - Polynomial Processing 

Zerotree - Convert between inlage decomposition and byte stream 

Input f 11 enarnes 

Input file 

Parent-Ch1 l d fi 1 e 

Output f i l enaoes 

Output file 

Options 

1 $temp/pol yaAAAaZZ301j, 

. /cart36.dat,. 

1/home/pl aatjes/bi erman/temp/zerot[AAa08347
0 

Coding d1rect1on ( 1nage decomposition - > byte stream ) 

Conversion type ( Cartesian ) 

Length of bytestream (11'.b) 125§, 

Quality (threshold) LIi 

E>cecute No He 1 p 

Figure 3.1: The interface as can be seen when using Cantata. 

The items that still are not clear enough , will be described even more extensively in the rest 
of this chapter. 

3.2 Parent-Child relations 

As already mentioned , the description of the Parent-Child relations has to be as flexible as possible. 
For certain research at IPO it is necessary to be able to exclude some subbands from coding. To 
full y embed these possibilities in the code would be to elaborate, so it was decided that loose files 
should be used . In such a file the relations between the sub bands are represented in a very straight 
forward way. 

Since coding hierarchical decompositions is not possible with the current version of the coder 
and since hierarchical decompositions are hard to process with the current Khoros tools , the only 
P arent-Child relations that are necessary are for polar and cartesian decompositions. vVithin these 
decompositions the sub bands are all of the same size, soa zerotree will only grow linearly instead of 
exponentially like in hierarchical decompositions. Most possibly this will yield lower performance 
in compression ratios. This is also mentioned in [Sha93] , but it is also mentioned that it could 
still outperform JPEG-coding (for JPEG-coding see: [RJ91] and [ea93]). When coding, we think 
of the subbands arranged as can be seen in figure 3.2 

When we have a cartesian decomposition with 9 subbands and the kind of Parent-Child rela
tions as can be seen in figure 2.7, a way of describing the relations easily is memorizing all the 
first-clegree descenclants of a subband. Since the first subband (zero) always has to be coded , one 
could use zero as a reference for 'no ( first-clegree) descendants '. When using one line for each 
subband in the file, it is not necessary to acid the numbers of the subbancls to the file, because 
these are inherently represented by the line numbers. For the 9 subband example this would result 
in : 
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0 

8 

16 

1 2 3 4 5 6 7 0 1 2 3 4 5 6 

9 10 11 12 13 14 15 8 9 10 11 12 13 14 

17 18 .. .. 15 16 17 18 19 20 

21 .. .. 

-
Figure 3.2: Numerical arrangement of the subbands 111 cartesian and polar 
decompositions. 

1 3 4 
2 
0 

6 
5 7 8 
0 
0 
0 
0 

0 

3 

6 

1 2 

4 5 

7 8 

7 1 

Each line is separated by a hard return, and the numbers on a line are separated by a space. 
In the code there is a procedure that is used to read this file and puts it in a two-dimensional 
array. To leave some room for different experiments, it was decided that the array should be 100 
by 8, so this provides room for a maximum of eight (first-degree) descendants per subband and 
a maximum of hundred subbands. This is equivalent to a 9th order cartesian decomposition (100 
subbands), a 12th order polar decomposition (91 subbands) or a 33rd order hierarchical decompos
ition (100 subbands). A few 'Parent-Child files ' are already made. They are called, for instance 
'CART64.DAT' or 'POLAR36.DAT' with the first letters signifying the kind of decomposition and 
the number signifying the total number of subbands. As yet, there is no check implemented to 
verify whether the Parent-Child file fits the input(or output) decomposition . This may cause the 
program to 'hang ' when it is not the case. 

Furthermore it is possible to exclude subbands from being coded. When a subband is denoted 
with a zero and there are no references to it , it automatically will not be coded. 
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3.3 Translation of the algorithm 

The most important part of the algorithm is coding and finding zerotrees, as shown in the flowchart 
in figure 2.4, which is the Dominant Pass. The Subordinate Pass only is about coding the next 
less significant bit of the magnitude of every coefficient that was found significant . 

When searching for significant descendants , it is necessary to have the complete decomposition 
in a memory buffer. Fora standard 512x512 grayscale image which yields an integer decomposition, 
th is already means a memory consumption of 0.5 megabyte. Since it is necessary to change 
the coefficients that are found to zero in the original decomposition , while they still have to 
be remembered , another buffer of equivalent size should be used . In addition to this another 
buffer should be used to store intermediate results while searching for zerotrees. This means that , 
together with the other variables and the code itself, there has to be about 2 megabyte of free 
RAM to run this program. This is no problem with the computers currently in use at IPO. 

Using three buffers of equivalent size has go t one major advantage; the coordinates are inher
eutly represented by the entry numbers of the arrays/ buffers . The buffer names are as follows: 

• im_buffer : The buffer tha t contains the original image decomposition. 

• eLbuffer: The buffer that contains the elements/ coeffi cients that are already found to be 
significant. 

• coding_buffer: The buffer that contains intermediate information about the coeffi cients, 
found while ( de )coding. 

The first two buffers speak for themselves, but the last one needs some additional explanation . 
While coding, it is necessary to know which elements were found in previous Dominant Passes 

and which are found in the current Dominant Pass . To do this, the second bit of the corresponding 
element in the coding_buffer is set when a significant element is found. So, a zerotree structure 
can be created for the current significant elements . After that , all the elements with the second 
bit set , receive a reset of the second bit to zero and a set of the first bit (the leas t significant bit 
in the coding_buffer in this case). Now all that remains is representing zeros and zerotree roots. 
This can easily be done with one of the remaining bits. Here, bit number four is used for that 
purpose. Of course, it would have been possible to use other bits for registering all the mentioned 
information. 

About the 'Conversion type ' (see Section 3.1) , there is no real difference between polar and 
cartesian decompositions to the program. They both consist of subbands that are all of the same 
resolution and are stored linearly after each other in a file. Since the ordering of the subbands and 
their relations are fully described in the Parent-Child file, there is nothing else that the program 
needs to know. 

There is one thing that has to be mentioned, though. The 'Length of bytestream (Kb)' and 
the 'Quality (threshold) ' can interfere with each other. It is possible that one of these conditions is 
met , while the other still is not . Most of the time, it will be so that experiments will be done with 
one option, while the other one remains a t maximum position. This means 'Length of bytestream 
(l(b)' at 512 or 'Quality (threshold) ' at 1. This also makes it possible to acquire a high quality 
coded bytes tream in one run , so that it does not have to be reacquired , when doing different kinds 
of decoding experiments. 
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3 .4 Diff erences 

Differences between the implementecl cocler and the embeclclecl type published in [Sha93] are in
herent, as mentioned before. The embedded coder has switches to stop coding when a certain 
Signal-to-Noise Ratio is obtained or when a certain bit rate is achieved. The last switch is al
most impossible to implement in the coder at IPO, because it is harclly precl ictable what rate 
of compression will be achievecl with the arithmetic cocler. As for the first switch, this one is 
implementable but has not been taken care of, because of Jack of time. 

Furthermore, in the paper ([Sha93]) nothing is saicl about the DC-coefficients (the elements 
in subbancl zero). Normally, these are in the range of [0,255]. Because the algorithm works for 
positive as well as negative coefficients, it was obviously better to translate all the DC-coeffi cients 
clown with an amount of 128, obtaining elements in the range of [-128 ,127] . Experime11 ~3 have 
shown that image quality is much better for bytest reams with the same bit rate. DPCM-cocling 
(see [RJ91]) has also been triecl, but this requires that all the DC-coefficients are clecoclecl lossless, 
which is not possible with this lossy compression scheme. 
When looking at the results in the paper it is not possible that nothing special is clone with the 
coeffi cients of subband zero. Something is obviously missing there. 
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Chapter 4 

Results 

As said before , a Jack of time has caused that it was not possible to do some thorough testing of the 
developed software. There are some minor problems that will be pointed out in this chapter. And 
because there were a few things missing in the paper, some obvious differences can be described. 

4.1 Khoros implementation 

There is a working version of the coder right now . Because of Jack of time, almost no comparative 
tests have been done. This was mainly due to the fact tha t my C-programming skills were 
not that good when I started with this project and to the fact that part of the algorithm was 
misinterpreted at first. There still is a minor problem in the coder. It has got something to do 
with the representation of the Subordinate Pass . 

As mentioned in section 2.3.2, the reconstruction of coefficients depends on the intervals to 
whom they belang. The most significant bit of a coefficient found to be significant, is represented 
by the coded symbols found in the preceding Dominant Pass. First it was assumed that Dominant 
P asses only produce code representing spatial information , but because of the inclusion of the 
sign of significant elements it also sort of represents the most significant bit . This means that 
the Subordinate Pass has to code the next bit of a coefficient . Since this was the part that was 
misinterpreted , the coder stored the most significant bit twice. When decoding, this was obviously 
visible. The error image produced, while comparing the original with the decoded image, shows 
strong blocking effects in smooth transitions (see figure 4.1). 

This is due to the fact that coefficients with the second most significant bit equal to zero a re 
strougly influenced in magnitude, because here it wil! be one all the time when decoding. 
This problem is not properly solved yet. The procedure Create_Sub_Code has to be altered to 
produce the required results. It can easily be checked by feeding a number to the algorithm and 
see how it is coded . Decoding, which is done in the procedure Retrieve_Sub_Code, should be able 
to retrieve the correct number, which could be quantized. As can be seen, this is not the case, 
yet. Again, Jack of time stops me from doing more research on this problem. 

The procedures that do the zerotree coding have already been tested thoroughly by doing 
some extensive calculations by hand. These calculations have been compared with output from 
all the procedures involved, and were found to be correct. Of course, a test pattern was used, 
which inherited all different kinds of combinations of coefficients. Unfortunately, human errors are 
still possible and there was no time left to double check my calculations so a 100% guarantee for 
bug-free code for this part would not be appropriate. The test pattern consisted of 9 subbands, 
each with 3x3 resolution, representing a 2nd order cartesian decomposition. 
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Figure 4.1: The error image produced from comparing the 'Bikerlady' 
original with the coded version , sealing up the error by a factor 2. 

All remaining procedures, of which most are necessary for retrieving the information incor
porated in the switches and sett ings, are also tested. None are producing faulty in- or outputs 
anymore, although some minor changes had to be made to the initial code to streamline the 
communication between procedures . 

4 .2 Comparison with Shapiro's paper 

As already told in section 3.4 , a big difference in decoded image quality is possibly due to the fact 
that the coefficients of subband zero are treated in a different way. Possibly, the image quality 
in the paper is higher , because the way of decomposing an image is different . From some of the 
experiments clone, I learned that the decomposition method has a large influence on compression 
ratios . W hen testing the zerotree algorithm, a few different decomposition methods were used . 
For instance, Hermite transforms (see [vDM97]) and standard DCT (see, for instance [RJ91]) in 
both polar and cartesian decompositions. Both the order and window length have great influence. 
Standard DCT seems more promising to me, because child coefficients seem more correlated to 
the magnitude of their parents, but the number of tests performed is too small to conclude that 
DCT is better. Maybe other kinds of decomposition methods will prove to be even better than 
the ones mentioned. 

Another important difference is , that I do not use hierarchical decompositions. Therefore, the 
amount of important parents is much larger. For instance, a 7th order DCT decomposition has a 
subband zero composed of 64x64 bytes = 4096 bytes = 4 Kb. This means that every Dominant 
Pass requires 4096/4 = 1024 bytes, just for representing subband zero. Obviously, this requires 
that decompositions should only produce low magnitude coefficients. When you have coeffi cients 
up to 255 in magnitude and you want to compress the image lossless, this requires seven runs of 
alternating Dominant and Subordinate Passes, so this already requires 7 Kb of space, to represent 
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subband zero , which contains the most important pa rents. For a 7 th order hierarchical clecom
posit ion this equals to a subband zero of resolu tion 2x2 = 4 bytes. In a Dominant P ass t hese a re 
represented by just 1 byte. This means less space is used to represent important pa rent coeffi cients. 

When looking a t (almost) lossless compression, the algorithm does not perform very well for 
quality 1, which should be lossless . When the Dominant Pass has finishecl , there is enough inform
a tion present to reconstruct all coeffi cients with a maximum error of 1 in magni tude. This means 
that performing a stanclard Subordinate Pass will not provicle the necessary information to be able 
to produce a lossless representation of t he original decomposition. After that, a Dominant P ass 
shoulcl be performed to find the coeffi cients that have magnitude 1. This means t hat all remaining 
coeffi cients a re really zero. A lot of redundant information is most likely to be proclucecl . To solve 
this, an alternative procedure has to be cleveloped to produce lossless compression at quali ty 1. 
T his has not been clone yet . Implement ing this will also acquire a new method to check whether 
reproduction is correct . If any differences la rger than 1 will a rise in t his last step, it is obvious 
t hat there is a problem in t he algori t hm , as implemented . 

In the paper, the coder is designed to stop a t a certain bit rate or a certa in signal- to-noise ratio . 
I t is possible to implement this in the version made a t IPO, although some problems will a rise, 
especially with the bit rate pa rt. Signal- to-noise ratio is 'fully' detached from the bytes tream 
length. This means , tha t additional lossless compression does not influence the signal- to-noise 
rat io. Implementing this fea ture will not be the problem, bu t it will take a lot more of processing 
t ime to compute a bytestream . 

The separation of t he coder into functional blocks, causes t he lossless a ri t hmetic compression 
to be fully detachecl from the bytestream product.ion , so a feature tha t makes sure coding stops at 
a certain bit rate will only be possible for t he uncompressecl bytes tream. This feature is a lreacly 
implemented . Unfortunately, the resul t of further lossless compression is almost unpreclictable, so 
adding such a feature requires addi t ional code in the zerotree coder , to obtain runlength lossless 
a ri t hmetic compression. The addit ional a ri thmetic coder present in Khoros, in t his case, will not 
be necessary anymore. In contrast to the objections, these features will turn the coder in to a very 
useful reference coder . 
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Chapter 5 

Conclusions and 
Recommendations 

Although the research that can be done in the direction of t his kind of compression is not finishecl , 
we can arrive at some conclusions and recommendations regarding the work already done. 

5.1 Conclusions 

An important difference between the implemented coder and the one published in [Sha93] is, that 
it uses different image decomposition methods. This is the main reason for the differences in per
formance between the coder at IPO and the embedded coder , although some things , like subband 
zero t reatment, a re not properly described in the paper and will have a major influence, too. 

T he zerotree algori thm seems very promising. Since very few researchers have been experi
mcuting with it , unt il recently, not too many resul ts a re achievecl that can be compared. But 
according to the latest news at conferences and the like, a lot more will be heard about it in the 
ncar fu ture. 

All the major implementat ion problems have been taken care of. There still is a minor bug, 
but it can be solved quite easily, as described in sect ion 4.1. 

The amount of tests performed, to prove whether specific parts of the coder work like they 
should , is too small. Additional research and tests will be necessary to make sure that everything 
works properly. 

Without the hierarchical decomposition implemented, experiments on extremely low bit rates 
will be useless. As shown in section 4.2 this is very easy to prove. The exponentially growing 
parent-child trees prove to be very compressible. 
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5. 2 Recommendations 

Very recent developments are showing a growing interest in zerot ree coding and derivates of it . 
Therefore it might be wise to continue to do research in this direction . It might even lead to better 
compression results , when combining it with the knowledge, already present at IPO. Keeping track 
of the new developments will be necessary, because some of the problems and differences stated 
in t his report might already be solved by other researchers, or may be solved in the near future. 

lmplement ing the hierarchical decomposition in Khoros and in the coder will certainly improve 
performance. According to the paper ([Sha93]) this should increase performance about 1.5 t imes. 
(Where 1.5 stands for the ratio to which the length of a bytestream decreases, white ma i11 taining 
the same image quality.) 

Other kinds of filt ering to obtain a decomposition should be tested. There is an obvious dif
fe rence between DCT transforms and Hermite transforms , and even changing parameters white 
using the same transfonn results in large differences in obtainable compression ratios . It might 
be quite possible that it depends a lot on the original , so some major research has to be clone in 
compression ratios related to the transform methocl. 

To make sure t hat the coder performs correctly, additional tests have to be clone. This involves 
using different kinds of originals, using different kinds of decomposition methods and checking the 
exact reprocluct ion of originals on bit level. 
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Chapter 6 

Evaluation 

As already mentioned in the introduction, I could not help but notice the pleasant working a tmo
sphere a t IPO. If you would need any help or advice, there was always someone who would help 
you out. The fact that I chose to do a projec t a t IPO, vision research department , fit s well with 
my personal interest in image processing. I also followed some courses in image processing and 
technology. 

The project itself was a little to comprehensive for the time tha t stood for it. Since I managed 
to complete almost every goal in the project, it is unnecessary to say that it took a lot more 
time than planned. I could have quit ted the project as soon as the amount of time inves ted was 
sufficient , but what is five weeks? Too less for a real project , t hat is. When you read this, I will 
have spend almost three times the required amount of time. Maybe there a re people out there 
who think this is just a good example of bad scheduling, but I'm afraid it is more an example of 
typical T UE practice. There is always to less time scheduled for practical training and projects . 
So be it . 

Apart from all this, I would like to thank my supervisor for his pleasant and willingly support. 
I learned a great deal of him . Now I know a lot more about compression and image processing 
tcchuiques . My C programming skills have improved a lot , a lso, and my knowledge about unix 
and Xwindows !tas greatly advanced. 

l\!Iy first official lecture, was quite an experience, too. But thanks to the support of many 
people, this worked out qui te wel!. I would like to conclude with saying tha t working a t IPO when 
you are a student is very recommendable, because you encounter so many different people from 
whom you can a lways learn something new. 
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Appendix A 

Originals 

Figure A. l: The two originals tha t were used . Left t he 'Bikerlady' and right 'Lena' . 
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Appendix B 

Program code 

This part of the appendix contains the C-code that was generated, to perform zerotree coding from 
within the Khoros software. The interface which can be used to start this program, is described 
in Appendix C All the different kinds of input options can be set in this interface. 

-authors 
M. L.A . Bierman 
-authors_end 

-short_prog_description 
ZERDTREE performs quantization and bytestream conversion of an image description 
according to the zerotree-algorithm . 
- short _prog_description_end 

-short_lib_description 
ZERDTREE performs quantization and bytestream conversion of an image des cription 
according to the zerotree-algorithm. 
-short_ lib_description_end 

!*****************************************************************! 
/• Programma- idee voor ZERDTREE •/ 

I* Initialisatie•/ 
/ • Lees de start-opties { standaard;zie oude sources} •/ 

!• if toggle 

!• if toggle 

I* 
Encode : 

0 then Encode •/ 

1 then Decade•/ 

-Lees de decompositie van een plaatje in . 
-Quantiseer en codeer het plaatje volgens het zerotree-algoritme . 

(Houdt hierbij rekening met de aangegeven boomstructuur. 
Deze beschrijft de parent-child-relaties . ) 

-Maak van de informatie een bytestream . 
-Geef de boomstructuur en andere informatie door. 
•! 

!• 
Decade : 

-Lees de bytestream in . 
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-Decodeer het plaatje volgens het zerotree-algoritme . 
(Houdt hierbij rekening met de aangege ven boomstructuur . ) 

-Maak van de informatie een decompositie. 
(Gaat vermoedelijk samen met de vorige stap.) 

-Geef de initiele informatie door, zoals eerst in het commentaarveld stond . 
(Dit gebeurt vermoedelijk al bij het initialiseren van de decompositie . ) 

l*****************************************************************I 

-manl_long_description 

!***************! 
-manl_long_description_end 

-manl_examples 
-manl_examples _end 

- manl_restrictions 

!***************! 
-manl_restr1ct1ons end 

-manl_see_also 
-manl_see_also_end 

-man3_long_description 
-man3_1ong_description_end 

-man3_restrictions 
-man3_restr1ct1ons end 

-man3_see_also 
-man3_see_also end 

-usage_additions 
-usage_additions_end 

-include_includes 
-1nclude_1ncludes end 

-include_additions 
-1nclude_add1t1ons end 

-include_macros 
-1nclude_macros end 

-main_variable_list 
struct 
char 
FILE 

xvimage *image, *readimage(); 
•cpointer, •spointer; 
*Cfile; 

int poly; I* type of image decomposition 
int 
int 
int 
int 
int 
int 

char 
char 
int 
int 

long int 
int 
float 

xy; I* processing option *I 
ts; I* sampling distance *I 
dnm · !• maximum order (signed) •! 
dim; !• 1D or 2D coefficient 
ftype; 
frame; 

comment [512] ; 
prog[30]; 
status; 

!• filter type •! 
!• frame parameter 

/• comment •/ 
/• program name •/ 
/• status flag •/ 

nrows, ncols , nbands, ntree , t_ini; 
leng, size ; 
i, j; 
one = 1.0; 
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int t = 1, f O· 
-main_variable_list_end 

-main_before_lib_call 
if (check_args()) exit(l) ; 

/•***** encode image decomposition ******! 

if ( zerotree->c_toggle == 0) 
{image= readimage(zerotree->if_file); 

if(image == NULL) 
{ fprintf( stderr, "Error opening file Xs\n", zerotree->if_file ) ; 

exit(l); 
} 

if ( image->data_storage_type != VFF _TYP_FLOAT) 
(void) lvconvert(image,VFF_TYP_FLOAT,f , t,one,one,f) ; 

status sscanf( image->comment, "poly = X2d, xy = Xld, ts X2d , \ 
dnm %2d , dim= Xld, ftype = %2d, frame= %1d -- generated by Xs", 

&poly, &xy, &ts, &dnm, &dim, &ftype, &frame, prog ); 

} 

if (status< 0) 
{ fprintf( s tderr , "cannot read paramet e r s from file Xs\n", 

zerotree->if_file); 
exit(l) ; 

} 

if ( (poly >= 3) && (poly <= 0) && (poly 1 = -4) ) 
/ • When poly = 1 , 2 or - 4 Ye continue coding •/ 
{ fprint f( stderr, "cannot perform coding for poly 

exit(l); 
} 

nrows = image->col_size; 
ncols = image->row_size; 
nbands = image->num_data_bands; 
t_ini = O; 

Xd\n", poly); 

if (poly == -4) { ntree = nbands / 3; } else { ntree O; } 

cfile = topen( zerotree- >of_file, "y" ) ; 
fputc( (char)poly, cfile ); 
fputc( (unsigned char)xy, cfile ) ; 
fputc( ( uns igned char)ts , cfile ) ; 
fputc( (unsigned char)dnm, cfile ); 
fputc ( (unsigned char)dim, cfile ); 
fputc( (char)ftype , cfile ); 
fputc( (unsigned char)frame, cfile ); 
i = nroYs / 256 ; 
j = nroYs X 256; 
fputc( (unsigned char)i , cfile ); 
fputc( (unsigned char)j, cfile ) ; 
i = ncols / 256; 
j = ncols X 256; 
fputc( (unsigned char)i, cfile); 
fputc( (unsigned char)j, cfile ); 
fputc( (unsigned char)nbands, cfile ); 
fputc( (unsigned char)ntree, cfile ); 
size = nrows * ncols * nbands ; 
cpointer = malloc( size ) ; 
if ( cpointer == NULL) 
{ fprintf( stderr, "Unable to allocate sufficient memory"); 

exit(l); 
} 

f****** decode image decomposition ******/ 
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dim 

if ( zerotree->c_toggle == 1 ) 
{ cfile = fopen( zerotree->if_file, "r" ) ; 

if(cfile == NULL) 
{ fprintf( stderr, "Error opening file Xs\n", zerotree->if_file ); 

exit(l); 
} 

poly = (char)fgetc( cfile ); 
xy = fgetc( cfile ); 
ts = fgetc( cfile ); 
drun = fgetc( cfile ); 
dim= fgetc( cfile ); 
ftype = (char) fgetc( cfile ); 
frame= fgetc( cfile ); 
i = fgetc( cfile ); 
j = fgetc( cfile ); 
nrows = i • 256 + j; 
i = fgetc( cfile ); 
j = fgetc( cfile ); 
ncols = i • 256 + j; 
nbands = fgetc( cfile ); 
ntree = fgetc( cfile ); 
size = ncols • nrows • nbands; 

cpointer = malloc( size ); 
if ( cpointer == NULL) 
{ fprintf( stderr, "Unable to allocate sufficient memory"); 

exit(l); 
} 

spointer = cpointer; 
for (i=0; i < size; i++) •spointer++ 
fclose( cfile ); 

fgetc( cfile ) ; 

sprintf( comment, "poly = X2d, xy = Xld, ts 
Xld, ftype = X2d, frame= Xld, ntree = Xld \ 

generated by zerotree", 

X2d , drun X2d, \ 

poly, xy, ts, drun, dim, ftype, frame, ntree, t_ini ); 
image= createimage( 

(unsigned long) nrows, !• number of rows •! 
(unsigned long) ncols, !• number of columns 
(unsigned long) VFF_TYP_FL0AT, 
(unsigned long) 1, 
(unsigned long) nbands, 
comment, 
(unsigned long) 0, 
(unsigned long) 0, 
(unsigned long) VFF_HS_NDNE, 
(unsigned long) VFF_HAPTYP_N0NE, 
(unsigned long) VFF_L0C_IHPLICIT, 
(unsigned long) 0 ); 

if (image== NULL) 

!• 
!• 
!• 
!• 
!• 
!• 
!• 
!• 
!• 
!• 

data storage type 
num_of_images •! 
num_data_bands •! 
comment •! 
map_row_size •! 
map_col_size •! 
map_scheme •! 
map_storage_type 
location type •! 
location_dim •/ 

{ fprintf( stderr, "Unable to create output image\n"); 
exit(0); 

} 

} 

-main_before_lib_call_end 

-main_library_call 
t ini lzerotree( image, cpointer, ksize, zerotree->c_toggle, ntree, 

zerotree->ipcf_file, zerotree->length_int, 
zerotree->t_out_int ); 

if ( 1t_ini) { (void) fprintf(stderr, "lzerotree Failed\n"); 
exit(l); } 

-main_library_call_end 

-main_after_lib_call 
if ( zerotree->c_toggle 0) 
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{ 

i = (size / (256*256*256)); j = (size / (256*256)); 
fputc( (unsigned char) i , cfile); 
fputc( (unsigned char) j, cfile); 
i = (size / 256); j = (size ï. 256); 
fputc( (unsigned char) i, cfile); 
fputc( (unsigned char) j, cfile); 
for ( i=O; i < size; i++) fputc( *cpointer++, cfile ); 
fclose( cfile ); 
printf( "encoded information, no_of_bytes = 'l.d\n" , size ); 
one= (float)(B*size) / (nrows*ts*ncols*ts); 
printf( "bit rate is Ï.f bits/pixel\n", one); 

} 

if ( zerotree->c_toggle == 1 ) 
{ 

writeimage(zerotree->of_file,image); 
if ( poly == -4) printf( "Decoded image is a hierarchical decomposition of level 'l.d\n",ntree ); 

} 

- main after_l1b_call_end 

- library_includes 
#include "/home/khoros/newtools/include/poly . h" 
-library_includes_end 

- library _input 
.IP "image" 15 
multiband xvimage structure containing the input image decomposition 
if cmode = 0 
. IP "cpointer" 15 
pointer to character array that holds coded bitstream 
. IP "csize" 15 
size of character array 
.IP "cmode" 15 
either encode (cmode=O) or decade (cmode=l) image decomposition 
-library_input_end 

-library_output 
.IP "cpointer" 15 
character array holding the encoded bitstream if cmode=O 
. IP "csize" 15 
length of encoded bitstream (in #bytes) if cmode=O 
.IP "image" 15 
multiband xvimage structure containing the output image decomposition 
if cmode=l 
. IP "lzerotree" 15 
return zero on failure and t_ini upon success (t_ini if cmode=O else TRUE) 
-library_output _end 

- library _def 

/****** global variables ******/ 

int nrows , ncols, nbands, 

unsigned char •spointer; 
int •im_buffer; 
int •el_buffer; 
char •coding_buffer; 

char pc_rel[lOO] (8); 
int count8, temp; 

int maxt_out , quit ; 

nsize , size, ntree, t_ini, conversion, dec ; 
/• parameters of image decomposition •/ 
/• coded bitstream pointer•/ 
/• integer converted image•/ 
!• coded elements buffer•/ 
/• memory for coordinates of old and new 

elements •/ 
/• parent-child relations buffer•/ 
/• bitstream variables •/ 

long int maxlength , bsize, leng; 
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!*********************************************************************** 
start library procedure 

***********************************************************************! 

int lzerotree( image, cpointer, csize, cmode, ntree, pc_file, 
mlength, maxt_out ) 

struct xvimage *image; 
unsigned char *Cpointer; 
long int •csize; 
int cmode; 
char *pc _f ile; 
int mlength; 

-library_def_end 

-library_code 
{ 

int poly; 
int xy; 
int ts; 
int dnrn; 

int dim; 
int ftype; 
int frame; 

int status; 
char prog[30]; 
int i. x, y, T, max; 
float *pointer; 
FILE *ipcf; 

void reset_loc _buffer(); 
void copy_buffer(); 
void retrieve_dom(); 
void retrieve_sub(); 
void detect_elements(); 
void create_dom_code(); 
void create_sub_code(); 
void get_ini _t(); 
int get_p_c(); 
void code(); 
void de code() ; 

nrows = image->col_size; 
ncols = image->row_size; 

/* type of image decomposition *I 
I* processing option *I 
I* sampling distance *I 
I* maximum order (signed) *I 
I* 10 or 20 coefficient order *I 
I* filter type *I 
I* frame parameter *I 

/* status flag */ 
I* program name *I 

/* image data pointer *I 

nbands = image->nurn_data_bands; 

nsize = nroYs * ncols; 
size = nroYs * ncols • nbands; 
maxlength = 1024 * mlength; 
countB = 8; 
bsize = O; 
quit FALSE; I* keep coding as long as quit==FALSE *I 
temp= O; 

spointer = cpointer; / • make pointer global •/ 
pointer= (float *)image->imagedata; /• the image pointer •/ 
im_buffer = (int *)calloc(size,sizeof(int)); 
el_buffer = (int •)calloc(size,sizeof(int)); 
coding_buffer = (char •)calloc(size,sizeof(char)); 

if ( (im_buffer == NULL) 11 (el_buffer == NULL) 11 (coding_buffer 
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dnm 

{ fprintf( stderr, "Unable to allocate sufficient memory") ; exit(l); } 

max = 1 ; 
for (i=O; i < maxt_out; i++) max *= 2· 

printf( "nbands = Ï,d and maxlength = 'l,d\n", nbands, maxlength); 

f* Read the parent-child relations, and *f 
for (y = 1; y < nbands + 1; y++) f* put them in a buffer, where 111 means *f 
{ f* "no relation found" *f 

for (x = 1 ; x < 9; x++) 
{ 

pc_rel[y-1] [x-1] = get_p_c(pc_file,y,x) ; 
} /* End FDR x *f 

} /• End FOR y *f 

'*********************************************! 
/•********** code coefficients ***********/ 
!*********************************************' 

if cmode == 0) 
{ 

f* i ni t ialize parameters *f 

status = sscanf( image->comment, "poly = 'l,2d, xy = Ï,ld, t s 
'l.2d , dim = Ï,ld, ftype = Ï,2d, frame = Ï,ld -- generated by ï.s" , 

kpoly, kxy, kts, kdnm, &dim, kftype, &frame, prog ); 
if ( status < 0) 
{ fprintf( stderr, "lzerotree : cannot read parameters \n") ; 

exit(!) ; 
} 

convers ion poly ; f* make poly globally known *I 

fo r ( i=O ; i < size ; i++) *im_buffer++ = ( int)•pointer++ ; 
im_buffer -= s ize ; f* Initializing copy of original image *I 

'l,2d, \ 

for ( i=ns ize ; i>O; i - -) •(im_buffe r + i) - = •(im_buffer + i-1); •/ 
for (i=O ; i<nsize ; i++) • ( im_buffer + i) -= 128 ; 
/• DC- coefficients now are between -128 and 128 so the algorithm 

works more efficiently •/ 

t_ini = O; 
get_ini_ t O ; 
T = t_ini; 

printf( "code downto 

reset_loc_buffer(); 

threshold 'l.d\n" , rnax) ; 

while( (!quit) kk (t_ini >= max) ) 
{ 

f****** Dominant Pass******/ 

detect_elements() ; 

create_dom_code(); 

/• Find elements higher than threshold and 
put them in the "local_code_buffer", 
copy found elements to "elements_buffer" 
and make them zero in the " image_buffer" 
•! 

/• Create dominant part of the bytestream , 
according to input parameters•/ 
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printf("Dominant code generated\n"); •/ 

I****** Subordinate Pass ******/ 

if ( 1 quit) 
{ reset_loc_buffer(); 

create_sub_code(); I* Create subordinate part of bytestream *I 

printf("Subordinate code generated\n") ; *I 
} 

t 1n1 /= 2; 
} 

•csize bsize; 

} /* End of "code coefficients" *I 

l*********************************************I 
/********** decode coefficients ••••••••••/ 
!*********************************************! 

if cmode == 1 ) 
{ 

x = •spointer++; 
y = •spointer++ ; 
leng= (x • 256*256•256 + y * 256*256); 
x = •spointer++; 
y = *spointer++; 
leng+= (x * 256 + y); 
printf("Retrieved length 

x = *spointer++; 
y = *Spointer++; 
t_ini = (x * 256 + y); 
printf("Retrieved t_ini 

reset_loc_buffer(); 

Ï,d\n", leng); 

Ï,d (256 x Ï,d + Ï,d)\n" ,t_ini, x, y); 

while ( (!quit) && (t_ini >= max) ) 
{ 

I****** Dominant Pass******/ 

retrieve_dom(); I* Get coordinates of new elements (in buffer) •/ 

I****** Subordinate Pass******/ 

if (!quit) 
{ reset_loc_buffer(); 

retrieve_sub(); I* Alter values of elements in buffer•/ 

} 

t_ini /= 2; 

} 

for (i=O; i<nsize; i++) *(im_buffer + i+1) += •(im_buffer + i); •/ 
for (i=O; i<nsize; i++) •(im_buffer + i) += 128; 

printf("Copying buffer to image\n"); 
for (i=O; i < size; i++) 
{•pointer= (float)•im_buffer; pointer++; im_buffer++; } 

/• Put final version of image in image pointer•/ 

T TRUE; 

41 

---



} /* End of "decode coeffi c ients" *I 
pr intf("Size of decoded part : ï.d bytes\n" ,bsize); 

return(T) ; 

} /* End of "lzerotree" *I 

!************************************************************************** 
code(n) : 

Procedure to add a one or a zero to the bitstream 
**************************************************************************! 
void code(n) 
unsigned char n· 
{ 

count8--; 
if (count8 < 0) count8 = 7; 
if (n==l) { n = n << count8; temp= temp I n; } 
if ( countB == 0) { •spointer++ temp ; bsize++; 

temp= 0;} 
if (bsize >= maxlength) { quit TRUE; if (count8 1 = 0) *spo.inter++ temp ; } 

/••************************************************************************ 
decode : 

Procedure to substract the next bit in the bitstream 
**************************************************************************' 
void decode() 
{ 

} 

int n· 

n = 1 · 
count8- - ; 
if (count8 < 0) count8 = 7; 
if (count8 >= 7) {temp= •spointer++; bsize++; } 

n = n << count8; 
if (temp & n) {n = TRUE;} else {n = FALSE ;} 

if ( (bsize >= maxlength) 11 (bsize > leng) 
{ quit = TRUE; printf("Quit is TRUE\n"); } 

dec= n; 

!•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
retrieve_dom : 

Get coordinates of new elements (in buffer) 

**************************************************************************! 
void retrieve_dom() 
{ 

/• Aan de hand van de resolutie, het aantal banden en de organisatie van de 
banden gaan we de coordinaten bepalen van de coefficienten. Deze leggen we 
vast in de coding_buffer, zodat ze onthouden blijven . 
Dit doen we tot we alle banden gehad hebben . 

int pos , neg, IZ, Z, ZTR, dZTR ; 
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int curr_band, k, i , check , templ , number, n , total ; 
int kids[l00]; 

po s = 0 ; neg= 0; IZ 
curr_band = 0 · 

0; Z 0; ZTR 0; dZTR O· 

check 0 · 
total= 0 ; 

if (conversion -4) printf("Hierarchical is not yet implemented\n"); •/ 
/• Hierarchical •/ 

if ( (conversion 1) 11 (conversion 2) { •/ 
/• Polar k Carthesian */ 

while (curr_band < nbands) 
{ 

i = O; n = O; /• Find all childs for curr_band •/ 

while ( (pc_rel[curr_band] [il > 0) kk 

(pc_rel[curr_band] [il < 111) ) 
{ kids[i] = pc_rel[curr_band] [i++]; } 

for (k = 0 ; k < i ; k++) 
{ 

} 

if (pc_rel[kids [k]] [0] 1 = 0) 
{ 

} 

while ( (pc_rel[kids[k]] [n] > 0) kk 

(pc_rel[kids[k]] [n] < 111) ) 
{ kids[i+n] = pc_rel[kids[k]] [n] ; n++; } 
i +=n; 

n = O; 

number = i; 

/• for (i=0; i<number; i++) printf("'l.d ",kids [i]); 
printf(" Current band = 'l.d and bsize = ï.d\n", curr_band , bsize); •/ 

if (curr_band == 0) 
{ 

} 

for (k = 0 ; k < nsize; k++) 
{ 

decode(); if (dec) 
{ total++; 

decode(); 

} 

if (dec) {•(coding_buffer + k) = 6 ; pos++;} 
else {•(coding_buffer + k) = 2; neg++ ; } 

else 
{ •(coding_buffer + k) I= 8 ; Z++ ; 

decode(); if (!dec) 

} 

{ for (i=0; i < number; i++) 

} 

{ •(coding_buffer + kids[i] * nsize + k) I= 8 ; 
dZTR++ ; } 

if (quit) goto end_dom ; 
} 

else /• curr_band isn ' t zero•/ 
{ 
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I* check if decoding is necessary, if so, continue, else next band *I 
check= O; 
for (k=O; k < nbands ; k++) 
{ 

for (i=O; i < 8 ; i++) 
{ if (pc_rel[k] [i] == curr_band) check 1; } 

} 

if (check == 1) 
{ 

for (k=O ; k < nsize ; k++) 
{ 

if ( (bsize == (leng + 1)) 11 (quit) ) goto end_dom ; 
if (*(coding_buffer + curr_band * nsize + k) & 8) 
{goto next_one;} 
decode(); if (quit) goto end_dom; 

if (dec) 
{ total++ ; 

} 

decode(); if (dec) 
{*(coding_buffer + curr band* nsize + k) 6 · 

pos++ ; } 
else 
{*(coding_buffer + curr band* nsize + k) 2· 

neg++; } 

else 
{ if (pc _rel[curr _band] [O] == 0) 

{*(coding_buffer + curr_band * nsize + k) I= 8; 
Z++;} 

else 
{ Z++; 

} 

next one : 

*(coding_buffer + curr_band * nsize + k) I= 8 ; 
decode(); if ('dec) 

{ for (i=O; i < number; i++) 

} 

{*(coding_buffer + kids[i] * nsize + k) I= 8; 
dZTR++;} 

} /* End FOR k */ 
} I* End IF check *I 

} 

!• 
printf("Sign . : 'l.d, Pos : 'l,d, Neg : 'l,d , IZ+Z+ZTR : 'l,d, dZTR : 'l,d\n", total , pos, neg, Z, dZTR); 
*I 

curr_band++; 
} /* End WHILE curr_band *I 

end_dom : ; 

I* printf("bsize = 'l.d\n",bsize) ; *I 

for (k = O; k < size; k++) 

} 

{ 

} 

if (*coding_buffer & 2) && ('(*coding_buffer & 1)) ) 
{ if (*coding_buffer & 4) { *im_buffer = (int)(t_ini*l . 5) ; } 

else { *im_buffer = (int)(t_ini*-1.5); } 
} 

coding_buffer++; im_buffer++ ; 

coding_buffer - = size; im_buffer -= s ize ; 

End of Polar & Carthesian *I 
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} 

/•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
retrieve_sub : 

Alter values of elements in buffer 

**************************************************************************' 
void retrieve_sub() 
{ 

/• Aan de hand van het totale aantal gevonden elementen en de t ini gaan W? 

deze aanpassen in de im_buffer 

int k · 
int pos, neg; 

pos = O; neg= O· 

for (k = O; k < size; k++) 
{ 

if (•coding_buffer k 1) 

{ decode(); if (dec) { •im_buffer += (int) ( t_ini/4); pos++;} 
else { •im_buffer - (int)(t_ini / 4); neg++;} 

} 

} 

if (quit) goto end_sub; 
coding_buffer++; im_buffer++ ; 

cod i ng_buffer -= size; im_buffer size ; 

end_sub : if (k < size) { coding_buffer -= k; im_buffer k;}; 
/• printf ("decoded pos : 'l.d, neg : 'l,d\n" , pos, neg) ; •/ 
} 

/••······································································· 1 dete c t_elements : 
Procedure to find element s higher than the current threshold and put t1em 
in the "local_code_buffer" and to copy found elements to "elements_buf 'er " 
and make them zero in the "image_buffer" 

................................................•......................... ' 
void detect_elements ( ) 
{ 

} 

int k, total ; 

total= O; 
for(k=O; k < size; k++) 
{ 

} 

if (abs(•im_buffer) >= t_ini) 
{ •coding_buffer = 2; 

•el_buffer •im_buffer; 
•im_buffer = O; 
total++; 

} 

im_buffer++; 
coding_buffer++ ; 
el_buffer++ ; 

printf("New (detect)elements found 
im_buffer -= size; 
coding_buffer -= size; 
el_buffer -= size ; 

'l.d\n", total) ; •/ 
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!************************************************************************** 
create _dom_code : 

Procedure to create dominant part of the bytestream , according to input 
parameters (hard part) 

**************************************************************************/ 
void create_dom_code() 
{ 

!• 
- kijk of curr_band gecodeerd moet worden (dus met parents, 

of wanneer curr_band == 0) 
nsize maal: 

- lees •(im_buffer + nsize * curr_band) 
bepaal met t_ini of POS/NEG-> ja: code en nieuwe, nee : ga verder 
kijk of er parents zijn-> ja: als code is ZTR of afstammeling 
van ZTR dan nieuwe en anders ga verder, nee : als curr_band == 0 
dan ga verder en anders nieuwe 
kijk of er kids zijn-> nee : code Z, ja : is er een groter dan 
t_ini, code IZ en anders code ZTR 

- ga naar het eerste punt 
•! 

int pos, neg, IZ, Z, ZTR, dZTR; 
int curr_band, k , i, l , check, temp1 . number, n , once, par , total ; 
int kids[lOO]; 

curr_band = O· 
once = O; 
total= O; 
par O· f* memorize parent •/ 
pos= O; neg= O; IZ = O; Z = O; ZTR D; dZTR O· 

f* printf("create_dom_code start : conversion = 'l,d\n" , conversion); •/ 

if (conversion == - 4) printf("Hierarchi cal is not yet implemented\n"); 
/• Hierarchical •/ 

if ( (conversion 1) 11 (conversion 2) ) /• Polar & Carthesian •/ 
{ 

while (curr_band < nbands) 
{ 

!• printf( "current band : 'l.d bsize 'l.d\n", curr_band , bsize) ; 
printf("count8 is 'l,d\n" , count8); •! 

check ~ O; 
k = O; 
if (curr_band 1 = 0) 
{ 

for (k=O; k < nbands; k++) 
{ 

for (i=O; i < 8; i++) 

/• search for parent •/ 

{ if (pc_rel[k] [i] curr_band) {check= 1 ; par= k;}} 
} 

} /• kijk of curr_band gecodeerd moet worden (dus met parents, 
of wanneer curr_band == 0) •/ 

if (check== 1) printf("Parent found : 'l,d\n", par); •/ 
if ( (check 1 = 1) && (curr_band 1 = 0) ) 
{ printf("Band 'l,d is not coded\n", curr_band) ; goto newband ;} 

/• parent found or curr_band == 0 •/ 

i O; n O· /• Find all children of curr_band •/ 
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i,hile ( (pc_rel [curr _band] [i] > 0) kKi 

(pc_rel[curr_band] [i] < 111) ) 
{ kids[i] = pc_rel[curr_band] [i++]; } 

for (k = 0; k < i; k++) 
{ 

} 

1 

if (pc_rel[kids [k]] [0] 1 = 0) 
{ 

} 

n = 

i; 

i,hile ( (pc_rel [kids [k]] [n] > 0) && 
(pc_rel[kids[k]] [n] < 111) ) 

{ kids[i+n] = pc_rel[kids[k]] [n]; n++; } 
i +=n; 

O· 

for (number = 0; number < nsize; number++) 
{ 

temp! = *(el_buffer + nsize * curr_band + number); 
if (*(coding_buffer + nsize * curr_band + number) k 1) {temp!= 0;} 

if (abs(temp1) >= t_ini) 
{ 

f* Is this element significant ? *I 

} 

code(!); 
if (quit) goto end; 
total++; 
if (temp! > 0) {code(!); pos++;} else {code(0); neg++;} 
goto next; 

if (quit) goto end; 

if ( (*(coding_buffer + nsize *par+ number) k 8 ) 
&& ( curr_band 1= 0) 

{ *(coding_buffer + nsize * curr_band + number) I= 8· 
dZTR++; 
goto next; 

} /* Is parent ZTR or descendant, than current element too *I 

if (pc_rel[curr_band] [0] == 0) { code(0);} 
else f* Find IZ or ZTR *f 
{ 

} 

code(0); 
n = O; 
for (k 0; k < l; k++) 
{ if ( (abs(*(el_buffer + kids[k] * nsize + number)) >= t_ini) 

kk ( 1 (•(coding_buffer + kids[k] * nsize + number) k 1)) 
n = 1· 

} 

if (n 1) {code(!); IZ++ ;} 
else { code(0); ZTR++; 

*(coding_buffer + nsize * curr_band + number) I= 8; 
} 

if (quit) goto end; 

next : 

} f* End F0R number •/ 

nei,band: ; 

curr_band++; 

•· 

f* printf("Sign.: 'l.d, Pos : 'l,d , Neg: 'l,d, IZ: 'l.d, Z: 'l.d, ZTR : 'l.d, dZTR : 'l,d\n", total , pos, neg, IZ, Z, ZTR, dZTR); *f 
} f* End WHILE curr_band */ 
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end: ; 
} /* End Polar & Carthesian *I 

} 

!************************************************************************** 
create_sub_code : 

Procedure to create subordinate part of bytestream (easy part) 
**************************************************************************! 
void create_sub_code() 
{ 

int k; 
int pos , neg ; 

pos= O; neg= O· 

for (k = O; k < size; k++) 
{ 

if (*coding_buffer & 1) 
{ 

if (abs(•el_buffer) >= t_ini) 
{ if (•el_buffer > 0) {•el_buffer 

else {•el_buffer += t_ini;} 
} 

t_ini ; } 

if (abs(•el _buffer) < (t_ini/2) ) {code(O);} else {code(l);} 
} 

coding_buffer++; el_buffer++; 
} 

coding_buffer - = size; el_buffer -= size; 
/• printf("coded pos : ï.d, neg : ï.d\n",pos , neg) ; •/ 
} 

! •************************************************************************* 
reset_loc _buffer : 

Procedure to reset all coefficients found in the last Dominant Pass and 
copy them to the global buffer 

**************************************************************************' 
void reset _loc_buffer() 
{ 

int k , total ; 

total = O; 
for(k=O; k < size ; k++) 
{ if C•coding _buffer & 2) { •coding_buffer = 1 ; total++ ;} 

if C•coding_buffer & 1) { •coding_buffer = 1 ;} 
if ( •(•coding_buffer & 1) ) { •coding_buffer = O;} 

coding_buffer++ ; 
} 

coding_buffer -= size; 
/• printf("Total resets : ï.d\n", total); •/ 

} 

!•************************************************************************* 
get_ini_t : 

Procedure to find the i nitial threshold 
**************************************************************************! 
void get_ini_t() 
{ 

int k, t; 
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float sl,s2; 

t = O; 
for(k=O; k < size; k++) 
{ 

} 

if ( abs(•im_buffer) > t ) t 
im_buffer++; 

im_buffer -= size; 

abs(•im_buffer) ; 

/• Find a power of two which is at least as 
big as half of the maximum element •/ 

k = 1; 
while (k < t) k •= 2 · 
t k / 2; 
k = t; 

•spointer++ 
•spo inter++ 
t_ini = t; 
printf("final 

(unsigned char)(k / 256); 
(unsigned char)(k ï. 256); 

t 1n1 'l.d\n",t_ini) ; 

!************************************************************************** 
get_p_c : 

Procedure to retrieve the parent-child dependencies 
**************************************************************************! 
int get_p_c(fn,m,n) 
char •fn; 
int m,n; 
{ 

int c,i; 
FILE •fp; 
int rij.kolom; 
char s[BO]; 
int result; 

rij =1; kolom=! ; i=O; s[79] ' -'; 
fp = fopen(fn,"r"); 

while (rij 1 = m) 
if ((c = getc(fp)) == '\n') rij++; 

/• no. rows is always mor smaller•/ 

while ( (c = getc(fp)) 
s[i] = c; i++; 

if (kolom • = n) 
{ 

i = O; 

while (kolom 1 = n) 
{ 

} 

while 
while 

kolom++; 

(c 

(c 

getc(fp)) 
getc(fp)) 

, , ) ; 

1 = ' ') if ((c 

' ') if ( ( C 

if ( (c ! = '\n') U (c 1 = EOF) ) {s [i] 
{ goto out;} 
i++; 

} else {s[79] = 'x '; } 

' \n ' ) 11 (c 
'\n') 11 (c 

EOF)) goto out ; 
EDF)) goto out ; 

c; s[79] 'x' ;} else 

while ( (c = getc(fp)) 1 = ' ' U (c != EDF) U (c 1 = '\n') ) 
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{ 

} 

s [il C; 
i++ · 

out: 
s[i] = '\0' ; 
if (s[79] == '-') { s[0] 

fclose(fp); 

result = atoi(s); 

'1'; s[l] '1 ' ; s [2] ' 1 ' ; s [3] '\0'; } 

return(result); /• Result is 111 if nothing is found. Check for valid m •/ 
} 

!*************************************************************************! 

- library_code_end 

- library _mods 

- library_mods_end 
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Appendix C 

The int erf ace 

In this part of the appendix, a so-called . pane-file is shown. This file contains a number of codes 
which produce an interface that can be used in Cantata, which is a GUi that can be used to eas
ily interconnect and use the different kinds of programs available from the I--:horos software library. 

-F 4 . 2 1 0 170x7+10+20 +35+1 ' CANTATA Visual Programming Environment for the KHOROS 
System' can tata 

-M 1 0 100x40+10+20 +27+1 'IPO - Polynomial Processing' poly_processing 
-P 1 0 80x38+22+2 +O+O 'Zerotree - Convert between image decomposition and byte stream' 
zerotree 

-b +0+2 'Input filenames' 
-I 1 0 0 1 0 1 58x1+2+3 +O+O 
or input byte stream' if 

-I 1 0 0 1 0 1 58x1+2+4 +O+O 
file' ipcf 

-b +0+6 'Output filenames' 
-0 1 0 0 1 0 1 58x1+2+7 +O+O 

image decomposition ' of 
-b +0+10 ' Options' 

'Input file ' nonquantized image decomposition 

'Parent-Child file ' 'input parent-child dependencies 

'Output file ' 'output byte stream or nonquantized 

- c 1 0 0 1 0 27xl+O+ll +2+0 2 0 'Coding direct ion' ' coding direction ' c 'image 
decomposition -> byte stream' 'byte stream -> image decomposition ' 

-c 1 0 0 1 0 27x1+0+13 +2+0 3 0 'Conversion t ype ' 'conversion t ype ' conversion 'Polar ' 
'Cartesian' 'Hierarchical' 

-i 1 0 0 1 0 58x1+2+16 +O+O O 512 512 'Length of bytestream (Kb)' 'Size of uncompressed 
bytestream' length 

-i 1 0 0 1 0 58x1+2+18 +O+O 1 10 1 'Quality (threshold) ' 'Quantisation level' t_out 
-R 1 0 1 13x2+1+21 'Execute' 'do operation' zerotree 
-H 1 13x2+46+21 'No Help' 'man page for lattice' $NEWTOOLS/doc/manpages/zerotree . 1 
-E 
- E 
-E 
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