

Life cycle costs optimization for capital goods

Citation for published version (APA):
Driessen, J. P. C. (2018). Life cycle costs optimization for capital goods. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische Universiteit Eindhoven.

Document status and date:
Published: 21/06/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/82304f5e-a162-41bd-a08f-5e0d18ca54fb

Life Cycle Costs Optimization for Capital Goods

This thesis is part of the Ph.D. thesis series of the Beta Research School for Operations
Management and Logistics (onderzoeksschool–beta.nl) in which the following Dutch
universities cooperate: Eindhoven University of Technology, Maastricht University,
University of Twente, VU Amsterdam, and Wageningen University and Research.

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-4479-0

This research has been funded by The Netherlands Organisation for Scientific
Research, ASML, and Dutch Railways.

Life Cycle Costs Optimization for Capital Goods

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor

Promoties, in het openbaar te verdedigen
op donderdag 21 juni 2018 om 16:00 uur

door

Joni Peter Carolus Driessen

geboren te Helden

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr. I.E.J. Heynderickx
1e promotor: prof.dr.ir. G.J.J.A.N. van Houtum
co–promotor: dr.ir. J.J. Arts
leden: prof.dr.ir. R. Dekker (Erasmus Universiteit Rotterdam)

prof.dr. T. van Woensel
prof.dr. G.J. Woeginger (RWTH Aachen University)

adviseur: prof.dr. A.A. Scheller–Wolf (Carnegie Mellon University)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Acknowledgments

Going back to the start of my university trajectory in 2007/2008, I – and numerous
others that already knew me by then – would have not imagined me starting and
finishing a PhD. How different everything turned out in those passed 11 years, as
this thesis proves. Moments of struggle, frustration, joy, cooperation and pride have
succeeded one another in the past four years. Most of these moments are the result
of the interaction with many people, who each have contributed to the realization of
this thesis. For that, I deeply thank each and every one of you. However, there are
some people that deserve extra attention.

First of all, I am very grateful to my co–promotor and daily supervisor Joachim
Arts. Your enthusiasm, positive attitude towards research problems, and extensive
knowledge of mathematical techniques has been of tremendous guidance in the last
four years. I thank you for the critical remarks and comments, for the spontaneous
and lengthy meetings, for discussions on less relevant things (like what fonts look nice
in a thesis), and for your time and effort invested in me.

Next, I would like to express my gratitude to Geert–Jan van Houtum. Your ability
to dissect and frame problems is remarkable, from time to time frustrating, but in
the end one of the most valuable things I have learned from you. I also thank you
for stimulating me to zoom out and to rethink what research means in a practical
context.

It took me more than a year and a half to prove Theorem 3.1 in Chapter 3. This
proof would not have made it into this thesis if it were not for Joost de Kruijff. I
remember telling you about the problem that I was facing with “this annoying thing
that has to be true” back in 2017. A couple of days later we had discussed the problem

extensively to conclude that “it is pretty annoying to prove” (your own words, Joost).
Yet, despite its annoyance, we managed to crack the problem and I am very grateful
for all your help and input.

Then, a special word for Alan Scheller–Wolf. I would like to thank you for hosting
my visit to Carnegie Mellon University in the spring of 2017. Despite a busy agenda,
you always gave me the impression it was empty during our discussions on research.
I thank you for our cooperation that resulted in Chapter 5, and I am very glad that
you agreed to be part of my committee.

I would also like to thank Rommert Dekker, Gerhard Woeginger, and Tom van
Woensel for being on my thesis committee, taking the time to read and review the
thesis, and providing me with valuable feedback.

It has been a great pleasure to conduct part of my research at the two project partners,
ASML and Dutch Railways. I would like to thank both parties for their support. In
particular, I would like to thank Mehmet Atan for the feedback from a practical
perspective and René Habets for the inspiration and fruitful discussions related to
Chapters 3 and 4. At Dutch Railways, I am very grateful to Bob Huisman for his
open minded attitude towards my research problems and the excellent ability to relate
these problems to Dutch Railways.

Doing a PhD is rather lonesome job, but luckily I have shared an office with two nice
roommates, who both deserve some extra attention. I would like to thank my first
roommate Denise Tönissen for providing a nice working atmosphere in our office and
for the nice discussions on research and non–research topics. I also thank my second
roommate Simon Voorberg for his company and sense of humor during the last year
of my PhD.

It has been a pleasure work in the OPAC group, and this is a direct consequence
of the nice atmosphere created by all colleagues. Specifically, I would like to thank
Zümbül Atan, Sjors Jansen, Kay Peeters, Yeşim Koca, Mirjam Meijer, and Simon
Voorberg for joining me to the canteen for a morning/afternoon coffee. Furthermore,
I would like to thank Claudine Hulsman and Christel van Berlo for the very welcome
social moments, each of which I deeply value.

Next, I thank my friends for the interest in my research, even if it were only pretended
interest. However, I am particularly thankful for the provided distraction from
research. The lunches and dinners together, as well as the weekend/holiday trips
have truly been valuable for taking my mind off research.

Finally, a brief word for my closest family. I am very grateful to the unconditional
interest of my parents in my research. However, this stands in pale comparison to
your support and the life lessons you have taught me. These have strongly influenced
the successful completion of this thesis; thank you for all of this. A last and most
important word belongs to Guusje. Your patience and understanding for a drifting
mind are most admirable, and have been instrumental to this thesis. Your support

and love, however, have been significantly more important for completing this thesis.
Thank you.

Contents

1 Introduction 1
1.1 A system life cycle . 2

1.1.1 Lowering life cycle costs . 5
1.2 Research problems . 5

1.2.1 Service part effects in commonality and reliability decisions . . 6
1.2.2 Line Replaceable Units . 7
1.2.3 Implementation of system modifications 8

1.3 Research objective . 10
1.4 Contributions of thesis . 10

1.4.1 Service part effects in commonality and reliability decisions . . 11
1.4.2 Line Replaceable Units . 12
1.4.3 Implementation of system modifications 13

1.5 Thesis outline . 15

2 Service part effects for commonality and reliability 17
2.1 Introduction . 17
2.2 Literature . 20
2.3 Models . 23

2.3.1 Anticipating approach . 23
2.3.2 Non–anticipating approach . 26

2.4 Optimal reliability and stock levels . 27
2.4.1 Anticipating approach . 27
2.4.2 Non–anticipating approach . 33
2.4.3 Comparing optimal reliability decisions 33

2.5 Commonality decision . 34

2.5.1 Non–anticipating approach . 34
2.5.2 Anticipating approach . 35
2.5.3 Comparing commonality decisions 38

2.6 Cost effects . 40
2.7 Conclusion . 42
2.A Proofs . 44
2.B Poisson distributed demand . 51
2.C Extra numerical insights . 54

3 Design of disjoint Line Replaceable Units 59
3.1 Introduction . 59

3.1.1 Literature . 60
3.2 Model . 62

3.2.1 An illustrative example . 62
3.2.2 A generic model . 66

3.3 Binary programming formulation . 69
3.4 Set partitioning . 71

3.4.1 The relationship between M and LPM 72
3.4.2 Solving LPM and M . 80

3.5 Numerical experiments . 82
3.5.1 Instance generator . 82
3.5.2 Computational results . 83

3.6 Conclusions . 86
3.A Deriving H(e) . 89

4 Design of non–disjoint Line Replaceable Units 91
4.1 Introduction . 91
4.2 Model . 92
4.3 Binary programming formulation . 96
4.4 Numerical experiments . 97

4.4.1 Results of C–LRU Design . 97
4.4.2 Comparing LRU Design to C–LRU Design 100

4.5 Conclusion . 103
4.A Numerical examples . 105

5 Implementation of system modifications 107
5.1 Introduction . 107
5.2 Literature . 111
5.3 Model . 113
5.4 Instant Invest . 115
5.5 Phased Invest . 124
5.6 Numerical experiments . 127
5.7 Conclusion . 134
5.A Stay Put . 137

5.B Rapid Upgrade . 137

6 Conclusions 141
6.1 Main results . 141

6.1.1 Service part effects in commonality and reliability decisions . . 142
6.1.2 Line Replaceable Units . 143
6.1.3 Implementation of system modifications 144

6.2 Future research . 146

Bibliography 149

Summary 155

About the author 161

1
Introduction

The purchase of a new car is not an overnight decision. Many people compare various
cars over and over again until they reach a decision on which car to invest. The
investment decision is complex: it is not based on a single dimension of the car
such as the price. Instead, many people compare various cars based on multiple
dimensions: purchase price, depreciation, fuel economy, insurance costs, reliability
estimates, road tax1 etc. In other words, the total cost of owning each of the various
cars are compared, and subsequently a well considered investment decision is made.
The same decision process is followed in many other settings, but it is particularly
useful when the costs of owning a system become large. For such capital intensive
systems – e.g. aircraft, trains, lithography systems, MRI scanners, and baggage
handling systems – the operational costs can account for 70–80% of the total costs
of ownership2 (Saranga and Kumar, 2006; Öner et al., 2007; van Dongen, 2011).
Therefore, considering other aspects besides the initial purchase price is crucial for
making the right investment decision. As a consequence, customers of capital intensive
systems often require Original Equipment Manufacturers (OEMs) to offer a complete
package that considers the total costs over the product’s lifetime including the initial
purchase cost, the operational costs and the costs of retiring a system – rather than
just the initial purchase costs. Some examples of such customer – OEM relationships
are: KLM Royal Dutch Airlines (customer) – Airbus (OEM), Samsung (customer) –
ASML (OEM), Dutch Railways (customer) – Bombardier (OEM). In response, OEMs
have developed contractual mechanisms that make them responsible for more than
just design and production: OEMs have started to take responsibility for a so–called

1Car owners pay an annual road tax in The Netherlands.
2Authors typically include the costs for downtime in these figures.

2 Chapter 1. Introduction

system life cycle.

This thesis deals with decisions that affect this life cycle and the corresponding costs.
As a consequence, we first explore a system’s life cycle in further detail in Section
1.1. Moreover, we shed some more light on the responsibilities that the OEM carries
throughout a system’s life cycle. Subsequently, we explain – in Section 1.2 – three
different decision problems that the OEM encounters during the life cycle of a system.
Each of these problems influence the costs incurred later in the life cycle and are not
trivially solved. Therefore, our objective is to develop mathematical decision support
models that help to solve the decision problems. This research objective is presented
in Section 1.3. In pursuing this research objective, we make various contributions
that are presented in Section 1.4. We conclude this chapter in Section 1.5 presenting
an outline and the main methodologies used in each of the following chapters.

1.1. A system life cycle

The identification of the needs and requirements initiates the life cycle of a system.
The system is designed carefully, after which it is produced. Subsequently, the system
is exploited during the usage phase; the OEM or user may modify the system during
this usage phase to enhance performance. Finally, the system ages and reaches its
retirement at some point in time. We have depicted a system life cycle in Figure 1.1,
based on Kumar et al. (2012).

Needs Design Production Usage Retirement

Modification

Figure 1.1: A system life cycle

Traditionally, OEMs were only concerned with the identification of the needs, the
design, and production of their systems. After production, the systems were sold
to the customer and all operational aspects would be the customer’s responsibility.
However, recently the contracts that OEMs close with their customers incentivize the
OEMs to consider aspects from the usage phase (also called after–sales aspects) such
as service part provisioning, maintenance and system modifications. Two common
contracts are full service contracts and performance based contracts (Cohen et al.,
2006; Selviaridis and Wynstra, 2015). Under a full service contract, the customer
pays the OEM a periodic fee and the OEM has to ensure that his systems meet

1.1 A system life cycle 3

certain criteria such as availability or productivity criteria. This means that the OEM
performs maintenance to the systems, but he also carries service part inventories in
order to respond quickly to system failures. In a more extreme case, the OEM may
also decide to modify the systems in order to meet the criteria in the contract.

Under a performance based contract, the customer pays the OEM based on the
performance. This means – in practice – that the earnings of the OEM are
proportional to the performance of a system. That is, if a system is performing
better (worse) than a specified target, the OEM is rewarded (penalized) for this.
In the printing industry, companies such as Xerox and Océ use performance based
contracts that reward OEMs if more pages are printed, because customers pay per
printed page. On the other hand, OEMs pay penalties if certain availability criteria
are not met.

The contracts motivate OEMs to reduce the total costs that are accrued over the life
cycle; we call these costs life cycle costs (LCC). Life cycle costs can be considered
from an OEM or customer perspective. An OEM distinguishes between design and
production costs, while these costs are included in the purchase costs for a customer.
If we take a customer perspective, the LCC are also known as total cost of ownership,
see for instance Ellram (1994). In this thesis, we restrict our attention to OEMs and
do not use the term total cost of ownership further.

OEMs that close service contracts with their customers are interested in lowering the
LCC as they carry responsibility for the major part of the life cycle. The OEM’s efforts
for reducing the LCC start as early as the needs and design phase, when the system
is developed. The decisions made during design vary from product architectural
decisions, to detailed design decisions, to decisions for maintenance and operations.
It is crucial for an OEM to make the right decisions at this stage since design decisions
determine 70–85% of the LCC (Asiedu and Gu, 1998), and they have a major impact
on the systems’ performance. An example of a design decision that affects the LCC is
the material quality that is used for the system: higher quality materials increase the
reliability and thus lower the costs in the usage phase, because fewer failures occur.
We have depicted the ability to influence the LCC, and the development of the LCC
over the life cycle in Figure 1.2.

As soon as the design is fixed, the system is produced either by a company’s production
department or by a contract manufacturer. The production phase has a substantially
lower ability to affect the LCC compared to the design phase, and the majority of the
LCC has not yet been incurred after production. Various authors report that only
20–30% of the LCC have been incurred from design until production (Saranga and
Kumar, 2006; Öner et al., 2007; van Dongen, 2011). This is also illustrated in Figure
1.2. Nevertheless, production deficits may still affect the LCC in later phases, for
example production errors may induce poor performance in the usage phase and can
even trigger costly system modifications.

Once the systems have been produced and shipped to the customer, it becomes

4 Chapter 1. Introduction

100%
LCC

Ability to influence LCC

Needs Design Production Usage Retirement

Figure 1.2: The development of life cycle costs, based on Norman (1990)

relatively hard to influence the LCC. However, if we can influence the LCC, it
may have large consequences, because the majority of the LCC is incurred during
the usage phase (Saranga and Kumar, 2006; Öner et al., 2007; van Dongen, 2011).
The costs incurred in the usage phase are typically comprised of downtime costs,
maintenance costs and costs of operations (Öner et al., 2007). The downtime costs
are opportunity costs that are incurred when a system is not functioning, i.e., costs due
to lost revenues, penalties (as stated in the contracts), idle resources, loss of customer
goodwill etc. If we consider systems that require large financial investments, these
downtime costs may be very considerable. For example, the downtime costs of a
brokerage system for a large investment bank or brokerage company is approximately
$100,000–$1,000,000 per hour (CNET News, 2001). In other settings, e.g. the
semiconductor industry and baggage handling systems, the downtime costs are also
substantial (Parent, 2000; Patterson, 2002) and they may constitute up to two thirds
of the usage costs (Öner et al., 2007). To avoid these costs, companies perform
maintenance activities to reduce the downtime of their systems. Maintenance may
not only reduce the frequency of system failures, but it can also reduce the time that a
system is down by quickly resolving the system failure. However, doing maintenance
comes at a cost, and the maintenance costs over the life cycle can be significant.
For instance, Öner et al. (2007) find in a case study at a large engineer–to–order
company that the maintenance costs constitute roughly one third of the usage costs.
This means that OEMs should be deeply concerned about the costs for downtime and
maintenance in the usage phase.

Capital intensive systems are characterized by the fact that their usage phase is
typically long – it commonly varies between 10 and 30 years. During these years,
OEMs attempt to lower both the downtime and maintenance costs by enhancing
system performance. This means that during the usage phase, the system is modified.

1.2 Research problems 5

These modifications can lower the life cycle costs later in the life cycle, by improving
productivity of the system, increasing the reliability or lowering the operating costs.

Finally, the system ages and reaches its retirement phase. During this phase, the
system may be replaced by an other system, and the old system can be recycled,
sold to a secondary market, or scrapped. The costs associated to this life cycle phase
typically constitute a rather small part of the LCC.

1.1.1 Lowering life cycle costs

The total costs accrued over a life cycle are the result of a large number of decisions
that are made by the OEM in various phases of the life cycle. Many of these decisions
affect the performance and costs later in the life cycle. For instance, if we design a
system such that it uses more reliable materials, the number of failures in the usage
phase may decrease. Another example that affects the costs later in the life cycle is
system modifications. A system is typically modified by replacing a part from the
system with an improved part. Such an improved part may have a lower failure rate,
enable higher system productivity and so on. Hence, system modifications influence
the performance later in the life cycle, despite the fact that we remain in the usage
phase.

It is clear that many OEM decisions – that are made at various points throughout the
life cycle – have an effect later in the life cycle. In this thesis, we take the perspective
of such an OEM.

1.2. Research problems

We identify three problems for which decisions determine (part of) the life cycle costs
incurred later in the life cycle. These problems are discussed in Sections 1.2.1, 1.2.2,
and 1.2.3. These sections sketch the problems and provide an insight why these
problems are not trivially solved.

Most prototypical problems that affect the costs later in the life cycle can be found
in the design phase, because this is the most upstream phase of the life cycle and 70–
85% of the LCC are determined in this design phase (Asiedu and Gu, 1998); see also
Figure 1.2. As a consequence, two of the three problems that we study are problems
encountered in design. Furthermore, we also consider a problem in the usage phase,
because this phase can be long (10–30 years for capital intensive systems) and it
accounts for the largest part of the LCC.

In the design phase, we do not have any concrete and physical objects, which are
existing in the usage phase. Therefore, we make a distinction between an abstract
concept of an object and the physical counterpart. We call the abstract concept
of an object a component, and the physical counterpart a part. For instance, an

6 Chapter 1. Introduction

engine during design is a component, while the produced engine with serial number
001246839 is a part.

1.2.1 Service part effects in commonality and reliability deci-
sions

Design problems are highly complex, because they involve numerous interrelated
decisions that have to be made. These decisions affect system features such as
productivity, reliability and so forth. Moreover, the decisions made in the design
phase determine the majority (70–85%) of the life cycle costs. Hence, it is crucial
for an OEM that he makes the right design decision such that the life cycle costs
are minimized. Another important aspect is that companies are compartmentalized
(due to the organizational structure). As a consequence, designers tend to neglect
operational (after–sales) aspects in their design decisions, despite the fact that these
operational costs account for 70–80% of the life cycle costs (Saranga and Kumar,
2006; Öner et al., 2007; van Dongen, 2011). Therefore, we study how much an OEM
may gain in terms of life cycle costs when he considers operational costs – such as
costs for service parts provisioning and downtime – in the design decisions.

We restrict our attention to components of systems and we focus on two design
decisions: commonality and reliability. Commonality means that the OEM decides
to use a common component for multiple system types. On the other hand, if the
OEM does not opt for commonality, he uses a dedicated component for each system
type. For instance, if a car manufacturer considers two models and uses the same
engine in both models, we say that the engine is common. Alternatively, if the car
manufacturer uses a different engine for each model, we call each engine dedicated (it
is dedicated to a model).

The other design decision that we consider in this problem is reliability. If the OEM
has chosen commonality, he determines the reliability for the common component.
Similarly, he has to determine the reliability for each of the dedicated components
if the OEM selects dedicated components. The OEM’s designers can achieve higher
reliability by using higher quality materials, spending more time on conceptual and
detailed design ideas etc. But all of these options typically increase costs in the design
and production phases.

Both these design decisions are made in the design phase of the life cycle, but have
major effects on the usage phase where the majority of the LCC is incurred. These
effects can be found, particularly, in the area of after–sales services such as repairs and
service part provisioning. If a part (common or dedicated) fails, the system cannot
operate and a maintenance engineer is sent to the failure to fix it. If the maintenance
engineer repairs the failed part on site, the system would be idling for a long period of
time, which is very expensive. In order to prevent long downtimes of systems, OEMs
typically keep service parts on stock. Then, if a part fails, a maintenance engineer

1.2 Research problems 7

takes a working part from stock, swaps the failed part with the working one, and sends
the failed part to an offline repair shop. Once the failed part is repaired it returns
to stock. This strategy reduces the time and costs of idle systems, but it introduces
costs of keeping service parts on stock.

If we use dedicated components, we must keep separate stocks for each of the
components. Alternatively, if we use common components, only one stock of common
service parts has to be kept and when we have a smaller number of stock piles, we can
realize the same customer service levels with a lower total number of service parts on
stock and thus lower costs (Baker et al., 1986; Hillier, 2000; Song and Zhao, 2009).
This is one way that the commonality decision affects the costs that are incurred in
the usage phase.

Reliability also influences the costs incurred later in the life cycle, affecting the number
of failures observed in the usage phase. Since the OEM incurs a cost per failure (failed
parts are repaired etc.), reliability has an immediate effect on the costs in the usage
phase. Moreover, reliability also influences the stock levels of service parts. Higher
(lower) reliability results in a lower (higher) the demand for service parts and thus
lower (higher) optimal stock levels of service parts.

It is clear that our two considered design decisions determine the costs incurred later
in the life cycle. In particular, both decisions have an effect on service part stocking
and the costs associated with it. Therefore, there may exist a potential to lower the
life cycle costs when the OEM considers service part stocking in its commonality
and reliability decisions. But how large can such a reduction in life cycle costs
be? Furthermore, how will the commonality and reliability decisions change if one
considers service part stocking in the decision process?

1.2.2 Line Replaceable Units

In a later stage in the design phase of the life cycle, designers must decide the
maintenance plan to use. Analogous to the previous problem, the OEM can strongly
determine the costs that will be incurred later in the life cycle. The maintenance plan
prescribes the maintenance actions that are executed during the usage phase of the
life cycle. This means that the maintenance plan affects the downtime costs and the
maintenance costs, which are the predominant cost factors in the usage phase (Öner
et al., 2007). Thus, it is essential that the OEM carefully decides on the maintenance
plan in order to minimize the life cycle costs.

A maintenance plan is typically determined for a given system design, making the
system design an input into the maintenance plan. The maintenance plan could also
be adjusted or even created later than the design phase. Therefore, we use terminology
of parts rather than components for this problem. Furthermore, the maintenance
plan prescribes which parts are maintained every fixed number of periods, which are
continuously monitored, and which are replaced once they fail. It also prescribes so–

8 Chapter 1. Introduction

called Line Replaceable Units (LRUs). A LRU is a collection of parts that is replaced
entirely from the system when one of the parts in the LRU has to be maintained. If
we consider a racing bicycle used in stage races (e.g. Tour de France or Giro d’Italia),
the rear tire, rear rim the spokes, the wheel hub3, and the cassette are one LRU (rear
wheel) and this LRU (rear wheel) is replaced if any of its parts fails.

The design of LRUs can have a big impact on the downtime costs and the maintenance
costs. LRUs have the ability to decrease the time a maintenance engineer spends on
replacing failed parts: if certain parts are combined together in a single LRU, it
may be easy to remove and replace the failed LRU from the system. Whether it is
easier to combine parts in a LRU depends on the system’s design. Thus, there exists
a potential to decrease system downtime. For instance, consider a racing bicycle
that has a broken rear wheel spoke. Replacing the broken spoke itself is difficult
and time consuming, while replacing the entire rear wheel (consisting of a tire, rim,
spokes, wheel hub, and cassette) may be far easier and thus reduces the time spent
on replacements. On the other hand, failed LRUs are replaced by new ones and these
new ones need to be purchased (or failed ones repaired). However, when LRUs are
small (contain fewer parts) they are typically cheaper to purchase (or repair) because
they contain less value compared to larger LRUs (contain more parts). Hence, the
costs for maintenance (due to purchase or repair) are also a direct consequence of
the LRU’s design. In our bicycle example, if we only purchase a new spoke, we incur
lower purchase costs than ordering an entire rear wheel (consisting of the tire, rim,
spokes, wheel hub, and cassette).

Thus if we design LRUs, we not only have to consider the design of the system, but
also the downtime and maintenance costs in terms of replacement costs and purchase
costs, respectively. This makes the task of designing LRUs intricate.

1.2.3 Implementation of system modifications

Once the systems are designed and produced, they are used for a certain amount of
time. In the context of systems that require high financial investments, this usage
period is long and may be of the order of magnitude of 10–30 years. Furthermore,
up to 70–80% of the life cycle costs can originate from the usage phase (Saranga and
Kumar, 2006; Öner et al., 2007; van Dongen, 2011). Hence, if the OEM can reduce
the operational costs, even when he finds himself in the usage phase of a life cycle,
this may be highly profitable.

One alternative frequently used by OEMs to lower the costs in the usage phase is
to modify the used systems. System modifications are developed to enhance the
performance of the system in terms of increased productivity, increased reliability,
or reduced operating costs (e.g. lower power consumption). A system modification

3A wheel hub (in Dutch: naaf) is the central part of a wheel from which the spokes radiate to
the rim.

1.2 Research problems 9

means that a specific part in a system is replaced by an improved one, e.g. we replace
an electric motor in a train by an improved one. A part can be on various levels in
the system’s bill of materials. For instance, we can consider an electric motor as a
part of a train or the brushes in an electric motor as part of a train. In this problem,
we consider parts that can be on any level in the system’s bill of materials.

We study an OEM that has closed a service contract (e.g. a performance based
contract) with its customers. Therefore, the OEM is rewarded (penalized) for better
(worse) performance, and thus he is responsible for a number of capital intensive
systems. These systems are installed in the field for a remaining lifetime (say 10–
30 years), and each system consists of multiple parts. In this problem, we consider
critical and repairable parts, and each part occurs once in a system. For instance,
we consider a single part (positioning sensor) in a lithography system. As the OEM
carries responsibility for the performance of its installed systems, he holds inventory
for the parts that are installed in the systems, e.g. the OEM has a number of
positioning sensors on stock in addition to the ones installed in field systems. At a
certain moment, the OEM believes that the current parts (positioning sensor) suffer
from a too high a failure rate, or that it is a bottleneck for the system’s productivity.
Therefore, he can develop a new and improved component with better performance.
As a result, the OEM has to determine whether it is profitable to replace all current
parts by new ones, and if it is he has to decide when to replace the current parts
by new ones. The current parts are referred to as old parts in the remainder of the
chapter.

The OEM can follow various strategies to implement the new parts. Given that a
number of old parts are installed in field systems and that there exists a stock of old
parts, an implementation strategy must determine how many new parts the OEM
produces and how the new parts are implemented. Furthermore, the implementation
strategy prescribes how many old parts from stock are salvaged, because these
may become redundant. Implementing the new parts instantaneously induces an
additional cost of visiting all installed systems and replacing the old parts with new
parts, but it generates extra revenue because the OEM can immediately reap the
benefits of the new parts. Furthermore, the OEM has to ensure that a sufficient
number of new parts is produced for this strategy.

The OEM may also pursue a more conservative strategy wherein an old part is
replaced by a new part once the old part has failed (or is undergoing maintenance),
and all old parts from stock are immediately salvaged. This may reduce the number
of new parts that is needed, because he gradually implements new parts. An even
more extreme strategy is to not implement the new parts and stick to the old ones;
then the OEM does not need to produce any new parts. In addition to all of this, the
problem is further complicated by the fact that there are old parts (on stock) that
need not to be salvaged because the OEM can choose to use these old stock parts
instead of installing a new part.

As we see, there are many implementation strategies that the OEM can follow, but

10 Chapter 1. Introduction

pursuing the wrong strategy can be a costly endeavor. We may miss out on the
performance gain of new parts, e.g. we are not able to reap productivity increases
or reliability increases; or we could pursue a strategy that has unnecessary high costs
for immediate implementation. Therefore, it is of utmost importance to select the
best implementation strategy that considers the current costs of producing new parts
along with the cost effects later in the usage phase of the life cycle.

1.3. Research objective

The three problems that we discussed in the preceding section are difficult problems
to study without the use of decision support mechanisms. Intuitively it is hard
to estimate, for instance, how large the benefit is of considering service parts in a
commonality and reliability decision. Similarly, it is very challenging to see which
LRU design results in low costs in the usage phase, taking into account the technical
aspects of a system’s design. Moreover, selecting the appropriate implementation
strategy for new parts under the presence of old part stocks is not an easy task to
perform, because it is not a priori clear which strategy is best.

In order to make the right decisions, there exists a need for advanced mathematical
decision support models, which we provide in this thesis. We take the perspective of
an OEM who sells and supports systems, and is interested in lowering (part of) the
life cycle costs. Our objective is the following.

Develop mathematical decision support models to support the following three
decisions:

(i) Optimize commonality and reliability in the presence of service part
stocks,

(ii) Optimize the design of Line Replaceable Units such that the relevant
(future) usage costs are minimized,

(iii) Select the optimal implementation strategy for new parts, taking into
account the future benefits of these new parts.

1.4. Contributions of thesis

The contributions of this thesis are organized in accordance with the problems that
we discussed in Section 1.2. The positioning of our work in the literature is covered
in the corresponding chapters.

1.4 Contributions of thesis 11

1.4.1 Service part effects in commonality and reliability deci-
sions

In Chapter 2, we study the commonality and reliability (in terms of mean time
between failure) decision both in the presence of service part stocks and in the
absence of service part stocks. We consider the benefit of considering service parts
for commonality and reliability decisions. If the OEM selects commonality it means
that all systems will use the same common component, whereas no commonality
(or dedicated components) means that each system uses a dedicated component.
Furthermore, the OEM determines the reliability for each alternative (common or
dedicated).

We study two approaches: one in which the OEM considers costs for production and
repair, and where the OEM neglects service parts for the commonality and reliability
decisions. In the second approach, the OEM considers production and repair costs,
as well as holding costs and downtime costs because the OEM includes service parts
in his commonality and reliability decisions. For each approach, we propose a model
for a common component and another model for dedicated components. Depending
on whether service parts are considered, each model optimizes the reliability level(s)
and the service part stock level(s) (if applicable).

If the OEM considers service parts in his design decision, the optimization models of
the common and dedicated components are intractable. We remark that we study
settings in which systems require high financial investments and users heavily rely on
the availability of these systems (CNET News, 2001; Patterson, 2002; Öner et al.,
2010); thus the cost of system downtime is large. Consequently, we study two
approximate models that are asymptotically equivalent as the cost of system downtime
tends to infinity. When the OEM neglects service parts from its design decision, the
optimization models are tractable.

We prove convexity of the cost functions for both approaches, and this enables
straightforward optimization of the reliability. We compare the optimal reliability
levels between the two approaches, and we observe that considering service parts can
result in optimal reliability that are 27% higher than the optimal reliability levels
obtained when neglecting service parts; on average this difference is 10%. Such
differences are large and affect operations in the usage phase of the life cycle, in
particular. As the costs of usage can account for the majority of the life cycle costs,
the OEM should be motivated to consider service parts in the reliability decision.
Furthermore, we characterize a switching curve for each approach (considering service
parts or not) that determines whether the OEM selects commonality or not. The
switching curve also provides an insight in when commonality is not a good idea. We
analytically and numerically compare the switching curves between both approaches.
We find that commonality is strictly favored if we consider service parts in the design
decision, and this more favorable attitude towards commonality persists even if the
unit cost of a common component increases by as much as 9.5%. This means that

12 Chapter 1. Introduction

service part considerations should be considered if a good commonality is to be made:
the OEM can invest significantly more in the common component (it can become
more expensive) and still obtain lower life cycle costs if he considers service parts in
the design decisions. Finally, we show that including service parts in commonality
and reliability decisions may lead to much lower life cycle costs, being as much as 10%
lower. Hence, neglecting service parts can be very costly and may even be detrimental
to the OEM’s profitability. Hence, the OEM is urged to consider service parts in the
commonality and reliability decision, if he wants to minimize the life cycle costs.

1.4.2 Line Replaceable Units

Chapters 3 and 4 study the design of Line Replaceable Units (LRUs). Chapter 4 is an
extension to Chapter 3, and therefore we will first discuss the contribution of Chapter
3 and subsequently we address the additional contribution of Chapter 4.

If designers study the problem of designing LRUs, they find themselves later in the
design phase. As a consequence, the system’s design is typically input to the problem
of designing LRUs. Therefore, we start Chapter 3 by extensively discussing how we
represent a system’s design for maintenance applications. In particular, this means
that we discuss an approach to model a system in terms of parts and the connections
between them. If we consider the rear wheel of a bicycle, it consists of multiple parts
such as a tire, rim, spokes, a wheel hub, and the cassette. We represent each part
as a vertex and we connect two vertices when two parts are connected to each other.
In the bicycle example, this means that the rim is connected to each of the spokes,
and each of the spokes is also connected to the wheel hub. In addition to the system
representation in terms of parts and their connections, we also present a technique
that enables us to include a disassembly sequence in our model, i.e., we incorporate a
sequence of connections that needs to be broken prior to breaking a certain connection.
This approach makes our model particularly applicable for maintenance applications,
because disassembly sequences frequently exist in such settings. For example, if we
want to remove a spoke of a bicycle’s rear wheel, it has to be disconnected from the
rim. However, we first have to remove the tire from the rim to disconnect the spoke
from the rim.

This system representation can be used as a (visual) aid to enhance internal
communication at the OEM; for instance between the design department and the
operations department. Given the system representation for maintenance in place,
we make an important assumption in Chapter 3 that each part belongs to exactly one
LRU. Under this assumption, we formulate a model called LRU Design that trades
off the costs for replacing LRUs and the costs of purchasing (or repairing) LRUs. We
present the most natural formulation of LRU Design: a binary non–linear program.
Subsequently, we linearize this program to a binary linear program (BLP). We also
formulate LRU Design as a set partitioning problem. Typically, one would solve
such a set partitioning problem by using branch–and–price algorithms. We prove

1.4 Contributions of thesis 13

that branching is unnecessary and the set partitioning formulation can be solved by
pure pricing algorithms (and an optimal integer solution is obtained). Our numerical
study illustrates that set partitioning is an efficient formulation and suitable for large
instances, while BLP is not. LRU Design – and in particular the set partitioning
formulation – can be used as a feedback mechanism for the OEM’s design department.
The engineers can quickly assess various design alternatives and their effects on the
optimal LRU design and the corresponding (after–sales) costs. This could aid the
OEM in making better decisions that reduce the life cycle costs. Furthermore, we
find that the OEM should urge his designers to avoid strongly connected parts, and
to avoid intense disassembly sequences because these induce high operational costs.

In Chapter 4 we extend the model of Chapter 3 by relaxing the assumption that a
part belongs to exactly one LRU. This means that we allow replacement of a LRU
containing a certain part, even when the failure of this part does not trigger the
replacement of the LRU. For instance, consider a student that has a city bike. If one
of the spokes in the rear wheel breaks, the student replaces only the broken spoke
because she finds it too expensive – relative to the time she needs for the replacement
– to purchase an entirely new rear wheel (except the tire). However, if the rim breaks,
the student has to spend a lot of time and effort when she only replaces the rim itself.
Therefore, she decides to purchase an entirely new rear wheel (except the tire) if the
rim breaks. This means that all spokes are also replaced. Hence, if a spoke fails
only the broken spoke is replaced, whereas a rim failure induces the replacement of
the entire wheel including all spokes. Thus, we say that a spoke belongs to more
than one LRU, and this phenomenon is studied in Chapter 4. As a consequence, we
conceptualize a LRU slightly different from Chapter 3.

We use this re–conceptualized LRU to present a model C–LRU Design that trades
off replacement and purchase (or repair) costs. We observe that C–LRU Design is
separable in the number of parts. For each part we present a binary linear program,
and numerically we show that this formulation is efficient, even for large instances.
Moreover, we study the differences in computation time, minimum costs, and the
number of LRUs used between LRU Design and C–LRU Design. The computation
times are so low that C–LRU Design is very practical and it can be used as a
feedback mechanism to the OEM’s design department, thereby lowering the life cycle
costs. Moreover, we find the that strongly connected parts and intense disassembly
sequences should be avoided by designers.

1.4.3 Implementation of system modifications

Chapter 5 studies the problem of modifying the systems that are currently installed
in the field. We restrict our attention to replacing old parts by new parts under the
presence of an old parts on stock, as discussed in Section 1.2. The OEM focuses on
four different implementation strategies under a finite horizon:

14 Chapter 1. Introduction

• Instant Invest: The OEM produces all new parts before the start of the horizon
and decides whether to replace a failed part by a new or old one upon each
failure. He repairs all new failed parts and old parts are salvaged. Salvaging of
old parts occurs during and at the end of the horizon, while salvaging of new
parts only occurs at the end of the horizon.

• Phased Invest: The same strategy as Instant Invest, except for the fact that
the OEM produces some parts at the start of the horizon and some parts arrive
during the horizon.

• Stay Put: The OEM does not produce any new parts, repairs the old parts if
they fail, and salvages old parts at the end of the horizon.

• Rapid Upgrade: The OEM produces new parts and directly replaces all old
parts by new parts. He salvages the old parts immediately (at the start of the
horizon). The OEM repairs the new parts once they fail, and he salvages new
parts at the end of the horizon.

Instant Invest and Phased Invest are advanced implementation strategies that are
further developed in Chapter 5. The other two strategies – Stay Put and Rapid
Upgrade – serve as benchmark strategies and are fairly easy formulations.

We start Chapter 5 by assuming a fixed production quantity of new parts, and we
formulate Instant Invest as a finite horizon, discounted, discrete time Markov decision
process that maximizes profit. We numerically show, for practical instances, that
a failed part is replaced by a new one (if new parts are available), otherwise we
use an old part from stock. If an old part is also not available, then the failed
part will not be replaced. However, this behavior does not hold in general, as we
observe in Chapter 5. Subsequently, we discuss how to find the optimal production
quantity of new parts under Instant Invest. In the next part of Chapter 5, we extend
Instant Instant to Phased Invest, where again we start with the assumption that the
production quantities of new parts are given. Furthermore, we assume that the second
production order is planned prior to the horizon and is thus known. Then, we also
find that we replace a failed part by a new one (if available) in practical instances,
but this behavior does not necessarily occur for an arbitrary instance. Lastly, we
discuss how to determine near–optimal production quantities and the arrival time of
the second production order.

In numerical experiments, we find that the OEM should not replace the old parts by
new ones (Stay Put is optimal), if the new component is not (or only slightly) better
than the old one. On the other hand, if the new component is significantly better
than the old component, the OEM should replace the old parts by new ones as soon
as possible (Rapid Upgrade is optimal). If the new component is somewhat better
in terms of generated revenue, the OEM should gradually replace the old parts by
new ones (upon the failure of an old part). That is, we observe that the advanced
strategies Instant Invest and Phased Invest are preferred. In particular, Phased Invest

1.5 Thesis outline 15

generates strictly more profit than Instant Invest and Phased Invest is optimal in such
cases.

1.5. Thesis outline

This thesis presents and analyzes the three different problems from Section 1.2
dispersed over four chapters. Each of the chapters is set up in such a way that it can
be read individually, except for Chapters 3 and 4 because the latter is an extension of
the former. Figure 1.3 depicts the structure of this thesis schematically. Each problem
uses a different methodology: Chapter 2 mainly uses asymptotic analysis and general
function analysis; Chapters 3 and 4 use graph theory and combinatorial optimization
theory such as binary programming and column generation (only for Chapter 3); and
Chapter 5 uses Markov decision theory as the main methodology.

Chapter 1

Chapter 3Chapter 2

Chapter 4

Chapter 5

Chapter 6

Figure 1.3: Thesis structure

2
Service part effects for commonality

and reliability decisions

2.1. Introduction

In this chapter, we study an OEM that has closed a service contract (e.g. a
performance based contract or a full service contract) with his customers. As a
consequence, he is responsible for the entire life cycle of systems, and is therefore
primarily interested in minimizing the total life cycle costs. Examples of such OEMs
include Pratt & Whitney (aviation industry), ASML (semiconductor industry), and
Océ (industrial printing industry). The life cycle costs (LCC) increase as OEMs offer a
higher variety of systems. In an attempt to alleviate this burden, OEMs use common
components in multiple different systems of their product portfolio. For example,
identical rotor blades are used in multiple different aerospace engines or the same
positioning sensors are used in various lithography systems. The main motivation
for a variety of systems with commonality comes from a marketing and production
perspective, as it enables a firm to offer many different systems with a relatively
small increase in the production costs. However, a commonality decision has more
effects, because it influences after–sales services and the effects may be large. In
particular, commonality enables service parts pooling which reduces costs. This cost
benefit of common service parts – despite the potentially increased production costs
– is particularly large in industries that use capital intensive systems. Therefore, one
would expect that service part aspects are considered for the commonality decision.
However, we frankly observe that design departments tend to omit service part
considerations in the commonality decision due to the organizational structure in a

18 Chapter 2. Service part effects for commonality and reliability

System A System B

Component family III

Component family II

Component family I Component 1 Component 2

Component 3 Component 4

Component 5 Component 5

Figure 2.1: A schematic representation of our concepts

company: the design department carries no responsibility for after–sales performance,
while the after–sales department may suffer from decisions made in the design
department. Thus, design departments are typically myopic in the sense that they do
not consider service parts aspects in their commonality decision.

We conceptualize commonality as follows. A system consists of components, and we
say that components – from different systems – belong to the same component family
when they fulfill the same functionality, but are not necessarily identical (Meyer and
Lehnerd, 1997). Therefore, the OEM can decide per component family whether to
use a single common component for all systems or to use a dedicated component per
system, as illustrated in Figure 2.1. We do not consider partial commonality, where
a common component is used for a subset of the systems. A component family may
correspond to rotor blades in the case of aerospace engines, to positioning sensors in
lithography systems, or to electric motors in MRI scanners.

Next to the commonality decision, the OEM can reduce the LCC by optimizing the
reliability of a component. We capture reliability in terms of the mean time between
failures. A component’s reliability largely affects after–sales performance because
reliability determines how often a component will fail. Furthermore, reliability may
serve as a substitute for service parts (Kim et al., 2017). This means that an increased
(reduced) reliability can reduce (increase) the investment in service parts. Therefore,
there exists a trade–off between the cost of reliability and the cost of service part
inventory holding. Hence, an OEM that considers service parts in his design decision
does not only gain on the commonality aspect, but can also exploit the substitution
effect that reliability and service part inventories have. Considering service parts in

2.1 Introduction 19

design decisions appears to be a smart idea, particularly when we consider the fact
that after–sales services, including service parts provisioning, constitute up to 70–80%
of the LCC (Öner et al., 2007).

Therefore, we study how much an OEM gains when he considers service parts in the
design decision in terms of commonality and reliability. Our objective is to answer
the following main research questions for a single component family: (RQ1) What
is the difference in the optimal reliability decision when we consider service parts?
(RQ2) Is commonality more or less attractive when we consider the consequences for
service part inventories? (RQ3) How much of the LCC can we save when we consider
service parts in the design decision in terms of commonality and reliability?

We consider two approaches: one in which the OEM considers service parts, and
one in which the OEM excludes service parts from the commonality and reliability
decision. We refer to these approaches as the anticipating approach and the non–
anticipating approach, respectively. If the OEM considers service parts in his decision
making (the anticipating approach), his decision problem is more intricate. The
OEM determines not only commonality, but he also makes a conscious decision on
the trade–off between reliability and service part stock levels. Therefore, the OEM
that uses the anticipating approach minimizes the LCC by optimizing a decision
triad: (1) component commonality or dedicated components, (2) the reliability for
the components of each alternative, and (3) the service part stock levels for the
components of each alternative. In case the OEM pursues the non–anticipating
approach, he minimizes a different LCC function by optimizing a decision dyad
consisting of (1) and (2). Furthermore, he does not exploit the beneficial effect
that commonality has on service parts pooling and the substitution effect between
reliability and service part stock levels.

For each approach, we develop two LCC models; one for the common component and
one for the dedicated components. The goal of the OEM is to select the alternative –
common or dedicated – with corresponding optimal reliabilities and service part stock
levels (if considered) such that the total LCC is minimized.

Based on the models for both approaches, we make the following contributions.
First (1), we show that the problem formulations for the anticipating approach
are intractable. Therefore, we propose approximate problem formulations, and we
prove that these approximations are asymptotically equivalent as the cost of system
downtime tends to infinity. Furthermore, the approximate problem formulations
enable us to efficiently optimize the reliability levels for the common and dedicated
components. The problem formulations for the non–anticipating approach are simpler
than the formulations of the anticipating approach, and as a consequence the non–
anticipating formulations do not suffer from intractability issues. Secondly, (2) we
numerically study the differences in the optimal reliability decisions under both
approaches (RQ1). We conclude that neglecting service parts for the reliability
decision can be detrimental as we observe instances wherein the optimal reliability
level is 27% higher under the anticipating approach, and on average it is 10% higher.

20 Chapter 2. Service part effects for commonality and reliability

Thirdly, (3) we exactly characterize the switching curve – for each approach – that
determines whether commonality yields lower LCC than dedicated components. This
switching curve is based on the costs of the common component relative to the costs
of the dedicated components, and on the installed bases of different systems. The
switching curve also provides an insight in when commonality is not a good idea.
Fourthly, (4) we analytically compare the switching curves for both approaches (RQ2)
and conclude that the anticipating approach strictly favors commonality compared to
the non–anticipating approach. Furthermore, we observe in a numerical study that we
obtain different decisions under both approaches even if the unit costs of a common
component increases by as much as 9.59%. Finally, (4) we numerically show that an
OEM reduces the relevant LCC by as much as 10% if he pursues the anticipating
approach over the non–anticipating approach (RQ3).

The organization of this chapter is as follows. In Section 2.2, we discuss related
literature. In Section 2.3, we present a commonality model and a dedicated
components model for each approach (anticipating and non–anticipating). We
continue in Section 2.4 by optimizing the reliability and the service parts stock
levels (if applicable) for the common and dedicated component models, under the
anticipating and the non–anticipating approach. Furthermore, we compare the
differences in the optimal reliability levels between both approaches (RQ1) in Section
2.4. Given the optimal reliability and service parts stock levels (if applicable), we
study the commonality decision under both approaches in Section 2.5, i.e., for each
approach we select the model (common or dedicated) with the lowest life cycle costs.
Moreover, we compare the difference in the commonality decision (RQ2) in this
section. In Section 2.6, we study the difference in LCC (RQ3) between the anticipating
and the non–anticipating approach. Finally, we conclude this chapter in Section 2.7.

2.2. Literature

Our work focuses on the interaction between three literature streams: reliability
optimization, after–sales services, and commonality. The literature on reliability
optimization is typically studied from an engineering perspective. Design variables
are chosen such that a specified cost function is minimized and reliability constraints
are satisfied, or the reliability is maximized under specified cost constraints (Royset
et al., 2001; Zou and Mahadevan, 2006). Reliability optimization is also studied in
the broader context of the warranty literature, e.g. Huang et al. (2007) and references
therein. Work in this stream typically aims to optimize the reliability of a component
such that the costs that are accrued throughout the warranty period are minimized.
The second related literature stream focuses on after–sales services, particularly on
service parts planning problems in several supply chain structures; see e.g. Sherbrooke
(2004), Muckstadt (2005), and van Houtum and Kranenburg (2015). The third
related literature area considers component commonality. This topic is studied from
numerous different perspectives, e.g. marketing (Desai et al., 2001), new product

2.2 Literature 21

development (Muffatto and Roveda, 2000), and engineering (Fellini et al., 2004).
We restrict our commonality review to an operations management perspective that
focuses on cost minimization, and we refer to Labro (2004) for a more elaborate review.
There exists a variety of works that consider stylized Assemble–To–Order (ATO)
models and focus on the inventory implications of commonality; see for example
Baker et al. (1986), Hillier (2000), van Mieghem (2004), and Song and Zhao (2009).
Authors generally conclude that commonality allows for inventory pooling, which
reduces the costs. van Mieghem (2004) notes, however, that a common component
can be more expensive than the dedicated components, and thus the cost reduction
due to inventory pooling may be offset by the extra cost of a common component.
Hence, he presents a condition for the adoption of commonality. In this chapter, we
also find such a condition. In addition to ATO research, various researchers have
modeled component commonality in a broader context by considering other factors
than inventories as well. Typically, these authors take a combinatorial approach by
studying large mathematical programming models, see e.g. Gupta and Krishnan
(1999) and Thonemann and Brandeau (2000). These works focus on deriving efficient
solution procedures.

This chapter is closely related to research that focuses on the interaction between
two of these three literature streams (commonality and after–sales services). Stylized
inventory models with component commonality have mainly been studied for ATO
systems. In an ATO setting, a product demand is satisfied if all components are on
stock (coupled demand). This differs from an after–sales services setting, in which
demand typically occurs for each of the individual components. Kranenburg and
van Houtum (2007) take such an after–sales services perspective and focus on the
service parts inventory implications of component commonality. They only model the
costs incurred after production of the component, i.e., reliability and commonality
decisions are neglected, but downtimes are included. Thonemann and Brandeau
(2000) explicitly model the commonality decision and consider the service parts
aspect of after–sales services, but exclude downtimes and repairs. Their problem
is combinatorial and the authors determine which features one or more common
components should have based on component requirements. Both papers, Thonemann
and Brandeau (2000) and Kranenburg and van Houtum (2007), do not consider any
reliability decision and focus on developing efficient solution techniques.

Another closely related literature stream studies reliability in combination with after–
sales services. Research in this stream has not yet considered commonality. Huang
et al. (2007) propose a profit maximization model that optimizes the reliability and
considers sales revenues, production costs, and repair costs. They take a life cycle
approach, but do not consider costs related to service parts. Kim et al. (2017)1

present a LCC minimization model that jointly optimizes reliability and service part
stock levels. The LCC are comprised of design, production, service parts storage,
and backorder costs. Downtime and repair costs are not included. Kim et al. (2017)

1The work by Kim et al. (2017) has been first published as a working paper, see Kim et al.
(2007b).

22 Chapter 2. Service part effects for commonality and reliability

find that reliability and service parts are substitutes for each other, and they derive
analytical insights for different types of service contracts through the use of a game
theoretical analysis. We remark that Kim et al. (2007a) differs from this stream,
because the authors do consider cost reduction efforts and service part inventories,
but do not focus on reliability improvements that affect demand intensity. By contrast
to Kim et al. (2017), Öner et al. (2010) do not take a game theoretic perspective, but
focus on the after–sales services aspects of the LCC minimization problem. The
authors extend the cost function from Kim et al. (2017) by also incorporating repairs
and downtimes, and they assume that demand during a stockout is satisfied via an
emergency procedure. Öner et al. (2010) develop an efficient algorithm, and find that
substantial cost savings can be realized by simultaneously optimizing reliability and
the service part stock levels.

Our work uses similar modeling as Kim et al. (2017) and Öner et al. (2010), but we
also include the commonality dimension combined with the explicit inclusion of three
after–sales services aspects: service parts, repairs and downtimes. We are the first
to combine after–sales services, with commonality and reliability optimization into a
single model. In order to analyze our models, we build on asymptotic techniques
similar to Huh et al. (2009) and Bijvank et al. (2014). Moreover, we provide
managerial insights via analysis instead of focusing on an efficient solution procedure.
We provide a comparison between our work and the most related research in Table
2.1.

Paper C
om

m
on

al
it

y

R
el

ia
b

il
it

y

D
ow

n
ti

m
e

R
ep

ai
rs

S
er

v
ic

e
p

ar
ts

L
if

e
cy

cl
e

co
st

s

A
sy

m
p

to
ti

c
an

a
ly

si
s

Kranenburg and van Houtum (2007) x x x x
Thonemann and Brandeau (2000) x x
Huang et al. (2007) x x x
Kim et al. (2017) x x x

Öner et al. (2010) x x x x x
Huh et al. (2009) x
This chapter x x x x x x x

Table 2.1: Comparison of most related papers

2.3 Models 23

2.3. Models

In this section, we first present the model and optimization problems of the
anticipating approach (Section 2.3.1). Subsequently, we discuss the model and
optimization problems for the non–anticipating approach (Section 2.3.2).

2.3.1 Anticipating approach

The OEM offers her customers various systems i ∈ J , where J is to the set of different
systems. Furthermore, the OEM expects to sell Ni > 0 units of each system i ∈ J at
time t = 0 with a supplementary service contract. Due to such a contract the OEM is
penalized worse performance. The service contract states that the OEM will service
the Ni units of each system i ∈ J for a finite lifetime T > 0. We assume that this
time T is equal for all systems, and it is typically 10–30 years for capital intensive
systems. Given the component structure for her systems (see Figure 2.1), the OEM
has to determine for each component family whether to opt for a common component
or dedicated components. We focus on a single component family, which is critical for
system functioning and repairable upon failure. Furthermore, we assume that exactly
one component of the family occurs in a system i ∈ J , e.g. one rotor blade assembly
occurs in an aerospace engine or only one positioning sensor occurs in a lithography
system. As a consequence, the sales quantity Ni of system i is equal to the number
of parts of a dedicated component – for system i – that is installed in the field at
time t = 0. This assumption can be generalized easily: if a component occurs x times
in a system and each component operates independently, then we have xNi parts of
component i installed in the field at time t = 0.

Moreover, a system’s identifier i ∈ J is equivalent to a dedicated component’s
identifier i ∈ J , and thus the set J is equivalent to the set of the dedicated components.
Note that each part will be serviced for a finite lifetime T . We refer to the parts of
component i that are installed in the field, Ni, as the installed base of component i. In
the remainder, we will use the terminology on the component level for the set J (the
set of dedicated components) and for each element i ∈ J (a dedicated component).
Next to the notation for the dedicated components, we denote the common component
by q with Nq =

∑
i∈J Ni, and introduce the set I = J ∪ {q}.

At time t = 0, the OEM decides on the reliability level τi > 0 in terms of the
Mean Time Between Failures (MTBF) and on the turnaround stock level si of service
parts. We use the term reliability in the remainder instead of MTBF. At time t = 0,
Ni + si parts of component i are produced with reliability τi. When choosing a
higher reliability level, the unit production cost also increases, e.g. higher quality
materials are used or additional production steps are needed. Moreover, the higher the
reliability level, the higher the costs to increase the reliability level by one unit. This
implies that the unit production cost is convex and increasing in the reliability level

24 Chapter 2. Service part effects for commonality and reliability

τi, see also Mettas (2000) and Öner et al. (2010). Hence, we introduce the function
c : (0, τ) → R+, where R+ denotes the set of positive real numbers, i.e., R+ = {x ∈
R |x > 0}. Furthermore, c is a twice differentiable, convex, and strictly increasing

function with τ ∈ R+ ∪ {∞}, 0 ≤ limτ↓0 c(τ) < ∞, 0 ≤ limτ↓0
dc(τ)
dτ < ∞, and

limτ→τ c(τ) =∞. We remark that the function c is identical for all components i ∈ I.
However, the components i ∈ I may be different: there may exist a low end, a medium
end, and a high end component. For instance, a low end positioning sensor of a
lithography system has a low resolution, while a high end sensor has a high resolution.
Increasing the reliability of a higher end component is typically expensive, because
such components are typically more advanced (technology wise). As a consequence,
it is more complex and thus more expensive to improve its reliability. We model this
by multiplying the convex function c by a so–called relative unit cost factor βi > 0.
This βi enables differentiation between the various components i ∈ I such that it is
more expensive to increase the reliability for higher end components. Hence, the unit
production cost for a component i ∈ I is given by βic(τi).

After the Ni parts of component i have been installed in the field at t = 0, they
operate independently with the same reliability τi. During operation, the parts fail
and each failure triggers a demand at the stockpoint. We denote the demand during
[0, t] by Di(t,Ni, τi) for any t ≥ 0, and we assume that this demand process has
independent and stationary increments. We also assume that Di(t,Ni, τi) is normally
distributed with mean E[Di(t,Ni, τi)] = Nit

τi
and standard deviation

√
αNit/τi, where

the constant α > 0 is the variance to mean ratio. Such a normal distributed demand
process enables us to obtain a closed form expression for the LCC under an optimal
stock level. This makes further analysis tractable. Furthermore, we assume that the
number of operating parts Ni remains constant, even when a part of the installed base
fails. We make this assumption, because failed systems are down for small amounts
of time in practical settings, and it is a common assumption in the literature; see
Muckstadt (2005) and van Houtum and Kranenburg (2015). Our proposed demand
process can approximate a (more conventional) Poisson process when E[Di(t,Ni, τi)]
is sufficiently large and α = 1, similar to Kim et al. (2017). However, if we were to
employ a Poisson demand process, the analytical results could not all be established.
We discuss the implications of Poisson distributed service parts demand in Appendix
2.B.

If a part fails, a service part is taken from stock (if possible) and it replaces the failed
part. The failed part is sent to a repair shop with ample capacity, where it takes
L > 0 time units to repair the failed part. After repair, the part is forwarded to the
service part stockpoint, see Figure 2.2. Note that this stockpoint corresponds to a
stockpoint operating under a policy with base–stock level si and a leadtime L.

Furthermore, if a part fails and there is no service part available at the stockpoint, the
replacement of the failed part in the field cannot occur. Consequently, the system in
which the failed part was installed cannot operate until a new service part is available
again, i.e., we have a backorder. The OEM incurs a penalty b > 0 per unit time that

2.3 Models 25

Repair

Ni

si

τ i

Figure 2.2: The failure and repair process for the parts of component i ∈ I

the system cannot operate due to service part unavailability. This b is the penalty
specified in the service contract for each time unit that a system is more down than
the specified target. We take the perspective that each time unit of downtime costs
the OEM b relative to realizing 100% uptime.

Failed parts are repaired, and the costs per repair are related to the unit production
cost of a component βic(τi). More expensive components (in terms of the unit
production costs) are also more expensive for repair, because more expensive materials
may have been used or repairing the part requires extra steps. Hence, we assume that
the costs per repair are a linear scaling r > 0 of the unit costs, i.e., rβic(τi). This
rβic(τi) includes all costs incurred for one repair such as material and labor costs.
Then, the average number of repairs can be derived from our demand process and
the total expected repair costs are given by: rβic(τi)E[Di(T,Ni, τi)] = rβic(τi)

NiT
τi

.

The OEM owns all si turnaround service parts during (0, T]. Therefore, the OEM
pays storage costs for all turnaround service parts, either in repair or in stock. The
per time unit storage cost for one turnaround service part is a fraction h ∈ (0, 1) of
its unit cost, i.e., hβic(τi). The parameter h includes all per time unit costs for a
single turnaround part, such as warehousing and insurance costs. The total service
parts storage costs over (0, T] are given by hsiTβic(τi).

We have explained the dynamics for a given component i ∈ I in the foregoing. These
dynamics are identical for all dedicated components i ∈ J , and also for the common
component q. Therefore, we formulate a general LCC function for component i ∈ I:

π̃(τi, si, Ni, βi) = βic(τi)(Ni + si) + hsiTβic(τi) + rβic(τi)
NiT

τi
+bTE[(Di(L,Ni, τi)− si)+]. (2.1)

We do not consider an index i for the LCC function π̃(τi, si, Ni, βi), because each
component i ∈ I is fully characterized by its reliability level τi, turnaround stock
level si, installed base size Ni, and its relative unit cost factor βi. Hence, we

26 Chapter 2. Service part effects for commonality and reliability

propose a general parametrized LCC function, which we can later analyze for arbitrary
component types more easily. Furthermore, note that our model allows common
components that are more expensive than each dedicated component, i.e., βq ≥ βi
for all i ∈ J , as argued by van Mieghem (2004); but it can also capture the opposite,
i.e., βq < βi for one or more i ∈ J , as discussed by Krishnan and Gupta (2001).
Furthermore, we can set βi = 1 for one particular component i ∈ I without loss of
generality. To see this, define β̂i = γβi, ĉ(τi) = c(τi)/γ, with γ > 0 a constant, and

set γ such that β̂i = 1.

Now, the OEM of the systems seeks to minimize

(CP) min
τq∈R+,sq∈R

{π̃(τq, sq, Nq, βq)} , and

(DP) min
τ∈R|J|+ ,s∈R|J|

{∑
i∈J

π̃(τi, si, Ni, βi)

}
,

with τ and s denoting the vector of τi and si, i ∈ J , respectively. The former
model (CP) considers the common component, whereas (DP) considers the dedicated
components. After solving each of the models, the OEM selects the alternative
with minimum costs. Furthermore, we note that (DP) is separable in the dedicated
components i ∈ J .

2.3.2 Non–anticipating approach

Next, we consider the problem for the non–anticipating approach, which omits service
part considerations from the design decision. We use the same model description and
notation as Section 2.3.1 and we define the LCC function π̂(τi, Ni, βi) for the non–
anticipating approach. The derivation for this expression is identical to the derivation
of π̃(τi, si, Ni, βi), and thus we do not elaborate on this. We have

π̂(τi, Ni, βi) = βic(τi)Ni + rβic(τi)
NiT

τi
,

because the service part stock levels are not considered. Subsequently, we derive the
optimization models for the common component and for the dedicated components
analogously to (CP) and (DP). Therefore, we obtain

(ĈP) min
τq∈R+

{π̂(τq, Nq, βq)} , and

(D̂P) min
τ∈R|J|+

{∑
i∈J

π̂(τi, Ni, βi)

}
,

where (D̂P) is separable in the dedicated components i ∈ J . The OEM solves (ĈP)

and (D̂P) and he selects the alternative with the lowest LCC.

2.4 Optimal reliability and stock levels 27

2.4. Optimal reliability and stock levels

We study the optimal reliability levels and optimal stock levels of the models (CP)
and (DP) in Section 2.4.1. Subsequently, we study the optimal the reliability levels

for (ĈP) and (D̂P) in Section 2.4.2.

2.4.1 Anticipating approach

We derive an expression for the optimal service part stock level s∗i (τi) for component
i ∈ I and given reliability τi. Once we insert this s∗i (τi) into (CP) and
in (DP), we conclude that the problems are hard to optimize, because there
exists a complex embedding of c(τ) in the cost functions π̃(τq, s

∗
q(τq), Nq, βq) and∑

i∈J π̃(τi, s
∗
i (τi), Ni, βi). Therefore, we propose an approximate total LCC function

for the common and dedicated model, and these approximate total LCC functions
are asymptotically equivalent to π̃(τq, s

∗
q(τq), Nq, βq) and

∑
i∈J π̃(τi, s

∗
i (τi), Ni, βi),

respectively, as the cost of system downtime b tends to infinity. The main benefit
of these approximate total LCC functions is that it allows for straightforward
optimization. Another major benefit of studying these approximate functions is that
we can characterize a switching curve for commonality later in the chapter.

Before we start the optimization of (CP) and (DP), we state a mild assumption that
we use for the anticipating approach throughout this entire chapter.

Assumption 2.1 For each component i ∈ I, we have bT > 2βic(τi)(1 + hT).

The interpretation of Assumption 2.1 is that having a system down over the horizon
(0, T] is more than twice as expensive as producing a new part and keeping this part
on stock throughout (0, T]. Such an assumption is typically satisfied in practice,
because downtime of capital goods is very expensive. Moreover, Assumption 2.1
constrains the feasible reliability levels τi such that the optimal turnaround stock
level of component i ∈ I is strictly positive. Such strictly positive turnaround
stock level can only be guaranteed if bT > 2βic(τi)(1 + hT) because only then
Φ−1 ((bT − βic(τi)(1 + hT))/(bT)) > 0, see Lemma 2.1. Next, we determine the
optimal turnaround stock level for a given reliability level by the following result.

Lemma 2.1 For each component i ∈ I and τi ∈ (0, τ], π̃(τi, si, Ni, βi) is twice
differentiable and strictly convex in si. π̃(τi, si, Ni, βi) is minimized by a strictly
positive, unique, finite s∗i (τi) that solves the first order condition, and is given by

s∗i (τi) = E[Di(L,Ni, τi)] + σ[Di(L,Ni, τi)]Φ
−1

(
bT − βic(τi)(1 + hT)

bT

)
, (2.2)

where Φ−1(·) denotes the inverse of the standard normal distribution.

28 Chapter 2. Service part effects for commonality and reliability

Proof. See Appendix. 2

We insert the expression for the optimal turnaround stock levels from Eq. (2.2)
into (CP) and (DP). However, this yields cost expressions that are not amenable
for further analysis. To see this, let us consider π̃(τi, s

∗
i (τi), Ni, βi) for an arbitrary

component i ∈ I. We note that π̃(τi, s
∗
i (τi), Ni, βi) is such that c(τi) is complexly

embedded in the standard normal inverse function Φ−1(·). Therefore, we cannot
determine the optimal reliability levels easily, as convexity or unimodality with respect
to τi cannot be established. One solution may be to enumerate τi, but this may
be expensive and time consuming to implement. Therefore, we propose another
method that enables us to determine the optimal reliability levels approximately:
we study asymptotically equivalent total LCC functions. We observe that the cost of
downtime b is often high for the users of capital goods, typically in the order of tens
of thousands U.S. dollars per hour (Parent, 2000; CNET News, 2001). In particular,
if one considers time units of – say – months or even years, the downtime costs
per time unit are enormous. Hence, we propose to study the asymptotic behavior of∑
i∈J π̃(τi, s

∗
i (τi), Ni, βi) and π̃(τq, s

∗
q(τq), Nq, βq) as b approaches infinity. Specifically,

this means that we propose an approximate total LCC function for the common
component model and for the dedicated components model. Both can be easily
optimized and are asymptotically equivalent to the original total LCC functions as
b tends to infinity. Moreover, the approximate functions enable us to analytically
characterize and study our research questions, as we will see in the remainder of this
chapter.

Before we present our approximate total LCC functions, we first add b as an argument
to our cost functions, because we study the limit behavior with respect to b, i.e., we
use

∑
i∈J π̃(τi, s

∗
i (τi, b), Ni, βi | b) and π̃(τq, s

∗
q(τq, b), Nq, βq | b) because s∗i (τi) also

depends on b. If we now study π̃(τi, s
∗
i (τi, b), Ni, βi | b), we observe that there exists a

term Φ−1
(
bT−βic(τi)(1+hT)

bT

)
that is difficult to analyze with respect to the reliability

τi. But if we substitute b by bβic(τi), then the term Φ−1(·) simplifies such that it
is independent of τi. Consequently, the analysis of the LCC function of component
i ∈ I becomes tractable. Now, let the approximate total LCC functions for the de-
dicated and common components be

∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)), Ni, βi | bβic(τi)) and

π̃(τq, s
∗
q(τq, bβqc(τq)), Nq, βq | bβqc(τq)), respectively. We prove that the two functions∑

i∈J π̃(τi, s
∗
i (τi, b), Ni, βi | b) and

∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)), Ni, βi | bβic(τi)) are

asymptotically equivalent as b tends to infinity. Furthermore, we also prove
that the same asymptotic equivalence exists for π̃(τq, s

∗
q(τq, b), Nq, βq | b) and

π̃(τq, s
∗
q(τq, bβqc(τq)), Nq, βq | bβqc(τq)). Our techniques are similar to Huh et al.

(2009) and Bijvank et al. (2014), and we use some of their results to show the
asymptotic equivalence.

Lemma 2.2 For each component i ∈ I, we have limb→∞
bE[(Di(L,Ni,τi)−s∗i (τi,b))

+]
s∗i (τi,b)

= 0

and limb→∞
bβic(τi)E[(Di(L,Ni,τi)−s∗i (τi,bβic(τi)))

+]
s∗i (τi,bβic(τi))

= 0.

2.4 Optimal reliability and stock levels 29

Proof. See Appendix. 2

We use Lemma 2.2 to establish our asymptotic equivalence result.

Theorem 2.1 For given τi ∈ (0, τ), the functions
∑
i∈J π̃(τi, s

∗
i (τi), Ni, βi) and∑

i∈J π̃(τi, s
∗
i (τi, bβic(τi)), Ni, βi | bβic(τi)) are asymptotically equivalent as b → ∞.

That is,

lim
b→∞

∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)), Ni, βi | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b), Ni, βi | b)
= 1.

Furthermore, π̃(τq, s
∗
q(τq, bβqc(τq)), Nq, βq|bβqc(τq)) and π̃(τq, s

∗
q(τq), Nq, βq) are asymp-

totically equivalent as b→∞. That is,

lim
b→∞

π̃(τq, s
∗
q(τq, bβqc(τq)), Nq, βq | bβqc(τq))
π̃(τq, s∗q(τq, b), Nq, βq | b)

= 1.

Proof. Fix τi ∈ (0, τ) for all i ∈ I and let b ∈ (0,∞) be sufficiently large to satisfy
Assumption 2.1. By definition of s∗i (τi, b), we find the following bounds by inserting
suboptimal turnaround stock levels:∑

i∈J π̃(τi, s
∗
i (τi, bβic(τi)), Ni, βi | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, bβic(τi)), Ni, βi | b)

≤
∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)), Ni, βi | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b), Ni, βi | b)

≤
∑
i∈J π̃(τi, s

∗
i (τi, b), Ni, βi | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b), Ni, βi | b)
.

We define k = arg maxi∈J{s∗i (τi, bβic(τi))}, and we rewrite the lower bound to∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)), Ni, βi | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, bβic(τi)), Ni, βi | b)

=

∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)), Ni, βi | bβic(τi))/s∗k(τk, bβkc(τk))∑

i∈J π̃(τi, s∗i (τi, bβic(τi)), Ni, βi | b)/s∗k(τk, bβkc(τk))
.

Taking the limit as b → ∞ implies that s∗i (τi, bβic(τi)) → ∞, and that any
τi ∈ (0, τ) satisfies Assumption 2.1. Consequently, we are not further concerned
with satisfying Assumption 2.1. Each cost term in the numerator and deno-
minator has a finite limit. This follows by using Lemma 2.2 and concluding

that limb→∞
bβic(τi)E[(D(L,Ni,τi)−s∗i (τi,bβic(τi)))

+]
s∗k(τk,bβkc(τk)) = 0, because s∗k(τk, bβkc(τk)) ≥

s∗i (τi, bβic(τi)) for all components i ∈ J . Hence, we obtain

lim
b→∞

∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)), Ni, βi | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, bβic(τi)), Ni, βi | b)
= 1.

30 Chapter 2. Service part effects for commonality and reliability

Now, we redefine k = arg maxi∈J{s∗i (τi, b)} with a slight abuse of notation, and we
rewrite the upper bound to∑

i∈J π̃(τi, s
∗
i (τi, b), Ni, βi | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b), Ni, βi | b)
=

∑
i∈J π̃(τi, s

∗
i (τi, b), Ni, βi | bβic(τi))/s∗k(τk, b)∑

i∈J π̃(τi, s∗i (τi, b), Ni, βi | b)/s∗k(τk, b)
.

Again, taking the limit as b→∞ and applying Lemma 2.2, we obtain

lim
b→∞

∑
i∈J π̃(τi, s

∗
i (τi, b), Ni, βi | bβic(τi))∑

i∈J π̃(τi, s∗i (τi, b), Ni, βi | b)
= 1.

By the sandwich theorem, we have limb→∞

∑
i∈J π̃(τi,s

∗
i (τi,bβic(τi)),Ni,βi | bβic(τi))∑

i∈J π̃(τi,s∗i (τi,b),Ni,βi | b) = 1.

The proof of the asymptotic equivalence for the common component is analogous to
the foregoing; we just have to omit the summations and replace all i and k by q. 2

We now explore how well the approximate total LCC functions represent the actual
total LCC functions. We introduce Testbed 2.1 to provide this comparison, and we
use this Testbed 2.1 also in the remainder of this chapter.

Testbed 2.1 We consider a full factorial testbed, based on representative data for
the semiconductor industry. We use a modified version of a well-established unit cost
function for c(τ), see Mettas (2000) and Öner et al. (2010):

c(τ) = p1 + p2 exp

(
k

τ

τ − τ

)
, p1, p2, k > 0, 0 < τ < τ,

with τ = 600. Furthermore, we consider months as our time unit, i.e., τi, T , and
L are in months; b is the cost per system down for one month; and h is a fraction
per part per month. We generate a large testbed that considers 5,120 instances for
dedicated components and 2,816 instances for the common component. We vary the
following parameters on two levels, see Table 2.2.

h r b T L p1 p2 k
0.015 0.2 100,000 180 3 500 100 1.0
0.030 0.3 1,000,000 360 4 5,000 1,000 2.0

Table 2.2: Parameter values for testbed

The values for b may seem excessive, but one should realize that these are the costs
for one month downtime, and for capital goods these downtime costs are very large
(roughly $10,000 per hour). Thus, the value b = $100, 000 corresponds to a downtime
costs of approximately $140 per hour, which is very low for capital intensive systems.
Furthermore, we consider two component families |J | = 2 and we vary the installed

2.4 Optimal reliability and stock levels 31

base sizes and the relative unit cost factors. We set β1 = 1 and vary β2 as follows:
β2 ∈ {1; 1.05; 1.1; 1.15; 1.2; 1.25; 1.3}. For Ni, we let

∑
i∈J Ni = N1 +N2 = 400 for all

instances, and vary one installed base size on three levels: N1 ∈ {100, 200, 300} and
have N2 = 400−N1. This yields 6 ∗ 3 + 2 = 20 possible instances (due to duplicates
when β1 = β2) for each parameter combination from the parameters in Table 2.2.
Hence, in total we have 20× 28 = 5, 120 instances.

For the common component we let βq ∈ {1; 1.05; 1.1; . . . ; 1.5} and Nq =
∑
i∈J = 400

is constant. This results in 11× 28 = 2, 816 instances for commonality. �

We use Testbed 2.1 to see how well the approximate total LCC function of
dedicated components compares to the original total LCC function of dedicated
components. We also compare the approximate and original total LCC function of
common components. For these comparisons, we enumerate the reliability levels over
{1, 2, . . . , 599}, and we let τ̃∗i and τ∗i correspond to the optimal reliability level for
component i ∈ I when using the original LCC function π̃(τi, s

∗
i (τi, b), Ni, βi | b) and

the approximation π̃(τi, s
∗
i (τi, bβic(τi)), Ni, βi | bβic(τi)), respectively. Subsequently,

we are interested in the relative cost differences for dedicated and common components

∆J =

(∑
i∈J π̃(τ∗i , s

∗
i (τ
∗
i , bβic(τ

∗
i)), Ni, βi | bβic(τ∗i))∑

i∈J π̃(τ̃∗i , s
∗
i (τ̃
∗
i , b), Ni, βi | b)

− 1

)
× 100%, and

∆q =

(
π̃(τq, s

∗
q(τ
∗
q , bβqc(τ

∗
q)), Nq, βq | bβqc(τ∗q))

π̃(τ̃∗q , s
∗
q(τ̃
∗
q , b), Nq, βq | b)

− 1

)
× 100%,

respectively. In particular, our interest goes out to the average, maximum, and
minimum value of ∆J and ∆q. For ∆J we find an average, maximum, and minimum
value of 0.0028%, 0.0190%, and 0.0000%, respectively; and for ∆q we find an average,
maximum and minimum value of 0.0017%, 0.0095%, and 0.0000%. We observe that
the average and maximum relative cost differences are very low. Therefore, we
consider the approximate total LCC functions to be good approximations for the
original total LCC functions.

Consequently, we propose to study
∑
i∈J π̃(τi, s

∗
i (τi, bβic(τi)), Ni, βi|bβic(τi)) and

π̃(τq, s
∗
q(τq, bβqc(τq)), Nq, βq|bβqc(τq)) in light of Theorem 2.1 and the results from

Testbed 2.1. These approximate total LCC functions can be optimized easily and
the satisfaction of Assumption 2.1 no longer depends on the reliability levels (once
we consider the approximate total LCC functions). This results from the fact that
the inverse of the standard normal cdf Φ−1(·) no longer depends on τi and thus is a
constant. For brevity, we define

π(τi, Ni, βi) = π̃(τi, s
∗
i (τi, bβic(τi)), Ni, βi | bβic(τi)),

and we rewrite each π(τi, Ni, βi) as follows, where φ(·) and Φ−1(·) denote the standard
normal pdf and the inverse of the standard normal cdf.

32 Chapter 2. Service part effects for commonality and reliability

Lemma 2.3 Inserting s∗i (τi, bβic(τi)) into Eq. (2.1) yields

π(τi, Ni, βi) = βic(τi)

(
1 +

rT + L(1 + hT)

τi

)
Ni

+bβic(τi)T

√
αNiL

τi
φ

(
Φ−1

(
bT − 1− hT

bT

))
. (2.3)

Proof. See Appendix. 2

We use Eq. (2.3) to derive the following cost minimization problems for the approxi-
mate formulations of the common component and of the dedicated components:

(CP ′) min
τq∈R
{π(τq, Nq, βq)} , and

(DP ′) min
τ∈R|J|

{∑
i∈J

π(τi, Ni, βi)

}
.

The cost function of an arbitrary component i ∈ I can be analyzed, because the
dedicated components problem (DP ′) is separable in the components i ∈ J . Moreover,
we make the following assumption with respect to c(τ).

Assumption 2.2 c(τ) satisfies the following: c(τ)
τ is convex and c(τ)√

τ
is convex.

Assumption 2.2 is not very restrictive, because there exists a large class of functions
that satisfy this assumption: polynomial functions with one constant term and all
others terms being at least second order, and exponential forms, e.g. Mettas (2000)
and Öner et al. (2010). Note that c(τ) from Testbed 2.1 satisfies Assumption 2.2.

Given Assumption 2.2 and after separation, we show that the cost function
π(τi, Ni, βi) for any component i ∈ I is strictly convex if c(τ) satisfies Assumption 2.2.
As a consequence, we can determine the optimal reliability levels τ∗i for all components
i ∈ I easily by standard optimization techniques.

Lemma 2.4 For each component i ∈ I, π(τi, Ni, βi) is twice differentiable and strictly
convex, and it is minimized by a positive, unique, finite τ∗i . This τ∗i solves the first
order condition.

Proof. See Appendix. 2

Furthermore, we note that the optimal reliability levels τ∗i are independent of the
values of βi. The cost function π(τi, Ni, βi) is proportional to the unit cost βic(τi).
As a consequence, there do not exist any economies of scale with respect to the unit
production cost and neither with respect to βi. Therefore, the relative cost factor βi
does not determine the optimal reliability level τ∗i .

2.4 Optimal reliability and stock levels 33

Secondly, each τ∗i is determined by the size of the installed base Ni of component
i ∈ I. This results from the fact that the production costs, the storage costs, and the
repair costs are proportional to the installed base Ni. The costs for downtime and
keeping safety stock are sub–linear in Ni due to service part pooling that exists when
the installed base Ni increases or decreases.

2.4.2 Non–anticipating approach

For the models of the non–anticipating approach, (ĈP) and (D̂P), Assumption 2.1

is not relevant since we do not consider service parts. Let τ̂∗i minimize (D̂P) for

component i ∈ I. Observing that (D̂P) is separable in the components i ∈ J and
given Assumption 2.2, we find all τ̂∗i efficiently by the result of Lemma 2.5.

Lemma 2.5 The function f(τ) = c(τ) + rc(τ)T
τ is twice differentiable and strictly

convex, and it is minimized by a positive, unique, finite τ̂∗. This τ̂∗ solves the first
order condition, and it satisfies τ̂∗ = τ̂∗i for all i ∈ I.

Proof. See Appendix. 2

Finally, we remark that Lemma 2.5 implies that all τ̂∗i are independent of βi and Ni
as each term of π̂(τi, Ni, βi) is proportional to the unit production cost βic(τi) and
also proportional to the installed base Ni. The independence of βi follows by the
same argument (absence of economies of scale with respect to βi) that we presented
in Section 2.4.1. The optimal reliability level τ̂∗i is independent on Ni, because the
non–anticipating approach does not consider service parts in the decision. Hence, the
costs for downtime and for keeping safety stock are not considered, and thus the LCC
π̂(τi, Ni, βi) are proportional to Ni.

2.4.3 Comparing optimal reliability decisions

The optimal reliability levels under both approaches are different, and we study how
different they are in this section. By using the results from the previous sections
(asymptotic equivalence), we can easily determine the optimal reliability levels τ∗i and
τ̂∗i for all components i ∈ I under the anticipating and non–anticipating approach,
respectively. We use Testbed 2.1 to numerically study the differences between the
optimal reliability levels. We are interested in the relative difference between the
reliability levels τ∗i and τ̂∗i for each component i ∈ I:

∆r
i =

(
τ∗i
τ̂∗i
− 1

)
× 100%.

34 Chapter 2. Service part effects for commonality and reliability

The results show that the minimum and maximum relative reliability difference
between both approaches (over all dedicated and common components) are 2.76%
and 27.76%, respectively. The average reliability difference of the two dedicated com-
ponents and the common components are 10.62%, 10.54%, and 9.57%, respectively.
Hence, the OEM designs more reliable components when service part inventories are
considered for the reliability decision. Furthermore, we observe that the difference in
the optimal reliability levels can differ substantially between both approaches. These
differences for the reliability decisions directly influence the intensity at which systems
fail and thus may have a major effect on the performance and costs of after–sales
services, e.g. service part provisioning. We do not elaborate on the numerical details,
because our objective here is to illustrate that large differences exist in the optimal
reliability levels between both approaches. Nevertheless, more detailed numerical
results are presented and briefly discussed in Appendix 2.C.

2.5. Commonality decision

In this section, we study the optimal commonality decision for both approaches, under
optimal reliability levels.

2.5.1 Non–anticipating approach

If the OEM uses the non–anticipating approach, we want to determine when he selects
commonality, i.e., when does commonality yield lower LCC than dedicated compo-
nents. Hence, our objective is to determine a condition such that π̂(τ̂∗q , Nq, βq) ≤∑
i∈J π̂(τ̂∗i , Ni, βi). We consider given values for the installed bases Ni and relative

unit cost factors βi for all components i ∈ J . Then, we derive a switching curve for
βq and we call this switching curve Θ̂(N ,β).

Corollary 2.1 Given N and β, the non–anticipating approach selects commonality
if and only if βq is smaller than the weighted average of all βi with i ∈ J . That is,

the non–anticipating approach selects commonality if and only if βq ≤ Θ̂(N ,β) =∑
i∈J

βiNi
Nq

.

Proof. See Appendix. 2

Corollary 2.1 is a consequence of Lemma 2.5, and the former states that the non–
anticipating approach selects commonality if and only if the relative unit cost factor
of the common component βq is less than the weighted average of the unit cost factors
βi of the dedicated components i ∈ J . In other words, commonality is attractive if
and only if the common component’s unit costs is less than the weighted average unit
costs of the dedicated components. Hence, commonality is not always a good idea,

2.5 Commonality decision 35

because the cost of the common component is a crucial determinant. Furthermore,
Corollary 2.1 also implies that there cannot exist instances in which the common
component’s unit cost is higher than the unit costs of each dedicated component and
commonality yields lower LCC than dedicated components. Thus, the OEM will not
invest in a common component that is more expensive than any dedicated component
if he uses the non–anticipating approach.

2.5.2 Anticipating approach

For the anticipating approach, we also determine a condition such that π(τ∗q , Nq, βq) ≤∑
i∈J π(τ∗i , Ni, βi). For each i ∈ I, the approximate LCC function π(τi, Ni, βi) has

the property that the optimal reliability level τ∗i is independent of the relative unit
cost factor βi. Therefore, our objective is equivalent to determining a condition for
βq such that βqπ(τ∗q , Nq, 1) ≤

∑
i∈J π(τ∗i , Ni, βi), for given installed base sizes Ni and

relative unit cost factors βi for components i ∈ J (note that Nq =
∑
i∈J Ni is given).

Hence, there exists a unique switching curve for βq and we let Θ(N ,β) correspond
to this switching curve. The anticipating approach selects commonality if and only if
βq ≤ Θ(N ,β) with

Θ(N ,β) =

∑
i∈J π(τ∗i , Ni, βi)

π(τ∗q , Nq, 1)
.

Θ(N ,β) determines the commonality decision for the anticipating approach, and it
can be interpreted as a measure of how expensive a common component can be and
still yield lower total LCC than dedicated components. This implies that commonality
does not necessarily reduce the costs: if the unit cost of a common component is
considered, it may be more expensive to use commonality than using the alternative
of dedicated components. We also remark that if we would study the original LCC
function π̃(τi, s

∗
i (τi, b), Ni, βi), there exist terms that are independent of βi. This

complicates the analytical characterization of a switching curve for commonality (if it
even exists), because the optimal reliability levels depend on bothN and β. Thus, the
asymptotic approximation from Section 2.4.1 enables us to analytically characterize
a switching curve for commonality under the non–anticipating approach.

We shed a little more light on how Θ(N ,β) behaves with respect to the installed
base sizes Ni and relative unit cost factors βi. Consider an illustrative Example 2.1
with two dedicated components. We vary the installed base sizes N for two different
vectors β, and we obtain the results in Figure 2.3. Furthermore, we also illustrate
Θ̂(N ,β) in Figure 2.3.

Example 2.1 For this numerical example, we consider a representative parameter
setting for an OEM in the semiconductor industry. Let |J | = 2, h = 0.03 per part per
month, r = 0.2 per repair, L = 3 months, T = 360 months, b = $1×106 per month per
system down, and α = 1. Moreover, we consider the installed base N1 ∈ {1, . . . , 399}

36 Chapter 2. Service part effects for commonality and reliability

and let N1 +N2 = 400. Furthermore, we use c(τ) = 5, 000 + 1, 000 exp
(

τ
600−τ

)
in $

per unit, where τ ∈ (0, 600). �

0 100 200 300 400

1

1.05

1.1

N1

β
q

Θ(N ,β)

Θ̂(N ,β)

(a) β1 = β2 = 1

0 100 200 300 400

1

1.05

1.1

1.15

N1

β
q

Θ(N ,β)

Θ̂(N ,β)

(b) β1 = 1, β2 = 1.1

Figure 2.3: Illustration of Θ(N ,β) and Θ̂(N ,β) from Example 2.1

The results in Figure 2.3 for Θ̂(N ,β) are straightforward as the switching curve is
the weighted average of β1 and β2. Hence, we focus our attention on Θ(N ,β) in the
remainder.

Using a common component has the advantage of exploiting service parts pooling,
i.e., offer the same performance with fewer service parts on stock. As a result, the
costs can be reduced when using common components compared to using dedicated
components. However, we typically observe that common components are more
expensive than each of the dedicated components (van Mieghem, 2004), i.e., βq ≥ βi
for all components i ∈ J . Figure 2.3 illustrates the trade off between the cost benefit
of pooling service parts and the increased unit cost of a common component βq. We
see that – in most cases – the unit cost of a common component in terms of βq can
be substantially higher (compared to βi) and still result in lower life cycle costs due
to the cost reduction that results from service parts pooling.

Furthermore, if we consider the results of the symmetrical dedicated components in
Figure 2.3a, the cost advantage resulting from service parts pooling increases as the
difference between the installed base sizes becomes smaller. This means that, when N1

and N2 are closer together, the unit cost of a common component in terms of βq can
increase more and still result lower LCC than dedicated components. The symmetry
of Θ(N ,β) follows from the symmetry that exists for the dedicated components (β1 =
β2). Hence, the maximum value for Θ(N ,β) is attained when both installed bases
are identical, because this results in the largest pooling effect for service parts, and
thus allows the unit cost of a common component to become most expensive. Hence,
we say that commonality is most attractive when the installed base sizes are equal.

2.5 Commonality decision 37

If the dedicated components are not symmetrical (β1 = 1 and β2 = 1.1), we obtain
Figure 2.3b. Using a common component still profits from the cost benefit that results
from pooling the service parts. Consequently, the common component can increase
the unit cost (in terms of βq) and still result in lower LCC. However, Θ(N ,β) is
no longer symmetrical but skewed, because the pooled dedicated components have
different values for βi. Furthermore, Θ(N ,β) is skewed such that commonality is
most attractive – Θ(N ,β) is maximal – when the dedicated component i with the
largest βi also has the largest installed base Ni. If the installed base of expensive
parts N2 is relatively large (and N1 is small), the total costs of dedicated components
is also relatively large. Consequently, the unit cost of a common component (in terms
of βq) can increase more and still result in lower life cycle costs, in part also due to
the cost benefit of service part pooling. Hence, commonality is most attractive when
a more expensive component has a larger installed base than a cheaper component.

Proving our observations for when commonality is most attractive (maximum value of
Θ(N ,β)) is difficult, because a change in the installed base size Ni induces a change
in the optimal reliability level τ∗i . Therefore, we propose to study an upper bound
Θ̃(N ,β) for Θ(N ,β). This upper bound is obtained by substituting the optimal
reliability levels τ∗i by the suboptimal reliability level τ∗q in the numerator of Θ(N ,β).
This yields the following switching curve upper bound for commonality:

Θ̃(N ,β) =

∑
i∈J π(τ∗q , Ni, βi)

π(τ∗q , Nq, 1)
.

Using Testbed 2.1, we study how tight this upper bound Θ̃(N ,β) is. We consider

the relative difference
(

Θ̃(N ,β)/Θ(N ,β)− 1
)
× 100%, and find that the average,

maximum, and minimum difference between Θ(N ,β) and Θ̃(N ,β) are 0.0049%,
0.0207%, and 0.0000%, respectively. The differences are very small, which results
from the fact that the optimal reliability levels τ∗i are close to τ∗q . Therefore, it is
likely that the unit production cost in terms of βi and the installed base Ni mainly
determine how attractive commonality is.

As the differences between Θ(N ,β) and Θ̃(N ,β) are very small, we study the upper
bound Θ̃(N ,β) in more detail in the remainder of this section. We prove – for
Θ̃(N ,β) – that commonality is most attractive when the installed base sizes are
identical if βi = βj for all components i ∈ J . Secondly, we also prove that commonality
is most attractive when Ni follows the same ordering as βi, if the βi are not identical.

Proposition 2.1

(a) If βi = βj for all components i, j ∈ J , Θ̃(N ,β) increases when the difference in
installed base sizes decreases. That is, when βi = βj , ∀i, j ∈ J and

∑
i∈J Ni = Nq

for some Nq ∈ N, if there exist j, k ∈ J such that Nj −Nk > 1 then Θ̃(N − ej +

ek,β) ≥ Θ̃(N ,β), where ej denotes the indicator vector of component j ∈ J .

38 Chapter 2. Service part effects for commonality and reliability

(b) For any βi and relaxed integrality of Ni for all components i ∈ J , Θ̃(N ,β)
increases when the installed base sizes are ordered the same way as the relative
unit cost factors. That is, if l = |J | and β1 ≤ β2 ≤ . . . ≤ βl, then the vector
N∗ ∈ Rl that maximizes Θ̃(N ,β) such that

∑
i∈J N

∗
i = Nq for some Nq ∈ N

satisfies N∗1 ≤ N∗2 ≤ . . . ≤ N∗l .

Proof. See Appendix. 2

The result of Proposition 2.1 proves our observations for the upper bound Θ̃(N ,β).
These results can likely be extrapolated to the actual threshold Θ(N ,β), because
the upper bound is tight with a worst case gap of 0.0207%. This indicates that
commonality becomes most attractive – under the anticipating approach – for equally
sized installed bases if the relative unit costs are equal; if the relative unit costs differ,
commonality is most attractive when components with higher unit costs also have a
larger installed base.

2.5.3 Comparing commonality decisions

Next, we compare the difference in the commonality decision between both approa-
ches. We compare the switching curve of the anticipating approach Θ(N ,β) to the
switching curve of the non–anticipating approach Θ̂(N ,β).

Theorem 2.2 The anticipating approach selects commonality strictly more than the
non–anticipating approach, i.e., Θ(N ,β) > Θ̂(N ,β).

Proof. For our claim, it suffices to prove that Θ(N ,β) >
∑
i∈J

βiNi
Nq

as Θ̂(N ,β) =∑
i∈J

βiNi
Nq

. Let βq =
∑
i∈J

Niβi
Nq

and consider π(τ∗q , Nq, βq) to obtain

π(τ∗q , Nq, βq) =
∑
i∈J

Ni
Nq

βic(τ
∗
q)

(
1 +

rT + L(1 + hT)

τ∗q

)
Nq

+
∑
i∈J

Ni
Nq

bβic(τ
∗
q)T

√
αNqL

τ∗q
φ

(
Φ−1

(
bT − 1− hT

bT

))
≤
∑
i∈J

Ni
Nq

βic(τ
∗
i)

(
1 +

rT + L(1 + hT)

τ∗i

)
Nq

+
∑
i∈J

Ni
Nq

bβic(τ
∗
i)T

√
αNqL

τ∗i
φ

(
Φ−1

(
bT − 1− hT

bT

))
=
∑
i∈J

βic(τ
∗
i)

(
1 +

rT + L(1 + hT)

τ∗i

)
Ni

2.5 Commonality decision 39

+
∑
i∈J

Ni
Nq

bβic(τ
∗
i)T

√
αNqL

τ∗i
φ

(
Φ−1

(
bT − 1− hT

bT

))
<
∑
i∈J

βic(τ
∗
i)

(
1 +

rT + L(1 + hT)

τ∗i

)
Ni

+
∑
i∈J

bβic(τ
∗
i)T

√
αNiL

τ∗i
φ

(
Φ−1

(
bT − 1− hT

bT

))
=
∑
i∈J

π(τ∗i , Ni, βi),

where the first inequality follows from inserting suboptimal values τ∗i instead of
the optimal τ∗q . The last inequality follows from the fact that if Ni > 0, then
Ni
Nq

√
Nq =

√
Ni
√

Ni
Nq

<
√
Ni for all i ∈ J . As βq =

∑
i∈J

Niβi
Nq

is the maximum

value for βq such that commonality is selected under the non–anticipating approach
and βq is such that π(τ∗q , Nq, βq) <

∑
i∈J π(τi, Ni, βi), the anticipating approach still

selects commonality. Hence, we have that Θ(N ,β) >
∑
i∈J

Niβi
Nq

= Θ̂(N ,β), where

the final equality holds by Corollary 2.1. 2

Theorem 2.2 proves that the anticipating approach favors commonality strictly more
than the non–anticipating approach. The former approach incorporates the service
parts pooling effects in its decision making, while the latter approach does not.
This causes the non–anticipating approach to underestimate the attractiveness of
commonality and it may lead to suboptimal commonality decisions that in turn
may result in higher total LCC. Furthermore, the result from Theorem 2.2 confirms
previous findings on the beneficial inventory effects of commonality; see for example
Baker et al. (1986), Hillier (2000), van Mieghem (2004), and Song and Zhao (2009).
Our result proves that these insights also hold in settings where LCC and reliability
optimization are considered.

Besides the analytical difference between the switching curves of both approaches, we
also numerically explore the difference in the commonality decision between the two
approaches. We are primarily interested in the cost increase of the unit cost for a
common component such that both approaches still result in a different commonality
decision. This is equivalent to considering the relative increase in the switching curves

between the two approaches, given by
(

Θ(N ,β)/Θ̂(N ,β)− 1
)
× 100%. We use

Testbed 2.1 to find that the average, maximum, and minimum values are 5.41%,
9.59%, and 2.33%, respectively. Thus, we see that the two approaches can still
yield a different commonality decision, even when the common component’s unit
cost increases substantially by as much as 9.59%. This difference underlines the
importance of considering service part inventories in the commonality decision, and
it implies that ignoring them in such a decision underestimates the attractiveness
of commonality. More extensive numerical results and discussions are presented in

40 Chapter 2. Service part effects for commonality and reliability

Appendix 2.C.

2.6. Cost effects

In this final analysis part of the chapter, we study how much of the LCC we can
save when we consider service parts in the design decision in terms of commonality
and reliability (RQ3). Our objective is to compare the costs of the anticipating
and the non–anticipating approach. Since the anticipating approach includes more
LCC aspects (service parts), we evaluate the decision of the non–anticipating
approach based on the total LCC functions π(τq, Nq, βq) and

∑
i∈J π(τi, Ni, βi) of

the anticipating approach. We are interested in the relative cost difference between
both approaches, defined by

∆π(N ,β, βq) =

(
γπ(τ̂∗q , Nq, βq) + (1− γ)

∑
i∈J π(τ̂∗i , Ni, β)

min{π(τ∗q , Nq, βq),
∑
i∈J π(τ∗i , Ni, βi)}

− 1

)
× 100%,

where γ is a binary variable such that γ = 1 if π̂(τ̂∗q , Nq, βq) ≤
∑
i∈J π̂(τ̂∗i , Ni, βi)

and γ = 0 otherwise. Note that we use γ to indicate whether the non–
anticipating approach selects commonality, and we evaluate this decision under the
LCC expressions of the anticipating approach π(τ̂∗q , Nq, βq) and

∑
i∈J π(τ̂∗i , Ni, β).

Then, we have that ∆π(N ,β, βq) ≥ 0 for all N , β and βq, because we compare the
costs of the optimal decisions under the anticipating approach to the (suboptimal)
decisions made under the non–anticipating approach. Consequently, the anticipating
approach results in lower LCC than the non–anticipating approach.

The reason for this LCC reduction stems from the two advantages that the
anticipating approach has over the non–anticipating approach: the first benefit is
that (i) the anticipating approach considers service parts in the commonality decision.
Therefore, it takes the advantageous effect of service parts pooling into account. This
again confirms results from previous research that common components are beneficial
for service parts pooling (Baker et al., 1986; Hillier, 2000; Song and Zhao, 2009).
Our findings do not only confirm previous results, but also show that the anticipating
approach (considering service parts) reduces the LCC for any installed base size vector
N and for any unit costs βi of component i ∈ I, i.e., for any N , β, and βq, we have
∆π(N ,β, βq) ≥ 0. That is, for any instance – even when the common component
is very expensive – the anticipating approach reduces the LCC compared to the
non–anticipating approach. Secondly, (ii) as the anticipating approach considers
service parts, the OEM makes a conscious decision on the substitution effect between
reliability and service parts (Öner et al., 2010; Kim et al., 2017). This enables the
OEM to further reduce the LCC by taking the anticipating approach.

Despite the result of Theorem 2.2, we have no indication how large the LCC reduction
is. Therefore, we numerically study ∆π(N ,β, βq) based on Testbed 2.1.

2.6 Cost effects 41

Testbed 2.1 (continued) For each instance of dedicated components, we consider
βq ∈ {1; 1.05; 1.1; . . . ; 1.5} in order to determine ∆π(N ,β, βq). This increases the
number of instances from 5,120 to 56,320. �

For Testbed 2.1, we obtain the average, maximum, and minimum value of the cost
difference ∆π(N ,β, βq) of 0.80%, 10.67%, and 0.07%, respectively. We see that the
cost differences between both approaches can be substantial, although the average
value is relatively low. Thus, there exist instances in which the LCC can become 10%
more expensive if the OEM omits the service parts consideration from the design
decision in terms of commonality and reliability. Such a 10% difference is an increase
of the total life cycle costs and may have a direct detrimental effect on the OEM’s
profitability. Hence, the OEM is urged to consider service parts in the commonality
and reliability decisions.

Yet, we remark that the average value of the relative cost difference is fairly low
(< 1%). This follows from the fact that our testbed contains 50,704 instances (out
of the 56,320 instances) in which the anticipating and non–anticipating result in
the same commonality decision. In the 5,616 instances wherein the anticipating
approach selects commonality and the non–anticipating approach does not, we
observe an average, maximum, and minimum LCC difference of 3.12%, 10.46%, and
0.09%. Therefore, we see that the LCC difference significantly increases when the
commonality decision is different for both approaches, thereby further illustrating the
need of considering service parts for the commonality and reliability decisions.

In the other instances, the non–anticipating and anticipating approach yield the
same commonality decision. For these instances, we find an average, maximum, and
minimum LCC difference of 0.54%, 10.67%, and 0.07%, respectively. Although the
average LCC difference is low, there still exist instances in which this difference can be
as large as 10%. Such a large difference is a result of the reliability decisions, since the
commonality decision is the same for both approaches. To avoid large LCC differences
that may be detrimental to the OEM’s profitability, it is crucial to consider service
parts in the commonality and reliability decisions. A more extensive numerical study
considering the LCC difference is presented in Appendix 2.C.

In addition to results of Testbed 2.1, we also study Example 2.1 in more detail.
This enables us to graphically illustrate cases in which the relative cost difference
∆π(N ,β, βq) is large.

Example 2.1 (continued) We consider βq ∈ {1; 1.001; 1.002; . . . ; 1.2}. �

We use Example 2.1 to generate the numerical results from Figure 2.4. The elevated
‘surfaces’ in Figure 2.4 show the larger cost differences. If we now look at Figure
2.4 from the top, we obtain Figure 2.3. This observation implies that the larger
cost differences are typically observed when the commonality decision differs between
the non–anticipating and the anticipating approach. Moreover, we see that the

42 Chapter 2. Service part effects for commonality and reliability

0
200

400 1
1.1

1.2

0

2

4

6

8

10

N1 βq

∆
π

(N
,β
,β

q
)

(%
)

(a) β1 = β2 = 1

0
200

400 1
1.1

1.2
0

2

4

6

8

10

N1 βq

∆
π

(N
,β
,β

q
)

(%
)

(b) β1 = 1, β2 = 1.1

Figure 2.4: Numerical illustration of ∆π(N ,β, βq) for Example 2.1

largest cost differences occur when βq is just larger than the switching curve of the
non–anticipating approach. So, if the non–anticipating approach selects dedicated
components only because it is slightly cheaper than commonality, the actual total
LCC may become substantially higher, even up to 10% (as we saw in Testbed 2.1).
Therefore, we strongly urge OEMs to consider service parts in their design decisions,
as this enables them to make better decisions that result in lower LCC, at the expense
of very little implementation complexity.

2.7. Conclusion

We considered an OEM that is responsible for a number of systems because he has
closed service contracts with his customers. Hence, the OEM is reponsible for a major
part of a system life cycle and thus interested in minimizing the LCC. We studied
the effect of service parts on the design decisions that are made by an OEM, and
its consequences on the LCC. The OEM determines whether to make components
common and what reliability the components have. We considered an approach that
neglects service parts in the design decision and called this the non–anticipating
approach. This approach is mostly used in practice, because a design department
carries no responsibility for after–sales performance such as service parts planning.
On the other hand, we also studied an approach that does consider service parts in
the design decision, and called this the anticipating approach.

For each approach, we formulated two LCC models: one commonality model, and one
model for the alternative of dedicated components. The optimization of the models for
the anticipating approach was intractable, and therefore we proposed two approximate
models that are asymptotically equivalent as the cost of system downtime tends to
infinity. The benefit of studying these approximate models (for the anticipating

2.7 Conclusion 43

approach) is that it enables us to efficiently determine the optimal reliability levels,
and we are able to obtain analytical results for the commonality decision. The
optimization for the non–anticipating approach was rather straightforward.

We studied the optimal reliability decision for the non–anticipating and anticipating
approach. We proved that the optimal reliability levels can be determined by
straightforward optimization. Moreover, we numerically illustrated that considering
service parts in the reliability decision is essential and it increases the optimal
reliability levels by as much as 27%, and on average by roughly 10%. Such differences
are large and can have major effects on the after–sales operations and costs. Therefore,
engineers should be incentivized to consider service parts for the reliability decision,
if the OEM’s objective is to minimize the life cycle costs. Secondly, we focused on the
commonality decision for both approaches. We analytically characterized – for each
approach – a switching curve based on the unit cost of a common component, and this
curve determines the commonality decision. This curve indicates that commonality
does not always reduce the costs, because it depends on the cost of a common
component: if a common component is relatively expensive (compared to dedicated
components), commonality is not attractive. We also found that the anticipating
approach selects commonality strictly more than the non–anticipating approach. In
addition to the analytical result, we numerically saw that the decision between both
approaches can differ, even if the unit cost of a common component increases by as
much as 9.59%. So, service parts should be considered if a good commonality decision
has to be made: the OEM can use a significantly more expensive common component
and still obtain lower life cycle costs. We also studied the life cycle costs effect of
considering service parts in design decisions. We proved that the non–anticipating
approach yields higher LCC than the anticipating approach. This occurs because
the non–anticipating approach does not exploit the service parts pooling effect and
the substitution effect between service parts and reliability. Our numerical analysis
indicated that if we pursue the non–anticipating approach, we may end in scenarios
in which we incur 10% higher life cycle costs, which may be detrimental to an OEM’s
profitability. Hence, if the OEM wants to improve its profitability, it should encourage
his design engineers to consider service parts in the design decisions.

44 Chapter 2. Service part effects for commonality and reliability

2.A. Proofs

2.A.1 Proof of Lemma 2.1

Let us first write:

π̃(τi, si, Ni, βi) = βic(τi)(Ni + si) + hsiTβic(τi) + rβic(τi)
NiT

τi

+bT

∫ ∞
si

(x− si)fi(x)dx (2.4)

= βic(τi)(Ni + si) + hsiTβic(τi) + rβic(τi)
NiT

τi

+bTE[Di(L,Ni, τi)]− bTsi + bT

∫ si

0

(si − x)fi(x)dx,

with fi(x) the pdf of Di(L,Ni, τi). From Leibniz’ rule, we obtain ∂π̃(τi,si,Ni,βi)
∂si

=

βic(τi) + βic(τi)hT − bT + bT
∫ si

0
fi(x)dx = βic(τi) + βic(τi)hT − bT + bTF (si), with

F (si) the cdf ofDi(L,Ni, τi). Applying Leibniz’ rule again, we obtain the second order

derivative ∂2π̃(τi,si,Ni,βi)
∂si2

= bTfi(si) > 0, as b, T > 0, and fi(si) > 0 by definition of
the pdf. Hence, π̃(τi, si, Ni, βi) is twice differentiable and strictly convex in si. Next,
we prove the existence of a positive, unique, finite s∗i (τi) that solves the first order
condition.

(i) First, we prove that π̃(τi, si, Ni, βi) is strictly decreasing at si = 0. Consider the

derivative ∂π̃(τi,si,Ni,βi)
∂si

as si = 0:

∂π̃(τi, si, Ni, βi)

∂si

∣∣∣∣
si=0

= βic(τi) + βic(τi)hT − bT + bTFi(si) = βic(τi) + βic(τi)hT

−bT + bTΦ

(
−E[Di(L,Ni, τi)]

σ[Di(L,Ni, τi)]

)
≤ βic(τi) + βic(τi)hT −

bT

2
< 0,

where the second equality follows because we consider normally distributed demand

during L, and the first inequality follows because Φ
(
−E[Di(L,Ni,τi)]
σ[Di(L,Ni,τi)]

)
≤ 1/2, with Φ(·)

denoting the standard normal cdf. The final inequality follows from Assumption 2.1.
Hence, we conclude that π̃(τi, si, Ni, βi) is strictly decreasing at si = 0.

(ii) Let us now prove that π̃(τi, si, Ni, βi) is strictly increasing as si tends to infinity.

Consider the derivative ∂π̃(τi,si,Ni,βi)
∂si

as si → ∞, i.e., limsi→∞
∂π̃(τi,si,Ni,βi)

∂si
=

limsi→∞ {βic(τi) + βic(τi)hT − bT + bTFi(si)} = βic(τi)(1 + hT) > 0, where the last
equality follows from the definition of Fi(si), i.e., limsi→∞ Fi(si) = 1. The inequality

2.A Proofs 45

follows from c(τi) > 0 for all τi ∈ (0, τ), and βi, h, T > 0. Thus, π̃(τi, si, Ni, βi) is
strictly increasing as si tends to infinity.

By combining (i), (ii) and the strict convexity of π̃(τi, si, Ni, βi), there exists a
positive, unique, finite optimum s∗i (τi) that solves the first order condition. Exploiting
the properties of the normal distribution, and standardization yields

s∗i (τi) = E[Di(L,Ni, τi)] + σ[Di(L,Ni, τi)]Φ
−1

(
bT − βic(τi)(1 + hT)

bT

)
.

2.A.2 Proof of Lemma 2.2

For given τi ∈ (0, τ), we let b be such that we satisfy Assumption 2.1. For each i ∈ I
we have

0 ≤ bE[(Di(L,Ni, τi)− s∗i (τi, b))+]

s∗i (τi, b)

=
bP [Di(L,Ni, τi) > s∗i (τi, b)]E [Di(L,Ni, τi)− s∗i (τi, b) | Di(L,Ni, τi) > s∗i (τi, b)]

s∗i (τi, b)

=
βic(τi)(1 + hT)

T
× E [Di(L,Ni, τi)− s∗i (τi, b) | Di(L,Ni, τi) > s∗i (τi, b)]

s∗i (τi, b)
,

where the first inequality follows from Eq. (2.4) in the proof of Lemma 2.1. The
second equality follows from the definition of the optimal turnaround stock level. That
is, s∗i (τi, b) satisfies ∂π̃(τi,si,Ni,βi)

∂si
= 0, which implies P[Di(L,Ni, τi) > s∗i (τi, b)] =

βic(τi)(1+hT)
bT by the right continuity of the distribution function (Huh et al., 2009,

p. 409). Then, for the limit of b → ∞, Assumption 2.1 is satisfied for any finite
τi ∈ (0, τ) and thus we obtain

0 ≤ lim
b→∞

bE[(Di(L,Ni, τi)− s∗i (τi, b))+]

s∗i (τi, b)

≤ lim
b→∞

βic(τi)(1 + hT)

T
× E [Di(L,Ni, τi)− s∗i (τi, b) | Di(L,N, τi) > s∗i (τi, b)]

s∗i (τi, b)
= 0.

The equality follows from the fact that s∗i (τi, b) → ∞ as b → ∞ and because
E[Di(L,Ni,τi)−s∗i (τi,b) | Di(L,Ni,τi)>s∗i (τi,b)]

s∗i (τi,b)
→ 0 as b → ∞ due to the increasing failure

rate of a normal distribution, see Huh et al. (2009, p. 409).

2.A.3 Proof of Lemma 2.3

Let us write π(τi, Ni, βi) in terms of the normalized loss function of the normal
distribution, with ŝi = s∗i (τi, bβic(τi)).

π(τi, Ni, βi) = βic(τi)(Ni + ŝi) + hŝiTβic(τi) + rβic(τi)
NiT

τ

46 Chapter 2. Service part effects for commonality and reliability

+bβic(τi)Tσ[Di(L,Ni, τi)]

{
φ

(
ŝi − E[Di(L,Ni, τi)]

σ[Di(L,Ni, τi)]

)
− ŝi − E[Di(L,Ni, τi)]

σ[Di(L,Ni, τi)]

(
1− Φ

(
ŝi − E[Di(L,Ni, τi)]

σ[Di(L,Ni, τi)]

))}
,

where φ(·) and Φ(·) denote the standard normal pdf and cdf, respectively. Next, we
substitute ŝi by s∗i (τi, bβic(τi)) and simplify:

π(τi, Ni, βi))

= βic(τi)Ni + βic(τ)(1 + hT) (E[Di(L,Ni, τi)]

+σ[Di(L,Ni, τi)]Φ
−1

(
bT − 1− hT

bT

))
+ rβic(τi)

NiT

τ

+bβic(τi)Tσ[Di(L,Ni, τi)]φ

(
Φ−1

(
bT − 1− hT

bT

))
−bβic(τi)Tσ[Di(L,Ni, τi)]Φ

−1

(
bT − 1− hT

bT

)(
1− Φ

(
Φ−1

(
bT − 1− hT

bT

)))
= βic(τi)Ni + βic(τi)(1 + hT) (E[Di(L,Ni, τi)]

+σ[Di(L,Ni, τi)]Φ
−1

(
bT − 1− hT

bT

))
+ rβic(τi)

NiT

τi

+bβic(τi)Tσ[Di(L,Ni, τi)]φ

(
Φ−1

(
bT − 1− hT

bT

))
−βic(τi)(1 + hT)σ[Di(L,Ni, τi)]Φ

−1

(
bT − 1− hT

bT

)
= βic(τi)Ni + βic(τi)(1 + hT)E[Di(L,Ni, τi)] + rβic(τi)

NiT

τi

+bβic(τi)Tσ[Di(L,Ni, τi)]φ

(
Φ−1

(
bT − 1− hT

bT

))
= βic(τi)

(
1 +

rT + L(1 + hT)

τi

)
Ni

+bβic(τi)Tσ[Di(L,Ni, τi)]φ

(
Φ−1

(
bT − 1− hT

bT

))
= βic(τi)

(
1 +

rT + L(1 + hT)

τi

)
Ni + bβic(τi)T

√
αNiL

τi
φ

(
Φ−1

(
bT − 1− hT

bT

))
.

2.A.4 Proof of Lemma 2.4

All terms are twice differentiable by assumption, and thus π(τi, Ni, βi) is twice
differentiable. We have

d2π(τi, Ni, βi)

dτ2
i

= c′′(τi)Niβi + βi(rT + L(1 + hT))Ni

(
c′′(τi)

τi
− 2

c′(τi)

τ2
i

+ 2
c(τi)

τ3
i

)

2.A Proofs 47

+

(
c′′(τi)τ

−1/2
i − c′(τi)τ−3/2

i +
3

4
c(τi)τ

−5/2
i

)
×βibTφ

(
Φ−1

(
bT − 1− hT)

bT

))√
αNiL

= c′′(τi)Niβi + βi(rT + L(1 + hT))
Ni
τ3
i

(
τ2
i c
′′(τi)− 2τic

′(τi) + 2c(τi)
)

+τ
−5/2
i

(
τ2
i c
′′(τi)− τic′(τi) +

3

4
c(τi)

)
×βibTφ

(
Φ−1

(
bT − 1− hT)

bT

))√
αNiL

> 0,

since c′′(τi) > 0 (by assumption) and c(τi) satisfying Assumption 2.2. The latter can
be seen by the second order derivative test applied to the conditions in Assumption
2.2. Hence, π(τi, Ni, βi) is twice differentiable and strictly convex in τi. The next step
is to show that there exists a positive, unique, finite τ∗i that minimizes π(τi, Ni, βi),
and that this τ∗i solves the first order condition.

(i) π(τi, Ni, βi) is strictly decreasing for τi ↓ 0. The derivative of π(τi, Ni, βi) is given
by

dπ(τi, Ni, βi)

dτi

= c′(τi)Niβi + (rT + L(1 + hT))Niβi

(
c′(τi)

τi
− c(τi)

τ2
i

)
+

(
c′(τi)τ

−1/2
i − 1

2
c(τi)τ

−3/2
i

)
βibTφ

(
Φ−1

(
bT − 1− hT)

bT

))√
αNiL.

Rewriting c′(τi)
τi
− c(τi)

τ2
i

and c′(τi)τ
−1/2
i − 1

2c(τi)τ
−3/2
i , and subsequently taking the

limit τi ↓ 0 of dπ(τi,Ni,βi)
dτi

yields

lim
τi↓0

dπ(τi, Ni, βi)

dτi

= lim
τi↓0
{c′(τi)Niβi}+ (rT + L(1 + hT))Niβi lim

τi↓0

{
τic
′(τi)− c(τi)

τ2
i

}
+βibTφ

(
Φ−1

(
bT − 1− hT)

bT

))√
αNiL lim

τi↓0

{
τic
′(τi)− 1

2c(τi)

τi
√
τi

}
.

We have that limτi↓0

{
τic
′(τi)−c(τi)
τ2
i

}
= −∞ and limτi↓0

{
τic
′(τi)− 1

2 c(τi)

τi
√
τi

}
= −∞, be-

cause 0 ≤ limτi↓0 c(τi) < ∞ and 0 ≤ limτi↓0 c
′(τi) < ∞. Hence, limτi↓0

dπ(τi,Ni,βi)
dτi

=
−∞, and π(τi, Ni, βi) is strictly decreasing as τi ↓ 0.

48 Chapter 2. Service part effects for commonality and reliability

(ii) π(τi, Ni, βi) is strictly increasing as τi tends to τ . Consider

lim
τi→τ

dπ(τi, Ni, βi)

dτi

= lim
τi→τ

{c′(τi)Niβi}+ (rT + L(1 + hT))Niβi lim
τi→τ

{
τic
′(τi)− c(τi)

τ2
i

}
+βibTφ

(
Φ−1

(
bT − 1− hT)

bT

))√
αNiL lim

τi→τ

{
τic
′(τi)− 1

2c(τi)

τi
√
τi

}
.

We know that limτi→τ {c′(τi)Niβi} =∞ by the convexity of c(τ) and as limτ→τ c(τ) =
∞. Furthermore,

lim
τi→τ

{
τic
′(τi)− c(τi)

τ2
i

}
= lim
τi→τ

{
1

τi

(
c′(τi)−

c(τi)

τi

)}
> lim
τi→τ

{
1

τi

(
c(τi)

τi
− limτ̃i↓0 [c(τ̃i)]

τi
− c(τi)

τi

)}
= lim
τi→τ

{
− 1

τ2
i

lim
τ̃i↓0

[c(τ̃i)]

}
> −∞.

The first inequality follows from the strict convexity of c(τi), which implies c′(τi) >
c(τi)−limτ̃i↓0[c(τ̃i)]

τi
. The final equality holds because limτ̃i↓0 c(τ̃i) <∞ (by assumption)

and limτ→τ

{
− 1
τ2
i

}
> −∞. Similarly, we obtain

lim
τi→τ

{
τic
′(τi)− 1

2c(τi)

τi
√
τi

}
> lim
τi→τ

{ 1
2c(τi)− limτ̃i↓0 [c(τ̃i)]

τi
√
τi

}
> lim
τi→τ

{
− 1

τi
√
τi

lim
τ̃i↓0

[c(τ̃i)]

}
> −∞,

where the first inequality follows from the strict convexity of c(τi), i.e., c′(τi) >
c(τi)−limτ̃i↓0[c(τ̃i)]

τi
. The second inequality follows from c(τi) > 0 for all τi ∈ (0, τ).

Hence, we have limτi→τ
dπ(τi,Ni,βi)

dτi
= ∞ and π(τi, Ni, βi) is strictly increasing as

τi → τ . By combining (i) and (ii) with the strict convexity of π(τi, Ni, βi), we obtain
the desired result.

2.A.5 Proof of Lemma 2.5

Let τ ∈ R+ ∪ {∞} and f(τ) = c(τ) + rc(τ)T
τ . Then, f(τ) is twice differentiable

and strictly convex by definition of c(τ) and Assumption 2.2. Furthermore, we have
that limτ↓0 f(τ) = ∞ as limτ↓0 c(τ) < ∞. We also have limτ→τ f(τ) = ∞, because
limτ→τ c(τ) = ∞ and 0 < limτ→τ 1/τ < ∞. Hence, there exists a unique, positive,
finite minimizer τ̂∗ of f(τ).

Next, for each i ∈ I the cost expression is π̂(τi, Ni, βi) = βiNi

(
c(τi) + rc(τi)T

τi

)
. The

2.A Proofs 49

minimum of π̂(τi, Ni, βi) over τi is solely determined by c(τi) + rc(τi)T
τi

= f(τi) for
which the optimum is τ̂∗. Hence, τ̂∗ = τ̂∗i .

2.A.6 Proof of Corollary 2.1

(⇐) Let βq ≤
∑
i∈J

Niβi
Nq

. Then, we have for the costs of the common component:

π̂(τ̂∗q , Nq, βq) ≤
∑
i∈J

Niβi
Nq

Nqc(τ̂
∗
q)

(
1 +

rT

τ̂∗q

)
=
∑
i∈J

Niβi
Nq

Nqc(τ̂
∗
i)

(
1 +

rT

τ̂∗i

)
=
∑
i∈J

π̂(τ̂∗i , Ni, βi),

where the inequality follows from inserting βq ≤
∑
i∈J

Niβi
Nq

, and the first equality

follows from τ̂∗i = τ̂∗j for i, j ∈ I.

(⇒) Let π̂(τ̂∗q , Nq, βq) ≤
∑
i∈J π̂(τ̂∗i , Ni, βi). We have,

∑
i∈J

π̂(τ̂∗i , Ni, βi) =
∑
i∈J

βiNic(τ̂
∗
i)

(
1 +

rT

τ̂∗i

)
=
∑
i∈J

βiNic(τ̂
∗
q)

(
1 +

rT

τ̂∗q

)
≥ βqNqc(τ̂∗q)

(
1 +

rT

τ̂∗q

)
,

where second equality follows because τ̂∗i = τ̂∗j for components i, j ∈ I. The inequality

follows by assumption. Rewriting the above yields βq ≤
∑
i∈J

Niβi
Nq

.

This implies that
∑
i∈J

βiNi
Nq

is the switching curve that determines whether the non–

anticipating approach selects commonality. Thus, Θ̂(N ,β) =
∑
i∈J

βiNi
Nq

.

2.A.7 Proof of Proposition 2.1

The denominator of Θ̃(N ,β) is constant as
∑
i∈J Ni = Nq is constant for any Nq ∈ N.

(a) Let us recall the numerator of Θ̃(N ,β):∑
i∈J

βic(τ
∗
q)

(
1 +

rT + L(1 + hT)

τ∗q

)
Ni

+
∑
i∈J

βic(τ
∗
q)bT

√
αNiL

τ∗q
φ

(
Φ−1

(
bT − 1− hT

bT

))
.

50 Chapter 2. Service part effects for commonality and reliability

From the above, we see that the first summation of the numerator is constant,
as βi = βj , ∀i, j ∈ J . Hence, we focus on the numerator’s second summation.
Suppose that N is such that there exists j, k ∈ J satisfying Nj − Nk > 1, then
a swap from one unit of j to k increases the second term of the numerator, and
therefore we find that Θ̃(N − ej + ek,β) ≥ Θ̃(N ,β), where ej is the unit vector
with value 1 at j and 0 elsewhere. Indeed, note that√

Nj − 1 +
√
Nk + 1 +

∑
i∈J\{j,k}

√
Ni −

∑
i∈J

√
Ni +

∑
i∈J

√
Ni

=
√
Nj − 1 +

√
Nk + 1−

√
Nj −

√
Nk +

∑
i∈J

√
Ni

>
√
Nk +

√
Nk + 1−

√
Nk + 1−

√
Nk +

∑
i∈J

√
Ni =

∑
i∈J

√
Ni,

where the inequality follows from the assumption that Nj −Nk > 1.

(b) To prove the assertion, we relax the integrality of Ni. Furthermore, let us

define A = c(τ∗q)
(

1 + rT+L(1+hT)
τ∗q

)
, B = c(τ∗q)bT

√
αL
τ∗q
φ
(
Φ−1

(
bT−1−hT

bT

))
, and

Nq =
∑
i∈J Ni. As the denominator of Θ̃(N ,β) is constant, we are interested in

maximizing the numerator:

N∗ = argmax
N

{
A
∑
i∈J

Niβi +B
∑
i∈J

√
Niβi :

∑
i∈J

Ni = Nq, Ni ≥ 0

}
,

which is equivalent to

(N∗,v) = argmax
N ,v

{
A
∑
i∈J

Niβi +B
∑
i∈J

√
Niβi :

∑
i∈J

Ni = Nq, Ni − v2
i = 0

}
,

where N and v are the vectors of all Ni and vi, i ∈ J . We square vi to enforce
non–negativity for any value of vi ∈ R. Consequently, the Lagrangian of the
above problem is

L(N ,v, λ,µ) = A
∑
i∈J

Niβi +B
∑
i∈J

√
Niβi −

∑
i∈J

λ(Ni −Nq)−
∑
i∈J

µi(Ni − v2
i),

with µ denoting the vector of all µi, i ∈ J . The Lagrange multipliers are λ and
µ. The first order conditions, required to maximize the Lagrangian, are given by:

∂L
∂Ni

= Aβi +
βiB

2
√
Ni
− λ− µi = 0, ∀i ∈ J (2.5)

∂L
∂µi

= Ni − v2
i = 0, ∀i ∈ J (2.6)

∂L
∂vi

= 2µivi = 0, ∀i ∈ J (2.7)

2.B Poisson distributed demand 51

∂L
∂λ

=
∑
i∈J

Ni −Nq = 0. (2.8)

vi = 0 cannot occur, as Eq. (2.6) implies Ni = 0, which violates feasibility in Eq.
(2.5). Thus, we have that vi > 0 or vi < 0. From Eq. (2.7) we have that µi = 0,
and from Eq. (2.6) we know that Ni = v2

i . We use Eq. (2.5) to determine the
optimal size of the installed base:√

N∗i =

√
v∗i

2 =
B

2

βi
λ−Aβi

.

Since we square v∗i , we have
√
v∗i

2 > 0 for vi > 0 and for vi < 0, implying that

λ > Aβi, because A,B, βi ≥ 0. The three cases for vi show that µi = 0 and
λ > Aβi, for all i ∈ J must hold in order to have a feasible solution. Thus, we
have for the optimal installed base size:

N∗i =
B2

2

[
βi

λ−Aβi

]2

.

Since λ > Aβi, for all i ∈ J , we have that N∗i increases with increasing βi.
Therefore, if βi ≤ βj then N∗i ≤ N∗j for all j ∈ J .

2.B. Poisson distributed demand

We explore how to solve our model if the demand during L is Poisson distributed
rather than normally distributed. We only consider the anticipating approach in
this appendix, because the non–anticipating approach can be derived easily from
the results that follow. Let us denote the LCC of component i ∈ I, under Poisson
distributed demand during L, by

π̃p(τi, si, Ni, βi) = βic(τi)(Ni + si) + hsiTβic(τi) + rβic(τi)
NiT

τi
+bTE[(Dp

i (L,Ni, τi)− si)+],

where Dp
i (L,Ni, τi) is the Poisson distributed demand. We are interested in the

optimal reliability level τpi and turnaround stock level spi for Poisson distributed that
minimize π̃p(τi, si, Ni, βi). We have

Lemma 2.6 For a given si ∈ N, π̃p(τi, si, Ni, βi) is convex in τi, and π̃p(τi, si, Ni, βi)
is minimized by a positive, unique, finite τpi : si ∈ N. This τpi : si ∈ N is the solution
to the first order condition.

Proof. Let si ∈ N and τi ∈ (0, τ). Then, all but the last term in π̃p(τi, si, Ni, βi) are
convex in τi by Lemma 2.4 and because c(τ) satisfies Assumption 2.2. Next, we show

52 Chapter 2. Service part effects for commonality and reliability

that the expected downtime E[(Dp
i (L,Ni, τi) − si)+] is also convex in τi for a given

si ∈ N. The first and second order derivative of the expected downtime is negative
and positive, respectively.

dE[(Dp
i (L,Ni, τi)− si)+]

dτi

= −
∞∑

x=si+1

x− si
x!

e
−NiLτi

(
x
NiL

τ2
i

(
NiL

τi

)x−1
)
−

∞∑
x=si+1

x− si
x!

e
−NiLτi

NiL

τ2
i

(
NiL

τi

)x
= −

∞∑
x=si+1

x− si
x!

e
−NiLτi

x

τi

(
NiL

τi

)x
−

∞∑
x=si+1

x− si
x!

e
−NiLτi

1

τi

(
NiL

τi

)x+1

< 0, (2.9)

d2E[(Dp
i (L,Ni, τi)− si)+]

d2τi

=

∞∑
x=si+1

x− si
x!

e
−NiLτi

[(
NiL

τi

)x
x(1 + x)

τ2
i

]
+

∞∑
x=si+1

x− si
x!

e
−NiLτi

x

τ2
i

(
NiL

τi

)x+1

+

∞∑
x=si+1

x− si
x!

e
−NiLτi

(
NiL

τi

)x+1(
NiL+ τi

τ3
i

)

+

∞∑
x=si+1

x− si
x!

e
−NiLτi

(
NiL

τi

)x+1
x+ 1

τ2
i

> 0.

Hence, E [(Dp
i (L,Ni, τi)− si)+] is convex and decreasing in τi for a given si. Thus

π̃p(τi, si, Ni, βi) is convex.

Next, we show that π̃p(τi, si, Ni, βi) is strictly decreasing for τi ↓ 0. We have that

0 <lim
τi↓0

d

dτi
βic(τi)(Ni + si) <∞,

0 <lim
τi↓0

d

dτi
hsiTβic(τi) <∞,

lim
τi↓0

d

dτi
rβic(τi)NiT/τi = −∞,

lim
τi↓0

{
dE[(Dp

i (L,Ni, τi)− si)+]

dτi

}
< 0.

The first three expressions are derived similar to the the proof of Lemma 2.4. The
last expression holds by Eq. (2.9). Hence, π̃p(τi, si, Ni, βi) is decreasing as τi ↓ 0.

Finally, we show that π̃p(τi, si, Ni, βi) is increasing as τi → τ . We have

lim
τi→τ

d

dτi
βic(τi)(Ni + si) =∞,

2.B Poisson distributed demand 53

lim
τi→τ

d

dτi
hsiTβic(τi) =∞,

lim
τi→τ

d

dτi
rβic(τi)NiT/τi > −∞

lim
τi→τ

{
dE[(Dp

i (L,Ni, τi)− si)+]

dτi

}
> −∞.

The first three expressions are derived similar to the proof of Lemma 2.4. The last

expression follows from Eq. (2.9), for which we have the finite limits limτi→τ e
−NiLτi ,

limτi→τ

{
x
τi

}
, and limτi→τ

{(
NiL
τi

)x+1
}

with x ∈ N. Therefore, π̃p(τi, si, Ni, βi) is

increasing as τi → τ .

Combining all the above yields that π̃p(τi, si, Ni, βi) is convex and there exists a
positive, unique and finite τpi that minimizes π̃p(τi, si, Ni, βi) given si ∈ N. 2

Lemma 2.6 implies that we can efficiently determine τpi : si ∈ N for each component
i ∈ I. Next, we consider the commonality decision under Poisson demand during
L. We let (τpi , s

p
i) be the tuple corresponding to the optimal decision in terms of

reliability and turnaround stock level. We are interested in the switching curve for βq
under Poisson demand. This switching curve is characterized by

Θp(N ,β) = max

{
βq : π̃p(τpq , s

p
q , Nq, βq) ≤

∑
i∈J

π̃p(τpi , s
p
i , Ni, βi)

}
.

The following result enables us to determine Θp(N ,β) efficiently.

Lemma 2.7 π̃p(τpq , s
p
q , Nq, βq) is monotone increasing in βq, and there exists a posi-

tive, finite, unique value for βq such that π̃p(τpq , s
p
q , Nq, βq) =

∑
i∈J π̃

p(τpi , s
p
i , Ni, βi),

which we denote by Θp(N ,β).

Proof. Let βq > 0 and β̃q > βq. We denote τpq and τ̃pq as the optimal reliability levels

of the common component under βq and β̃q, respectively. Similarly, we let spq and s̃pq
denote the optimal turnaround stock levels of the common component under βq and

β̃q, respectively. Then, π̃p(τpq , s
p
q , Nq, βq) ≤ π̃p(τ̃pq , s̃

p
q , Nq, βq) < π̃p(τ̃pq , s̃

p
q , Nq, β̃q),

where the first inequality follows by the suboptimality of (τ̃pq , s̃
p
q) in π̃p(τ̃pq , s̃

p
q , Nq, βq).

The latter inequality results from the linear dependency of π̃p(τq, sq, Nq, βq) on βq.
Thus π̃p(τpq , s

p
q , Nq, βq) is monotone increasing in βq.

Next, we show that there exists a positive, finite, and unique βq such that
π̃p(τpq , s

p
q , Nq, βq) =

∑
i∈J π̃

p(τpi , s
p
i , Ni, βi). We have limβq↓0 π̃

p(τpq , s
p
q , Nq, βq) =

limβq↓0 bTE[(Dp
q (L,Nq, τ

p
q)−spq)+] = 0, where the final inequality follows because spq =

∞ if βq ↓ 0. This implies that are no costs for producing spi units and no storage costs;
therefore, spq = ∞. Furthermore, note that τpq → τ as there is no cost for increasing

54 Chapter 2. Service part effects for commonality and reliability

the reliability if βq ↓ 0. Secondly, we have that limβq→∞ π̃p(τpq , s
p
q , Nq, βq) = ∞,

because τpq is finite. Hence, there exists a positive, finite, and unique βq such that
π̃p(τpq , s

p
q , Nq, βq) =

∑
i∈J π̃

p(τpi , s
p
i , Ni, βi). 2

Hence, for the anticipating approach, we are able to determine the optimal reliability
level for each component i ∈ I under Poisson distributed demand during L by
enumerating turnaround stock levels si ∈ N and subsequently using Lemma 2.6.
Moreover, we can numerically determine the switching curve for commonality under
the anticipating approach by Lemma 2.7. This differs with normal distributed
demand, because the latter allows for an analytical characterization of the switching
curve. Finally, we note that a similar analysis can be done for the non–anticipating
approach by using the same steps as above.

2.C. Extra numerical insights

2.C.1 Additional numerical reliability results

The more detailed numerical results for the relative reliability difference between the
non–anticipating and anticipating approach are given in Tables 2.3 and 2.4. The terms
average, minimum, and maximum are abbreviated by avg, min, and max, respectively.

The results indicate that the relative reliability differences are large and can be as
much as 27%. We observe that the costs of storing service parts h, the cost of a repair
r, and the horizon T have a particularly large effect on the differences in the optimal
reliability levels between both approaches. When the storage costs of service parts
h increase, the effect of considering service parts becomes larger, and therefore we
observe larger differences in the optimal reliability levels between the two approaches.
If the repair costs per repair increase the difference between both approaches reduces
because the repair element becomes more dominant in the life cycle cost expression of
each approach. Finally, if T increases, the reliability difference decreases, because T
has a large effect on the repair costs. Consequently, the repair costs become a strong
element in the LCC expression of both approaches. Thus, the reliability difference
decreases.

Overall, the average differences between the optimal reliability levels are substantial
and in the order of magnitude of 10%. Hence, neglecting service parts from the
reliability decision underestimates the optimal reliability levels. The results in Tables
2.3 and 2.4 imply that the optimal reliability decisions can substantially differ when
considering service parts, by as much as 27%. These differences directly influence the
intensity at which systems fail and thus can have a major effect on the performance
and costs of after–sales services, e.g. service part provisioning.

2.C Extra numerical insights 55

τ1 τ2

avg (%) min (%) max (%) avg (%) min (%) max (%)

h 0.015 8.65 2.91 19.62 8.57 2.91 19.62

0.03 12.58 4.44 27.75 12.50 4.44 27.75
r 0.2 13.25 5.01 27.75 13.15 5.01 27.75

0.3 7.98 2.91 17.61 7.92 2.91 17.61
b 100,000 10.51 2.91 27.20 10.43 2.91 27.20

1,000,000 10.72 2.99 27.75 10.64 2.99 27.75
T 180 13.14 4.78 27.75 13.03 4.78 27.75

360 8.10 2.91 17.52 8.05 2.91 17.52
L 3 9.82 2.91 24.31 9.74 2.91 24.31

4 11.41 3.42 27.75 11.34 3.42 27.75
p1 500 11.75 3.79 27.75 11.67 3.79 27.75

5,000 9.48 2.91 24.02 9.40 2.91 24.02
p2 100 9.48 2.91 24.02 9.40 2.91 24.02

1,000 11.75 3.79 27.75 11.67 3.79 27.75
k 1 11.05 2.91 27.75 10.96 2.91 27.75

2 10.18 3.02 24.09 10.11 3.02 24.09
N1 100 11.44 3.63 27.75 9.89 2.91 24.31

200 10.41 3.15 25.46 10.41 3.15 25.46
300 9.89 2.91 24.31 11.44 3.63 27.75

Table 2.3: Reliability differences for the dedicated components of Testbed 2.1

2.C.2 Additional numerical commonality results

Next, we study the numerical results for the commonality decision; see Table 2.5.
We abbreviate the terms average, minimum, and maximum by avg, min, and max,
respectively. The results indicate that the difference in the commonality decision is
mainly affected by the storage costs h, the horizon T , and by the installed base size
N1. Higher storage costs h and a longer horizon T make it more important to make
the right commonality decision, because service part aspects are more important
for the LCC (higher storage costs and longer usage of service parts). The sizes of
the installed bases also have a large influence on the difference in the commonality
decision between both approaches. The installed base sizes determine how attractive
the pooling of service parts is, which is exploited under commonality. Hence, we see
thatN1 determines the relative commonality difference between both approaches. The

other parameters play smaller roles in determining
(

(Θ(N ,β)/Θ̂(N ,β)− 1
)
×100%.

2.C.3 Additional numerical LCC results

We use Testbed 2.1 also to study the relative LCC differences ∆π(N ,β, βq). The

56 Chapter 2. Service part effects for commonality and reliability

τq

avg (%) min (%) max (%)

h 0.015 7.65 2.76 15.93

0.03 11.48 4.26 23.58
r 0.2 11.92 4.76 23.58

0.3 7.21 2.76 15.00
b 100,000 9.49 2.76 23.22

1,000,000 9.65 2.84 23.58
T 180 11.66 4.51 23.58

360 7.47 2.76 15.98
L 3 8.75 2.76 19.96

4 10.38 3.27 23.58
p1 500 10.72 3.83 23.58

5,000 8.41 2.76 19.83
p2 100 8.41 2.76 19.83

1,000 10.72 3.83 23.58
k 1 9.84 2.76 23.58

2 9.30 2.88 21.52
N1 100 9.57 2.76 23.58

200 9.57 2.76 23.58
300 9.57 2.76 23.58

Table 2.4: Reliability differences for the common component of Testbed 2.1

results are presented in Table 2.6, with the abbreviations avg (average), min
(minimum), and max (maximum). The results indicate that the most important
parameters for ∆π(N ,β, βq) are the service part storage costs h and the cost of a
repair r, in addition to the installed base N1 and the relative unit cost factors β2 and
βq. The cost difference between both approaches increases when the storage costs of
service parts h increases. This is a result from amplifying the service part costs in the
LCC. Similarly, the cost difference between both approaches decreases as r increases,
because the repair cost play a larger role in the LCC of both approaches, and thus
the difference between both approaches decreases.

Lastly, we consider the sizes of the installed bases (which follow from N1) and the
relative unit cost factors β2 and βq in Table 2.6. All of these parameters interact with
one another resulting in the relative LCC differences from Table 2.6. This interaction
is apparent from Figure 2.4 for Example 2.1. It is difficult to conclude how the
installed bases and the relative unit cost factors influence ∆π(N ,β, βq) individually,
but we do see that their effect can be substantial.

2.C Extra numerical insights 57

avg (%) min (%) max (%)

h 0.015 4.25 2.34 6.42

0.03 6.57 3.68 9.59
r 0.2 5.64 2.46 9.59

0.3 5.18 2.34 8.63
b 100,000 5.24 2.33 9.03

1,000,000 5.58 2.50 9.59
T 180 4.58 2.33 7.43

360 6.24 3.35 9.59
L 3 5.14 2.33 8.92

4 5.68 2.64 9.59
p1 500 5.58 2.62 9.59

5,000 5.24 2.33 9.42
p2 100 5.24 2.33 9.42

1,000 5.58 2.62 9.59
k 1 5.28 2.33 9.46

2 5.54 2.52 9.59
N1 100 4.87 2.33 8.48

200 5.84 2.96 9.59
300 5.53 2.67 9.50

β2 1 5.50 2.61 9.59
1.05 5.39 2.56 9.59
1.1 5.39 2.51 9.59

1.15 5.40 2.46 9.59
1.2 5.40 2.42 9.59

1.25 5.41 2.37 9.59
1.3 5.41 2.33 9.59

Table 2.5: Commonality differences (Θ(N ,β)/Θ̂(N ,β)− 1)× 100% of Testbed 2.1

58 Chapter 2. Service part effects for commonality and reliability

avg (%) min (%) max (%)

h 0.015 0.48 0.07 6.81

0.03 1.12 0.18 10.67
r 0.2 1.02 0.17 10.67

0.3 0.58 0.07 9.11
b 100,000 0.77 0.07 10.09

1,000,000 0.83 0.07 10.67
T 180 0.83 0.11 9.08

360 0.77 0.07 10.67
L 3 0.69 0.07 9.64

4 0.91 0.11 10.67
p1 500 0.86 0.07 10.67

5,000 0.74 0.08 10.43
p2 100 0.73 0.08 10.43

1,000 0.87 0.07 10.67
k 1 0.81 0.08 10.67

2 0.79 0.07 10.46
N1 100 0.74 0.07 8.91

200 0.84 0.07 10.67
300 0.82 0.07 10.25

β2 1 0.61 0.07 6.25
1.05 0.80 0.07 8.07
1.1 0.82 0.07 10.67

1.15 0.81 0.07 8.77
1.2 0.94 0.07 10.67

1.25 0.81 0.07 8.27
1.3 0.75 0.07 8.71

βq 1 0.46 0.07 6.25
1.05 1.71 0.07 10.67
1.1 1.52 0.07 10.67

1.15 0.97 0.07 8.91
1.2 0.84 0.07 7.64

1.25 0.67 0.07 6.47
1.3 0.53 0.07 2.38

1.35 0.53 0.07 1.77
1.4 0.53 0.07 1.77

1.45 0.53 0.07 1.77
1.5 0.53 0.07 1.77

Table 2.6: Relative LCC differences of Testbed 2.1

3
Design of disjoint Line Replaceable

Units

3.1. Introduction

In this chapter, we study an OEM who is responsible for the maintenance of multiple
systems. The OEM is negatively impacted by system failures, because a failure
generates costs during the time the system is not functioning. As a result, the
OEM tries to reduce the time needed to restore the system to a functioning state.
This problem is amplified in industries where systems are critical for operations,
e.g. the railway industry (Bombardier/Dutch Railways), the semiconductor industry
(ASML), the trucking industry (PACCAR/Volkswagen Group), and the aviation
industry (Pratt & Whitney). One of the mechanisms used to reduce the time needed
to restore systems to a functioning state is to use Line Replaceable Units (LRUs).

A LRU is a collection of parts that is replaced entirely from the system when one of
the parts in the LRU fails. For example, if a motherboard together with the graphics
card is one LRU in a laptop, and the motherboard or the graphics card fails, the
entire LRU is replaced. The main advantage of a LRU is that it can reduce the
time and cost spent on replacement, because the grouping of parts may simplify the
replacement actions, e.g. fewer screws need to be removed. On the other hand, failed
LRUs are replaced by new ones, and thus we need to purchase new LRUs or repair
the failed LRU. These LRUs typically become more expensive as they contain more
parts. Hence, the OEM wants to design LRUs such that the cost trade–off between
replacement costs and purchase costs (or repair costs) is minimized.

60 Chapter 3. Design of disjoint Line Replaceable Units

The objective of this chapter is to develop a mathematical decision support model
that determines the optimal design of LRUs for a given system structure. Our
contributions are the following. We present (i) a novel way of representing a
system with multiple parts that are connected to each other, and we incorporate
the disassembly sequences that exist for maintenance, e.g. we disconnect part A
before part B. Next, we use our system description to define an optimization model
– called LRU Design – that minimizes the sum of the replacement and purchase
costs by optimizing the LRU designs. We present (ii) LRU Design’s most natural
formulation: a binary non–linear program (BNLP), which we transform into a binary
linear program. Thirdly, (iii) we provide a set partitioning formulation of LRU
Design that allows for branch–and–price algorithms. We prove (iv) that branching
is unnecessary in solving this set partitioning formulation to optimality, i.e., using
pure pricing algorithms suffices. Furthermore, (v) we numerically illustrate that the
set partitioning formulation is efficient for large instances, and we study the effects of
various parameters on the model’s outcome.

3.1.1 Literature

Our problem relates to multi–component maintenance research with structural
dependencies. Structural dependency between parts means that some parts have
to be replaced or removed before we can replace the failed part. Practitioners are
frequently faced with this type of dependency, but the academic field studying it “is
wide open . . . and there have only been a few articles published on this topic” (Nicolai
and Dekker, 2008). Early research in this area was done by Thomas (1986), who poses
the question whether to replace the entire car, the engine or just the piston rings in
case the piston rings need replacement. More recently, Parada Puig and Basten
(2015) have formalized the question posed by Thomas (1986) and proposed a model
that determines the optimal LRU design such that costs are minimized subject to
an availability constraint. The cost expression in Parada Puig and Basten (2015)
assumes that the total costs of replacing and purchasing a LRU are input to the
model. However, there may exist many potential LRUs, and therefore, the approach
by Parada Puig and Basten (2015) requires a large effort for inputting all the data.
In our approach, the costs of replacing and purchasing a LRU are derived from the
graphs that describe the structure existing between the various parts in a system.
Therefore, we do not have to determine the costs for each possible LRU a priori.
Furthermore, both Thomas (1986) and Parada Puig and Basten (2015) assume that
the underlying system structure is a tree, e.g. a Bill of Materials (BOM). One of the
issues with this assumption is that a system’s structure is hardly a tree in practice; e.g.
a motherboard is connected to a laptop’s main frame and a battery is connected to
the motherboard and main frame, and thus we cannot have a tree structured system.
Our work overcomes this issue by allowing arbitrary system structures. Moreover, the
tree structured approach restricts the number of possible LRUs, as only the nodes in
the tree are potential LRUs.

3.1 Introduction 61

Another line of related research studies LRUs (which are called modules) from a
systems engineering perspective, where “a module (LRU) is a unit whose parts are
powerfully connected among themselves, and relatively weakly connected to parts in
other units” (Baldwin and Clark, 2000). This literature stream typically describes
a system in terms of parts that are connected to each other, and these connections
are commonly depicted in a Design Structure Matrix (Steward, 1981). However, this
approach neglects the disassembly sequence that exist for the replacement of LRUs
(or modules). Most research in this stream aims to define measures of modularity and
to optimize these. Such measures typically focus on the connections between parts,
and the measures prefer a high number of intra–LRU connections and a low number
of inter–LRU connections; see Newcomb et al. (1998), Sharman and Yassine (2004),
and Sosa et al. (2007).

Work on (dis)assembly sequencing also has similarities to our work, because this
stream models the (dis)assembly sequence that exists between parts in much detail
(De Fazio and Whitney, 1987; Gupta and Krishnan, 1998; Lambert, 2007). Research
in this area optimizes the (dis)assembly sequence. We do not optimize this sequence,
but we consider it to be given and focus on optimizing the design of LRUs.

Finally, our work also relates to several operations research studies that consider
the impact of modular design on operations. These studies are often combinatorial
in nature and aim to design product configurations such that the demand for end
products is met and the total costs are minimized; see for example Swaminathan
and Tayur (1998), Thonemann and Brandeau (2000), and Briant and Naddef (2004).
The structure in their problems superficially resembles ours, because we also study
configurations of parts, which are LRUs in our case. The main difference is that we
model the connections between parts and the disassembly sequences that exist for
maintenance, while research in this stream does not.

The rest of this chapter is outlined as follows. In Section 3.2, we discuss how
we represent a general system that consists of multiple parts. We discuss how
parts are connected to each other and we present a method of incorporating
disassembly sequences in the system representation. Subsequently, we use this
representation to present our optimization model LRU Design. We present the
most natural formulation of LRU Design in Section 3.3: a binary non–linear
programming (BNLP) formulation, which we linearize in order to obtain a binary
linear program (BLP). In Section 3.4, we discuss a set partitioning formulation of
LRU Design and we prove that the set partitioning formulation can be solved
by pure pricing algorithms, i.e., branching is unnecessary. Finally, we numerically
compare the computation times of the BLP formulation to computation times of
the set partitioning formulation, and we illustrate the effects of various parameter
perturbations on the model’s outcome.

62 Chapter 3. Design of disjoint Line Replaceable Units

3.2. Model

We start by explaining how we represent a system consisting of multiple parts, various
connections between parts, and multiple disassembly sequences that determine in
what order connections must be broken. We do this, first, by means of an example.
Subsequently, we generalize our system representation from the example, and we
discuss the definition of a LRU design. Finally, we present our optimization model
called LRU Design.

3.2.1 An illustrative example

Let us consider a situation in which we design and repair laptops. Our objective is
to design the LRUs such that we minimize the total costs for the repair shop; i.e., to
determine the optimal LRU design that trades off the costs of purchasing new LRUs
and the costs spent on replacing LRUs.

Our example is based on data for a Dell Precision 7710 laptop (Dell Inc., 2016). Each
part has a purchase cost and a failure rate (in failures per year). We list the estimated
purchase cost1 and fictitious failure rate for all parts (in failures per year) in Table
3.1.

Identifier Part Name Part Cost ($) Failure rate (failures/year)

A Battery 180 0.3
B Hard Disk Drive 170 0.2
C Keyboard 45 0.001
D WLAN Card 50 0.15
E Palm Rest 45 0.001
F Speakers 14 0.05
G Heat Sink 75 0.1
H 4 GB Video Card 250 0.1
I Display Housing 40 0.001
J Display Front Cover 20 0.001
K Display Bezel 170 0.25
L Motherboard 270 0.25
M Computer Base 50 0.001

Table 3.1: Part identifier list

Each of the parts is connected to other parts, e.g. the Palm Rest is screwed to the
Computer Base, the Palm Rest is wired to the Motherboard, and the Palm Rest is
screwed to the Keyboard. Thus, there exist connections {E,M}, {E,L}, and {C,E}.

1The purchase cost of a part is its price that we found online on websites such as www.amazon.com.

3.2 Model 63

In the event the Palm Rest fails and we wish to replace it individually, we have to
break all the connections that the Palm Rest has with all other parts: {E,M}, {E,L}
and {C,E}. Breaking each connection takes a certain amount of time, which we can
translate into costs by multiplying the time with a cost rate, e.g. the salary rate of
the repair man. When the failed Palm Rest has been disconnected from the system,
a new and identical Palm Rest from stock is installed into the system by reconnecting
all the connections that have been broken previously (in order to remove the failed
Palm Rest). This re–establishing of connections also costs time and can be translated
into costs as well. Finally, a new Palm Rest is purchased to replenish the stock.

We can depict all parts, the connections, the failure rates, the purchase costs, and
the costs of breaking and re–establishing connections in a weighted undirected graph.
We let the parts correspond to vertices, and the part connections correspond to the
edges. Furthermore, the failure rates and the purchase costs are attributes of the
vertices, and the costs for breaking and re–establishing a connection correspond to
the weight of an edge in the graph. So, for the laptop example, we derive such a graph
by analyzing the Owner’s manual (Dell Inc., 2016), and it is given in Figure 3.1. The
costs of breaking and re–establishing a connection are estimates and are depicted on
the edges.

We call the graph from Figure 3.1 the connection graph. The connection graph may
suggest that we only need to break connections {E,L}, {E,M} and {C,E} in order
to remove the Palm Rest. However, we know from the Owner’s Manual that in order
to disconnect the Palm Rest, we first have to break the connections that enable us to
remove the Keyboard (C), the Hard Disk Drive (B), and the Battery (A); i.e., there
exists a disassembly sequence. This implies that there exists a collection of connections
that needs to be broken prior to breaking the connections {E,L}, {E,M}, or {C,E}
(Dell Inc., 2016). Consequently, we have a predecessor–successor relationship for
breaking (and re–establishing) the connections depicted in Figure 3.1. We model
such predecessor–successor relationships in a separate directed graph, which we call
the precedence graph. An arc in the precedence graph from an edge {E,M} to {E,L}
implies that connection {E,L} has to be broken before connection {E,M} can be
broken. The precedence graph for the laptop (Dell Inc., 2016) is given in Figure 3.2.

If we combine the precedence graph (Figure 3.2) with the connection graph (Figure
3.1), we are able to list all connections that need to be broken for the replacement
of an arbitrary part. For example, replacing the Palm Rest requires us to break
{E,M}, {E,L}, and {C,E} (see Figure 3.1), but for breaking connection {C,E} we
need to break the set of connections {{A,L}, {A,M}, {B,M}, {B,L}, {C,L}} (see
Figure 3.2). Similarly, we can determine all connections that need to be broken
prior to {E,M} and {E,L}. It appears that we have to break all connections
{{A,L}, {A,M}, {B,M}, {B,L}, {C,E}, {C,L}, {E,L}, {E,M}} in order to remove
the Palm Rest (E). Analogously, we break all connections {{A,L}, {A,M}, {B,M},
{B,L}, {C,E}, {C,L}} when the Keyboard (C) fails.

We can also decide to replace the Palm Rest (E) together with the Keyboard (C),

64 Chapter 3. Design of disjoint Line Replaceable Units

L

D

A

B

C

G

H

F

M

I

K J

7.5 20110

E

2.5

2.5

10

10

75

15

2.5

5

20

5

110

2.5

10

100

20

75

5

5

39

20

Figure 3.1: The laptop’s connection graph

3.2 Model 65

{D,L}

{A,L}

{B,L}

{C,L}

{E,L}

{G,L}

{H,L}

{F,L}

{C,E}

{G,H}

{D,M} {A,M}

{B,M}

{E,M}

{G,M}

{H,M}

{F,M}

{I,M}

{K,J}{I,J}

{I,K}

{I,L}

{L,M}

Figure 3.2: The laptop’s precedence graph

66 Chapter 3. Design of disjoint Line Replaceable Units

i.e., define a LRU Q consisting of C and E. However, this implies that the engineer
has to break all connections {{A,L}, {A,M}, {B,M}, {B,L}, {C,L}, {C,E}, {E,L},
{E,M}} upon the failure of either the Palm Rest (E) or the Keyboard (C). As a
consequence, we have to break the expensive edges {E,L} and {E,M} more often
than when the Palm Rest and the Keyboard are separate LRUs. Furthermore, the
LRU Q has a higher purchase costs as well as a higher failure rate compared to the
Palm Rest and the Keyboard individually. So, it is better to keep the Palm Rest
and the Keyboard as separate LRU instead of combining these two into one LRU Q.
The repair shop is now interested in determining the optimal design of LRUs that
minimizes the sum of the replacement and purchase costs, based on the connection
graph in Figure 3.1 and the precedence graph in Figure 3.2.

3.2.2 A generic model

The example above illustrates how a system is built up and what relationships
parts and connections have. Our approach used for the laptop also applies to
more complicated systems such as a bogie in a train (Bombardier/Dutch Railways),
a positioning module in a lithography system (ASML), a truck engine (PAC-
CAR/Volkswagen Group), or a jet engine (Pratt & Whitney). The representation
of such systems in terms of two graphs can be very useful to an OEM to enhance
internal communication between departments; for instance to aid communication
between the design department and the operations department. Moreover, the system
representation can provide the engineers with a better insight in the system and its
maintenance dependencies.

Let us consider a system that consists of multiple parts, and assume that maintenance
is done upon the failure of a part. Moreover, we assume that we can accurately and
instantaneously determine which part has failed, when the system fails as a whole.
The system is defined by two graphs: a weighted undirected connection graph G and
a directed precedence graph D. The graph G = (V,E) is characterized by the set
of vertices V and the set of edges E. The former set V corresponds to the parts in
the system, and the latter set E are the connections between parts. Furthermore,
each part in G has a failure rate λ : V → R+ and purchase costs ` : V → R+, where
R+ = {x ∈ R |x > 0}. If a part fails, we break edges and breaking an edge costs
w : E → R+. We use the terms part and vertex interchangeably, as well as the terms
connection and edge. At the end of this section, we discuss how we can use our model
if there exist parts that are preventively replaced (Remark 3.1) and what happens
when we repair parts (Remark 3.2).

Besides G, we have an unweighted acyclic directed graph D = (E,A) that captures
the disassembly sequences of the connections e ∈ E. The set A corresponds to the
set of arcs, and an arc (i, j) ∈ A from edge i to edge j exists if and only if edge j
has to be broken before edge i can be broken. We assume that there exist only arcs
between adjacent edges, i.e., all arcs in A satisfy ({u, v}, {v, x}) ∈ A : u, v, x ∈ V

3.2 Model 67

and u 6= v 6= x. The graph D allows us to generate a set H(e) of successor edges
for each edge e ∈ E. This set H(e) consists of all edges including the edge e ∈ E
that have to be disconnected in order to break e, and it can be determined by using
the polynomial Algorithms 1 and 2 from Appendix 3.A. We remark that H(e) is a
directed tree rooted at e ∈ E.

Furthermore, we assume that G is connected, without loss of generality. If G is
not connected, there do not exist arcs ({u, v}, {x, y}) ∈ A such that u, v are in one
connected component and x, y are in the other connected component. This follows
because all arcs in A satisfy ({u, v}, {v, x}) ∈ A : u, v, x ∈ V and u 6= v 6= x. Hence,
if G were disconnected, we apply our model to each connected component of G with
the precedence graph induced by the connected component.

Next, we define a LRU design as a partition S of the vertices V . Each LRU Q ∈ S is
characterized by the connections that need to be broken in order to replace the LRU Q
from the system. We do so by defining the set B(Q) = {{u, v} ∈ E : u ∈ Q, v ∈ V \Q},
which is the set of all edges that connect the LRU to the other parts of the system not
in the LRU. That is, the set B(Q) consists of edges that cross the LRU’s boundary.
For the removal of LRU Q, we do not only break all the edges e ∈ B(Q), but also
all the edges that need to be broken prior to breaking any edge e ∈ B(Q). Hence,
Γ(Q) =

⋃
e∈B(Q)H(e) is the set of edges that need to be broken in order to replace a

LRU Q ∈ S.

In addition to the edges that need to be broken for the replacement of a LRU, each
LRU Q is also characterized by its purchase costs and failure rate. We assume that
we purchase an entirely new LRU if any of the parts in the LRU fails. Therefore, the
purchase costs of a LRU equals the sum of the purchase cost of all parts in the LRU,
i.e., the LRU’s purchase costs are given by

∑
v∈Q `(v). We relax this assumption in

Remark 3.2. For the failure rate, we assume that a part v ∈ V belongs to exactly one
LRU, and each part v ∈ Q triggers the replacement of the LRU Q. Hence, the total
failure rate of a LRU Q ∈ S is given by

∑
v∈Q λ(v).

Next, we derive the cost expression for a LRU Q ∈ S. Upon the failure of LRU Q, we
break all edges e ∈ Γ(Q) resulting in the costs

∑
e∈Γ(Q) w(e). Moreover, we replace

the failed LRU by a new one that is purchased at costs
∑
v∈Q `(v). Hence, we obtain

the following average costs per time unit for LRU Q:

ω(Q) =
∑

e∈Γ(Q)

w(e)
∑
v∈Q

λ(v) +
∑
u∈Q

`(u)
∑
v∈Q

λ(v). (3.1)

Subsequently, as S is a partition of V and Q ∈ S, we obtain the following expression
for the total costs per time unit of LRU design S:

π(S) =
∑
Q∈S

ω(Q) =
∑
Q∈S

∑
e∈Γ(Q)

w(e)
∑
v∈Q

λ(v) +
∑
Q∈S

∑
u∈Q

`(u)
∑
v∈Q

λ(v). (3.2)

Given this definition of π(S), we define the LRU Design problem as: What is the

68 Chapter 3. Design of disjoint Line Replaceable Units

LRU Design S that minimizes π(S)?

LRU Design has the property that each optimal solution S∗ to LRU Design is such
that each LRU Q ∈ S∗ is a connected subgraph of G.

Lemma 3.1 Each LRU Q ∈ S∗ is a connected subgraph of G, for any optimal
solution S∗ to LRU Design.

Proof. Let J be the finite set of connected components in the subgraph induced
by a LRU Q. The set J is finite, because Q is finite, and |J | ≥ 1. The case of
|J | = 1 implies that Q is connected, which satisfies our claim. Thus, we consider
|J | ≥ 2 in the remainder, and we have that J1 ∩ J2 = ∅ and for J1,J2 ∈ J :
J1 6= J2. Furthermore, @{u, v} ∈ E : u ∈ J1, v ∈ J2 with J1,J2 ∈ J . This
implies that Γ(J) ⊂ Γ(Q) for any J ∈ J as J ⊂ Q. Moreover, we have Γ(Q) =⋃
J∈J Γ(J) as

⋃
J∈J J = Q and J1 ∩ J2 = ∅ for J1,J2 ∈ J : J1 6= J2. In

addition,
∑
J∈J

∑
v∈J λ(v) =

∑
v∈Q λ(v), because J1 ∩ J2 = ∅ with J1,J2 ∈ J .

Thus, ∑
J∈J

ω(J) =
∑
J∈J

∑
e∈Γ(J)

w(e)
∑
v∈J

λ(v) +
∑
J∈J

∑
u∈J

`(u)
∑
v∈J

λ(v)

≤
∑
J∈J

∑
e∈Γ(Q)

w(e)
∑
v∈J

λ(v) +
∑
J∈J

∑
u∈J

`(u)
∑
v∈J

λ(v)

<
∑
J∈J

∑
e∈Γ(Q)

w(e)
∑
v∈J

λ(v) +
∑
J∈J

∑
u∈Q

`(u)
∑
v∈J

λ(v)

=
∑

e∈Γ(Q)

w(e)
∑
v∈Q

λ(v) +
∑
u∈Q

`(u)
∑
v∈Q

λ(v) = ω(Q),

where the first inequality follows from the fact that each Γ(J) ⊂ Γ(Q), ∀J ∈ J .
The second inequality follows from the fact that J ⊂ Q, ∀J ∈ J , and thus∑
u∈J `(u) <

∑
u∈Q `(u), ∀J ∈ J . Hence, each LRU Q ∈ S∗ is a connected

subgraph of G,, for any optimal solution S∗ to LRU Design. 2

We will use the result of Lemma 3.1 later throughout this chapter. We conclude this
section by discussing two remarks that enable further generalization of LRU Design.

Remark 3.1 We assumed that all parts v ∈ V are maintained upon failure.
Now suppose some parts V1 are maintained upon failure, while other parts V2 are
maintained preventively. If a part v ∈ V2 fails in between two preventive maintenance
actions, it is maintained upon its failure as well. The subsets of parts V1 and V2

are such that they partition all vertices V . Then, we interpret the failure rate
λ(v), ∀v ∈ V as the replacement rate of a part. In case v ∈ V1, this replacement
rate corresponds to the failure rate (or equivalently, the frequency of corrective
maintenance actions); and if v ∈ V2, this replacement rate corresponds to the

3.3 Binary programming formulation 69

maintenance frequency that results from the preventive and corrective maintenance
actions.

Remark 3.2 We assume that we do not repair a LRU, and thus purchase a new
one. If we relax this assumption and repair a failed part of a LRU offline, we incur
total repair costs per time unit of

∑
v∈V λ(v)q(v), where q(v) are the repair costs of

part v. However, if we repair a part of a LRU, we have to test the entire LRU to see
whether it functions again. This means that we have to test each part in the LRU,
and thus `(v) now represents the costs of testing part v ∈ V offline. Larger LRUs,
now, have more parts that need to be tested before the LRU is certified as repaired.
The total repair costs per time unit are sunk as

∑
v∈V λ(v)q(v) is independent on

the LRU design, but we still have the testing costs per time unit of LRU Q given by∑
v∈Q λ(v)

∑
u∈Q `(u). Hence, our model LRU Design still applies.

3.3. Binary programming formulation

In this section, we formulate LRU Design as a binary non–linear program (BNLP),
and subsequently we linearize this BNLP to obtain a binary linear program (BLP).
For the BNLP, we first relax the assumption that ∅ 6∈ S. We let S′ be a solution to
LRU Design such that ∅ ∈ S′. We have S = {Q ∈ S′ : Q 6= ∅} and S′ satisfies
|S′| = |V |. Next, we index each LRU in S′ by i ∈ {1, . . . , |V |}, i.e., we have LRUs
Qi ∈ S′ that are indexed by i. Furthermore, we create a binary variable yvi that
indicates whether a part v ∈ V is assigned to LRU Qi, i ∈ {1, . . . , |V |}:

yvi =

{
1 if v ∈ Qi
0 otherwise

, ∀v ∈ V,∀i ∈ {1, . . . , |V |}.

We denote Y as the matrix consisting of all entries yvi. Note that we can derive S′

easily from Y . We also define the auxiliary binary variable kei that denotes whether
edge e ∈ E needs to be broken in order to replace LRU Qi. We determine the value
of kei by considering all the edges b ∈ B(Qi). We determine B(Qi) by considering
the edges {u, v} ∈ E such that yui(1 − yvi) = 1, as part u ∈ V belongs to LRU Qi
and part v ∈ V does not. This corresponds to the definition of B(Qi). Subsequently,
we consider each edge e ∈ E that needs to be broken before breaking {u, v}; i.e., for
each {u, v} ∈ B(Qi) we consider all e ∈ H({u, v}). Hence, the variable kei satisfies
kei ≥ yui(1 − yvi), ∀{u, v} ∈ E,∀e ∈ H({u, v}),∀i ∈ {1, . . . , |V |}. Note that kei may
take the value of one, even if an edge e ∈ E is fully contained within a LRU Qi.
We use the variable kei in our objective function (3.3a), since it represents whether
an edge has to be broken (kei = 1) in order to remove LRU Qi. Furthermore, the
objective function enforces that kei = 0 if edge e is not broken for the replacement of
Qi. Next, we use kei , the edge weights, and the failure rate of Qi (expressed using
yvi) to determine the costs for replacing Qi. The total purchase costs of the LRU Qi

70 Chapter 3. Design of disjoint Line Replaceable Units

are derived by using yvi, and we multiply this by the total failure rate of Qi. This
results in a binary non–linear programming formulation of LRU Design:

(BNLP) min
Y ,K

|V |∑
i=1

∑
e∈E

keiw(e)
∑
v∈V

yviλ(v) +

|V |∑
i=1

∑
u∈V

yui`(u)
∑
v∈V

yviλ(v) (3.3a)

s.t.

|V |∑
i=1

yvi = 1, ∀v ∈ V, (3.3b)

kei ≥ yui(1− yvi), ∀{u, v} ∈ E,∀e ∈ H({u, v}),
∀i ∈ {1, . . . , |V |}, (3.3c)

yvi, k
e
i ∈ {0, 1}. (3.3d)

Constraints (3.3b) ensure that each part v ∈ V is included in exactly one LRU, and
constraints (3.3c) enforce the definition of the auxiliary variable kei .

The BNLP is a problem with a quadratic objective function and quadratic constraints
(constraints (3.3c)). Therefore, we propose to linearize our problem by applying
the McCormick reformulation (McCormick, 1976); i.e., we introduce new variables
ρiev = yxik

e
i and σiuv = yuiyvi. The variable ρiev denotes whether LRU Qi contains

part v ∈ V and whether edge e ∈ E needs to be broken in order to replace the
LRU Qi. Analogously, σiuv denotes whether two parts u, v ∈ V are both contained
in the same LRU Qi. Substituting ρiev and σiuv into the above implies that we need
to add constraints. Furthermore, we optimize over Y , K, ρ and σ, where ρ and σ
correspond to the 3–D arrays with entries ρiev and σiuv, respectively. Hence, we obtain
the BLP formulation of LRU Design:

(BLP) min
Y ,K,ρ,σ

|V |∑
i=1

∑
e∈E

∑
v∈V

ρievλ(v)w(e) +

|V |∑
i=1

∑
u,v∈V

σiuv`(u)λ(v) (3.4a)

s.t.

|V |∑
i=1

yvi = 1, ∀v ∈ V, (3.4b)

kei ≥ yui − σiuv, ∀{u, v} ∈ E,∀e ∈ H({u, v}),
∀i ∈ {1, . . . , |V |}, (3.4c)

ρiev ≤ yvi, ∀e ∈ E,∀v ∈ V,
∀i ∈ {1, . . . , |V |}, (3.4d)

ρiev ≤ kei , ∀e ∈ E,∀v ∈ V,
∀i ∈ {1, . . . , |V |}, (3.4e)

ρiev ≥ yvi + kei − 1, ∀e ∈ E,∀v ∈ V,
∀i ∈ {1, . . . , |V |}, (3.4f)

σiuv ≤ yui, ∀u, v ∈ V,∀i ∈ {1, . . . , |V |}, (3.4g)

σiuv ≤ yvi, ∀u, v ∈ V,∀i ∈ {1, . . . , |V |}, (3.4h)

3.4 Set partitioning 71

σiuv ≥ yui + yvi − 1, ∀u, v ∈ V,∀i ∈ {1, . . . , |V |}, (3.4i)

ρiev, σ
i
uv ≥ 0, (3.4j)

yvi, k
e
i ∈ {0, 1}. (3.4k)

Note that constraints (3.3c) have been altered after substitution. Originally we had
yui(1− yvi) = yui− yuiyvi, which yields constraints (3.4c) after substitution of σiuv =
yuiyvi.

We observe that relaxing the integrality of the decision variable yvi in Problem (3.4)
need not yield an optimal integer solution, and thus is infeasible to LRU Design.
Example 3.1 illustrates that we may indeed find an optimal fractional solution if we
relax integrality for yvi for Problem (3.4).

Example 3.1 Consider the following vertex set V = {a, b, c} and edge set E =
{{a, b}, {b, c}, {a, c}}. Furthermore, let `(v) = 1 for all v ∈ V , λ(a) = λ(b) = 2.0,
λ(c) = 2.5, w(e) = 1 for all e ∈ E, and A = ∅. Graphically, the connection graph is
given by:

a b

c

1.0

1.01.0

If we solve this example by Problem (3.4) with relaxed integrality of yvi, we obtain
the following optimal solution (columns represent LRUs)

Y =

0.5 0 0.5
0.5 0 0.5
0 0.5 0.5

 .

�

3.4. Set partitioning

The BLP formulation of LRU Design may be computationally demanding due to the
large number of variables. Therefore, we formulate LRU Design as a set partitioning
problem that allows for column generation (branch–and–price) algorithms. A LRU
design S consists of various non–intersecting LRUs Q ∈ S that have been selected.
Let S = 2V be the power set of V from which LRUs can be selected; S contains all
possible LRUs. Then, S ⊂ S , and our objective is to determine which solution S is
optimal via column generation. A LRU Q ∈ S can equivalently be represented as a
(0, 1) column with |V | elements, where a 1 indicates that a vertex is in the LRU Q

72 Chapter 3. Design of disjoint Line Replaceable Units

and a 0 denotes that the vertex does not belong to the LRU Q. Hence, we consider
the matrix entries zvQ that equal 1 if v ∈ Q and 0 otherwise. Then, a column from
the matrix Z = (zvQ) corresponds to LRU Q, and we denote this column by ZQ.
Note that a column ZQ and the LRU Q ⊆ V are equivalent representations of a LRU.

Let xQ be the indicator variable that denotes whether a LRU Q ∈ S is selected
for the LRU design S. The vector of size |S | consisting of all xQ is denoted by x,
and based on x we can straightforwardly derive the solution S to LRU Design by
S = {Q ∈ S : xQ > 0}. We remark that S can equivalently be represented as the
submatrix Z = {ZQ : xQ > 0} of Z. Our objective is to determine the LRU design in
terms of xQ such that the total costs are minimized, and each part v ∈ V is included
in exactly one LRU. We capture this in the Master Problem (M):

(M) min
x

∑
Q∈S

ω(Q)xQ (3.5a)

s.t.
∑
Q∈S

zvQxQ = 1, ∀v ∈ V, (3.5b)

xQ ∈ {0, 1}, ∀Q ∈ S . (3.5c)

The objective function (3.5a) minimizes the total costs of using LRUs, while
constraints (3.5b) enforce that each part v ∈ V is included in exactly one LRU Q ∈ S .
The set S is exponentially large, so straightforward optimization is not tractable.
Therefore, we propose to solve the LP relaxation of M by column generation, and
we note that this LP relaxation is a lower bound to M. Thus, we relax integrality
of xQ to obtain the LP relaxation of the Master Problem called LPM. In Section
3.4.1 we prove that there exists an optimal integer solution to LPM. By running the
the simplex algorithm, such an optimal integer solution is found and it is thus also
optimal for M. Subsequently, we present our procedure for solving LPM in Section
3.4.2.

3.4.1 The relationship between M and LPM

We prove that an optimal integer solution to LPM exists by considering a so–called
LRU cycle. We show that if a given fractional solution contains a LRU cycle, there
exists a feasible solution to LPM without the LRU cycle and strictly lower costs.
This implies that an optimal solution does not contain a LRU cycle. Next, we that
there exists an optimal integer solution to LPM and this can be found by running the
simplex algorithm.

Let x̃ be a fractional solution to LPM with S̃ = {Q ∈ S : x̃Q > 0} (or equivalently

Z̃ = {ZQ : x̃Q > 0}) and such that each Q ∈ S̃ is a connected subgraph of G.
Furthermore, let x∗ be an optimal solution to LPM with S∗ = {Q ∈ S : x∗Q > 0} (or
equivalently Z∗ = {ZQ : x∗Q > 0}) and that also has connected LRUs Q ∈ S∗. Note
that x∗ exists by Lemma 3.1.

3.4 Set partitioning 73

Definition 3.1 A LRU cycle is a collection of LRUs C = {Q1, Q2, . . . , Qn} such
that each Qi is connected, n ≥ 3 and for all 1 ≤ i ≤ n we have Qi ∩ Qi+1 6= ∅,
(Qi ∩ Qi+1) \ (Qi+1 ∩ Qi+2) 6= ∅, (Qi+1 ∩ Qi+2) \ (Qi ∩ Qi+1) 6= ∅, with n + 1 ≡ 1
(mod n) and n+ 2 ≡ 2 (mod n).

For an example of a LRU cycle, we refer the reader to Figure 3.3. Next, we use the
concept of a LRU cycle to obtain the following result.

Lemma 3.2 An optimal solution x∗ to LPM does not contain a LRU cycle.

Proof. We show that a solution to LPM that contains a LRU cycle is suboptimal.
Let x̃ be a fractional solution to LPM such that each Q ∈ S̃ is connected and there
exists a LRU cycle C = {Q1, Q2, . . . , Qn} ⊆ S̃. Note that a solution that contains
a LRU solution must be fractional. We prove that there exists a feasible solution x′

to LPM with S′ = {Q ∈ S : x′Q > 0} in which the LRU cycle C does not exist and

π(S′) < π(S̃).

In this proof we focus on LRUs Qi, Qi−1, and Qi+1 with 1 ≤ i ≤ n, n+1 ≡ 1 (mod n),
and Q0 ≡ Qn. Let us consider what edges are broken when a part v ∈ Qi ∩ Qi+1

fails and we replace LRU Qi ∈ C. In this case, we break all edges e ∈ Γ(Qi). Let
F(X,Y) = Γ(X) \ Γ(Y) for sets X,Y . Then, we have Γ(Qi) = F(Qi ∩Qi−1, Qi−1) ∪
(Γ(Qi) \ F(Qi ∩Qi−1, Qi−1)), since F(Qi ∩ Qi−1, Qi−1) ⊂ Γ(Qi). Next, we study
what happens when a part v ∈ Qi \ Qi+1 fails and we replace Qi. Analogous to the
foregoing, we break all edges e ∈ F(Qi∩Qi+1, Qi+1)∪(Γ(Qi) \ F(Qi ∩Qi+1, Qi+1)) =
Γ(Qi).

Let Wi = min
{∑

e∈F(Qi∩Qi+1,Qi)
w(e),

∑
e∈F(Qi∩Qi−1,Qi)

w(e)
}

for each LRU Qi.

Furthermore, we define Qi = argminQj∈C{Wj} and we assume that Wi =∑
e∈F(Qi∩Qi+1,Qi)

w(e) (later we consider Wi =
∑
e∈F(Qi∩Qi−1,Qi)

w(e)).

We create an alternative solution x′ by partitioning Qi in Qi ∩Qi+1 and Qi \Qi+1.
That is, let the alternative solution x′ be identical to x̃ except for the entries x′Qi = 0,
x′Qi\Qi+1

= x̃Qi , and x′Qi∩Qi+1
= x̃Qi . We have

π(S′)− π(S̃)

= x̃Qi

 ∑
e∈Γ(Qi∩Qi+1)

w(e)
∑

x∈Qi∩Qi+1

λ(x) +
∑

u∈Qi∩Qi+1

`(u)
∑

v∈Qi∩Qi+1

λ(v)

+
∑

e∈Γ(Qi\Qi+1)

w(e)
∑

x∈Qi\Qi+1

λ(x) +
∑

u∈Qi\Qi+1

`(u)
∑

v∈Qi\Qi+1

λ(v)

−
∑

e∈Γ(Qi)

w(e)
∑

x∈Γ(Qi)

λ(x)−
∑
u∈Qi

`(u)
∑
v∈Qi

λ(v)



74 Chapter 3. Design of disjoint Line Replaceable Units

< x̃Qi

 ∑
e∈Γ(Qi∩Qi+1)

w(e)
∑

x∈Qi∩Qi+1

λ(x) +
∑

e∈Γ(Qi\Qi+1)

w(e)
∑

x∈Qi\Qi+1

λ(x)

−
∑

e∈Γ(Qi)

w(e)
∑
x∈Qi

λ(x)


= x̃Qi

 ∑
e∈Γ(Qi∩Qi+1)

w(e)−
∑

e∈Γ(Qi)

w(e)

 ∑
x∈Qi∩Qi+1

λ(x)

+

 ∑
e∈Γ(Qi\Qi+1)

w(e)−
∑

e∈Γ(Qi)

w(e)

 ∑
x∈Qi\Qi+1

λ(x)

 ,

where the inequality holds as
∑
u∈Qi∩Qi+1

`(u)
∑
v∈Qi∩Qi+1

λ(v) +
∑
u∈Qi\Qi+1

`(u)∑
v∈Qi\Qi+1

λ(v) ≤
∑
u∈Qi `(u)

∑
v∈Qi λ(v), because Qi∩Qi+1 and Qi\Qi+1 partition

Qi and λ(v) > 0, `(v) > 0 for all v ∈ V . We continue by proving that the right hand
side of the last equality is less than zero; i.e., we show that

∑
e∈Γ(Qi∩Qi+1) w(e) ≤∑

e∈Γ(Qi)
w(e) and

∑
e∈Γ(Qi\Qi+1) w(e) ≤

∑
e∈Γ(Qi)

w(e). Let us rewrite the above as

π(S′)− π(S̃)

< x̃Qi

 ∑
e∈Γ(Qi∩Qi+1)

w(e)−
∑

e∈Γ(Qi)

w(e)

 ∑
x∈Qi∩Qi+1

λ(x)

+

 ∑
e∈Γ(Qi\Qi+1)

w(e)−
∑

e∈Γ(Qi)

w(e)

 ∑
x∈Qi\Qi+1

λ(x)


= x̃Qi

 ∑
e∈Γ(Qi∩Qi+1)

w(e)−
∑

e∈F(Qi∩Qi−1,Qi−1)

w(e)

−
∑

e∈Γ(Qi)\F(Qi∩Qi−1,Qi−1)

w(e)

 ∑
x∈Qi∩Qi+1

λ(x) +

 ∑
e∈Γ(Qi\Qi+1)

w(e)

−
∑

e∈F(Qi∩Qi+1,Qi+1)

w(e)−
∑

e∈Γ(Qi)\F(Qi∩Qi+1,Qi+1)

w(e)

 ∑
x∈Qi\Qi+1

λ(x)

 .

The equality holds, because F(Qi ∩Qi−1, Qi−1) ⊂ Γ(Qi) and F(Qi ∩Qi+1, Qi+1) ⊂
Γ(Qi).

First, we study what happens when we replace Qi ∩Qi+1. We start by proving that
@(e1, e2) ∈ A : e1 ∈ Γ(Qi−1), e2 ∈ F(Qi ∩Qi−1, Qi−1). Next, we use this in order to
show that if e ∈ Γ(Qi∩Qi+1) then e 6∈ F(Qi∩Qi−1, Qi−1). Finally, we prove that the
latter result implies Γ(Qi ∩Qi+1) \ F(Qi ∩Qi+1, Qi) ⊆ Γ(Qi) \ F(Qi ∩Qi−1, Qi−1).
We use these results to show that

∑
e∈Γ(Qi∩Qi+1) w(e) −

∑
e∈F(Qi∩Qi−1,Qi−1) w(e) −

3.4 Set partitioning 75

∑
e∈Γ(Qi)\F(Qi∩Qi−1,Qi−1) w(e) ≤ 0. Next, we do a similar analysis for when we replace

Qi\Qi+1 to conclude that Γ(Qi\Qi+1)\F(Qi∩Qi+1, Qi) ⊆ Γ(Qi)\F(Qi∩Qi+1, Qi+1).
We use this result to show that

∑
e∈Γ(Qi\Qi+1) w(e) −

∑
e∈F(Qi∩Qi+1,Qi+1) w(e) −∑

e∈Γ(Qi)\F(Qi∩Qi+1,Qi+1) w(e) ≤ 0.

Now, consider replacing Qi ∩ Qi+1. We have that @(e1, e2) ∈ A : e1 ∈ Γ(Qi−1), e2 ∈
F(Qi ∩Qi−1, Qi−1). Suppose, ∃(e1, e2) ∈ A : e1 ∈ Γ(Qi−1), e2 ∈ F(Qi ∩Qi−1, Qi−1),
then e2 ∈ Γ(Qi−1) as (e1, e2) ∈ A. If e2 ∈ Γ(Qi ∩ Qi−1), then e2 6∈ Γ(Qi ∩ Qi−1) \
Γ(Qi−1) = F(Qi ∩ Qi−1, Qi−1) as e2 ∈ Γ(Qi−1). Thus, we obtain a a contradiction.
On the other hand, if e2 6∈ Γ(Qi ∩ Qi−1), then e2 6∈ Γ(Qi ∩ Qi−1) \ Γ(Qi−1) =
F(Qi ∩ Qi−1, Qi−1), which is also a contradiction. Hence, @(e1, e2) ∈ A : e1 ∈
Γ(Qi−1), e2 ∈ F(Qi ∩Qi−1, Qi−1).

Next, we show that for each e2 ∈ Γ(Qi ∩ Qi+1), we have e2 6∈ F(Qi ∩ Qi−1, Qi−1).
Suppose that e2 ∈ Γ(Qi ∩ Qi+1) ∩ F(Qi ∩ Qi−1, Qi−1). We assumed that
({u, v}, {v, x}) ∈ A for u, v, x ∈ V , and therefore we have that each e2 = {u, v} ∈
F(Qi ∩ Qi−1, Qi−1) satisfies that u, v ∈ Qi−1. Furthermore, if e2 ∈ Γ(Qi ∩ Qi+1)
and e2 ∈ F(Qi ∩ Qi−1, Qi−1), there exists a path (e1, e2, . . . , e2) – where each edge
of the path belongs to Γ(Qi ∩ Qi+1) – because ({u, v}, {v, x}) ∈ A for u, v, x ∈ V
and each {u, v} ∈ F(Qi ∩ Qi−1, Qi−1) satisfies that u, v ∈ Qi−1. But this implies
that ∃(e1, e2) ∈ A : e1 ∈ Γ(Qi−1), e2 ∈ F(Qi ∩Qi−1, Qi−1), which is a contradiction.
Hence, if e ∈ Γ(Qi ∩Qi+1) then e 6∈ F(Qi ∩Qi−1, Qi−1).

Next, we consider Γ(Qi ∩Qi+1) \ F(Qi ∩Qi+1, Qi), and have Γ(Qi ∩Qi+1) \ F(Qi ∩
Qi+1, Qi) ⊆ Γ(Qi) as F(Qi ∩ Qi+1, Qi) = Γ(Qi ∩ Qi+1) \ Γ(Qi). Furthermore, each
e ∈ Γ(Qi ∩Qi+1) \ F(Qi ∩Qi+1, Qi) satisfies e ∈ Γ(Qi ∩Qi+1) and thus e 6∈ F(Qi ∩
Qi−1, Qi−1), as we proved in the foregoing. Hence, we have Γ(Qi ∩ Qi+1) \ F(Qi ∩
Qi+1, Qi) ⊆ Γ(Qi) \ F(Qi ∩Qi−1, Qi−1).

Next, we consider replacing Qi \ Qi+1. By the same reasoning as above we have
@(e1, e2) ∈ A : e1 ∈ Γ(Qi+1), e2 ∈ F(Qi ∩ Qi+1, Qi+1). Now, suppose e2 ∈ Γ(Qi \
Qi+1)∩F(Qi∩Qi+1, Qi+1), then each e2 = {u, v} ∈ F(Qi∩Qi+1, Qi+1) satisfies that
u, v ∈ Qi+1. Furthermore, e2 ∈ Γ(Qi \Qi+1) and e2 ∈ F(Qi ∩Qi+1, Qi+1) imply that
there exists a path (e1, e2, . . . , e2) – where each edge belongs to Γ(Qi\Qi+1) – because
({u, v}, {v, x}) ∈ A for u, v, x ∈ V and each {u, v} ∈ F(Qi∩Qi+1, Qi+1) satisfies that
u, v ∈ Qi+1. Hence, ∃(e1, e2) ∈ A : e1 ∈ Γ(Qi+1), e2 ∈ F(Qi ∩ Qi+1, Qi+1), which
is a contradiction. Hence, if e ∈ Γ(Qi \ Qi+1) then e 6∈ F(Qi ∩ Qi+1, Qi+1). Next,
we consider Γ(Qi \ Qi+1) \ F(Qi \ Qi+1, Qi) ⊆ Γ(Qi), and as each e ∈ Γ(Qi \ Qi+1)
is such that e 6∈ F(Qi ∩ Qi+1, Qi+1) we have Γ(Qi \ Qi+1) \ F(Qi \ Qi+1, Qi) ⊆
Γ(Qi)\F(Qi∩Qi+1, Qi+1). Finally, we observe that each e = {u, v} ∈ F(Qi\Qi+1, Qi)
satisfies u, v ∈ Qi and consequently we have that F(Qi\Qi+1, Qi) = F(Qi∩Qi+1, Qi)
because Qi \Qi+1 and Qi ∩Qi+1 partition Qi and we break the same edges for both
due to the existing symmetry. Hence, we also have Γ(Qi \Qi+1) \F(Qi ∩Qi+1, Qi) ⊆
Γ(Qi) \ F(Qi ∩Qi+1, Qi+1). Then, we obtain

π(S′)− π(S̃)

76 Chapter 3. Design of disjoint Line Replaceable Units

< x̃Qi

 ∑
e∈Γ(Qi∩Qi+1)

w(e)−
∑

e∈F(Qi∩Qi−1,Qi−1)

w(e)

−
∑

e∈Γ(Qi)\F(Qi∩Qi−1,Qi−1)

w(e)

 ∑
x∈Qi∩Qi+1

λ(x) +

 ∑
e∈Γ(Qi\Qi+1)

w(e)

−
∑

e∈F(Qi∩Qi+1,Qi+1)

w(e)−
∑

e∈Γ(Qi)\F(Qi∩Qi+1,Qi+1)

w(e)

 ∑
x∈Qi\Qi+1

λ(x)


≤ x̃Qi

 ∑
e∈Γ(Qi∩Qi+1)

w(e)−
∑

e∈F(Qi∩Qi−1,Qi−1)

w(e)

−
∑

e∈Γ(Qi∩Qi+1)\F(Qi∩Qi+1,Qi)

w(e)

 ∑
x∈Qi∩Qi+1

λ(x) +

 ∑
e∈Γ(Qi\Qi+1)

w(e)

−
∑

e∈F(Qi∩Qi+1,Qi+1)

w(e)−
∑

e∈Γ(Qi\Qi+1)\F(Qi∩Qi+1,Qi)

w(e)

 ∑
x∈Qi\Qi+1

λ(x)


≤ x̃Qi

 ∑
e∈Γ(Qi∩Qi+1)

w(e)−
∑

e∈F(Qi∩Qi+1,Qi)

w(e)

−
∑

e∈Γ(Qi∩Qi+1)\F(Qi∩Qi+1,Qi)

w(e)

 ∑
x∈Qi∩Qi+1

λ(x) +

 ∑
e∈Γ(Qi\Qi+1)

w(e)

−
∑

e∈F(Qi∩Qi+1,Qi)

w(e)−
∑

e∈Γ(Qi\Qi+1)\F(Qi∩Qi+1,Qi)

w(e)

 ∑
x∈Qi\Qi+1

λ(x)


= 0.

The second inequality holds by the previous observations that Γ(Qi ∩Qi+1) \F(Qi ∩
Qi+1, Qi) ⊆ Γ(Qi) \ F(Qi ∩ Qi−1, Qi−1) and Γ(Qi \ Qi+1) \ F(Qi ∩ Qi+1, Qi) ⊆
Γ(Qi)\F(Qi∩Qi+1, Qi+1). The last inequality follows becauseQi = argminQj∈C{Wj}
and we assumed that Wi =

∑
e∈F(Qi∩Qi+1,Qi)

w(e). Hence, x′ is a solution without

the LRU cycle C and satisfies π(S′) < π(S̃).

Next, consider the case Wi =
∑
e∈F(Qi∩Qi−1,Qi)

w(e). Then, we create the solution

x′ by partitioning Qi in Qi ∩Qi−1 and Qi \Qi−1, and we follow the same procedure
as above where we replace Qi+1 and Qi−1 by Qi−1 and Qi+1, respectively. Finally,
the solution x′ does not have the LRU cycle C and satisfies π(S′) < π(S̃).

Hence, an optimal solution x∗ to LPM does not contain a LRU cycle. 2

The result of Lemma 3.2 is illustrated by means of Example 3.2.

3.4 Set partitioning 77

Example 3.2 Suppose we have the connection graph G with w(e) = 1, ∀e ∈ E and
the precedence graph D from Figure 3.3. Note that the failure rate λ(v) and the
purchase cost `(v) are not relevant for this example. We consider the solution x̃ with
a LRU cycle C ⊆ S̃ as drawn by the dashed ellipses in Figure 3.3. We illustrate our
procedure for splitting LRU a Qi into Qi ∩Qi+1 and Qi \Qi+1. In this example, we

Qi

Qi+1

Qi−1

1

2

3

4

5

6

7

8

9

10

11

12

13

(a) Connection Graph

{5,11} {11,12} {12,2} {2,4} {4,3} {3,5}

(b) Precedence Graph

Figure 3.3: The input graphs and a LRU cycle C

78 Chapter 3. Design of disjoint Line Replaceable Units

have

Γ(Qi) = {{2, 12}, {2, 13}, {2, 4}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 12}},
Γ(Qi+1) = {{1, 2}, {10, 11}, {4, 12}, {5, 11}, {11, 12}, {12, 2}, {2, 4}, {4, 3},

{3, 5}},
Γ(Qi−1) = {{1, 3}, {4, 5}, {7, 8}, {5, 11}, {11, 12}, {2, 12}, {2, 4}, {3, 4},

{3, 5}},
Γ(Qi ∩Qi−1) = {{1, 3}, {4, 3}, {3, 5}, {3, 6}},
Γ(Qi \Qi−1) = {{1, 3}, {2, 12}, {2, 13}, {2, 4}, {3, 4}, {3, 5}, {4, 5}, {4, 12}},

F(Qi ∩Qi+1, Qi+1) = {{2, 12}, {2, 13}},
F(Qi ∩Qi−1, Qi) = {{1, 3}},

F(Qi ∩Qi−1, Qi−1) = {{3, 6}}.

One can use the above expressions to verify that the procedure in the proof of Lemma
3.2 yields a solution x′ such that π(S′) < π(S̃). �

Next, we introduce Lemma 3.3 and Lemma 3.4 that – in combination with Lemma
3.2 – help us to prove there exists an optimal integer solution to LPM. But first, we
present the definition of a totally balanced matrix, see for instance Anstee and Farber
(1984) and Hoffman et al. (1985).

Definition 3.2 A binary matrix R is totally balanced if it does not contain a square
submatrix R that has no identical columns and the sum of each row and column
equals to two.

Lemma 3.3 Given a binary k × k matrix R with k ≥ 3, no identical columns, and
such that each row and column sum to two, there exists an n × n submatrix R̂ of R
with n ≥ 3, no identical columns, and such that each row and column of R̂ sum to
two. If we interpret the columns of R̂ as LRUs and the rows of R̂ as vertices, then
the LRUs – corresponding to the columns of R̂ – are a LRU cycle.

Proof. Consider an n × n submatrix R̂ of R with minimal n ≥ 3, no identical
columns, and such that each row and column of R̂ sum to two. Such submatrix R̂
exists, because R satisfies the same conditions. We will rename the rows and columns
of R̂ such that we can easily show that the columns (LRUs) of R̂ are a LRU cycle.
This renaming procedure is as follows.

The first row is v1 and Q1 and Q2 are the columns such that r̂v1,Q1 = r̂v1,Q2 = 1.

This follows without loss of generality, because R̂ is binary and the sum of each row
equals two. Furthermore, note that all other values of v1 are zero. Next, let v2 be the
second row such that r̂v2,Q2

= 1. This is feasible because the sum of column Q2 is
two. Moreover, all other rows (except v1 and v2) have the value 0 in column Q2. We

3.4 Set partitioning 79

also remark that r̂v2,Q1
= 0, since otherwise all other values in column Q1 (except

for r̂v1,Q1
and r̂v2,Q1

) are zero and this means that columns Q1 and Q2 are identical,
which is a contradiction.

Next, we label the column Qi such that r̂vi−1,Qi = 1 for each i = 3, . . . , n, and we call
the row vi that satisfies r̂vi,Qi = 1, for all i = 3, . . . , n. This can be done due to the
following reasoning. The columns Qj with 1 < j < i − 1 are such that r̂vi−1,Qj = 0,
because each column Qj already sums to two. Unless i = n, we have r̂vi−1,Q1

= 0
because otherwise we would have a i × i submatrix for which each row and column
sum equal 2, i ≥ 3, and where no identical columns exists. But this would contradict
the fact that n is minimal. Hence, we can label Qi such that r̂vi−1,Qi = 1. Moreover,
all rows vj with 1 ≤ j < i − 1 are such that r̂vj ,Qi = 0, because each row vj already
sums to two (by considering columns Qk with k < i). Therefore, we can call a row vi
such that r̂vi,Qi = 1.

Finally, we let rvn,Q1 = 1 such that the row and column sum of each row and column

of R̂ equal 2.

Given the renaming of the columns and rows of R̂, we have for all 1 ≤ i ≤ n
that {vi} = Qi ∩ Qi+1 with n + 1 ≡ 1 (mod n). Furthermore, this implies that
(Qi ∩Qi+1) \ (Qi+1 ∩Qi+2) = {vi} \ {vi+1} 6= ∅ and (Qi+1 ∩Qi+2) \ (Qi ∩Qi+1) =
{vi+1} \ {vi} 6= ∅ with n + 1 ≡ 1 (mod n) and n + 2 ≡ 2 (mod n). But this implies
that the LRUs Q1, Q2, . . . , Qn are a LRU cycle. 2

The result of Lemma 3.3 is directly related to the definition of a totally balanced
matrix, see Definition 3.2.

Lemma 3.4 If an optimal solution x∗ does not contain a LRU cycle, then Z∗ is
totally balanced.

Proof. Given an optimal solution x∗ – with S∗ or equivalently Z∗ – that does not
contain a LRU cycle, there does not exist a binary k × k submatrix R of Z∗ with
k ≥ 3, no identical columns, and such that the sum of each row and column of R
equals to two. This follows by the contraposition of Lemma 3.3. Hence, the matrix
Z∗ is totally balanced. 2

Finally, we use Lemma 3.3 and Lemma 3.4 to establish Theorem 3.1.

Theorem 3.1 There exists an optimal integer solution to LPM.

Proof. Let x∗ be an optimal solution to LPM. Each LRU Q ∈ S∗ is a connected
subgraph of G by Lemma 3.1 and x∗ does not contain a LRU cycle by Lemma
3.2. Then, the matrix Z∗ is totally balanced by Lemma 3.4. Consequently, the
polyhedron P =

{
x : Z∗x = 1, x ≥ 0, x ∈ R|S∗|

}
is integral (Fulkerson and Hoffman,

80 Chapter 3. Design of disjoint Line Replaceable Units

1974). Hence, x∗ is either integer or a convex combination of integer solutions to
LPM, and thus we obtain our desired result. 2

If LPM is solved by the simplex algorithm, we obtain an optimal solution x∗ that is
an extreme point of the polyhedron P =

{
x : Zx = 1, x ≥ 0, x ∈ R|S |

}
, but is also an

extreme point of the polyhedron P =
{
x : Z∗x = 1, x ≥ 0, x ∈ R|S∗|

}
spanned by the

submatrix Z∗. Theorem 3.1 now implies that x∗ is integral, because x∗ is an extreme
point of P. Hence, solving LPM with the simplex algorithm yields an optimal integer
solution, and this solution is thus also optimal for M.

We would like to stress the fact that the polyhedron P of LPM is not integral, but
we still obtain an optimal integer solution. There exist solutions with a LRU cycle
that are an extreme point of P , since we consider the power set S = 2|V |. Hence, P
is not integral. We are able to obtain an optimal integer solution to LPM, because
we prove suboptimality of the extreme points (solutions) that contain a LRU cycle,
see Lemma 3.2. Such an approach contrasts with much other research that focuses on
proving integrality of a polyhedron to conclude that an optimal integer solution can
be found (if the objective function is convex). We demonstrate that – for non–integral
polyhedra – analysis of the objective function can be used to establish the existence
of an optimal integer solution to a relaxed problem when the full constraint matrix
will not guarantee the existence of an optimal integer solution.

The result of Theorem 3.1 can be generalized, see Corollary 3.1.

Corollary 3.1 If the objective function of LPM is convex and LRU cycles are
suboptimal, then there exists an optimal integer solution to LPM.

Proof. Let x∗ be an optimal solution to LPM, where LPM has a convex objective
function and is such that LRU cycles are suboptimal. Then, x∗ does not contain a
LRU cycle, and thus Z∗ is totally balanced by Lemma 3.4. Hence, the polyhedron
P =

{
x : Z∗x = 1, x ≥ 0, x ∈ R|S∗|

}
is integral, and thus x∗ is either integer or a

convex combination of integer solutions to LPM. Therefore, we obtain our desired
result. 2

Corollary 3.1 implies – similar to Theorem 3.1 – that solving LPM by the simplex
algorithm yields an optimal integer solution that is also optimal for M (given that
M has the same convex objective function). This results from the convexity of the
objective function.

3.4.2 Solving LPM and M

Given Theorem 3.1, we move our attention to solving LPM, for which we apply column
generation. Hence, we consider a feasible subset of LRUs (or columns) S̃ ⊆ S for

3.4 Set partitioning 81

LPM. This results in the Restricted Master Program (RLPM). For RLPM, we generate
profitable LRUs (columns) by solving the pricing problem of RLPM:

c∗ = min
Q∈S

ω(Q)−
∑
v∈Q

rv

 , (3.6)

where rv are dual variables for the partitioning constraints of RLPM. We want to
find a LRU Q ∈ S with minimal reduced costs. We can find this LRU by using a
problem formulation similar to the BNLP from Problem (3.3), where we also consider
an auxiliary variable ke representing whether we disconnect edge e ∈ E for the LRU.
Note that ke = 0 for an edge that is not disconnected, by the objective function
(3.7a). We introduce the binary decision variable γv that determines whether a part
v ∈ V is included in the LRU. Hence, we rewrite Problem (3.6) to obtain

c∗= min
γ,k

∑
e∈E

kew(e)
∑
v∈V

γvλ(v) +
∑
u∈V

γu`(u)
∑
v∈V

γvλ(v)−
∑
v∈V

γvrv (3.7a)

s.t. ke ≥ γu(1− γv), ∀{u, v} ∈ E,∀e ∈ H({u, v}), (3.7b)

γv, k
e ∈ {0, 1}. (3.7c)

Linearizing Problem (3.7) by substituting ηev = keγv and δuv = γuγv yields the final
form of the pricing problem (3.8). We use the same McCormick linearization method
from Section 3.3. Note that ηev denotes whether the LRU contains part v ∈ V and
that edge e ∈ E needs to be broken for the LRU to be removed. Similarly, δuv
represents whether the LRU contains both parts u, v ∈ V .

c∗= min
k,γ,η,δ

∑
e∈E

∑
v∈V

ηevλ(v)w(e) +
∑
u,v∈V

δuv`(u)λ(v)−
∑
v∈V

γvrv (3.8a)

s.t. ke ≥ γu − δuv, ∀{u, v} ∈ E,∀e ∈ H({u, v}), (3.8b)

ηev ≤ ke, ∀e ∈ E,∀v ∈ V, (3.8c)

ηev ≤ γv, ∀e ∈ E,∀v ∈ V, (3.8d)

ηev ≥ ke + γv − 1, ∀e ∈ E,∀v ∈ V, (3.8e)

δuv ≤ γu, ∀u, v ∈ V, (3.8f)

δuv ≤ γv, ∀u, v ∈ V, (3.8g)

δuv ≥ γu + γv − 1, ∀u, v ∈ V, (3.8h)

ηev, δuv ≥ 0, γv, k
e ∈ {0, 1}. (3.8i)

After we solve the pricing problem (3.8), we add the obtained LRU to S̃ and we again
solve LPM with the new S̃ . Next, we solve the pricing problem again, and we repeat
this procedure until the pricing problem does not return a profitable LRU (column),
i.e., we terminate when c∗ ≥ 0. This means that there does not exist a LRU (column)
that is worthwhile to add to our LPM, and we have obtained the optimal solution.

82 Chapter 3. Design of disjoint Line Replaceable Units

3.5. Numerical experiments

In this section, we use the binary linear program formulation and the set partitioning
formulation of LRU Design to gain some insight in the size of instances that can be
solved and we explore the effects of parameter perturbations on our model’s outcomes.
We have implemented all optimization model formulations in JuMP (Lubin and
Dunning, 2015; Dunning et al., 2017), which is a mathematical optimization package
of Julia (Balbaert et al., 2016), and we solved all problems by using Gurobi 7.0.1 on
an Intel i5–4300U @2.50GHz processor with 16GB RAM and running Ubuntu 16.04
LTS.

In Section 3.5.1, we explain how we generate our instances for the experiment, and
in Section 3.5.2 we study the difference between the computation times (in seconds)
of the binary linear programming formulation and the set partitioning formulation.
Furthermore, we shed some light on the effect that the downtime costs per time unit
have on the LRU design: how many LRUs are used in an optimal solution as the
downtime costs increase. Moreover, we study how the system’s complexity affects the
total annual costs by considering the number of connections between parts, and the
number of predecessor–successor relationships that exist.

3.5.1 Instance generator

An instance is described by the graphs G and D. We vary the number of vertices |V |,
the number of edges |E|, and the number of arcs |A| in our numerical experiments.
We relate the number of edges in G to the number of vertices by |E| = δ|V |, where δ
is the average vertex degree in the graph G. Similarly, we relate the number of arcs
in D to the number of edges by |A| = δE |E|, where δE is the average out degree of
an edge e ∈ E. All other parameters such as λ(v) > 0 and `(v) > 0 for all v ∈ V , and
w(e) > 0 for all e ∈ E are randomly generated, as well as a graph’s layout in terms
of the edge set E and the arc set A.

The graphs G and D are generated in the following way. For G, we have a set
of vertices V and a number of unique edges |E| = δ|V |, and we create a spanning
tree with |V | − 1 edges. We add an arbitrary vertex v ∈ V to a set of considered
vertices Ṽ , and we select a new vertex u ∈ V \ Ṽ and connect it to an arbitrary
vertex z ∈ Ṽ by adding the edge {u, v} to the edge set E. We keep doing this
until Ṽ = V . Subsequently we add remaining edges randomly to our graph and we
terminate once we have |E| edges in G. Secondly, we generate the precedence graph D.
We (randomly) assign an index to each edge e ∈ E and denote this index by I(e), and
the minimum and maximum values assigned are 1 and |E|, respectively. We start with
A = ∅ and add an arc in each iteration. An iteration starts by selecting two random
edges {u, v}, {v, x} ∈ E : u, v, x ∈ V and u 6= v 6= x. If I({u, v}) ≤ I({v, x}) we create
an arc ({u, v}, {v, x}) and add it to A, otherwise we create an arc ({v, x}, {u, v}) and

3.5 Numerical experiments 83

add it to A. We repeat this procedure until δE |E| = |A|, and upon termination we
have obtained a set A that has a topological sorting and thus the precedence graph
D is acyclic.

3.5.2 Computational results

Next, we discuss the computational results for our model. The generation of a random
graph follows the procedure from Section 3.5.1, and we let |V | ∈ {10, 20, 30, 40, 50, 60},
δ ∈ {2, 3, 4}, and δE ∈ {0.5, 1, 1.5}. For each combination (|V |, δ, δE), we generate 10
random instances, resulting in a total of 540 instances.

We use a time limit of 600 seconds for the BLP formulation and also for the set
partitioning formulation. This time limit is relatively low because we solve a large
number of instances, thereby making it feasible to perform the entire numerical study
in a reasonable amount of time. If an instance has not been solved to optimality
within 600 seconds, we say that it is inefficient. If all instances of a certain parameter
combination (|V |, δ, δE) are inefficient, we write – as an entry for the combination. We
determine the average computation time of both formulations based on the efficient
instances. The results are presented in Table 3.2, where the computation times
are given in seconds, and the subscripts indicate the number of efficient instances.
Furthermore, we have not reported computation times for the BLP with |V | ≥ 40,
since we have found no efficient solutions within the time limit.

We observe that, given the time limit of 600 seconds, the BLP formulation can
only solve small size instances up to 20 vertices (parts), while the set partitioning
(SP) formulation can solve medium size to large instances up to 60 vertices (parts).
Furthermore, we see that the set partitioning formulation solves instances faster than
the BLP formulation. This effect is amplified when the instances become harder,
i.e., when |V |, δ and δE increase. Real–life instances are typically medium to large
sized instances and can have 50 vertices (parts). Furthermore, such instances may
possess many and complex connections and predecessor–successor relationships. This
makes the BLP formulation unsuitable for practical purposes. Hence, it is worthwhile
to invest extra time to implement the set partitioning formulation (LPM) with a
pure pricing algorithm. Furthermore, the computation times illustrate that the
set partitioning formulation of LRU Design is particularly useful as a feedback
mechanism for the OEM’s design department. The engineers can quickly assess many
design alternatives (in terms of the connection graph and precedence graph) and their
effects on the optimal LRU design and the corresponding (after–sales) costs.

Next, we numerically study the effect of the cost of one time unit of system downtime
on the number of LRUs that is used in an optimal LRU design. In the remainder of
this section, we use the same instance generator as discussed in Section 3.5.1, and we
generate 1,000 instances per parameter setting (δ, δE) and keep |V | = 20. For a given
instance, we vary the edge weights by multiplying all edge weights of the instance by
a constant factor q ∈ {0.1, 1, 10}. A higher value for q means that it is more expensive

84 Chapter 3. Design of disjoint Line Replaceable Units

BLP |V |
δ δE 10 20 30

2 0.5 4.6710 159.908 –
2 1 5.9210 170.765 –
2 1.5 3.8910 124.688 –
3 0.5 8.6910 353.536 –
3 1 7.8010 – –
3 1.5 5.7710 230.763 –
4 0.5 10.2810 570.271 –
4 1 9.3110 – –
4 1.5 8.1010 249.061 –

SP |V |
δ δE 10 20 30 40 50 60

2 0.5 0.1610 1.0710 8.6310 18.9310 143.6510 342.219

2 1 0.5010 2.6410 18.8810 51.3310 330.659 491.225

2 1.5 0.1610 0.8510 5.6110 16.2210 86.1710 252.0310

3 0.5 0.2910 1.8210 12.0710 18.5210 171.5010 359.445

3 1 0.7910 5.6310 16.9210 75.6910 266.784 447.942

3 1.5 0.4410 1.8210 8.3610 23.8910 235.6110 528.735

4 0.5 0.3710 2.5110 7.8310 29.8310 332.288 469.101

4 1 0.9310 6.3010 12.2210 99.5610 497.463 –
4 1.5 0.7710 3.4010 14.1310 28.8910 450.836 –

Table 3.2: Average computation times (sec) of both formulations

to break edges. If the time for breaking an edge remains constant, it means that the
cost rate per time unit for breaking an edge increases, and thus we can capture a
higher downtime cost per time unit by varying q. This way, we create three classes of
instances (i) low downtime cost per time unit (q = 0.1); (ii) moderate downtime cost
per time unit (q = 1); (iii) and high downtime cost per time unit (q = 10). We keep
the parameter values for δ and δE constant at δ = 3 and δE = 1. We focus on the
number of LRUs |S∗| in an optimal solution S∗. The results are presented in Figure
3.4.

Based on Figure 3.4, the instances where the downtime cost per time unit is low, have
many small LRUs (each part is a LRU in itself in the extreme case). These solutions
prefer small LRUs because they have lower purchase costs. As the cost for a single
time unit of downtime increases, we see that the optimal solution prefers fewer LRUs
that each become larger, because such larger LRUs enable faster replacement and thus
lower downtime costs. This explains, for example, why we observe that the consumer
electronics industry with low values for q has rather small LRUs. On the other end of
the spectrum, capital intensive industries such as the semiconductor industry or the

3.5 Numerical experiments 85

1 2 3

5

10

15

20

0.1 1 10
q

|S
∗ |

Figure 3.4: Effect of edge weights on the number of LRUs in S∗

aviation industry have high values for q, and they tend to opt for larger LRUs which
enable faster replacement. Both these phenomena are confirmed by the numerical
results of our model.

The second effect that we study considers the complexity of the system, and how this
affects the costs of the optimal LRU design. We restrict our attention, for now, on
the number of edges in the connection graph G that describes system complexity. We
vary how strongly various parts are connected to each other by altering δ. A low
(high) value of δ corresponds to lesser (more) connected parts. We are interested in
the effect that the number of connections in G has on the costs, because this provides
a justification of whether to avoid many connections between parts in order to reduce
the total costs. For our analysis, we keep δE and q constant at δE = 1 and q = 1.
The results are presented in Figure 3.5.

We observe that more connections in the connection graph G result in cost increases,
because we need to disconnect more edges in order to remove a LRU. This has an
important managerial implication, as engineers should be urged to reduce the number
of connections in systems to be developed. Thus, it may be wise for an OEM to invest
extra in a system’s design such that the number of connections in G is reduced. An
example wherein few number of connections lead to low costs is a bicycle. A typical
connection graph of bicycles has few connections, and consequently relatively low
replacement costs because we only need to disconnect few connections in case a part
fails.

Finally, we also study the effect that system complexity has on the costs of the optimal

86 Chapter 3. Design of disjoint Line Replaceable Units

1 2 3

50

100

150

2 3 4

δ

π
(S
∗)

Figure 3.5: Effect of the number of connections in G on π(S∗)

solution π(S∗), when we consider the number of predecessor–successor relationships.
A lower value of δE indicates that fewer predecessor–successor relationships exist in
the precedence graph D. Similar to the foregoing, we keep the other parameters
constant at δ = 3 and q = 1. The results for different values of δE are depicted in
Figure 3.6 and we observe a similar behavior to changes in δ.

The costs increase as the number of predecessor–successor relationships increases,
because we need to disconnect more connections upon the failure of a LRU.
Consequently, the costs of an optimal solution π(S∗) increase when the number of
connections in D increases (as δE increases). The managerial implications of our
results also align with those for δ: managers should urge their designers to avoid
predecessor–successor relationships in order to reduce costs. This objective may be
easier to attain than avoiding connections in the connection graph G by careful design.
Hence, the results confirm that careful design (in terms ofG andD) is crucial to reduce
the overall costs.

3.6. Conclusions

We considered an OEM that is concerned with the maintenance of a system. If the
system does not operate, the OEM loses money, customer goodwill or has to pay
customers a downtime penalty. Therefore, the OEM is interested in lowering the cost
for non–functioning systems by designing Line Replaceable Units (LRUs) that can

3.6 Conclusions 87

1 2 3

50

100

150

0.5 1 1.5

δE

π
(S
∗)

Figure 3.6: Effect of the number of predecessor–successor relationships in D on π(S∗)

be removed quickly. Furthermore, the LRUs should not be too large, because this
increases a LRU’s total failure rate and the LRU’s purchase costs (or repair costs).
Thus, the OEM has to determine what the optimal LRU design is that balances the
replacement costs and the purchase costs (or repair costs) of LRUs.

We presented a novel approach for representing the connections between parts in a
system, also capturing the existing disassembly sequences. This system representation
can be used as a visual aid to enhance internal communication at the OEM, between
the design department and operations department. In this chapter, we used the
system representation to derive an optimization model that minimizes the replacement
costs and the purchase costs (or repair costs) by optimizing the LRU design. We
called this problem LRU Design, and we formulated it as a binary linear program
and as a set partitioning problem. The latter formulation allows for branch–and–
price algorithms. We proved that the set partitioning formulation can be solved
to optimality by a pure pricing algorithm and this results in an optimal integer
solution, i.e., branching is unnecessary. This reduces the computation times and
thus makes the set partitioning formulation of LRU Design particularly useful as
a feedback mechanism for the OEM’s design department. The engineers can quickly
assess various design alternatives (in terms of the connection graph and precedence
graph) and their effects on the optimal LRU design and the corresponding (after–
sales) costs. Furthermore, the set partitioning formulation is suitable to solve large
instances, while the binary linear programming formulation is not. In addition to
the computation times, we observed that optimal solutions to LRU Design have
larger LRUs when the cost per time unit of system downtime increases, because this

88 Chapter 3. Design of disjoint Line Replaceable Units

enables faster replacement and thus avoids large downtime costs. Finally, we found
that managers should urge their designers to reduce the number of connections and
predecessor–successor relationships in a system’s design.

3.A Deriving H(e) 89

3.A. Deriving H(e)

We determine H(e) for all edges e ∈ E in polynomial time by the following polynomial
algorithms, where Algorithm 2 is called by Algorithm 1.

Algorithm 1 Derive H(e) for all edges e ∈ E
1: procedure RemovalEdges(E,A)
2: Ê ← E
3: Ẽ ← Degree(D(Ê, A))
4: while Ẽ 6= ∅ do
5: for all e ∈ Ẽ do
6: H(e)← {e}
7: end for
8: for all e ∈ Ẽ do
9: for all (e, z) ∈ A do

10: H(e)← H(e) ∪H(z)
11: end for
12: end for
13: Ê ← Ê \ Ẽ
14: Ẽ ← Degree(D(Ê, A))
15: end while
16: return H(e) for all e ∈ E
17: end procedure

Algorithm 2 Determine all edges e ∈ E that have no successors in D

1: procedure Degree(D)
2: Ẽ ← ∅
3: for all e ∈ E do
4: if δout(e) = 0 then
5: Ẽ ← Ẽ ∪ {e}
6: end if
7: end for
8: return Ẽ
9: end procedure

4
Design of non–disjoint Line

Replaceable Units

4.1. Introduction

This chapter is an extension to Chapter 3. The motivation of using LRUs and the
related literature are therefore identical to Chapter 3, and we do not discuss these
here. Furthermore, our system representation is identical to Chapter 3 and consists
of a connection graph and a precedence graph. However, we do relax the assumption
that each part belongs to exactly one Line Replaceable Unit (LRU). Although this
assumption has practical advantages, e.g. it may reduce the number of possible LRUs
and therefore can yield lower complexity for organizational processes such as inventory
planning, we see that parts oftentimes belong to more than one LRU in practice.

For example, if we consider the laptop example from Chapter 3, we may want to
replace the motherboard and graphics card together when the motherboard fails, but
we only want to replace the graphics card in case the graphics card fails. For the
failure of both parts (motherboard and graphics card), the graphics card is replaced
and thus the graphics card belongs to more than one LRU. Another example one can
think of is a bicycle. Consider the rear wheel assembly that consists of a tire, rim,
spokes, wheel hub, and the cassette. Suppose that we replace a spoke by a new one if
the spoke fails (a spoke is a LRU). Furthermore, we replace the entire rear wheel (the
tire, rim, all spokes, wheel hub, and the cassette) if the rim breaks. Then, a spoke
belongs to two LRUs.

By means of the previous two examples, we observe that there may exist parts in

92 Chapter 4. Design of non–disjoint Line Replaceable Units

systems that belong to more than one LRU. The benefit of having parts that belong
to more than one LRU is that we may be able to further reduce the total costs. This
is a result from the extra freedom that we obtain by relaxing the assumption that
each part belongs to exactly one LRU. Therefore, we consider a LRU problem wherein
parts can belong to more than one LRU in this chapter. We call this problem C–LRU
Design, where the addition C stands for cover, because our model is a cover model
rather than a partition model from Chapter 3.

We prove that C–LRU Design is separable in the parts of the system. In addition,
we numerically find that the computation times of C–LRU Design are low, even
for large instances. The computation times of the set partitioning formulation of
LRU Design can be more than 45 times higher than the computation times (on
average) of C–LRU Design. This is a direct result of the separable nature of C–
LRU Design. Furthermore, we find that C–LRU Design has the potential to reduce
costs for systems with few parts and a high number of connections and predecessor–
successor relationships. Examples of such systems may be laptops (Lenovo) or bicycles
(Gazelle). For more complex systems such as lithography systems (ASML), trains
(NedTrain), or trucks (PACCAR/Volkswagen), the cost benefit of C–LRU Design
is limited. Finally, we find that C–LRU Design can use more or fewer LRUs than
LRU Design.

This chapter is organized similar to Chapter 3. In Section 4.2, we present our model
where parts can belong to more than one LRU. We also show each LRU is connected
in any optimal solution to C–LRU Design. Furthermore, we show that C–LRU
Design is decomposable in the parts of the system, and we use this decomposition
result to formulate C–LRU Design as multiple binary non–linear programs (v–
BNLP) in Section 4.3. Moreover, we propose a linearization for each of the binary
non–linear programs to obtain a binary linear programming (BLP) formulation. We
do not discuss a column generation approach because this is unnecessary due to the
separability result. In Section 4.4, we numerically study the computation times of
the BLP formulation of C–LRU Design. We also study the effects of parameter
perturbations on the results of C–LRU Design. Finally, we compare LRU Design
to C–LRU Design in terms of computation times, costs, and number of LRUs used
in an optimal solution. We conclude this chapter in Section 4.5.

4.2. Model

We represent a system by the connection graph G = (V,E) and the precedence graph
D = (E,A), with V , E and A corresponding to the vertex set, edge set and arc
set, respectively. Furthermore, we let λ(v) > 0 and `(v) > 0 be the failure rate and
purchase cost of part v ∈ V , and we define w(e) > 0 as the cost of breaking edge
e ∈ E. An arc ({u, v}, {v, x}) ∈ A denotes that we have to break {v, x} prior to
breaking {u, v}.

4.2 Model 93

A part v ∈ V belongs to at least one LRU. That is, part v is replaced upon its
own failure, but it may also be replaced upon the failure of a part u ∈ V : u 6= v.
Therefore, we represent a LRU differently from Chapter 3. We let a LRU be a tuple
characterized by a replacement set and a failure set, i.e., Q = (RQ, FQ) where Q is
the LRU, RQ ⊆ V is the replacement set, and FQ ⊆ RQ is the failure set. The failure
of a part in the failure set triggers replacement of the LRU. The replacement set is
replaced if any of the vertices in the failure set fails. For example, if we consider
the laptop example with the motherboard and the graphics card, there exists a LRU
with a replacement set consisting of the graphics card and the motherboard together,
while the failure set consists of the motherboard (if the motherboard fails we replace
the motherboard and graphics card together). Furthermore, we assume that a part
v ∈ V belongs to exactly one failure set, i.e., the failure sets partition V .

Next, we study what happens when a LRU Q fails, or technically what happens when
a part v ∈ FQ fails. In this case, we have to break all edges e ∈ Γ(RQ). We determine
Γ(RQ) similar to Chapter 3 by Γ(RQ) =

⋃
e∈B(RQ)H(e), and using Algorithms 1 and

2 from Chapter 3.

Now, we turn our attention to the failure rate and purchase costs of a LRU Q.
Each LRU Q has a failure rate of

∑
v∈FQ λ(v), because all parts v ∈ FQ induce

the replacement of RQ. Similarly, the total purchase cost of LRU Q is given by∑
v∈RQ `(v).

Analogous to the derivation of ω(Q) in Chapter 3, the total costs of a LRU Q is given
by

ωc(Q) =
∑

e∈Γ(RQ)

w(e)
∑
v∈FQ

λ(v) +
∑
u∈RQ

`(u)
∑
v∈FQ

λ(v).

We are interested in determining the optimal LRU design. Let Sc be a collection of
LRUs such that ∅ 6∈ Sc and each part v ∈ V is included in at least one replacement
set and in exactly one failure set; i.e.,

⋃
Q∈Sc FQ = V , FQ ∩ FQ′ = ∅ for all Q,Q′ ∈

Sc : FQ 6= FQ′ , and FQ ⊆ RQ for each LRU Q ∈ Sc. We would like to underline
that we use different notation for a LRU design in this chapter, i.e., Sc instead of S,
because a LRU Q is a tuple in this chapter. The total costs of a LRU design Sc are
then given by

πc(Sc) =
∑
Q∈Sc

ωc(Q) =
∑
Q∈Sc

∑
b∈Γ(RQ)

w(b)
∑
v∈FQ

λ(v) +
∑
Q∈Sc

∑
u∈RQ

`(u)
∑
v∈FQ

λ(v).

(4.1)

Next, we define C–LRU design as: What is the LRU Design Sc that minimizes
πc(Sc)?

We can generalize the model for C–LRU Design such that a subset of parts are
correctively maintained, while others are preventively maintained. This generalization
is analogous to Remark 3.1. Similarly, it is possible to extend C–LRU Design such
that failed parts are repaired, but this is again analogous to Remark 3.2.

94 Chapter 4. Design of non–disjoint Line Replaceable Units

Next, we explore structure in the optimal solution S∗c in Proposition 4.1, which is a
similar result to Lemma 3.1.

Proposition 4.1 Each replacement set RQ of LRU Q = (RQ, FQ) ∈ S∗c is connected
subgraph of G, for any optimal solution S∗c to C–LRU Design.

Proof. Let JR be the finite set of connected components in the subgraph of
G induced by the replacement set RQ of a LRU Q, and |JR| ≥ 1. If |JR| = 1
the replacement set RQ is connected, which satisfies our claim. Hence, we consider
|JR| ≥ 2 in the remainder. Then, Γ(JR) ⊂ Γ(RQ) for any JR ∈ JR, and we have
Γ(RQ) =

⋃
JR∈JR

Γ(JR) as
⋃
JR∈JR

J = RQ. Next, let JF be a set of failure sets;
we construct a failure set JF ⊆ JR for each JR ∈JR, and all failure sets JF partition
FQ. Then,

∑
JF∈JF

∑
v∈JF λ(v) =

∑
v∈RQ λ(v), because of the partition. So, each

replacement set JR ∈JR is associated to a failure set JF ∈JF . This corresponds
to a LRU J = (JR,JF), and we let J be the set of all LRUs J . Furthermore, we
note that JR = RJ and JF = FJ by definition of a LRU J . Then,∑

J∈J

ωc(J) =
∑
J∈J

∑
e∈Γ(RJ)

w(e)
∑
v∈FJ

λ(v) +
∑
J∈J

∑
u∈RJ

`(u)
∑
v∈FJ

λ(v)

≤
∑
J∈J

∑
e∈Γ(RQ)

w(e)
∑
v∈FJ

λ(v) +
∑
J∈J

∑
u∈RJ

`(u)
∑
v∈FJ

λ(v)

<
∑
J∈J

∑
e∈Γ(RQ)

w(e)
∑
v∈FJ

λ(v) +
∑
J∈J

∑
u∈RQ

`(u)
∑
v∈FJ

λ(v)

=
∑

e∈Γ(RQ)

w(e)
∑
v∈FQ

λ(v) +
∑
u∈RQ

`(u)
∑
v∈FQ

λ(v) = ωc(Q),

where the first inequality follows from the fact that each Γ(JR) = Γ(RJ) ⊂
Γ(RQ), ∀J ∈J . The second inequality follows from the fact that RJ ⊂ RQ, ∀J ∈
J , and thus

∑
u∈RJ `(u) <

∑
u∈RQ `(u), ∀J ∈ J . The final equality holds, since

the failure sets FJ partition the vertices in FQ. Hence, the replacement set RQ of
each LRU Q ∈ S∗c is a connected subgraph of G, for any optimal solution S∗c . 2

Although an optimal solution has connected replacement sets, we do not know whether
the optimal solution will assign parts to multiple replacement sets. In fact, we show
in Example 4.1 that this can occur in an optimal solution to C–LRU Design.

Example 4.1 Let V = {a, b, c} with values λ(a) = λ(b) = λ(c) = 1, `(a) = 1.2,
`(b) = 0.5, `(c) = 1.0. The connection graph and the precedence graph are depicted
in Figure 4.1, and we let w({a, b}) = w({b, c}) = 1.0.

There exist four different LRU designs such that each v ∈ V is included in exactly
one failure set and in exactly one replacement set:

S1 = {({a, b, c}, {a, b, c})}; πc(S1) = 8.1
S2 = {({a, b}, {a, b}); ({c}, {c})}; πc(S2) = 7.4

4.2 Model 95

a b c1.0 1.0

(a) Connection Graph

{a,b} {b,c}

(b) Precedence Graph

Figure 4.1: Input Graphs

S3 = {({a}, {a}); ({b, c}, {b, c})}; πc(S3) = 10.6
S4 = {({a}, {a}); ({b}, {b}); ({c}, {c})}; πc(S1) = 7.7.

However, if we consider the LRU design S5 = {({a, b}, {a}); ({b}, {b}); ({c}, {c})} in
which part b belongs to two replacement sets, but to one failure set, we obtain

πc(S5) =w({b, c})λ(a) + [w({a, b}) + w({b, c})]λ(b) + w({b, c})λ(c)

+ [`(a) + `(b)]λ(a) + `(b)λ(b) + `(c)λ(c) = 7.2

Hence, we see that an optimal solution to this example assigns at least one part to
more than one replacement set. �

Finally, we make an important observation that C–LRU Design is separable in the
parts v ∈ V . We let R(v) be a replacement set for a vertex v such that for a LRU
Q ∈ Sc we have RQ = R(v), ∀v ∈ FQ; then we have the following.

Theorem 4.1 C–LRU Design is equivalent to determining the optimal replacement
set R(v) for each v ∈ V .

Proof. For each solution Sc, a LRU Q = (RQ, FQ) ∈ Sc satisfies RQ = R(v), ∀v ∈
FQ by definition of R(v). Hence, we write

πc(Sc) =
∑
Q∈Sc

∑
e∈Γ(RQ)

w(e)
∑
v∈FQ

λ(v) +
∑
Q∈Sc

∑
u∈RQ

`(u)
∑
v∈FQ

λ(v)

=
∑
Q∈Sc

∑
v∈FQ

λ(v)

 ∑
e∈Γ(RQ)

w(e) +
∑
u∈RQ

`(u)


=
∑
Q∈Sc

∑
v∈FQ

λ(v)

 ∑
e∈Γ(R(v))

w(e) +
∑

u∈R(v)

`(u)


=
∑
v∈V

λ(v)

 ∑
e∈Γ(R(v))

w(e) +
∑

u∈R(v)

`(u)

 ,
where the second equality follows after rearranging terms. The third equality holds
as RQ = R(v) for Q ∈ Sc and ∀v ∈ FQ. The final equality follows because all FQ

96 Chapter 4. Design of non–disjoint Line Replaceable Units

partition V . Hence, our problem is separable in v ∈ V . 2

4.3. Binary programming formulation

We use Theorem 4.1 to solve C–LRU Design as |V | binary non–linear programs
(BNLP). For each v ∈ V we present a binary non–linear program that determines the
optimal replacement set for this v. Subsequently, we linearize each of these BNLPs.
If we solve all |V | binary linear programs (BLPs), we obtain the optimal solution
to C–LRU Design. Next, we explain our BNLP and BLP formulations for a given
vertex v ∈ V . We determine the optimal replacement set R∗(v) and we introduce the
binary variable yvu that denotes whether part u ∈ V belongs to replacement set R(v)
for v ∈ V . Hence,

yvu =

{
1 if u ∈ R(v)

0 otherwise
, ∀u ∈ V,

We refer to yv as the vector with entries yvu. We also define the auxiliary variable
ke ∈ {0, 1}, which takes the value 1 if edge e ∈ E is broken for the replacement of
R(v). We determine ke by using the same logic as discussed in Section 3.3. Therefore,
we consider the constraint ke ≥ yvu(1 − yvx), ∀{u, x} ∈ E, ∀e ∈ H({u, x}) and
we add ke to the objective function. As a consequence, ke is zero if edge e is not
broken for the replacement of R(v). Furthermore, R(v) must contain v and this
implies that we consider the constraint yvv ≥ 1. Using yvu, ke, and the constraints
accordingly we obtain the following binary non–linear program that determines the
optimal replacement set R∗(v) for a given v ∈ V :

(v–BNLP) min
yv,k

∑
e∈E

kew(e)λ(v) +
∑
u∈V

yvu`(u)λ(v) (4.2a)

s.t. ke ≥ yvu(1− yvx), ∀{u, x} ∈ E,∀e ∈ H({u, x}) (4.2b)

yvv ≥ 1,

yvu, k
e ∈ {0, 1}.

Although v–BNLP has a linear objective function (4.2a), the constraints (4.2b) are
quadratic. Hence, we linearize problem by applying the McCormick reformulation
(McCormick, 1976). Let τvux = yvuy

v
x, which denotes whether both parts u, x ∈ V are

contained in R(v). Now, we optimize over yv, k and the matrix τ v; and we obtain
the binary linear program v–BLP.

(v–BLP) min
yv,k,τv

∑
e∈E

kew(e)λ(v)+
∑
u∈V

yvu`(u)λ(v)

4.4 Numerical experiments 97

s.t. ke ≥ yvu − τvux, ∀{u, x} ∈ E,∀e ∈ H({u, x})
yvv ≥ 1,

τvux ≤ yvu, ∀u, x ∈ V,
τvux ≤ yvx, ∀u, x ∈ V,
τvux ≥ yvu + yvx − 1,∀u, x ∈ V,
τvux ≥ 0,

yvu, k
e ∈ {0, 1}.

For each v ∈ V we solve v–BLP which results in the optimal replacement sets R∗(v).
From all R∗(v) we are able to derive the optimal solution S∗c to C–LRU Design in
a straightforward manner.

We do not present a set covering formulation that allows for column generation
algorithms, because we are able to decompose C–LRU Design into |V | subproblems
(v–BLP). Each of the subproblems v–BLP is analogous to a pricing problem of the set
covering formulation. Hence, there is little added value to consider such a formulation
further.

4.4. Numerical experiments

In this section, we numerically study the binary linear programming formulation of C–
LRU Design. Analogous to Chapter 3, the BLPs are implemented in JuMP (Lubin
and Dunning, 2015; Dunning et al., 2017) – a mathematical optimization package of
Julia (Balbaert et al., 2016) – and we solved the models by using Gurobi 7.0.1 on
an Intel i5–4300U @2.50GHz processor with 16GB RAM and running Ubuntu 16.04
LTS.

The instances used for our numerical experiments are the same as the instances used
in Section 3.5.2. Hence, we only discuss the computational results in the remainder.
We start in Section 4.4.1 by studying the computation times of C–LRU Design, the
effect of the cost for one time unit of downtime on the optimal LRU design, and the
effect of a system’s complexity on the total annual costs. Additionally, we compare
LRU Design to C–LRU Design with respect to the computation times, the costs,
and the number of LRUs used in an optimal solution, in Section 4.4.2.

4.4.1 Results of C–LRU Design

First, we study the computation times and we use the 540 instances from Section
3.5.2 with a time limit of 600 seconds. All instances are solved to optimality within
600 seconds. The presented computation times are the average over the 10 instances
for a given parameter combination (|V |, δ, δE).

98 Chapter 4. Design of non–disjoint Line Replaceable Units

|V |
δ δE 10 20 30 40 50 60

2 0.5 0.03 0.16 0.53 1.34 2.57 4.68
2 1 0.04 0.26 0.66 1.54 2.82 5.01
2 1.5 0.04 0.32 0.94 1.86 3.55 6.15
3 0.5 0.04 0.18 0.58 1.43 2.71 4.88
3 1 0.06 0.33 0.80 1.86 3.23 5.69
3 1.5 0.06 0.41 1.29 2.91 4.56 7.99
4 0.5 0.04 0.20 0.64 1.54 2.81 5.00
4 1 0.06 0.35 1.06 2.16 3.59 6.19
4 1.5 0.08 0.53 1.72 5.34 7.12 10.15

Table 4.1: Average computation times (sec) of C–LRU Design

The results in Table 4.1 indicate that the C–LRU Design can be solved efficiently by
writing the problem as |V | binary linear programs. Even for large instances (|V | = 60,
δ = 4, δE = 1.5) the computation times are low. However, the computation times
increase as the instances become harder (|V |, δ, or δE increase).

Next, we analyze how the per time unit downtime cost affects the number of LRUs
|S∗c | used in an optimal solution S∗c . The downtime costs are those costs that are
incurred because a system cannot operate. In the remainder of this Section 4.4.1, we
use the 1,000 instances that we generated in Chapter 3 per parameter setting (δ, δE)
and keep |V | = 20. We fix δ = 3 and δE = 1, and we vary the edge weights of an
instance by multiplying the edge weights by a constant q ∈ {0.1, 1, 10}. A higher
value for q means that it is more expensive to break edges. Given that the time for
breaking an edge is constant, this implies that the cost rate per time unit for breaking
an edge increases. Hence, we can capture a higher downtime cost per time unit by
increasing q. A higher value for q thus corresponds to a higher downtime cost per
time unit.

The results from Figure 4.2 are in line with those observed for LRU Design (see
Figure 3.4). High downtime costs per time unit (applicable to industries using capital
intensive systems) – corresponding to a high value of q – imply that the optimal
solution is more geared towards larger LRUs that enable faster replacement rather
than smaller LRUs that are cheaper from a purchasing perspective. On the other
hand, low cost per time unit of downtime (typically present in the consumer electronics
industry) results in smaller LRUs that reduce the purchase costs.

Subsequently, we study the effect that a system’s complexity has on the costs of an
optimal solution πc(S

∗
c). First, we vary the number of connections in the connection

graph G and we obtain the results from Figure 4.3. A larger number of connections
increases the total costs, because more connections are disconnected (on average)
when replacing a LRU. These results are in line with the findings from LRU Design

4.4 Numerical experiments 99

1 2 3

5

10

15

20

0.1 1 10
q

|S
∗ c
|

Figure 4.2: Effect of edge weights on the number of LRUs in S∗
c

(see Figure 3.5).

1 2 3

50

100

150

2 3 4

δ

π
c
(S
∗ c
)

Figure 4.3: Effect of the number of connections in G on πc(S
∗
c)

Finally, we also address the impact of increasing the number of predecessor–
successor relationships, i.e., increasing the number of arcs in the precedence graph
D. The results are given in Figure 4.4. An increased number of predecessor–

100 Chapter 4. Design of non–disjoint Line Replaceable Units

successor relationships increases the costs, because more more connections have to be
disconnected (on average) for the replacement of a LRU. These findings are consistent
with the results that we obtained in Figure 3.6 in Chapter 3.

1 2 3

50

100

150

0.5 1 1.5

δE

π
c
(S
∗ c
)

Figure 4.4: Effect of the number of predecessor–successor relationships in D on πc(S
∗
c)

As our conclusions are consistent with the results from Chapter 3, we also obtain
the same managerial implication: the manager is incentivized to urge his designers
to reduce the number of connections and the number of predecessor–successor
relationships.

4.4.2 Comparing LRU Design to C–LRU Design

Next, we are interested in comparing LRU Design to C–LRU Design with respect
to the computation times, cost differences, and the difference in the number of LRUs
used in an optimal solution. We compare the set partitioning formulation of LRU
Design to the |V | binary linear programs of C–LRU Design.

We use a subset of the 540 instances from Section 3.5.2. We limit our analysis
to parameter combinations (|V |, δ, δE) such that |V | ≤ 40. For these parameter
combinations, the column generation algorithm, which is a pure pricing algorithm,
(for LRU Design) is efficient for all instances: all instances of LRU Design are
solved to optimality within 600 seconds. We compare C–LRU Design to LRU
Design per parameter combination (|V |, δ, δE) on three dimensions: the relative
increase in computation time if we use LRU Design instead of C–LRU Design;
the relative cost increase if we use LRU Design instead of C–LRU Design; and

4.4 Numerical experiments 101

the relative increase in the number of LRUs used in an optimal solution to LRU
Design compared to C–LRU Design. Let t and tc be the average computation
time (in seconds) of a parameter combination (|V |, δ, δE) for LRU Design and for
C–LRU Design, respectively. The relative increase in the computation time for such
a parameter combination is then given by ∆t = t−tc

tc
× 100%. The relative increase in

the costs for a parameter combination is ∆π =
π(S∗)−πc(S∗c)

πc(S∗c) ×100%, where S∗ and S∗c
are the optimal solutions of LRU Design and C–LRU Design, respectively. Finally,

the relative increase in the number of used LRUs is given by ∆S =
|S∗|−|S∗c |
|S∗c |

× 100%.

The results for the relative increase in the computation times, costs and the number
of used LRUs are given in Tables 4.2–4.5. We study average values, minimums,
and maximums, which are abbreviated by avg, min, and max, respectively. The
average computation times of LRU Design increase compared to C–LRU Design,
and this increase can be as high as 4555% (> 45 times the computation time of
C–LRU Design). These large increases are a result from partitioning behavior of
LRU Design and from the lack of separability in LRU Design. This makes the
optimization of the design of LRUs much more difficult and thus more time consuming.
The minimum and maximum computation time increase that we observe are 51.56%
and 13,017.54%.

∆t ∆π ∆S

δ δE avg (%) avg (%) max (%) avg (%) min (%) max (%)

2 0.5 375.83 1.18 4.48 1.50 -10.00 25.00
2 1 1126.38 3.72 10.52 -3.86 -22.22 12.50
2 1.5 264.58 3.75 11.68 15.28 0.00 66.67
3 0.5 645.28 1.64 6.54 -7.67 -66.67 0.00
3 1 1304.28 6.22 16.28 -1.17 -85.71 150.00
3 1.5 622.13 8.98 26.67 11.67 -66.67 100.00
4 0.5 779.73 2.11 9.72 -13.33 -83.33 25.00
4 1 1451.52 4.40 11.47 -19.94 -83.33 66.67
4 1.5 895.37 10.42 18.53 -9.93 -83.33 100.00

All 829.46 4.71 26.67 -3.05 -85.71 150.00

Table 4.2: Differences between LRU Design and C–LRU Design for |V | = 10

Second, we study the difference in the costs between C–LRU Design and LRU
Design. LRU Design yields strictly higher costs, because this model has less
optimization freedom than C–LRU Design. Furthermore, the LRUs of LRU Design
are also considered in C–LRU Design. The cost increase may be substantial if we
use LRU Design instead of C–LRU Design (up to 26.67%), particularly when the
number of parts |V | is low. If there exist fewer parts, the total costs are lower and
therefore the extra freedom that C–LRU Design has over LRU Design results in
a cost increase when using LRU Design. So for systems with few components (such

102 Chapter 4. Design of non–disjoint Line Replaceable Units

∆t ∆π ∆S

δ δE avg (%) avg (%) max (%) avg (%) min (%) max (%)

2 0.5 582.20 0.74 1.56 -1.00 -5.00 0.00
2 1 958.14 1.62 4.36 -4.00 -15.00 0.00
2 1.5 162.83 0.26 1.05 0.00 0.00 0.00
3 0.5 930.98 0.56 1.36 -1.00 -5.00 0.00
3 1 1513.57 0.84 3.53 -3.00 -10.00 0.00
3 1.5 341.04 2.37 13.56 2.82 0.00 17.00
4 0.5 1157.53 0.00 0.00 0.00 0.00 0.00
4 1 1721.86 1.58 6.07 0.29 -5.00 17.65
4 1.5 536.87 4.22 13.48 9.30 0.00 25.00

All 878.34 1.34 13.56 0.38 -15.00 25.00

Table 4.3: Differences between LRU Design and C–LRU Design for |V | = 20

∆t ∆π ∆S

δ δE avg (%) avg (%) max (%) avg (%) min (%) max (%)

2 0.5 1568.33 1.07 3.63 -3.33 -6.67 0.00
2 1 2746.71 2.23 5.49 -5.02 -10.00 0.00
2 1.5 498.19 0.19 0.62 -0.33 -3.33 0.00
3 0.5 1960.26 0.63 1.73 -2.00 -10.00 0.00
3 1 2013.69 0.87 2.45 -2.67 -10.00 0.00
3 1.5 552.40 0.56 2.56 0.71 0.00 7.14
4 0.5 1127.46 0.13 1.20 0.00 0.00 0.00
4 1 1049.63 1.02 3.78 -0.33 -3.33 0.00
4 1.5 708.39 1.80 6.36 3.66 0.00 15.38

All 1358.34 0.94 6.36 -1.04 -10.00 15.38

Table 4.4: Differences between LRU Design and C–LRU Design for |V | = 30

as a laptop), LRU Design can substantially increase the costs compared to C–LRU
Design. This effect is additional to the increased computation times of LRU Design.
Furthermore, there can still exist a notable cost increase for LRU Design when a
larger number of parts is considered, e.g. we observe a maximum cost increase of
6.36% and 4.20% for |V | = 30 and |V | = 40, respectively.

Finally, we consider the difference in the number of LRUs that are used in an optimal
design for LRU Design and C–LRU Design. One may expect that C–LRU Design
uses strictly more LRUs in an optimal solution, because it has more freedom in
selecting the best design of LRUs, i.e., the solution space C–LRU Design is a superset
of the solution space of LRU Design. However, the numerical results above show
that the number of LRUs used in an optimal solution for C–LRU Design can be

4.5 Conclusion 103

∆t ∆π ∆S

δ δE avg (%) avg (%) max (%) avg (%) min (%) max (%)

2 0.5 1320.53 1.20 4.00 -2.53 -10.00 0.00
2 1 3357.23 2.52 4.20 -5.27 -10.00 0.00
2 1.5 764.64 0.19 0.51 -0.25 -2.50 0.00
3 0.5 1203.42 0.54 1.11 -0.75 -5.00 0.00
3 1 4067.25 1.48 3.12 -2.25 -5.00 0.00
3 1.5 737.41 0.36 2.34 0.26 0.00 2.56
4 0.5 1876.65 0.08 0.26 -0.25 -2.50 0.00
4 1 4555.21 0.47 1.39 -1.00 -5.00 0.00
4 1.5 649.42 1.32 3.08 1.82 0.00 5.26

All 2059.08 0.91 4.20 -1.14 -10.00 5.26

Table 4.5: Differences between LRU Design and C–LRU Design for |V | = 40

both higher and lower than LRU Design. This is a consequence of the partitioning
behavior that is embedded in LRU Design. We illustrate this by two examples in
Appendix 4.A, where we compare the number of used LRUs for both models. Lastly,
we observe that the difference in the number of used LRUs for C–LRU Design and
LRU Design can be large, particularly when the number of parts is low. For higher
number of parts, the difference between the used LRUs is smaller, but this may still
be as high as 10%.

Overall, C–LRU Design has the desirable properties that the computation times
and costs are lower compared to LRU Design. This means that C–LRU Design
is preferred if the number of LRUs do not play a large role for decision making. If
this number of LRUs does play a large role, we suggest managers to consider both
C–LRU Design and LRU Design.

4.5. Conclusion

In this chapter, we extended the model from Chapter 3 such that parts can belong to
more than one Line Replaceable Unit (LRU). We let a LRU be a tuple that consists
of a failure set and a replacement set. Using this tuple representation, we followed a
similar approach to Chapter 3.

We formulated C–LRU Design that minimizes the replacement and purchase (or
repair) costs by optimizing the design of LRUs. We proved that C–LRU Design
is separable in the parts of the system. Therefore, we determined the optimal
replacement set for each individual part. The natural formulation for each these
problems is a binary non–linear program, which we linearized to obtain a binary
linear program. In our numerical experiments, we illustrated that our formulation

104 Chapter 4. Design of non–disjoint Line Replaceable Units

of C–LRU Design – consisting of multiple binary linear programs – can be solved
efficiently and thus is suitable for practical instances. Furthermore, we saw that
C–LRU Design behaves the same under parameter perturbations as LRU Design
(from Chapter 3): optimal solutions have more LRUs when the cost per time unit
of system downtime increases, and managers should incentivize their designers to
reduce the number of connections and predecessor–successor relationships. Finally,
we compared C–LRU Design and LRU Design with respect to the computation
times, costs, and the number of LRUs that are used in an optimal solution. We
concluded that LRU Design yields significantly higher computation times than C–
LRU Design, which can be 4555% higher. Moreover, we observed that LRU Design
yields strictly higher costs than C–LRU Design and this increase can be as large
as 26.67%. This cost difference, however, decreases to approximately 1% when a
system consists of more parts. Furthermore, we saw that C–LRU Design may differ
from LRU Design with respect to the number of LRUs that are designed; and this
difference can be notable. C–LRU Design does not necessarily increase or reduce the
number of LRUs used compared to LRU Design. So, if managers are indifferent on
the number of LRUs that are used, then C–LRU Design has clear benefits over LRU
Design. On the other hand, if the number of used LRUs matters, we recommend to
explore both models in order to enhance decision making.

4.A Numerical examples 105

4.A. Numerical examples

In this appendix, we consider Example 4.2 and Example 4.3. For each example, we
compare the optimal solutions of LRU Design and C–LRU Design. Example 4.2
is such that the number of LRUs used in an optimal solution is lower under C–LRU
Design, while Example 4.3 is such that this number of used LRUs in an optimal
solution is higher for C–LRU Design.

Example 4.2 Let V = {a, b, c, d, e}, and the failure rate and purchase costs for each
part are given in Table 4.6. Furthermore, the connection graph with the edge weights
w(e) and the precedence graph are given in Figure 4.5.

a b c d e

λ(v) 0.3 0.9 0.3 0.5 0.7
`(v) 0.8 1.6 0.3 0.5 1.2

Table 4.6: Values for λ(v) and `(v) for each v ∈ V

a

b

cd

e

0.8

0.4

0.9

1.0

0.8

0.1

0.4

0.20.6

0.4

(a) Connection Graph

{a,b}

{b,d}

{b,c}

{d,e}

{c,d}

{a,c}

(b) Precedence Graph

Figure 4.5: Input Graphs

If we solve the above instance for LRU Design, we obtain the optimal solution S∗ =
{{a}, {b}, {c}, {d}, {e}}. On the other hand, solving the above instance by for C–LRU
Design yields the optimal solution S∗c = {({a, b, c, d, e}, {a, b}), ({c}, {c}), ({d}, {d}),
({e}, {e})}. If a or b fails most edges have to be broken which is expensive, while few
edges have to be broken when c, d, or e fails. Therefore, S∗c replaces all parts if a
or b fails because it is cheaper than disconnecting a or b from the other parts, and it

106 Chapter 4. Design of non–disjoint Line Replaceable Units

replaces parts c, d, and e individually since these can be replaced cheaply. S∗ does
not have this freedom, and replaces each part individually because the purchase costs
of parts are relatively high. As a result, fewer LRUs are used in an optimal solution
to C–LRU Design, i.e., |S∗c | = 4 < 5 = |S∗|. �

Example 4.3 Let V = {a, b, c, d, e}, and the failure rate and purchase costs for each
part are given in Table 4.7. Furthermore, the connection graph with the edge weights
w(e) and the precedence graph are given in Figure 4.6.

a b c d e

λ(v) 0.4 0.5 0.8 0.4 0.4
`(v) 0.8 0.1 0.6 0.3 1.1

Table 4.7: Values for λ(v) and `(v) for each v ∈ V

a

b

cd

e

0.4

0.9

0.3

0.4

0.9

0.1

0.2

0.30.1

0.8

(a) Connection Graph

{a,e}

{b,c}

{d,e}

{a,c}

{c,e}

{c,d}

{b,d}

(b) Precedence Graph

Figure 4.6: Input Graphs

If we solve the above instance for LRU Design, we obtain the optimal solution
S∗ = {{a, b, c, d, e}}. On the other hand, solving the above instance by for C–LRU
Design yields the optimal solution S∗c = {({a, b, c, d, e}, {a, c}), ({b}, {b}), ({d}, {d}),
({e}, {e})}. The purchase costs of the parts are relatively low. Therefore, S∗ combines
all parts in a single LRU. The optimal solution to C–LRU Design S∗c can exploit
the fact that when a or c fails, most edges are broken. Hence, we observe that we
replace all parts if a or c fails. Moreover, S∗c replaces b, d, and e individually because
few edges have to be disconnected for these parts. As a consequence, more LRUs are
used in an optimal solution to C–LRU Design, i.e., |S∗c | = 4 > 1 = |S∗|. �

5
Implementation of system

modifications

5.1. Introduction

In this chapter we take the perspective of an original equipment manufacturer (OEM)
that has closed a service contract, e.g. a performance based contract (Cohen et al.,
2006), with its customers. As a consequence, the OEM is rewarded (penalized) for
better (worse) performance. Examples of OEMs that close such service contracts
are encountered in capital goods industries, and include for instance Océ (industrial
printing industry) and Pratt & Whitney (aviation industry). In the former example,
the OEM (Océ) earns revenue per printed page and by improving the printing speed
the OEM is rewarded for better performance. In the latter example the OEM (Pratt &
Whitney) sells jet engines and he is paid per flying hour. If he improves the reliability
of the engines, the OEM is rewarded for better performance, because the engines
operate longer without failures.

The systems of the OEM that are produced and installed are used for a remaining
finite lifetime, in the order of magnitude of 10–30 years. In addition, the OEM has
closed a service contract with the customers of the several systems for the same
remaining finite lifetime. We assume that the closed contracts are identical for all
customers. Each system consists of multiple parts. In this chapter, we study multiple
critical and repairable parts, and each part occurs once in a system, but this can easily
be generalized. If a part fails, the system fails as a result, and therefore the OEM
keeps some parts on stock in order to respond quickly to failures. The parts that
are currently installed and on stock are called old parts (for reasons that will become

108 Chapter 5. Implementation of system modifications

clear later). At a certain moment, the OEM believes that the performance of the old
parts is insufficient, i.e., they may generate insufficient revenue or they fail too often.
Therefore, the OEM can decide to redesign the old component, resulting in a new
component with better performance in terms of the failure rate and/or the revenue
rate (and it has the same form, fit, function). Returning to our printing example
of Océ, the OEM can develop a component that increases the production speed and
thus results in more revenue per time unit, because more pages can be printed per
time unit and the OEM is rewarded per printed page. Similarly, if the failure rate is
reduced, more pages are printed over some finite time period and thus Océ earns more
profit. Considering the example of Pratt & Whitney, if the failure rate is reduced,
the engine is more in operation and thus generates more profit for the OEM.

As a consequence of the potential performance improvement, the OEM has to
determine whether it is profitable to replace the old parts (installed and on stock) by
new ones, and if it is he has to decide when to replace the old parts (installed and
on stock) by ones. Furthermore, he has to consider the fact that the systems will be
used for a finite remaining lifetime. Thus, the new parts are obsolete once the systems
reach their end of their life and they will have to be salvaged (for instance sold on a
second hand market or sold as scrap material). Therefore, implementation questions
such as the following arise:

• Should the OEM upgrade to new parts, and if so how fast?
The OEM may decide to preventively replace all old parts by new parts on the
one hand. On the other extreme, he can also determine not to use the new
parts at all and stick to old parts by repairing failed old parts. An intermediate
approach may be to replace old parts by new ones upon the failure of old parts.

• What should the OEM do with old parts?
The OEM can decide to keep repairing old parts once they fail, or not to repair
old parts because he may want to implement new parts as soon as possible. In
addition, old parts can be salvaged, e.g. sold on a second hand market if there
is demand for them or sold as scrap material. However, the old parts can also
be kept on stock in order to quickly prevent to failures.

• How many new parts should the OEM produce for the transition?
The number of new parts that are produced determine the investment costs for
production, but also determine the uptime of systems and they affect decisions
for the old parts that are on stock (salvage or use).

• Should the OEM produce all new parts at once, or should he spread the
production over time (and how)?
Deferring the production is desirable, because this enables the OEM to spread
the investment costs, lower associated risk, and it enables him to reduce the
discounted costs. Furthermore, postponing the production of (some) new parts
may result in a decrease in the production price, as the technology becomes
more mature (Hartman and Tan, 2014).

5.1 Introduction 109

For each of the implementation questions, the OEM has to make a decision, and
these decisions are interrelated. This means that he follows a certain implementation
strategy. An implementation strategy determines how many new parts the OEM
produces and how the new parts are implemented (when and whether an old part
is replaced by a new one). Furthermore, an implementation strategy prescribes
how many functional old parts from stock are salvaged (sold on a second hand
market), since these may become superfluous during the finite horizon. Finally, an
implementation strategy also determines whether failed old parts are repaired and
used. The objective of the OEM is to select an implementation strategy that results
in the highest profit earned over some finite time horizon.

In this chapter, we study four implementation strategies for given production
quantities of new parts.

• Stay Put: The OEM does not produce any new parts, repairs the old parts if
they fail, and salvages old parts at the end of the horizon.

• Rapid Upgrade: The OEM produces new parts and directly replaces all old
parts by new parts. He salvages the old parts immediately (at the start of the
horizon). The OEM repairs the new parts once they fail, and he salvages new
parts at the end of the horizon.

• Instant Invest: The OEM produces all new parts before the start of the horizon
and decides whether to replace a failed part by a new or old one upon each
failure. He repairs all new failed parts and old parts are salvaged. Salvaging of
old parts occurs during and at the end of the horizon, while salvaging of new
parts only occurs at the end of the horizon.

• Phased Invest: The same strategy as Instant Invest, except for the fact that
the OEM produces some parts before the horizon and some parts arrive after a
number of periods.

We assume – without loss of generality – that it is more profitable to first repair a
failed item (either old or new) and salvage the repaired part compared to salvaging
the failed part as such. This assumption is only relevant for Instant Invest and Phased
Invest.

Under Stay Put, the OEM does not move to the new parts, i.e., no new parts are
produced and thus the OEM does not incur the production costs for new parts.
However, he cannot reap the benefits of the extra performance that result from
upgrading. Rapid Upgrade preventively replaces all old parts by new ones and salvages
the old parts. The benefit of this strategy is that the OEM can immediately reap the
benefits of the extra performance from the new parts. However, he incurs additional
costs of immediate upgrading, because the systems (in which the parts are built) are
interrupted during service. The previous two strategies are rather extreme because
the OEM either does not move to new parts or he instantaneously moves to the

110 Chapter 5. Implementation of system modifications

new parts. Instant Invest, however, produces all new parts at once and gradually
transitions to the new parts. Furthermore, Instant Invest assumes that the transition
to new parts has been set in motion (e.g. by higher management), and old parts are
not used once these are repaired but these are salvaged. Finally, the OEM considers
a fourth strategy, Phased Invest. Phased Invest is identical to Instant Invest, except
for the fact that it spreads production orders (and costs) over time.

Instant Invest and Phased Invest are complex strategies for which we need advanced
mathematical techniques, while Stay Put and Rapid Upgrade are relatively simple
strategies that are frequently encountered in practice. Therefore, we focus – in the
main body of this chapter – on Instant Invest and Phased Invest, and we consider
Stay Put and Rapid Upgrade to be benchmark strategies discussed in Appendix 5.A
and 5.B, respectively.

The expected generated profit for each of the implementation strategies is derived
under given production quantities of new parts (Rapid Upgrade, Instant Invest, and
Phased Invest) and given the arrival time of the second production order (Phased
Invest). Next, we optimize the production quantities of new parts and the arrival
time of the second production order for the appropriate strategies.

At this point, we remark that there exists a parallel between producing new parts
and purchasing these. Our model is also applicable when we consider a company
that is offered an upgrade, and this company can decide to purchase new parts. Such
companies can be Maintenance, Repair, and Overhaul (MRO) companies like Dutch
Railways or KLM Royal Dutch Airlines. Subsequently, the company is interested in
the same implementation strategies as discussed above. For the remainder of this
paper, we consider an OEM that produces new parts and he has to determine how to
implement the upgrades.

Our contributions are the following: we propose a mathematical decision support
model, and (i) we present a Markov decision process formulation for Instant Invest
wherein the OEM produces the new parts all at once (before the horizon). Secondly,
(ii) we show that the optimal decision rule for Instant Invest is not necessarily such
that a failed part is replaced by a new part (if available). However, for practical
instances we do observe that new parts are used to replace failed ones (if available).
Next, (iii) we extend the formulation of Instant Invest to a formulation for Phased
Invest. Phased Invest considers two moments at which the OEM can produce new
parts, and we show that the formulation can be extended rather easily to an arbitrary
number of production moments. Additionally, we illustrate (iv) that Stay Put is
optimal if the new component is marginally better than the old component, i.e., the
OEM should not replace the old parts by new ones. Furthermore, Rapid Upgrade
is optimal when the new component is substantially better than the old one, and
thus the OEM should replace old parts by new ones as soon as possible. The more
advanced strategies Instant Invest and Phased Invest are useful when this difference
between both components less dramatic. Hence, the OEM should gradually replace
the old parts by new parts. The expected profit difference between the four strategies

5.2 Literature 111

can be notable. Finally, (v) we show that Phased Invest generates strictly higher
expected profit than Instant Invest, and this difference can be notable too, but it
comes at a high complexity expense with respect to the model formulation and its
optimization procedure.

The remainder of this chapter is organized as follows. In Section 5.2 we discuss
literature that is related to our problem, and we present our model in Section 5.3. In
Section 5.4, we formulate Instant Invest and we analyze this formulation in the same
section. In Section 5.5, we extend the formulation for Instant Invest to a formulation
for Phased Invest. Finally, we numerically study the various implementation strategies
in Section 5.6, and we conclude this chapter in Section 5.7.

5.2. Literature

Our research relates to problems in which units (systems or parts) are replaced due
to technological obsolescence. New units become available throughout time and the
question is whether to replace the current (old) units by the new units that are
available. The literature studying these problems can be decomposed into a single
unit stream and a multi–unit stream.

In the single unit stream, the effects of technological change are extensively studied
in a finite horizon setting. We restrict this literature overview to technological change
that occurs at discrete moments in time, and the arrival of technological change is
modeled as a stochastic process, see for example Nair and Hopp (1992), Nair (1995),
and Rajagopalan et al. (1998). Their objective is to determine whether to replace
a unit by a currently available version or to wait until a newer and better unit is
available. Most work in this literature stream neglects the effect that old units from
stock have on the replacement decision, except for Nguyen et al. (2013). These authors
formulate their problem as a Markov decision process, and they focus on numerical
results instead of analytical ones, because the latter are hard to establish due to the
complexity of the model. The main difference with our work is that we consider
multiple units (we consider multiple parts that each occur once in a system) and
we simplify the technological change such that only one new component is available.
Furthermore, we include old units that are on stock in our model (Instant Invest
and Phased Invest), and are able to provide some preliminary insight in an optimal
decision rule.

In a multi–unit setting, some authors study decisions wherein a degraded old unit
can be replaced by an ‘as good as new’ working old unit, i.e., the decision maker
cannot implement a new unit with better performance. Authors consider a finite
horizon and optimize the decision whether to keep or replace an old unit by using
Markov decision theory, see for example Chand et al. (2000), Hartman (2000), and
Hsu et al. (2011). We refer to Hartman and Tan (2014) for an extensive literature
overview. The first work studying such a replacement problem with multiple units

112 Chapter 5. Implementation of system modifications

that operate independently but are economically dependent has been studied by Jones
et al. (1991). They study the replacement problem in a setting where units degrade
deterministically. Childress and Durango-Cohen (2005) extend the model of Jones
et al. (1991) by considering stochastic degradation. However, the previously discussed
works do not consider new units that are available, i.e., they neglect the presence of
redesigns/upgrades.

Other authors, however, do consider the presence of new units that are available
and have better performance. Mercier and Labeau (2004) study a multi–unit setting
for a finite horizon in which the authors are interested in the replacement policy
for a number of identical old units, when new units have been released. These new
units have better performance as they have a lower failure rate and a lower energy
consumption. Mercier and Labeau (2004) introduce a K strategy for a number of
identical old units, where old units are correctively replaced by new ones until K old
units have been replaced. The remaining old units are then preventively replaced.
Furthermore, the authors do not consider the temporal aspect of the revenue loss
due to idling of units, i.e., the length of the downtime of a unit has no effect on
their costs. Mercier (2008) extend the work by Mercier and Labeau (2004) such that
general failure rates are incorporated that enable Mercier (2008) to model degradation.
The effects that stock units have on the replacement policy are excluded from the
analysis in Mercier and Labeau (2004), and Mercier (2008). Öner et al. (2015) do
consider units on stock, although only for the new units. The authors simplify the K
strategy to obtain analytical insights in the relationship between the stock units and
the replacement policy. Hence, the authors consider: (i) preventively replacing all
old units by new ones at time 0 (like Rapid Upgrade), and (ii) correctively replacing
old units by new units. Under the second policy, the decision maker decides how
many new units q0 to order at time 0, and how large the constant order size of new
units is after time 0. The authors are interested in deriving an efficient procedure to
determine the optimal solution of q0 for their problem. However, Öner et al. (2015)
do not consider the profit losses that are incurred when systems are idle because there
are no units on stock. Furthermore, they do not model the effect that old units from
stock have on the replacement decision. This effect of old units on stock (and new
units on stock) is studied in Clavareau and Labeau (2009) in a simulation model. We,
on the other hand, model our problem by using Markov decision theory, and are able
to provide some more grip on the structure of an optimal decision rule.

Finally, our work relates to literature on repairable unit inventory systems, because we
repair new units and keep some new units on stock. The vast majority of literature
typically assumes that the number of installed units is large and that the demand
process is independent on the number of units in repair, see for example the books
by Muckstadt (2005) and van Houtum and Kranenburg (2015). A small literature
stream studies such problems with a small installed base so that the demand process
depends on the number of units in repair, see Gross and Ince (1978). The authors
consider an infinite horizon model, and they are primarily interested in determining
the number of units on stock needed to minimize the costs of their model. We also

5.3 Model 113

consider a problem where the demand process depends on the number of operating
units. However, we have a finite horizon problem wherein old units can be replaced by
new ones (that generate more revenue) and we are interested in an optimal decision
rule that determines whether to replace a failed unit by an old or new failed and how
many old units from stock to salvage. We provide an overview of the most related
papers in Table 5.1.

Paper M
u

lt
ip

le
u

n
it

s

Im
p

ro
ve

d
n

ew
u

n
it

s

O
ld

p
ar

ts
fr

o
m

st
o
ck

L
os

se
s

d
u

e
to

d
ow

n
ti

m
e

Nair (1995) x
Childress and Durango-Cohen (2005) x
Nguyen et al. (2013) x x
Mercier (2008) x x
Clavareau and Labeau (2009) x x x

Öner et al. (2015) x x
This chapter x x x x

Table 5.1: Comparison of most related papers

5.3. Model

We consider an OEM that is responsible for the operation of N systems due service
contracts that he closed with his customers (for instance, a performance based
contract). We assume that the OEM has closed identical service contracts with each
of his customers, and that it is profitable for the OEM and the customer to use such a
service contract. The N systems are used for a remaining finite lifetime of n periods
(days) and the OEM considers a periodic discount factor 0 ≤ α ≤ 1. We direct our
attention to critical repairable parts that occur once in a system. This assumption
is easily generalizable: if a part occurs x times in a system, then we consider xN
installed parts. In the remainder, we work with parts that occur once in a system,
and we refer to the installed parts N as the installed base. The OEM believes that the
parts currently used are underperforming. Therefore, he considers to design a new
component with better performance in terms of the failure rate and the revenue that
the part generates (e.g. increased productivity). If the OEM develops and produces

114 Chapter 5. Implementation of system modifications

the new parts, he pays unit production cost τ . Furthermore, we assume that the
OEM decides before the horizon that he produces m1 new parts prior to the horizon
and m2 new parts that arrive in period L. The production decisions are made prior to
the horizon, because the OEM closes contracts (before the start of the horizon) that
state when the new parts are delivered. The production costs are paid upon arrival
of the new parts.

In addition to the production of new parts, the OEM has s old parts on stock at time
0. An operating old part generates revenue ρ0 per period, and working old parts can
be salvaged during the horizon at unit salvage value w0, e.g. the parts are sold on a
second–hand market or are sold as scrap material. All old parts fail independently, and
the failure time for each old part is geometrically distributed with failure probability
λ0 per period. Failed parts are repaired by a repair shop with ample capacity. The
OEM pays repair costs z > 0 per failure of a part. The repair costs z not only capture
the costs of repairing the failed part, but also incorporate costs due to the downtime
of a system, e.g. the costs of sending a maintenance engineer, the downtime due to the
engineer working on the system, and so on. Furthermore, we assume that the expected
repair costs per period are less than the gross revenue, i.e., ρ0 ≥ zλ0 (otherwise the
OEM is going out of business). The repair time per part is geometrically distributed
with repair probability µ per period, and we denote the random variable for the repair
time by Y . Furthermore, we assume that it is worthwhile to repair a failed part before
salvaging it. We use these properties of the repair process to simplify our formulations
(simpler state spaces): if the OEM salvages the failed old part after repair, he earns
an expected discounted salvage value per failed old part of ŵ0 = w0E[αY] upon the
start of the repair. This means that we do not have to record the number of old parts
in repair, if these old parts are salvaged after repair.

Each operating new part has a higher performance compared to the old part. This
implies that a new part generates revenue ρ1 ≥ ρ0 per period. New parts fail
independently and are repaired upon failure. The failure time of a new part is
geometrically distributed with failure probability λ1 ≤ λ0 per period. We assume
that the repair costs z and the repair process of new parts are identical to those of
old parts, for the ease of exposition. However, this assumption can easily be relaxed.
Furthermore, new parts can be salvaged after the horizon, either working or failed. If
a working new part is salvaged, the OEM earns salvage value w1 ≥ w0. In case a failed
new part is salvaged, he uses the same expected discounted salvage value method as
before. That is, the OEM immediately earns ŵ1 = w1E[αY] once the repair of the
failed new part starts.

We assume that at most one event occurs in a period. Such an event is either a failure
of a part or a repair of a part. Furthermore, the assumption of at most one event per
period is reasonable if the length of a period is sufficiently short (say a day), or if the
failure rate of parts is low, which is often the case in industries using capital intensive
systems (Sherbrooke, 2004; van Houtum and Kranenburg, 2015). The sequence of
events in a period x is given as follows. First, new parts arrive in a period. Then, the

5.4 Instant Invest 115

OEM earns the revenue generated by the working old and new parts at the start of
period x. Subsequently, a number of old parts from stock is salvaged and the OEM
earns a salvage value w0 per old part. Next, an event may occur (at most one by
assumption): a failure of a part (old or new) or the repair of a part. If a failure
occurs, the OEM incurs the repair costs and replaces the failed part by an old part
from stock, by a new part, or not at all. We assume that the latter decision is only
selected in case there are insufficient old and new parts available1. Furthermore, the
OEM earns the expected discounted salvage value ŵ0 (ŵ1) if the failed part is old
(new) and immediately salvaged after repair. When a repair of a part finishes and the
part is not salvaged, it is sent to the stockpoint. This repaired part can only be used
to replace a failed part in the next period. Finally, the period ends and we transition
to the next state.

The objective is to determine what actions to take in each period, such that we
maximize the total discounted expected profit earned over periods 1, 2, . . . , n, with
periodic discount factor 0 ≤ α ≤ 1. The problem is a discounted, finite horizon,
discrete time Markov decision process (DTMDP). We make the following remark on
the asymptotic behavior of our DTMDP.

Remark 5.1 Our DTMDP is asymptotically equivalent to a discounted, finite
horizon, continuous time Markov decision process (CTMDP) with horizon [0, T], in
which the failure times and repair times are exponentially distributed rather than
geometrically. The asymptotical equivalence follows as h = T/n tends to 0, and the
one step transition probabilities are given by hq, where q corresponds to the transition
rate (Martin-Löf, 1967).

5.4. Instant Invest

Instant Invest is such that all new parts m are purchased prior to the horizon, i.e.,
m1 = m and m2 = 0. These m parts arrive in period 1, before any event or action
has taken place. This is equivalent to receiving all m new parts prior to the horizon,
but paying for these in the first period. We will use this equivalent representation in
the remainder of this section. The state space consists of a number of dimensions:
the number of new parts in repair 0 ≤ X1 ≤ m, the number of operating new parts
0 ≤ N1 ≤ m, the number of new parts on stock 0 ≤ s1 ≤ m, the number of operating
old parts 0 ≤ N0 ≤ N , and the number of old parts on stock 0 ≤ s0 ≤ s. We do not
consider the number of old parts in repair X0, because the old parts leave the system
once they have failed. The foregoing implies a five dimensional state space. However,
we reduce this to a three dimensional state space. The number of new parts (either in
repair or operating) is given by N−N0, and the number of new parts that are on stock

1In our motivational setting, non–operating systems cause large revenue losses that force decision
makers to prevent system idling. As a consequence, old parts are used to prevent idling of systems;
i.e., if no new parts are available upon the failure of a part, the decision maker installs an old part.

116 Chapter 5. Implementation of system modifications

or operating is given by m −X1. Consequently, the number of operating new parts
N1 = max{N−N0,m−X1} is derived from N , N0, m, X1. Furthermore, the number
of new parts on stock is given by s1 = m−N1−X1 = m−X1−max{N−N0,m−X1}.
Hence, the state space dimension is reduced from five to three by using the production
quantity m. Therefore, the state space is defined by Sm = {(X1, N0, s0) : 0 ≤ X1 ≤
m, 0 ≤ N0 ≤ N, 0 ≤ s0 ≤ s}, where the subscript m is added because the production
quantity m is given. We refer to a state s = (i, j, k) ∈ Sm, where i, j, k correspond to
X1, N0, and s0, respectively.

At the start of each period 1 ≤ x ≤ n the OEM takes an action. Let Am(s) be the
action space given the production quantity m and state s = (i, j, k) ∈ Sm. Each
action a ∈ Am(s) is two dimensional. First, the OEM chooses whether to replace a
failed part by an old part; by a new part; or not at all. We assume that the latter
decision is only selected in case there are insufficient old and new parts available at
the start of the period. The second dimension of an action describes how many old
parts from stock to salvage. We denote this quantity by 0 ≤ v ≤ k. Hence, an action
a ∈ Am(s), given state s = (i, j, k) is characterized as a tuple a = (u, v). If u = 0, a
failed part is replaced by an old part; if u = 1 a failed part is replaced by a new one;
and if u = 2 the OEM does nothing, because there are no old parts on stock and there
are insufficient new parts at the start of the period. We note that u prescribes the
replacement action that occurs if a failure occurs. If no failure occurs, no failed part
needs replacement and thus the decision is redundant. We make a case distinction
for the definition of Am(s). In the first case, there are only old parts on stock at the
start of the period; the OEM salvages v old parts from stock; and he replaces a failed
part by an old one (if possible after salvaging). For the second case, there are no old
parts on stock and there are sufficient new parts available at the start of the period;
the OEM salvages v = 0 old parts from stock; and he replaces a failed part by a new
part (if possible after salvaging). In the third case, there are old parts on stock and
sufficient new parts are available at the start of the period; the OEM salvages v old
parts (from stock) and he can choose whether to replace a failed part by an old or
new part. The last case has no old and new parts, and thus a failed part cannot be
replaced.

Am(s) =


{(0, v) : 0 ≤ v ≤ k} if k ≥ 1,m ≤ N − j + i

{(1, v) : v = 0} if k = 0,m > N − j + i

{(u, v) : u ∈ {0, 1}, 0 ≤ v ≤ k} if k ≥ 1,m > N − j + i

{(2, 0)} otherwise.

Next, we consider the one step transition probability from state s = (i, j, k) ∈ Sm to
state s′ ∈ Sm under action a = (u, v) ∈ Am(s). Let pm(s′|s, a) denote this one step
transition probability, and it is given for each s ∈ Sm and all a ∈ Am(s) by Eq. (5.1).

Eq. (5.1a) represents the case that v < k old parts from stock are salvaged and that a
failed old part is replaced by an old part from stock. Eq. (5.1b) covers the case that
all old stock parts v = k are salvaged and subsequently an old part fails. Then, the

5.4 Instant Invest 117

failed part cannot be replaced by an old part from stock and thus the installed base of
old parts decreases. The expression in Eq. (5.1c) corresponds to replacing a failed old
part by a new part, and salvaging v old parts from stock. The number of operating
old parts decreases by one, while the number of new parts in repair does not increase.
Eq. (5.1d) represents that the failed old part cannot be replaced, because there are
no old stock parts and there are insufficient new parts. Thus, only the number of
operating old parts decreases with one.

pm(s′|s, a) =



jλ0 if s′ = (i, j, k − 1− v), u = 0, v < k,(5.1a)

jλ0 if s′ = (i, j − 1, 0), u = 0, v = k, (5.1b)

jλ0 if s′ = (i, j − 1, k − v), u = 1, (5.1c)

jλ0 if s′ = (i, j − 1, 0), u = 2, (5.1d)

(N − j)λ1 if s′ = (i+ 1, j + 1, k − 1− v),

u = 0, v < k,m > N − j + i, (5.1e)

(N − j)λ1 if s′ = (i+ 1, j, 0),

u = 0, v = k,m > N − j + i, (5.1f)

(m− i)λ1 if s′ = (i+ 1, j + 1, k − 1− v),

u = 0, v < k,m ≤ N − j + i, (5.1g)

(m− i)λ1 if s′ = (i+ 1, j, 0),

u = 0, v = k,m ≤ N − j + i, (5.1h)

(N − j)λ1 if s′ = (i+ 1, j, k − v), u = 1, (5.1i)

(m− i)λ1 if s′ = (i+ 1, j, 0), u = 2, (5.1j)

iµ if s′ = (i− 1, j, k − v), (5.1k)

1−
∑

ŝ∈Sm:ŝ6=s′

pm(ŝ|s, a) if s′ = (i, j, k − v), (5.1l)

0 otherwise. (5.1m)

The expression in Eq. (5.1e) represents the case wherein there are sufficient new parts
such that N − j new parts are operating, v < k old parts from stock are salvaged,
and a failed new part is replaced by an old stock part. We obtain Eq. (5.1f) if the
OEM salvages all v = k old parts from stock and he cannot replace a failed new part.
The expression in Eq. (5.1g) considers the same action as Eq. (5.1e), but there are
insufficient new parts and consequently m − i new parts are operating. Eq. (5.1h)
describes that there are insufficient new parts and all v = k old parts from stock are
salvaged. Thus, the failed new part is not replaced.

We obtain Eq. (5.1i) if the OEM replaces a failed old part by a new part and he
salvages v old stock parts. Finally, a failed new part is not replaced when the OEM
runs out of old parts on stock and has insufficient new parts available; this yields Eq.
(5.1j). Eq. (5.1k) covers the repair probability.

118 Chapter 5. Implementation of system modifications

The expressions Eq. (5.1a)–(5.1k) are the transition probabilities for a failure or
repair event. If no repair or failure occurs, we move from state s = (i, j, k) ∈ Sm to
state s′ = (i, j, k − v) ∈ Sm, because only v old parts from stock are salvaged. Thus,
we obtain Eq. (5.1l).

The OEM’s objective is to study the total expected discounted profit over n periods of
the DTMDP, with a periodic discount factor 0 ≤ α ≤ 1. Each state s ∈ Sm generates
revenue ρm(s) per period. Moreover, if a failure occurs, the OEM incurs repair costs
z per repair (and he repairs each failed part), independent of whether the failed part
is old or new. We define rm(s) as the expected repair costs in a period given state
s ∈ Sm. Only the state determines the expected repair costs, because the salvage
decision in period x does not affect the failure or repair that may occur in x. The
OEM also earns a salvage value w0 per working old part that is salvaged, and he earns
ŵ0 for salvaging a failed old part. Therefore, the expected salvage value in a period
depends on the action a (the salvage quantity of working old parts) and on the state
s (a failed old part is salvaged). New parts are not salvaged during the horizon, and
thus we discuss the salvaging of new parts when we consider the terminal value of
our DTMDP (at the end of this section). Let us denote the expected salvage value
in a period by c(s, a) given action a and state s. We use ρm(s), rm(s), and c(s, a) to
determine the total expected profit earned in a period

σm(s, a) = ρm(s)− rm(s) + c(s, a),

given state s and action a. Let us first study the revenue ρm(s) in a state s ∈ Sm,
which depends on the number of old and new parts that are operating. This number
of parts can be derived from the state s = (i, j, k) ∈ Sm:

ρm(s) =

{
jρ0 + (m− i)ρ1 if m ≤ N − j + i

jρ0 + (N − j)ρ1 otherwise.

The first term follows directly from having j operating old parts. For the second
term, there are two cases: the first represents the revenue earned when the OEM has
insufficient new parts, whereas the second case denotes the revenue earned when the
OEM has sufficient new parts.

The expected repair costs rm(s) for a given state s are as follows. Each part that
fails is repaired (independent on whether it is old or new) and consequently the OEM
incurs the repair costs z. The probability that a part fails depends on the number of
operating old and new parts. These numbers of operating old and new parts can be
derived from the state s. Hence, we obtain for the expected repair costs

rm(s) =

{
z (jλ0 + (m− i)λ1) if m ≤ N − j + i

z (jλ0 + (N − j)λ1) otherwise.

For a given action a = (u, v) ∈ Am(s), the OEM salvages v old stock parts at
unit salvage value w0. Hence, he earns w0v. Furthermore, the OEM earns salvage

5.4 Instant Invest 119

value for a failed old part ŵ0 = w0E[αY], where E[αY] is the generating function
of the random variable Y evaluated at α. The generating function of Y is given by
E[αY] =

∑∞
n=1(1 − µ)n−1µαn = αµ

1−α(1−µ) , where Y is geometrically distributed on

the support {1, 2, . . .}. Hence, the OEM earns ŵ0 = w0
αµ

1−α(1−µ) if an old part fails.

The probability that an old part fails in period x is jλ0. Therefore, we obtain for the
expected salvage value

c(s, a) = jλ0ŵ0 + w0v.

Now, we can determine the expected profit σm(s, a) for a given state s ∈ Sm and
action a ∈ Am(s). We use this expression – along with the state space, action space
and one step transition probabilities – to obtain the recursion that determines the
optimal decision rule maximizing the total expected profit earned over n periods,
with periodic discount factor 0 ≤ α ≤ 1. Let Vx(s|m) be the maximum total expected
discounted profit earned over periods x, x+ 1, . . . , n, given the production of m new
parts and given that we are in state s ∈ Sm in period x. The recursion for Vx(s) for
all 1 ≤ x ≤ n is given by

Vx(s|m) = max
a∈Am(s)

{
σm(s, a) + α

∑
s′∈Sm

pm(s′|s, a)Vx+1(s′|m)

}
, (5.2)

and the optimal decision rule for all periods 1 ≤ x ≤ n is determined by

πx(s|m) = argmax
a∈Am(s)

{
σm(s, a) + α

∑
s′∈Sm

pm(s′|s, a)Vx+1(s′|m)

}
.

After the final period n, the OEM earns a terminal reward due to the salvaging
of the remaining operating old parts at w0, and due to the salvaging of all m new
parts. Suppose we are in state s = (i, j, k) ∈ Sm at the end of the horizon n. Then,
j + k working old parts are salvaged at the unit salvage value w0. Furthermore,
all operating new parts m − i are salvaged at w1. The i new parts in the repair
shop are repaired and subsequently salvaged. Hence, the OEM earns the discounted
salvage value of ŵ1 for these i parts. Overall, he earns an expected terminal reward
of Vn+1(s|m) = (j + k)w0 + (m− i)w1 + iŵ1 in state s ∈ Sm.

Next, we consider the optimal decision rule for Instant Invest. We expect that – under
an optimal decision rule – the use of new parts is preferred over the use of old parts.
That is, if the OEM does not salvage all old parts on stock, and there are new parts
available, we expect that the use of new parts is preferred over the use of old parts.
However, this is not necessarily true as Example 5.1 illustrates.

Example 5.1 Let n = 2, N = 1, m = 1, s0 = 1, and consider the initial state
(0, 1, 1). The replacement in the second period is irrelevant, because the horizon ends
after this period. Hence, we are only concerned with the replacement in period 1

120 Chapter 5. Implementation of system modifications

and with the salvage quantities in periods 1 and 2. Let G1(a, b) be the expected
revenue earned over the horizon when the OEM replaces a failed part by a new part
and salvages a and b old parts from stock in period 1 and 2, respectively. Similarly,
G0(a, b) is the expected revenue earned over the horizon when he replaces a failed
part by an old one and salvages a and b old parts from stock in period 1 and 2,
respectively. Then, we have the following costs for each of the feasible decision rules:

G0(0, 0) = λ2
0(ρ0 + αρ0 − z − αz + ŵ0 + αŵ0)

+λ0(1− λ0)(ρ0 + αρ0 − z + α2w0 + ŵ0)

+(1− λ0)λ0(ρ0 + αρ0 − zα+ α2w0 + αŵ0)

+(1− λ0)2(ρ0 + αρ0 + 2α2w0) + α2w1

= ρ0 + αρ0 − λ0z(1 + α) + λ0ŵ0(1 + α) + (1− λ0)2α2w0 + α2w1,

G0(0, 1) = λ0(ρ0 − z + ŵ0 + αw0) + (1− λ0)λ0(ρ0 + αρ0 − zα+ αw0 + αŵ0)

+(1− λ0)2(ρ0 + αρ0 + αw0 + α2w0) + α2w1

= ρ0 + (1− λ0)αρ0 − zλ0(1 + α(1− λ0)) + λ0ŵ0(1 + α(1− λ0))

+αw0(1 + α(1− λ0)2) + α2w1,

G1(0, 0) = λ0λ1(ρ0 + αρ1 − z − αz + ŵ0 + α2ŵ1)

+λ0(1− λ1)(ρ0 + αρ1 − z + α2w1 + ŵ0)

+(1− λ0)λ0(ρ0 + αρ0 − zα+ α2w1 + αŵ0)

+(1− λ0)2(ρ0 + αρ0 + α2w0 + α2w1) + α2w0

= ρ0 + αρ1λ0 + αρ0(1− λ0)− λ0z − λ0zα− λ0λ1αz + λ2
0zα+ ŵ0λ0

+λ0λ1α
2ŵ1 + (1− λ0λ1)α2w1 + λ0αŵ0 − λ2

0ŵ0α+ α2w0 − 2λ0α
2w0

+λ2
0α

2w0 + α2w0

= ρ0 + αρ0 − λ0z(1 + α) + λ0ŵ0(1 + α) + (1− λ0)2α2w0 + α2w1

+αλ0(ρ1 − ρ0)− λ0αz(λ1 − λ0) + λ0λ1α
2(ŵ1 − w1)− λ2

0α(ŵ0 − w0α)

= G0(0, 0) + αλ0(ρ1 − ρ0)− λ0αz(λ1 − λ0) + λ0λ1α
2(ŵ1 − w1)

−λ2
0α(ŵ0 − w0α).

The decision rule where the OEM salvages all old parts from stock in the first period,
and replaces a failed part by an old part from stock is infeasible. Hence, G0(1, 0) is
not defined. Furthermore, if the OEM replaces a failed part by a new part and the
horizon consists of only two periods, he does not use the old part from stock. Hence,
we have G1(0, 1) = G1(0, 0)−α2w0 +αw0 and G1(1, 0) = G1(0, 0)−α2w0 +w0. Now,
let λ0 = λ1 = 0.03, µ = 0.001, α = 0.9, w1 = 1.1, w0 = 0.001, z = 1, ρ1 = 0.05 and
ρ0 = 0.04. This yields G1(0, 0) < G1(0, 1) < G1(1, 0) < G0(0, 1) < G0(0, 0) and thus
the optimal action is not to install a new part, but rather to install an old one. �

Example 5.1 installs an old part rather than a new part, because of the end–of–horizon
effect of salvaging. Instant Invest does not take the risk of losing salvage value w1−ŵ1

5.4 Instant Invest 121

because this salvage value is relatively high compared to the expected revenue that
is generated. However, if we consider practical instances, we typically have a long
horizon and discounting. Furthermore, the failure rates of parts are typically low
in capital goods settings, and the revenue that is generated per time unit is also
substantial. As a consequence, the end–of–horizon effects are relatively small for such
instances, and the behavior of preferring old parts over new parts hardly occurs in
practice. Thus, we propose to consider a simpler formulation for Instant Invest in the
remainder of this chapter, in which the OEM installs new parts if these are available;
he installs old ones only if he has old parts on stock and no new parts available; and
he idles only if there are no old or new parts available. This yields a simplified action
space Am(s) given m and state s ∈ Sm, in which we do not need to optimize the
decision of installing an old, new, or no part upon a failure:

Am(s) =


{(0, v) : 0 ≤ v ≤ k} if k ≥ 1,m ≤ N − j + i

{(1, v) : 0 ≤ v ≤ k} if k ≥ 0,m > N − j + i

{(2, 0)} otherwise.

(5.3)

We also obtain fewer non–zero one step transition probabilities. That is, for a given
state s ∈ Sm and action a ∈ Am(s) the one step transition probability pm(s′|s, a) is
defined by Equations (5.1a)–(5.1d) and Equations (5.1g)–(5.1m). A major practical
consequence simplifying the replacement action is that we are able to solve problems
with the same computation time but where the state space has twice as many states
compared to usingAm(s). This results from the fact that the action space decreases by
a factor two (we no longer need to differentiate between replacement actions). Hence,
practical problems can still be solved within reasonable amounts of time, which would
otherwise be significantly harder.

The OEM is also interested in the optimal production quantity of new parts m∗.
Thus, we study the behavior of the expected profit V1(0, N, s|m)−mτ with respect to
m, given that our starting state is (0, N, s). Therefore, we let V(s,m) = V1(s|m)−mτ
for each s ∈ Sm, and we are particularly interested in V(0, N, s,m) in the remainder.
We can determine a compact interval {0, 1, . . . ,m} that contains m∗, i.e., we can
derive an upper bound m for m∗. We do this by considering an upper bound to
V(0, N, s,m).

Proposition 5.1 Given m ∈ N and state s ∈ Sm, we have

(s0 +N)w0 + (ρ1 − zλ1)N

n∑
i=1

αi−1 −m (τ − w1α
n) ≥ V(0, N, s,m).

Proof. Let m ∈ N and s ∈ Sm, then we have ρm(s) − rm(s) ≤ (ρ1 − zλ1)N . The
inequality follows as ρ1 ≥ ρ0 ≥ zλ0 ≥ zλ1 since ρ1 ≥ ρ0, λ1 ≤ λ0 and ρ0 ≥ zλ0.
This means that new parts generate the most revenue per period, and (ρ1 − zλ1)N

122 Chapter 5. Implementation of system modifications

represents that all working parts are new. If we take discounting into account for
periods 1, 2, . . . , n we find the following upper bound for the revenue and repair costs,
(ρ1 − zλ1)

∑n
i=1 α

i−1.

If we consider the salvage value, the OEM salvages at most s0 +N old parts for which
he either earns w0 or ŵ0 ≤ w0 salvage value. Furthermore, the salvage value depends
on period x due to discounting. Hence, the OEM earns strictly less total discounted
salvage value than (s0 +N)w0.

Moreover, the OEM produces m parts at unit price τ and he salvages these m parts
after the horizon. The salvage value that he earns from salvaging a new part is at
most w1. Hence, for each produced new part the OEM pays τ and earns at most
w1α

n due to discounting. Therefore, the OEM pays at least a net production cost of
τ − w1α

n per new part. Combining all the above yields the desired result. 2

Since ρ1 ≥ zλ1, ρ0 ≥ zλ0, and w1 ≥ 0, the OEM earns value in every period, i.e.,
σm(s, a) ≥ 0 for all s ∈ Sm and a ∈ Am(s). Therefore, there exists an m ∈ {1, . . . ,m}
such that V(s,m) ≥ 0 for all states s ∈ Sm. Hence, we use Proposition 5.1 to derive
an upper bound for the optimal number of new parts to produce by finding an m
such that all m > m yield a non–positive profit:

m =

⌊
(s0 +N)w0 + (ρ1 − zλ1)N

∑n
i=1 α

i−1

τ − w1αn

⌋
=

⌊
(s0 +N)w0 + (ρ1 − zλ1)N(1− αn)

(τ − w1αn)(1− α)

⌋
.

This upper bound m is loose and the state space increases linearly in m. Thus,
enumerating V(0, N, s,m) for eachm ∈ {1, . . . ,m} is computationally prohibitive, and
may even result in instances too large to fit in 16GB computer memory. An alternative
to this enumeration is to explore the value function V1(0, N, s|m). This V1(0, N, s|m)
is not concavely increasing in m for all instances, see for instance Example 5.2.

Example 5.2 Let n = 3, N = 1, s0 = 0, and consider the initial state (0, 1, 0) in
which we have one installed old part. Then, we have

V1(0, 1, 0|1) = λ0λ1µ(ρ0 + αρ1 − z − αz + α3w1 + ŵ0)

+λ0λ1(1− µ)(ρ0 + αρ1 − z − αz + α3ŵ1 + ŵ0)

+λ0(1− λ1)λ1(ρ0 + αρ1 + α2ρ1 − z − α2z + ŵ0 + α3ŵ1)

+λ0(1− λ1)2(ρ0 + αρ1 + α2ρ1 − z + ŵ0 + α3w1)

+(1− λ0)λ0λ1(ρ1 + αρ0 + α2ρ1 − zα− zα2 + αŵ0 + α3ŵ1)

+(1− λ0)λ0(1− λ1)(ρ0 + αρ0 + α2ρ1 − zα+ αŵ0 + α3w1)

+(1− λ0)2λ0(ρ0 + αρ0 + α2ρ0 − zα2 + α3w1 + α2ŵ0)

+(1− λ0)3(ρ0 + αρ0 + α2ρ0 + α3w0 + α3w1),

5.4 Instant Invest 123

V1(0, 1, 0|2) = λ0λ1µ(ρ0 + αρ1 − z − αz + α3w1 + ŵ0 + α2ρ1 + α3w1)

+λ0λ
2
1(ρ0 + αρ1 − z − αz + α3ŵ1 + ŵ0 + α2ρ1 − α2z + α3ŵ1)

+λ0λ1(1− µ− λ1)(ρ0 + αρ1 − z − αz + α3ŵ1 + ŵ0 + α2ρ1 + α3w1)

+λ0(1− λ1)λ1(ρ0 + αρ1 + α2ρ1 − z − α2z + ŵ0 + α3ŵ1 + α3w1)

+λ0(1− λ1)2(ρ0 + αρ1 + α2ρ1 − z + ŵ0 + α3w1 + α3w1)

+(1− λ0)λ0λ1(ρ0 + αρ0 + α2ρ1 − zα− zα2 + αŵ0 + α3ŵ1 + α3w1)

+(1− λ0)λ0(1− λ1)(ρ0 + αρ0 + α2ρ1 − zα+ αŵ0 + α3w1 + α3w1)

+(1− λ0)2λ0(ρ0 + αρ0 + α2ρ0 − zα2 + α3w1 + α2ŵ0 + α3w1)

+(1− λ0)3(ρ0 + αρ0 + α2ρ0 + α3w0 + α3w1 + α3w1),

and
V1(0, 1, 0|3) = V1(0, 1, 0|2) + α3w1.

The last expression holds, because the horizon is three periods, and the OEM can use
at most two new parts. Now consider the second order difference:

[V1(0, 1, 0|3)− V1(0, 1, 0|2)]− [V1(0, 1, 0|2)− V1(0, 1, 0|1)]

= α3w1 −
(
α3w1 − λ0λ

2
1α

3w1 + λ0λ1α
2ρ1 − λ0λ

2
1α

2z + λ0λ
2
1α

3ŵ1

)
= λ0λ1α

2 [λ1α(w1 − ŵ1) + λ1z − ρ1] ,

and let λ0 = λ1 = 0.03, µ = 0.001, α = 0.9, w1 = 1.1, w0 = 0.01, z = 1, ρ1 = 0.05,
and ρ0 = 0.04. This yields [V1(0, 1, 0|3)−V1(0, 1, 0|2)]−[V1(0, 1, 0|2)−V1(0, 1, 0|1)] > 0
and thus no concavity. �

However, for practical instances we do observe concavely increasing behavior of
V1(0, N, s|m) and thus also the concavity of V(0, N, s,m), see Figure 5.1. We
have tested the concavity of V(0, N, s,m) in all our numerical experiments for all
m ∈ {1, . . . , 150}, where 150 is thrice the number of parts that are installed in the
field and therefore we consider it as a reasonable upper bound. Furthermore, we do
not consider m = 0 as this implies that the OEM prefers Stay Put (not investing
in new parts). All our tested instances showed concavity of the value function.
Furthermore, testing larger values of m becomes computationally prohibitive. The
result in Figure 5.1 is based on the base instance from our numerical experiments in
Section 5.6. Moreover, we see that the optimal production quantity m∗ is far smaller
than our enumerated upper bound of 150. We observe this behavior for all numerical
instances that we tested. Moreover, we note that the results from Figure 5.1 show
that V(0, N, s,m) decreases linearly in m, but the profit does not reduce to zero (or
even becomes negative). This occurs because we consider values for m up to 150 and
the production costs are $1000; i.e., we approach zero if m is in the order of magnitude
of 85,000 new parts.

We believe that the observed concavity is a consequence of the fact that the horizon
is long for practical instances, and that the new parts have a higher reliability and

124 Chapter 5. Implementation of system modifications

0 50 100 150

4

6

8

×107

m

V
(0
,N
,s
,m

)

(a) The value function

0 50 100 150
8.6

8.62

8.64

8.66
×107

m
V

(0
,N
,s
,m

)

(b) The value function (zoomed)

Figure 5.1: Concavity of V(0, N, s,m) for the base instance from Section 5.6

generate more revenue per time unit. Therefore, there exists a benefit of using new
parts over old ones in most practical instances. Under this premises of preferring
new parts over old ones, if there are more new parts (higher m), more revenue is
generated and therefore V1(0, N, s|m) increases. The marginal revenue increase of
V1(0, N, s|m) resulting from adding one extra new part reduces: the probability of
needing this extra new part decreases. Furthermore, if m → ∞ the OEM salvages
all s old parts from stock, because he only installs new parts (and he can always
do this as m → ∞). Thus, the OEM earns finite discounted revenue in the initial
state (0, N, s), i.e., limm→∞ V1(0, N, s|m) < ∞. This explains why V1(0, N, s|m) is
concavely increasing in m for practical instances, and why V(0, N, s,m) is concave in
m (by its definition), see Figure 5.1. Moreover, we have that limm→∞ V(0, N, s,m) =
limm→∞ V1(0, N, s|m)− limm→∞mτ = −∞.

5.5. Phased Invest

For Phased Invest, we consider two production orders with production quantities m1

and m2. The second production order arrives at the start of period L before any
event or action has taken place. Therefore, the OEM spreads the production of new
parts over two orders, which enables him to postpone the production of some new
parts, thereby reducing the costs as there exists discounting. We let m be the vector
containing all production quantities (in our case m1 and m2). We assume that the
OEM pays the same production cost τ for each new part in the second order upon
the arrival of the order. This assumption can easily be relaxed such that the unit
production costs for each order are different. We illustrate the concept of Phased

5.5 Phased Invest 125

Invest with two production orders in Figure 5.2.

· · ·· · ·
0 L L+ 1 n

Figure 5.2: An illustration with two production orders

We formulate Phased Invest as a finite horizon discounted DTMDP, where the action
space and the one step transition probabilities change once more new parts become
available; i.e., the action space and the one step transition probabilities change after
the arrival of the m2 new parts in period L. The state space also changes as new parts
arrive, i.e., the state space is augmented once new parts arrive. However, if we consider
the general state space Sm1+m2

= {(X1, N0, s0) : 0 ≤ X1 ≤ m1+m2, 0 ≤ N0 ≤ N, 0 ≤
s0 ≤ s} for all periods 1, . . . , n, we do not need to model the change in the state space,
because we cannot reach certain states of the state space in periods 1, . . . , L− 1 (due
to the definition of the action space and one step transition probabilities). For brevity,
we write mt = m1 +m2 and thus Sm1+m2

= Smt . Furthermore, we note that a state
(i, j, k) ∈ Smt does not change if more new parts arrive, because the number of new
parts does not describe a state.

Let Am(x)(s) be the action space for period x, given that we are in state s ∈ Smt
and where we have m(x) new parts with m(x) = m1 if x < L and m(x) = m1 + m2

otherwise. The definition of Am(x)(s) is given in Eq. (5.3). Finally, we use the
definition of the one step transition probability from Instant Invest. The one step
transition probability from state s ∈ Smt to state s′ ∈ Smt under action a ∈ Am(x)(s)
is given by pm(x)(s

′|s, a).

The OEM is interested in determining the expected maximum discounted profit
earned in period 1 in the initial state (0, N, s), given the vector m and given L.
Therefore, we let Wx(s|m, L) be the maximum expected discounted profit earned
over periods x, x+ 1, . . . , n, given vector m and L, and given state s ∈ Smt . We have
the following optimality recursion

Wx(s|m, L) = max
a∈Am(x)(s)

σm(x)(s, a) + α
∑

s′∈Smt

pm(x)(s
′|s, a)Wx+1(s′|m, L)


−


τm1 if x = 1

τm2α
L−1 if x = L

0 otherwise.

The optimal decision rule ηx(m, L) (for given vector m and L) is determined by

ηx(s|m, L) = argmax
a∈Am(x)(s)

σm(x)(s, a) + α
∑

s′∈Smt

pm(x)(s
′|s, a)Wx+1(s′|m, L)

 .

(5.4)

126 Chapter 5. Implementation of system modifications

The terminal vector is given – similar to Instant Invest – by Wn+1(s|m, L) =
(j + k)w0 + iŵ1 + w1 (m1 +m2 − i), because there are m1 + m2 working new parts
at n + 1. We solve Phased Invest by enumerating all Wx(s|m, L) for each period
x ∈ {1, 2, . . . , n}. The objective is to determine the expected discounted profit
W1(0, N, s|m, L) in period 1 for the initial state (0, N, s).

We also shed some light on the optimal production quantities m∗1 and m∗2, and
the optimal arrival time of the second production order L∗. First, we consider the
optimization of m∗1 and m∗2 for a given value of L. For given values of m1, m2, and L,
we use backward induction to determine the optimal decision rule ηx(m, L). For the
periods L,L + 1, . . . , n, m1 + m2 new parts are available. The production quantity
m1 determines the initial distribution at the start of period L and consequently it
influences the optimal production quantity m∗2. As a result, optimization of m∗1
and m∗2 for a given L is challenging, unless W1(0, N, s|m, L) is jointly concave in
(m1,m2) = m. However, if m2 = 0, then Phased Invest is equivalent to Instant
Invest and Example 5.2 shows that Instant Invest is not concave in m. Consequently
Phased Invest cannot be jointly concave. However, it could be the case that joint
concavity exists for the practical instances that we consider, but we have to check this
numerically. We study the behavior of W1(0, N, s|m, L) for the base instance of the
numerical experiments from Section 5.6, if L is given. First, we determine m∗ under
Instant Invest and use m∗ as a reasonable upper bound for the production quantities
m1 and m2. Subsequently, we compute the value function W1(0, N, s|m, L), given L,
for all possible values of m1 and m2. This takes more than 45 hours in total, and thus
it is very time consuming to check W1(0, N, s|m, L) for all instances, e.g. this would
take us approximately 2 months for a given value of L per instance. Hence, we use
an approximate approach to determine good or near–optimal production quantities
m1 and m2 for a given L.

We propose to first determine the optimal production quantity m∗ of Instant Invest.
Subsequently, we consider various values of L and for each value of L we distribute
the production quantity m∗ over the two production orders of Phased Invest, i.e.,
m1 +m2 = m∗ with m1 ≥ 1 and m2 ≥ 0. We do not consider m1 = 0 as this means
that we are not motivated to move to the new parts (which contradicts Phased Invest).
Also, we remark that m2 = 0 means that Phased Invest is equivalent to Instant Invest.
Finally, we select the combination L,m1,m2 that maximizes the expected profit of
Phased Invest such that m1 +m2 = m∗, and we denote these values by L∗, m∗1, m∗2.
We have studied the approximation method (m1 + m2 = m∗) for the base instance
from Section 5.6 and L = 601. We enumerated all 1 ≤ m1 ≤ m∗ and 0 ≤ m2 ≤ m∗,
and plotted the results in Figure 5.3. The solid line is the result for the approximation
m1 +m2 = m∗. The approximation performs well for the base instance with L = 601
and supports the fact that we use our proposed heuristic approach to determine m∗1,
m∗2, and L∗ in the remainder.

We conclude this section by a remark that sketches how Phased Invest can be extended
to incorporate an arbitrary number of production orders.

5.6 Numerical experiments 127

(a) The value function (b) The value function (zoomed)

Figure 5.3: W1(0, N, s|m, L) versus m1 + m2 = m∗ (solid line) for the base instance
from Section 5.6 and L = 601

Remark 5.2 Let κ ∈ N be the number of times that the OEM produces new parts.
Then, for 1 ≤ i ≤ κ, let Li be the period in which the ith order consisting of mi new
parts arrives. The order of mi new parts arrives at the start of period Li, before an
action or event has occurred. We let L1 = 1 and we define L as the vector containing
all Li. The OEM pays τ for each new part that he produces and the production
costs are incurred upon the order’s arrival. Then, the value function is given by the
recursion

Wx(s|m,L) = max
a∈Am(x)(s)

σm(x)(s, a) + α
∑

s′∈Smt

pm(x)(s
′|s, a)Wx+1(s′|m,L)


−

{
τmiα

x−1 if x = Li

0 otherwise,

with m(x) =
∑
j:Lj≤xmj . The optimal decision rule ηx(m,L) is determined

analogous to Eq. (5.4). Finally, we note that optimization of all m∗i and all L∗i
can become a highly challenging task, but this is beyond the scope of this chapter.

5.6. Numerical experiments

In this section, we numerically study what strategy is optimal for various parameter
settings (instances). We vary the new component’s revenue ρ1, its reliability λ1, and
the unit production cost τ . Subsequently, we briefly discuss the added value of Phased
Invest over Instant Invest. Finally, we present results on the number of new parts to
produce under Rapid Upgrade, Instant Invest, and Phased Invest.

Our numerical study is based on a limited number of instances, because the

128 Chapter 5. Implementation of system modifications

computation time for a single instance is time consuming (approximately 8 hours).
This high computation time results from a large state space and that we have to
solve all strategies. For each instance, we first compute the expected profit under
Stay Put by using the formulation in Appendix 5.A. Secondly, we optimize the
number of new parts to produce under Rapid Upgrade and determine the maximum
expected profit of this strategy by using Appendix 5.B. Next, we determine the
optimal production quantity under Instant Invest m∗ and the maximum expected
profit, assuming that the value function is concave in m. Finally, we consider Phased
Invest and let the second production order arrive one period after a specific fraction
of the time horizon (after 5%, 10%, 15%, . . . , 50% of the horizon), i.e., we consider
L ∈ {201, 401, 601, 801, 1001, 1201, 1401, 1601, 1801, 2001}. We restrict our considered
values for L in order to reduce the required computation time. Then, we enumerate
all possible combinations (m1,m2) such that m1 +m2 = m∗ with m1 ≥ 1 and m2 ≥ 0
for each L. From all these combinations, we are interested in the optimal arrival time
of the second production order L∗ and the associated optimal production quantities
(m∗1,m

∗
2) that maximize the expected profit under Phased Invest.

We consider instances with representative parameter values for parts that are used
in capital goods industries. Recall that we assume that at most one event occurs in
a period. This assumption has consequences for our numerical study, since the time
unit should be small enough such that the assumption is satisfied. Hence, we let
a period correspond to one day. Typically, systems are used for a remaining 10–30
years in capital goods industries. We use n = 4000 periods as the horizon, which
is 10.9 years. Moreover, we consider a relatively small installed base of N = 50
parts to obtain reasonable computation times. In addition, the repair costs do not
only capture the costs of repairing the failed part, but also incorporate costs due to
downtime of a system. For instance, if a failure occurs, a service engineer has to visit
the failed system and it takes time to repair the system (say one day). We capture all
of these costs in the repair costs z. For Rapid Upgrade, we also have to specify the
cost of preventive upgrading d. Typically, a preventive replacement is cheaper than a
replacement upon failure, and thus we consider d < z. All relevant parameter values
of the base instance are given in Table 5.2. Furthermore, we note that ŵ0 and ŵ1 can
be determined via ŵ0 = w0

αµ
1−α(1−µ) and ŵ1 = w1

αµ
1−α(1−µ) .

λ0 λ1 ρ0 ($/day) ρ1 ($/day) w0 ($) w1 ($) µ τ ($)

0.0014 0.0013 1000 1001 200 400 0.015 1000

N s (parts) α z ($) d ($) n (days)

50 10 0.9995 1200 1100 4000

Table 5.2: Parameter settings of base instance

First, we study which strategy is optimal when varying the performance of the new

5.6 Numerical experiments 129

component. Therefore, we study the optimal strategy when changing ρ1 and λ1.
Furthermore, we also look at the optimal strategy when the unit production cost τ
changes. We vary the parameters ρ1, λ1, and τ unilaterally, and we consider 10 levels
other than the base level for each of the parameters. Each of the levels are given in
Table 5.3.

λ1 ρ1 τ

0.0004 1000.00 500
0.0005 1000.10 600
0.0006 1000.25 700
0.0007 1000.50 800
0.0008 1001.50 900
0.0009 1002.50 1100
0.0010 1004.00 1200
0.0011 1006.00 1300
0.0012 1008.50 1400
0.0014 1011.00 1500

Table 5.3: Levels of variables

The results for the parameter perturbations are given in Figure 5.4, Figure 5.5, and
Figure 5.6, respectively. The vertical (y) axis on the right of all figures denotes
the expected profit difference with the lowest observed expected profit. We see that
our base instance is such that Phased Invest is optimal, since λ1 = 0.0013, ρ1 =
1001, and τ = 1000 (see Figures 5.4–5.6). Moreover, we should be cautious when
drawing conclusions for the optimal strategy based on the numerical results, because
we unilaterally vary the variables and our base instance is such that Phased Invest is
optimal.

The results from Figure 5.4 show that Rapid Upgrade becomes attractive when
the new component becomes substantially more reliable than the old one (e.g.
λ1 = 0.0004). That is, if the new parts are much more reliable than the old
parts, pursuing Rapid Upgrade is not a bad strategy. However, it is not optimal,
because Phased Invest yields higher expected profit (although the expected profit
difference with Rapid Upgrade is small). Furthermore, if the difference between ρ1

and ρ0 and the difference between λ1 and λ0 is small (e.g. ρ1 = 1001, ρ0 = 1000,
λ1 = λ0 = 0.0014), the OEM can increase the expected profit by $42,000 if he follows
Phased Invest rather than the benchmark strategies Rapid Upgrade or Stay Put.
Therefore, the OEM should gradually replace the old parts by the new ones in order
to maximize the expected profit. Moreover, the extra profit that is earned ($42,000)
may seem rather small, but we remark that the profit increase is the exclusive result
of replacing one component. Systems, typically, consists of multiple components that
are replaced by new components. Hence, the profit increase may be substantially
higher in practice. Furthermore, we stress that these observations are made under

130 Chapter 5. Implementation of system modifications

0

0.2

0.4

0.6

0.8

1

1.2

×105

P
ro

fi
t

d
iff

er
en

ce
w

it
h

m
in

im
u

m

0.4 0.6 0.8 1 1.2 1.4

×10−3

8.63

8.63

8.63

8.64

8.64

8.64

8.64

×107

λ1

E
x
p

ec
te

d
p

ro
fi

t

Phased Invest
Instant Invest
Rapid Upgrade
Stay Put

Figure 5.4: The expected profit of all strategies for λ1 perturbations

the parameter setting that the revenue rate of a new part is slightly higher than the
revenue rate of an old part, i.e., ρ1 = 1001 > 1000 = ρ0. If we were to consider larger
or smaller revenue rate differences between an old and new component, we obtain
different insights, in which Phased Invest need not be optimal for the considered
values of λ1. For instance, if ρ1 = ρ0, then there exist λ1 ≤ λ0 such that Stay Put is
optimal (e.g. λ1 = 0.0013 ≤ 0.0014 = λ0 and ρ1 = ρ0 = 1000; see Figure 5.5). Yet,
the results from Figure 5.4 show that Phased Invest can be optimal if the difference
between both components is not too large.

The optimal strategy strongly depends on the revenue rate difference between an old
and new component, as Figure 5.5 illustrates. If the revenue rate difference is small or
even negligible, there is little incentive to implement the new parts. Hence, we observe
that Stay Put is optimal. However, when a new component generates more revenue
than an old component, it is optimal to preventively replace the old parts by new ones
(Rapid Upgrade). Figure 5.5 shows that Rapid Upgrade is optimal, even if the new
component generates only 0.25% (ρ1 = 1002.50) more revenue per period than the old
one. Thus, the optimal strategy is sensitive to the relative revenue increase between a
new and old component. Furthermore, there also exist ρ1 values for which both Stay
Put and Rapid Upgrade are suboptimal. If the revenue rate difference between an old
and new component is (very) small, Phased Invest and Instant Invest are better than
the two benchmark strategies (Stay Put and Rapid Upgrade), and in particular Phased
Invest is optimal. That is, Phased Invest can increase the expected profit by as much
as roughly $40,000. Again, we note that these numbers can be conservative as systems

5.6 Numerical experiments 131

0

2

4

6

8

×105

P
ro

fi
t

d
iff

er
en

ce
w

it
h

m
in

im
u

m

1,000 1,002 1,004 1,006 1,008 1,010

8.62

8.64

8.66

8.68

8.7

8.72
×107

ρ1

E
x
p

ec
te

d
p

ro
fi

t

Phased Invest
Instant Invest
Rapid Upgrade
Stay Put

Figure 5.5: The expected profit of all strategies for ρ1 perturbations

typically consist of multiple components that are replaced by new components. Figure
5.5 illustrates that if the new component generates significantly more revenue than the
old one, then the OEM should replace the old parts by new ones as soon as possible,
i.e., Rapid Upgrade is a wise strategy to pursue. Stay Put is a good strategy to follow
if revenue difference is negligible, indicating old parts should not be replaced by new
ones. In cases where the difference between both components is not that extreme,
managers should consider Phased Invest and Instant Invest in addition to Stay Put
and Rapid Upgrade, because this can increase the expected profit. In other words,
Phased Invest is the optimal implementation strategy, implying that the OEM should
gradually replace old parts by new ones (upon failure).

If we consider perturbations of the unit production cost τ , we see that Phased Invest
is optimal for all our instances. Phased Invest becomes more attractive relative to
Rapid Upgrade when the unit production cost increases. This occurs because the
value of postponing production increases (more value is postponed as τ increases).
For the same reason, the difference between Phased Invest and Instant Invest increases
for increasing τ . The difference between Instant Invest and Rapid Upgrade is smaller
than the difference between Phased Invest and Rapid Upgrade, because Instant Invest
cannot postpone production. Furthermore, we remark that we should be cautious
when extrapolating these conclusions, because we have unilaterally varied τ , and the
base instance is such that Phased Invest is optimal. Hence, if we would consider a
different base instance, Phased Invest need not be optimal for all values of τ ; e.g. if
ρ1 = ρ0 = 1000, λ1 = 0.0013, λ0 = 0.0014 then there exist values for τ for which

132 Chapter 5. Implementation of system modifications

600 800 1,000 1,200 1,400

8.63

8.63

8.63

8.64

8.64

8.64
×107

τ

E
x
p

ec
te

d
p

ro
fi

t

Phased Invest
Instant Invest
Rapid Upgrade
Stay Put

0

0.2

0.4

0.6

0.8

1

P
ro

fi
t

d
iff

er
en

ce
w

it
h

m
in

im
u

m

Figure 5.6: The expected profit of all strategies for τ perturbations

Stay Put is optimal, see Figure 5.5. Yet, the results from Figure 5.6 do illustrate how
Phased Invest becomes more attractive, compared to Instant Invest and to Rapid
Upgrade, once the unit production cost τ increases.

In addition to the foregoing, Figures 5.4–5.6 indicate that the expected profit
generated by Instant Invest is rather close to the expected profit generated by Phased
Invest. This difference increases (decreases) when the unit production cost τ increases
(decreases), because of the value of postponement due to cost discounting. We observe
expected profit differences between Phased Invest and Instant Invest in the order of
magnitude of $10,000, which may increase up to roughly $18,000. However, Phased
Invest comes with the drawback that it is difficult to implement, and even more
difficult to optimize the production variables L, m1, and m2. Hence, the added value
of Phased Instant over Instant Invest is rather debatable, because the extra expected
profit needs to be traded off against the increased complexity in the formulation of
Phased Invest and its optimization complexity.

Finally, we address the optimal production quantity of new parts under Rapid
Upgrade m̃∗ and under Instant Invest m∗. Furthermore, we also study the production
quantities m∗1 and m∗2, and the arrival time of the second production order L∗ under
Phased Invest. The results for each of the instances are given in Table 5.4.

All strategies produce more new parts than the installed base N . Therefore, the OEM
keeps new parts on stock under Rapid Upgrade, Instant Invest, and Phased Invest.
Furthermore, Rapid Upgrade produces strictly more new parts than Instant Invest
and Phased Invest. This is a result from the fact that Rapid Upgrade preventively

5.6 Numerical experiments 133

m̃∗ m∗ m∗1 m∗2 L∗

λ1 0.0004 57 53 31 22 601
0.0005 58 54 31 23 601
0.0006 59 54 31 23 601
0.0007 60 55 31 24 601
0.0008 60 55 31 24 601
0.0009 61 55 32 23 601
0.0010 62 56 32 24 601
0.0011 62 56 33 23 601
0.0012 63 57 32 25 601
0.0013 63 57 33 24 601
0.0014 64 58 32 26 601

ρ1 1000.00 63 57 32 25 601
1000.10 63 57 32 25 601
1000.25 63 57 32 25 601
1000.50 63 57 33 24 601
1001.00 63 57 33 24 601
1001.50 63 57 33 24 601
1002.50 63 58 33 25 601
1004.00 63 59 34 25 601
1006.00 63 60 35 25 601
1008.50 63 60 36 24 601
1011.00 63 60 37 23 601

τ 500 64 60 33 27 601
600 64 59 33 26 601
700 64 58 33 25 601
800 64 58 32 26 601
900 64 57 33 24 601

1000 63 57 33 24 601
1100 63 57 33 24 601
1200 63 57 32 25 601
1300 63 57 32 25 601
1400 63 57 32 25 601
1500 63 57 32 25 601

Table 5.4: Production quantities and the optimal arrival time (Phased Invest)

134 Chapter 5. Implementation of system modifications

replaces all old parts by new ones, while Instant Invest and Phased Invest implement
the new parts gradually. Hence, the total optimal production quantities of the latter
two strategies are lower than m̃∗. Moreover, we observe that the production quantities
m̃∗ and m∗ are increasing when λ1 increases, because the demand intensity for new
parts increases; thus we need more new parts. Furthermore, the order quantity m̃∗

for Rapid Upgrade does not increase as ρ1 increases. All old parts are preventively
replaced by new ones, and all old parts are immediately salvaged. Hence, there exists
no backup if the OEM has no new part available upon a failure, and this is very costly.
Therefore, m̃∗ is relatively high for Rapid Upgrade and the changes in m̃∗ are small
compared to the lost revenue if the OEM does not have a new part available. Hence,
m̃∗ is hardly affected by the changes in ρ1. For Instant Invest, the optimal quantity
m∗ increases for increasing revenue ρ1. If new parts generate more revenue, it is more
important to install a new part than an old one. Consequently, the OEM reduces the
probability of having no new parts available by increasing m∗ under Instant Invest.
Finally, the optimal production quantities m̃∗ and m∗ decrease as the unit production
cost increase, because the production investment increases.

If we study the results for Phased Invest, we note that all optimal arrival times of
the second production order L∗ are 601 periods (after 15% of the horizon). Also,
approximately 60% of the production quantity m∗ is produced for the first order and
the remaining 40% for the second production order. The results in Table 5.4 further
illustrate that the characteristics of the new parts have little influence on L∗, but
also have little influence on the distribution of the production quantity m∗ over the
two production orders m∗1 and m∗2. Hence, if a manager has determined the optimal
values L∗, m∗1 and m∗2, then these are rather robust for changes in the characteristics
of the new parts. So, if the characteristics of new parts are uncertain, the manager
could approximate the decision variables of Phased Invest (m∗1, m∗2, and L∗) simply
by setting L∗ = 601 and distributing m∗ 60%–40% over the two production orders of
Phased Invest. This may be particularly useful when implementation strategies are
considered during design, or when the failure rates are hard to estimate.

5.7. Conclusion

We studied an OEM that is responsible for a number of systems that are used for a
finite remaining lifetime. We focused on critical and repairable parts, and each part
occurs once in a system. The OEM keeps a number of parts on stock to respond
quickly to failures. The parts that are currently installed or on stock are called old
parts, and at a certain moment the OEM believes that old parts underperform, i.e.,
old parts fail too frequently or they do not generate enough revenue. Therefore,
the OEM can develop a new component that have better performance (lower failure
rates or a higher revenue generation per time unit) compared to the old component.
As a result, the OEM has to determine whether and when to implement the new
parts. Furthermore, he has to decide how many new parts to produce if he wants to

5.7 Conclusion 135

transition, and how many old parts to salvage from stock. The OEM considers four
implementation strategies:

• Stay Put: The OEM does not produce any new parts, repairs the old parts if
they fail, and salvages old parts at the end of the horizon.

• Rapid Upgrade: The OEM produces new parts and directly replaces all old
parts by new parts. He salvages the old parts immediately (at the start of the
horizon). The OEM repairs the new parts once they fail, and he salvages new
parts at the end of the horizon.

• Instant Invest: The OEM produces all new parts before the start of the horizon
and decides whether to replace a failed part by a new or old one upon each
failure. He repairs all new failed parts and old parts are salvaged. Salvaging of
old parts occurs during and at the end of the horizon, while salvaging of new
parts only occurs at the end of the horizon.

• Phased Invest: The same strategy as Instant Invest, except for the fact that
the OEM produces some parts before the horizon and some parts arrive after a
number of periods.

We developed a mathematical decision support model that explores all four imple-
mentation strategies under given production quantities (for Rapid Upgrade, Instant
Invest, and Phased Invest) and given arrival time of the second production order
(for Phased Invest). We focused on the formulations for Instant Invest and Phased
Invest, because the formulations for Stay Put and Rapid Upgrade are relatively
straightforward and these strategies served as benchmark strategies. For Instant
Invest and Phased Invest, we presented a finite horizon discounted Markov decision
process, and we showed – for both strategies – that new parts (if available) are not
necessarily used to replace a failed part, but this does occur in practical instances.

Subsequently, we discussed how to determine the (near) optimal production quantities
of new parts (for Rapid Upgrade, Instant Invest, and Phased Invest) and the near–
optimal arrival time of the second production order (for Phased Invest). In our
numerical experiments we saw that the OEM should not replace the old parts by new
ones, if the old and new component are nearly identical in their performance. That
is, if both components have near identical failure rates and generate revenue at near
identical rates, then Stay Put is a good strategy – and an optimal strategy in many
cases. If the difference between both components is large, and in particular if the
revenue difference is relatively large, then the OEM should replace the old parts by
new ones as soon as possible, i.e., Rapid Upgrade is the optimal strategy. For instances
wherein the new component is moderately better than the old one, Phased Invest and
Instant Invest are valuable to consider. In such cases, Phased Invest can increase the
expected profit notably. Thus, in such cases the OEM should gradually replace the old
parts by new ones (upon failure). In addition to studying the optimal implementation

136 Chapter 5. Implementation of system modifications

strategy, we also studied the added value of Phased Invest over Instant Invest. We
observed that the expected profit generated by Phased Invest is strictly higher than
Instant Invest, and this difference can be notable. However, this increase in expected
profit comes at a high complexity expense with respect to the formulation of Phased
Invest and its optimization.

5.A Stay Put 137

5.A. Stay Put

Under Stay Put, the OEM produces no new parts and sticks to the old parts. This
means that he repairs the old parts during the horizon. We formulate Stay Put as
a finite horizon discounted Markov reward chain. The state space S ′ is described by
the number of old parts in repair, i.e., S ′ = {1, . . . , N+s}. Furthermore, the one step
transition probability from state s ∈ S ′ to state s′ ∈ S ′ is given by

p′(s′|s) =



Nλ0 if s′ = s + 1, s ≤ s,
(N + s− s)λ0 if s′ = s + 1, s > s,

sµ if s′ = s− 1, s ≥ 2,

1−
∑

ŝ∈S′:ŝ6=s′

p′(ŝ|s) if s′ = s,

0 otherwise.

Subsequently, the revenue ρ′(s) earned in state s ∈ S ′ is derived similar to Instant
Invest, and we obtain

ρ′(s) =

{
N(ρ0 − λ0z) if s ≤ s,
(N + s− s)(ρ0 − λ0z) otherwise.

We use ρ′(s) along with the one step transition probabilities to determine the total
expected profit earned over n periods, with periodic discount factor 0 ≤ α ≤ 1. Let
Yx(s) be the total expected discounted profit earned over periods x, x+ 1, . . . , n given
that we are in state s ∈ S ′. Then, we have the recursion:

Yx(s) = ρ′(s) + α
∑
s′∈S′

p(s′|s)Yx+1(s′),

with terminal reward Yn+1(s) = sŵ0 + (N + s − s)w0. We assume that the OEM
starts in a state wherein the repair queue is empty, i.e., he is interested in Y1(0). This
is analogous to the initial state of Instant Invest and Phased Invest.

5.B. Rapid Upgrade

The formulation for Rapid Upgrade is very similar to the formulation of Stay Put.
The difference is that the OEM produces and receives all new parts m̃ prior to the
horizon, and the unit production cost of a new part is τ . Next, all old parts N + s
are preventively replaced by new parts. This means that OEM engineers have to
preventively visit and replace N old parts installed in the field. Each preventive
replacement of an old part in the field costs d. The costs for the preventive replacement

138 Chapter 5. Implementation of system modifications

of the s old parts on stock has no cost. Subsequently, the OEM salvages all N + s old
parts at the unit salvage value w0. Note that we assume here that the OEM starts
in an initial state such that no old parts have failed. This is in line with the initial
states considered in Stay Put, Instant Invest and Phased Invest. After the old parts
have been preventively replaced and the old parts are salvaged, the horizon starts.

We formulate Rapid Upgrade as a finite horizon discounted Markov reward chain.
Given m̃, the state space S̃m̃ is described by the number of new parts in repair, i.e.,
S̃m̃ = {1, . . . , m̃}. Furthermore, the one step transition probability from state s ∈ S̃m̃
to s′ ∈ S̃m̃ is given by

p̃m̃(s′|s) =



Nλ0 if s′ = s + 1, s ≤ m̃−N ,

(m̃− s)λ0 if s′ = s + 1, s > m̃−N ,

sµ if s′ = s− 1, s ≥ 2,

1−
∑

ŝ∈S̃m̃:ŝ6=s′

p̃m̃(ŝ|s) if s′ = s,

0 otherwise.

The revenue earned in state s ∈ S̃ is similar to Stay Put and given by

ρ̃m̃(s) =

{
N(ρ0 − λ0z) if s ≤ m̃−N,
(m̃− s)(ρ0 − λ0z) otherwise.

We use ρ̃m̃(s) together with p̃m̃(s′|s) in order to determine the total expected
discounted profit Zx(s|m̃) earned over periods x, x+ 1, . . . , n given state s ∈ S̃, with
periodic discount factor 0 ≤ α ≤ 1. Then, we have for the following for the recursion.

Zx(s|m̃) = ρ̃m̃(s) + α
∑
s′∈S̃

p̃m̃(s′|s)Zx+1(s′|m̃),

with terminal reward Zn+1(s|m̃) = sŵ1 + (m̃ − s)w1. Furthermore, the OEM is
interested in the expected profit earned given that he start in the initial state where
there are no new parts in repair, i.e., Z1(0|m̃). Finally, the OEM has to consider the
costs for producing m̃ new parts, the costs for preventively replacing the old parts by
new parts, and the salvage value earned from salvaging N + s old parts. Hence, the
total expected profit is Z(0, m̃) = Z1(0|m̃)− τm̃− dN + (N + s)w0.

The OEM is also interested in the optimization of the production quantity of new parts
m̃∗ under Rapid Upgrade. We can bound the expected profit function analogous
to Proposition 5.1 and obtain a bound similar to m. However, such a procedure
would result in a loose bound, which offers little computational benefit. Therefore,
we explore Z1(0|m̃). New parts generate non–negative profit ρm̃(s) ≥ 0. Thus,
increasing the number of new parts, increases Z1(0|m̃). The concave behavior of
Z1(0|m̃) follows because the marginal profit increase due to one extra new part reduces

5.B Rapid Upgrade 139

(the probability of needing this extra new part reduces if m̃ increases). Hence, we
conjecture that Z1(0|m̃) is concavely increasing in m̃ and thus Z(0, m̃) is concave
in m̃. We have numerically tested this conjecture for Z(0, m̃) for all instances from
Section 5.6, based on m̃ ∈ {1, . . . , 150}. For each instance, we observed concavity of
Z(0, m̃) with respect to m̃, and Figure 5.7 illustrates this for the base instance from
Section 5.6.

0 50 100 150

2

4

6

8

×107

m̃

Z
(0
,m̃

)

(a) The value function

0 50 100 150
8.6

8.62

8.64

8.66
×107

m̃

Z
(0
,m̃

)

(b) The value function (zoomed)

Figure 5.7: Concavity of Z(0, m̃) for the base instance from Section 5.6

We remark that the results in Figure 5.7 indicate that Z(0, m̃) decreases linearly in
m, but the profit does not reduce to zero (or becomes negative in Figure 5.7), because
we only consider values for m̃ up to m and have unit production cost of $1000; i.e.,
we approach zero if m̃ is in the order of magnitude of 85,000 parts.

6
Conclusions

In this thesis, we studied decisions that determine costs incurred later in the life cycle.
We did so by considering three different research problems (as discussed in Chapter 1).
In Chapter 2, we focused on a design problem and we investigated the optimization of
commonality and reliability decisions under the presence and absence of service part
considerations. In Chapters 3 and 4, we also studied a decision problem that occurs
during the design of a system: designing Line Replaceable Units (LRUs). We were
interested in determining the optimal design of LRUs such that the downtime and
maintenance costs are minimized. Finally, we investigated how to implement system
modifications by studying a number of implementation strategies under the presence
of service part stocks, in Chapter 5.

In Section 6.1, we discuss the main findings of this thesis, and we conclude this chapter
by presenting some potential directions for future research in Section 6.2.

6.1. Main results

In line with the structure of Chapter 1, we discuss the results of each research problem
separately. Hence, we summarize the results from Chapter 2 in Section 6.1.1; the
results of Chapters 3 and 4 are discussed in Section 6.1.2; and the results from Chapter
5 are summarized in Section 6.1.3.

142 Chapter 6. Conclusions

6.1.1 Service part effects in commonality and reliability deci-
sions

In Chapter 2, we investigated the effects of considering service parts for optimal
reliability and commonality decisions, and its consequences on the life cycle costs
(see the objective in Section 1.3 of Chapter 1). We took the perspective of an OEM
that has closed a service contract with its customers. Furthermore, we focused our
attention on two design decisions: whether to use common or dedicated components,
and the reliability level for each component (in terms of the mean time between
failures). We studied an approach that neglects service parts in design decisions
(called non–anticipating), and another approach that considers service parts for design
decisions (called anticipating).

For each approach, we presented a model using common components and a model that
uses dedicated components. The optimization of the models for the non–anticipating
approach are rather straightforward, but the optimization for the models of the
anticipating approach are more intricate. Hence, we studied approximate models
for the anticipating approach that are asymptotically equivalent as the cost of system
downtime tends to infinity.

The models that we developed enabled us to investigate the effect of considering
service parts for the optimal reliability decision, the effect of considering service
parts for the commonality decision, and the effect of considering service parts for
the relevant life cycle costs. We found that if the OEM considers service parts
for the reliability decision, he designs more reliable components. The difference in
the optimal reliability levels between the non–anticipating (not considering service
parts) and anticipating (considering service parts) approach can be as large as
27%, and is on average roughly 10%. Such differences are very substantial and
can have large effects on operational costs and after–sales performance. Therefore,
the OEM’s design engineers should be motivated to consider service parts for the
reliability decision. In addition to the results on the optimal reliability levels, we also
studied how the commonality decision differs when we consider service parts. We
found that commonality is more attractive when service parts are considered for the
design decisions. Furthermore, we numerically illustrated that different commonality
decisions are made even when the unit cost of the common component increases by as
much as 9.59%. So, service parts should be considered if a good commonality decision
has to be made: the OEM can use a significantly more expensive common component
and still obtain lower life cycle costs under commonality. Finally, our decision support
models enabled us to explore how much an OEM can reduce the life cycle costs when
considering service parts in commonality and reliability decisions. Our numerical
experiments illustrated that the life cycle costs can sometimes be reduced significantly,
because neglecting service parts from the commonality and reliability decisions may
result in a life cycle cost increase of as much as 10%. Hence, if the OEM wants to
improve his profitability, he should encourage his design engineers to consider service
parts in the design decisions.

6.1 Main results 143

6.1.2 Line Replaceable Units

In Chapters 3 and 4, we studied how to optimally design Line Replaceable Units
(LRUs) such that the relevant usage costs are minimized (see the objective in Section
1.3 of Chapter 1). We start with the main results from Chapter 3, after which
we discuss the results from Chapter 4. In Chapter 3, we first described how to
represent a design of a system for maintenance applications. We proposed to model
the parts in a system and their connections as a weighted undirected graph. We
also considered a directed acyclic graph that enabled us to incorporate a disassembly
sequence in our model. We indicated that this system representation could have the
potential to (visually) enhance internal communication at the OEM; for instance,
between the design department and the operations department. We used this system
representation in Chapter 3 to derive a mathematical decision support model called
LRU Design. This model optimizes the design of LRUs such that the total costs
of replacing LRUs and purchasing (or repairing) LRUs are minimized. Moreover, we
assumed that a part belongs to exactly one LRU, and a LRU is a collection of parts
that is replaced when one of the parts in the LRU fails.

We formulated LRU Design as a binary linear program as well as a set partitioning
formulation. For the latter formulation we proved that it can be solved by pure pricing
algorithms rather than by branch–and–price algorithms, and result in an optimal
integer solution. Subsequently, we numerically compared the computation times of
both formulations to conclude the set partitioning formulation is applicable for real–
life instances, while the binary linear programming formulation is not. This is a
direct consequence of the fact that pure pricing algorithms can be used to solve the
set partitioning formulation. This makes set partitioning formulation of LRU Design
particularly useful as a feedback mechanism for the OEM’s design department. The
engineers can quickly assess various design alternatives (in terms of the connection
graph and precedence graph) and their effects on the optimal LRU design and the
corresponding (after–sales) costs. Numerically, we observed that LRUs contain more
parts in an optimal solution if the per time unit costs for downtime increase. Moreover,
our decision support model LRU Design numerically showed that larger LRUs are
optimal if the downtime cost per time unit increase. Also we found that the design
of a system has a major impact on the costs that are incurred later in the life cycle.
That is, if parts have many connections to other parts or if there exist complex and
many disassembly sequences, then the costs in the usage phase (later in the life cycle)
substantially increase. Hence, managers should incentivize their designers to reduce
the number of connections between parts and to avoid intense disassembly sequences.

In Chapter 4 we used the same representation of a system’s design, but we allowed
parts to be included in more than one LRU. This means that a LRU, containing a
certain part, can be replaced even when the failure of this certain part does not trigger
replacement of the LRU. For instance, a motherboard and graphics card are replaced
together if the motherboard fails, but if the graphics card fails only the graphics card
is replaced. This resulted in a different conceptualization of a LRU, and we used this

144 Chapter 6. Conclusions

new concept of a LRU to derive a model that optimizes the design of LRUs such that
the total costs of replacing and purchasing (or repairing) LRUs are minimized. This
model was called C–LRU Design.

We proved that C–LRU Design is decomposable in the parts that constitute the
system. Hence, we formulated a binary linear program for each of the parts in the
system. Subsequently, we solved each program separately to obtain the optimal design
of LRUs. We numerically found similar results to Chapter 3, concluding that LRUs
contain more parts in an optimal solution if the downtime costs per time unit increase.
Furthermore, we saw that a system’s design has a large influence on the costs incurred
later in the life cycle.

Finally, we compared the computation times, the costs, and the optimal number
of LRUs used between LRU Design and C–LRU Design. We observed that
computation times increase immensely for LRU Design, by as much as 4555%. The
average cost increase when using LRU Design is rather low (approximately 1%), but
it can increase up to 26%. These findings make C–LRU Design attractive from a
practical perspective, because it can be used as an efficient feedback mechanism to
the OEM’s design engineers. However, if the number of used LRUs in an optimal
solution is essential, both LRU Design and C–LRU Design should be considered
because the number of used LRUs can be larger or smaller for C–LRU Design.

6.1.3 Implementation of system modifications

In our final Chapter 5 we shifted our attention from problems that occur in the design
phase to a problem present in a life cycle’s usage phase. We studied an OEM that
closes service contracts with his customers, and we assumed that all service contracts
are identical. As a consequence, he is responsible for a number of systems that are
installed in the field for a remaining finite time horizon and the OEM is rewarded
(penalized) for better (worse) performance. We focused on critical and repairable
parts, each of which occurs once in a system. The OEM keeps a number of parts on
stock in order to respond quickly to failures. The parts that are operating in the field
or are on stock are called old parts. At a certain time point the OEM believes that
the parts underperform in terms of too high failure rates and/or too little revenue
generation. The OEM can design a new component with better performance, and
as a result he has to determine whether it is profitable to replace the old parts by
new ones. If so, the OEM has to decide when to replace the old parts by new
ones. He considers four implementation strategies that dictate whether the OEM
should upgrade to the new parts and how fast he should do this, how many new
parts to produce, and how many old parts from stock to salvage. Note that these
implementation strategies reflect the research objective in Section 1.3 of Chapter 1.
The considered implementation strategies are:

6.1 Main results 145

• Stay Put: The OEM does not produce any new parts, repairs the old parts if
they fail, and salvages old parts at the end of the horizon.

• Rapid Upgrade: The OEM produces new parts and directly replaces all old
parts by new parts. He salvages the old parts immediately (at the start of
horizon). The OEM repairs the new parts once they fail, and he salvages new
parts after the horizon.

• Instant Invest: The OEM produces all new parts before the start of the horizon
and decides whether to replace a failed part by a new or old one upon each
failure. He repairs all new failed parts and old parts are salvaged. Salvaging of
old parts occurs during and at the end of the horizon, while salvaging of new
parts only occurs at the end of the horizon.

• Phased Invest: The same strategy as Instant Invest, except for the fact that
the OEM produces some parts before the horizon and some parts arrive after a
number of periods.

We presented model formulations for each of the implementation strategies under
given production quantities (for Rapid Upgrade, Instant Invest, and Phased Invest)
and given the arrival time of the second production order (for Phased Invest). These
formulations are used to compute the expected generated profit per implementation
strategy. Subsequently, we discussed how to determine the optimal production
quantities of new parts (for Rapid Upgrade, Instant Invest, and Phased Invest) and
the optimal arrival time of the second production order (for Phased Invest).

We numerically illustrated that each of the implementation strategies has its merits.
Stay Put is attractive, and optimal in some instances, if the old and new components
are nearly identical with respect to the failure rate and the revenue generation, i.e.,
the OEM should not replace old parts by new ones. Rapid Upgrade, on the other
hand, is optimal when the difference between old and new components is significant.
Then, the OEM should replace the old parts by new ones as soon as possible. Instant
Invest and Phased Invest are valuable when the new component is moderately better
than old one, in particular when the revenue generation differs moderately. In these
instances, Phased Invest yields strictly higher expected profit than Instant Invest,
and the expected generated profit of Phased Invest can be significantly higher than
the profit of Rapid Upgrade or Stay Put. The expected profit difference between
Instant Invest and Phased Invest is smaller but not necessary negligible. Hence,
this should be weighted against the large complexity increase resulting from Phased
Invest’s formulation. Thus, if the components’ performance differ moderately, the
OEM should gradually replace old parts by new ones (upon failure).

146 Chapter 6. Conclusions

6.2. Future research

In this thesis we have studied problems in specific and delineated settings. In this
last part of the thesis, we step out of this delineation and discuss some of the future
directions that research may take. We discuss these directions per problem (analogous
to Section 6.1).

In Chapter 2 we used a specific function for the unit production cost (linearly
proportional to the relative unit cost of a component). Further research could consider
other unit production cost functions. Convexity results may still be attainable for
some functions – e.g. if the relative unit cost of a component is additive rather than
multiplicative – but in general this need not be the case. Furthermore, the analytical
results for the switching curve may no longer be established if the unit production
cost function is altered. A second road that future research may take is to model a
service part network instead of a single stockpoint. For instance, one could model
a multi echelon service part network, potentially with emergency shipments (see for
instance van Houtum and Kranenburg (2015)). This could make commonality even
more attractive, because the optimal service part stock levels will likely be low and
thus pooling could result in larger life cycle costs savings.

The results from Chapter 2 indicate that considering service part stocking is crucial for
making the right design decisions. This observation can have implications for further
research directions on other design problems, such as the design of Line Replaceable
Units. Hence, we suggest researchers to consider service part aspects in future LRU
design problems. However, if service part stocking is added to the problems LRU
Design and C–LRU Design, Theorem 3.1 from Chapter 3 may no longer hold and
neither may the decomposition result in Chapter 4. In addition, it is not obvious how
one should embed service part stocking in the models and how this will affect the
obtained solutions. The inclusion of service part aspects may introduce non–linearity
in the objective functions, which in turn may complicate further analysis substantially.
Successive research could explore techniques that are able to cope with this non–
linearity of the objective function. A second direction for further research is more
theoretical. It could be expected that the LRUs from C–LRU Design in Chapter 4
are nested: if a part v belongs to a replacement set RQ and to a replacement set RQ′ ,
then either RQ ⊆ RQ′ or RQ′ ⊆ RQ. We have not explored this theoretical result in
the thesis, so further research could study whether such nested behavior exists for the
LRUs. Finally, we would like to point out that we assumed that we know exactly and
immediately which part has failed once the system fails; i.e., failure diagnostics are
instantaneous and perfect and independent of the system design. This assumption
could be relaxed in order to come closer to reality. Therefore, we suggest academics
to link our problems of designing LRUs to problems studying fault diagnosis, such as
the one studied by De Bontridder et al. (2003).

In Chapter 5, we illustrated that a failed part is not always replaced by a new part
if available. However, we believe that there may exist certain conditions such that

6.2 Future research 147

new parts are preferred (if available) to replace a failed part. Further research could
explore whether such conditions exist and what they are. Moreover, further research
could study the behavior of the value function for Instant Invest and use insights
to improve the optimization of the number of new parts to produce. The same
directions could also be taken for Phased Invest, but we think that these steps are more
involved and complex compared to Instant Invest. Moreover, research could study
the optimal salvage quantity of old parts. This would further reduce the computation
times of Instant Invest and Phased Invest, because the action space that needs to
be considered for the value functions of both strategies reduces. Finally, the field
of condition monitoring may be promising for the development of implementation
strategies for new parts. If condition monitoring is able to provide (relatively)
accurate information on the failure or maintenance of a part, the OEM can better
plan the implementation of a new part. Additionally, this may have an effect on the
postponement of production, as he may be able to produce (or purchase) new parts
just in time.

Bibliography

R. P. Anstee and M. Farber. Characterizations of totally balanced matrices. Journal
of Algorithms, 5(2):215–230, 1984.

Y. Asiedu and P. Gu. Product life cycle cost analysis: State of the art review.
International Journal of Production Research, 36(4):883–908, 1998.

K. R. Baker, M. J. Magazine, and H. L. W. Nuttle. The effect of commonality on
safety stock in a simple inventory model. Management Science, 32(8):982–988,
1986.

I. Balbaert, A. Sengupta, and M. Sherrington. Julia: High Performance Programming.
Packt Publishing, 2016.

C. Y. Baldwin and K. B. Clark. Design rules: The power of modularity, volume 1.
MIT press, 2000.

M. Bijvank, W. T. Huh, G. Janakiraman, and W. Kang. Robustness of order–up–
to policies in lost–sales inventory systems. Operations Research, 62(5):1040–1047,
2014.

O. Briant and D. Naddef. The optimal diversity management problem. Operations
Research, 52(4):515–526, 2004.

S. Chand, T. McClurg, and J. Ward. A model for parallel machine replacement with
capacity expansion. European Journal of Operational Research, 121(3):519–531,
2000.

S. Childress and P. Durango-Cohen. On parallel machine replacement problems with
general replacement cost functions and stochastic deterioration. Naval Research

150 Bibliography

Logistics, 52(5):409–419, 2005.

J. Clavareau and P. E. Labeau. Maintenance and replacement policies under
technological obsolescence. Reliability engineering & system safety, 94(2):370–381,
2009.

CNET News. California power outages suspended – for now, 2001. URL https:

//www.cnet.com/news/california-power-outages-suspended-for-now/.

M. A. Cohen, N. Agrawal, and V. Agrawal. Winning in the aftermarket. Harvard
Business Review, 84(5):129–138, 2006.

K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J. Hurkens,
J. K. Lenstra, R. Ravi, and L. Stougie. Approximation algorithms for the test cover
problem. Mathematical Programming, 98(1):477–491, 2003.

T. De Fazio and D. Whitney. Simplified generation of all mechanical assembly
sequences. IEEE Journal on Robotics and Automation, 3(6):640–658, 1987.

Dell Inc. Dell precision 17 7000 series (7710) owner’s manual, 2016. URL
http://topics-cdn.dell.com/pdf/precision-m7710-workstation_Owner’s%

20Manual_en-us.pdf.

P. Desai, S. Kekre, S. Radhakrishnan, and K. Srinivasan. Product differentiation and
commonality in design: Balancing revenue and cost drivers. Management Science,
47(1):37–51, 2001.

I. Dunning, J. Huchette, and M. Lubin. Jump: A modeling language for mathematical
optimization. SIAM Review, 59(2):295–320, 2017.

L. Ellram. A taxonomy of total cost of ownership models. Journal of business logistics,
15(1):171, 1994.

R. Fellini, M. Kokkolaras, N. Michelena, P. Papalambros, A. Perez-Duarte, K. Saitou,
and P. Fenyes. A sensitivity–based commonality strategy for family products of
mild variation, with application to automotive body structures. Structural and
Multidisciplinary Optimization, 27(1-2):89–96, 2004.

D. R. Fulkerson and R. Hoffman, Oppenheim. On balanced matrices. Mathematical
Programming Study 1, pages 120–132, 1974.

D. Gross and J. F. Ince. Spares provisioning for repairable items: Cyclic queues in
light traffic. AIIE Transactions, 10(3):307–314, 1978.

S. Gupta and V. Krishnan. Product family–based assembly sequence design
methodology. IIE transactions, 30(10):933–945, 1998.

S. Gupta and V. Krishnan. Integrated component and supplier selection for a product
family. Production and Operations Management, 8(2):163–182, 1999.

J. C. Hartman. The parallel replacement problem with demand and capital budgeting

https://www.cnet.com/news/california-power-outages-suspended-for-now/
https://www.cnet.com/news/california-power-outages-suspended-for-now/
http://topics-cdn.dell.com/pdf/precision-m7710-workstation_Owner's%20Manual_en-us.pdf
http://topics-cdn.dell.com/pdf/precision-m7710-workstation_Owner's%20Manual_en-us.pdf

Bibliography 151

constraints. Naval Research Logistics (NRL), 47(1):40–56, 2000.

J. C. Hartman and C. H. Tan. Equipment replacement analysis: a literature review
and directions for future research. The Engineering Economist, 59(2):136–153, 2014.

M. S. Hillier. Component commonality in multiple–period, assemble–to–order
systems. IIE Transactions, 32(8):755–766, 2000.

A. J. Hoffman, A. W. J. Kolen, and M. Sakarovitch. Totally-balanced and greedy
matrices. SIAM Journal on Algebraic Discrete Methods, 6(4):721–730, 1985.

C. I. Hsu, H. C. Li, S. M. Liu, and C. C. Chao. Aircraft replacement scheduling:
A dynamic programming approach. Transportation research part E: logistics and
transportation review, 47(1):41–60, 2011.

H. Z. Huang, Z. J. Liu, and D. N. P. Murthy. Optimal reliability, warranty and price
for new products. IIE Transactions, 39(8):819–827, 2007.

W. T. Huh, G. Janakiraman, J. A. Muckstadt, and P. Rusmevichientong. Asymptotic
optimality of order–up–to policies in lost sales inventory systems. Management
Science, 55(3):404–420, 2009.

P. C. Jones, J. L. Zydiak, and W. J. Hopp. Parallel machine replacement. Naval
Research Logistics, 38(3):351–365, 1991.

S. H. Kim, M. A. Cohen, and S. Netessine. Performance contracting in after–sales
service supply chains. Management Science, 53(12):1843–1858, 2007a.

S. H. Kim, M. A. Cohen, and S. Netessine. Reliability or inventory? contracting
strategies for after–sales product support. In Proceedings of 2007 International
Conference on Manufacturing & Service Operations Management, 2007b.

S. H. Kim, M. A. Cohen, and S. Netessine. Reliability or Inventory? An Analysis of
Performance–Based Contracts for Product Support Services. In A. Y. Ha and C. S.
Tang, editors, Handbook of Information Exchange in Supply Chain Management,
pages 65–88. Springer International Publishing, 2017.

A. A. Kranenburg and G. J. van Houtum. Effect of commonality on spare
parts provisioning costs for capital goods. International Journal of Production
Economics, 108(1):221–227, 2007.

V. Krishnan and S. Gupta. Appropriateness and impact of platform–based product
development. Management Science, 47(1):52–68, 2001.

U. D. Kumar, J. Crocker, J. Knezevic, and M. El-Haram. Reliability, maintenance
and logistic support – A life cycle approach. Springer Science & Business Media,
2012.

E. Labro. The cost effects of component commonality: A literature review through a
management–accounting lens. Manufacturing & Service Operations Management,
6(4):358–367, 2004.

152 Bibliography

A. J. D. Lambert. Optimizing disassembly processes subjected to sequence–dependent
cost. Computers & Operations Research, 34(2):536–551, 2007.

M. Lubin and I. Dunning. Computing in operations research using julia. INFORMS
Journal on Computing, 27(2):238–248, 2015.

A. Martin-Löf. Optimal control of a continuous–time markov chain with periodic
transition probabilities. Operations Research, 15(5):872–881, 1967.

G. P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part iconvex underestimating problems. Mathematical programming,
10(1):147–175, 1976.

S. Mercier. Optimal replacement policy for obsolete components with general failure
rates. Applied Stochastic Models in Business and Industry, 24(3):221–235, 2008.

S. Mercier and P. E. Labeau. Optimal replacement policy for a series system with
obsolescence. Applied stochastic models in business and industry, 20(1):73–91, 2004.

A. Mettas. Reliability allocation and optimization for complex systems. In Reliability
and Maintainability Symposium, 2000. Proceedings. Annual, pages 216–221. IEEE,
2000.

M. H. Meyer and A. P. Lehnerd. The power of product platforms. Simon and Schuster,
1997.

J. A. Muckstadt. Analysis and Algorithms for Service Parts Supply Chains. Springer,
New York, 2005.

M. Muffatto and M. Roveda. Developing product platforms: Analysis of the
development process. Technovation, 20(11):617–630, 2000.

S. K. Nair. Modeling strategic investment decisions under sequential technological
change. Management Science, 41(2):282–297, 1995.

S. K. Nair and W. J. Hopp. A model for equipment replacement due to technological
obsolescence. European Journal of Operational Research, 63(2):207–221, 1992.

P. J. Newcomb, B. Bras, and D. W. Rosen. Implications of modularity on product
design for the life cycle. Journal of Mechanical Design, 120(3):483–491, 1998.

T. K. Nguyen, T. G. Yeung, and B. Castanier. Optimal maintenance and replacement
decisions under technological change with consideration of spare parts inventories.
International Journal of Production Economics, 143(2):472–477, 2013.

R. P. Nicolai and R. Dekker. Optimal maintenance of multi–component systems:
A review. In Complex System Maintenance Handbook, pages 263–286. Springer
London, London, 2008.

G. Norman. Life cycle costing. Property Management, 8(4):344–356, 1990.

K. B. Öner, R. Franssen, G. P. Kiesmüller, and G. J. van Houtum. Life cycle costs

Bibliography 153

measurement of complex systems manufactured by an engineer–to–order company.
In R. G. Qui, D. W. Russell, W. G. Sullivan, and M. Ahmad, editors, The 17th
International Conference on Flexible Automation and Intelligent Manufacturing,
pages 569–589. FAIM, Philidelphia, 2007.

K. B. Öner, G. P. Kiesmüller, and G. J. van Houtum. Optimization of component
reliability in the design phase of capital goods. European Journal of Operational
Research, 205(3):615–624, 2010.

K. B. Öner, G. P. Kiesmüller, and G. J. van Houtum. On the upgrading policy
after the redesign of a component for reliability improvement. European Journal of
Operational Research, 244(3):867–880, 2015.

J. E. Parada Puig and R. J. I. Basten. Defining line replaceable units. European
Journal of Operational Research, 247(1):310–320, 2015.

K. Parent. Avantcom moves on pilot project, 2000. URL http://www.edn.com/

electronics-news/4362659/AvantCom-Moves-on-Pilot-Project.

D. A. Patterson. A simple way to estimate the cost of downtime. In LISA ’02
Proceedings of the 16th USENIX conference on System administration, pages 185–
188. USENIX Association, 2002.

S. Rajagopalan, M. R. Singh, and T. E. Morton. Capacity expansion and replacement
in growing markets with uncertain technological breakthroughs. Management
Science, 44(1):12–30, 1998.

J. O. Royset, A. Der Kiureghian, and E. Polak. Reliability–based optimal structural
design by the decoupling approach. Reliability Engineering & System Safety, 73(3):
213–221, 2001.

H. Saranga and U. D. Kumar. Optimization of aircraft maintenance/support
infrastructure using genetic algorithmslevel of repair analysis. Annals of Operations
Research, 143(1):91–106, 2006.

K. Selviaridis and F. Wynstra. Performance-based contracting: a literature review
and future research directions. International Journal of Production Research, 53
(12):3505–3540, 2015.

D. M. Sharman and A. A. Yassine. Characterizing complex product architectures.
Systems Engineering, 7(1):35–60, 2004.

C. C. Sherbrooke. Optimal Inventory Modeling of Systems: Multi–Echelon
Techniques. Kluwer, Dordrecht, 2004.

J. S. Song and Y. Zhao. The value of component commonality in a dynamic inventory
system with lead times. Manufacturing & Service Operations Management, 11(3):
493–508, 2009.

M. E. Sosa, S. D. Eppinger, and C. M. Rowles. A network approach to define

http://www.edn.com/electronics-news/4362659/AvantCom-Moves-on-Pilot-Project
http://www.edn.com/electronics-news/4362659/AvantCom-Moves-on-Pilot-Project

154 Bibliography

modularity of components in complex products. Journal of Mechanical Design,
129(11):1118–1129, 2007.

D. V. Steward. The design structure system: A method for managing the design of
complex systems. IEEE transactions on Engineering Management, (3):71–74, 1981.

J. M. Swaminathan and S. R. Tayur. Managing broader product lines through delayed
differentiation using vanilla boxes. Management Science, 44(12):S161–S172, 1998.

L. Thomas. A survey of maintenance and replacement models for maintainability and
reliability of multi–item systems. Reliability Engineering, 16(4):297–309, 1986.

U. W. Thonemann and M. L. Brandeau. Optimal commonality in component design.
Operations Research, 48(1):1–19, 2000.

L. A. M. van Dongen. Maintenance engineering: Instandhouding van verbindingen.
Oratie, 2011.

G. J. van Houtum and A. A. Kranenburg. Spare parts inventory control under system
availability constraints, volume 227. Springer, 2015.

J. A. van Mieghem. Commonality strategies: Value drivers and equivalence with
flexible capacity and inventory substitution. Management Science, 50(3):419–424,
2004.

T. Zou and S. Mahadevan. Versatile formulation for multiobjective reliability–based
design optimization. Journal of Mechanical Design, 128(6):1217–1226, 2006.

Summary
Life Cycle Costs Optimization for Capital Goods

The investment decision for systems that require large financial investments – e.g.
an airplane or a lithography system – is involved and multidimensional, because
customers do not only consider the initial purchase costs. Rather, customers consider
operational aspects for such systems, because the operational costs can account for
the majority of the total cost of owning systems. These operational costs consist
largely of maintenance costs, repair costs, and downtime costs. The costs for
usage – e.g. operator and facility costs – are excluded from the operational costs.
Since the operational costs are high, customers require that Original Equipment
Manufacturers (OEMs) offer a total package. Therefore, OEMs close service contracts
with customers, and these contracts make the OEM responsible for a major part of
systems’ life cycles. The service contracts are such that both parties (OEM and
customer) benefit. As a consequence, OEMs are no longer solely focused on offering
systems with a low initial purchase price, but are offering solutions in which the life
cycle costs of systems are minimized.

The total life cycle costs are a result of various decisions that are taken during various
phases of the life cycle, e.g. during design, production or usage. The majority of these
decisions does not only influence the immediate costs, but also determines – to a large
extent – the costs that are incurred later in the life cycle. In this thesis, we study three
problems for which decisions determine the costs incurred later in the life cycle. Each
of the studied problems is difficult to solve without the help of advanced mathematical
decision support models. Therefore, we develop a mathematical decision support
model for each problem that aids the OEM in an attempt to lower (part of) the life
cycle costs by looking forward in the life cycle.

156 Summary

Service part effects in commonality and reliability decisions

In Chapter 2, we study a problem in the design phase of a component. In particular,
we explore the value of considering service part stocks for commonality and reliability
decisions. Moreover, we investigate how much the life cycle costs can be reduced if an
OEM considers service parts in the commonality and reliability decisions. The OEM
should decide whether to use a common component (one component for all systems)
or multiple dedicated components (one component per system). Furthermore, he
determines the reliability for each alternative.

We propose two approaches: one in which the OEM considers costs for production
and repair, and where he neglects service parts for the commonality and reliability
decisions. In the second approach, the OEM considers production and repair costs,
as well as holding costs and downtime costs because the OEM includes service parts
in his commonality and reliability decisions. For the former approach – in which the
OEM does not consider service parts – we optimize only the commonality decision
and the reliability levels, which is analytically tractable. Under the latter approach,
the optimization models (for common components and dedicated components) that
optimize the commonality decision, the reliability levels and the service part inventory
levels are analytically intractable. Therefore, we use the observation that downtime
of systems is expensive for capital intensive systems. Consequently, we study two
approximate models (common and dedicated) and for each of them we prove that it
is asymptotically equivalent to the original model (common or dedicated) as the cost
for downtime tends to infinity. Using the approximate models, we are able to find
and characterize the optimal commonality decision, optimal reliability levels and the
service part inventory levels.

We compare the optimal reliability levels under both approaches, and we observe that
considering service parts can result in optimal reliability levels (in terms of mean time
between failures) that are 27% higher than the ones found under neglecting service
parts. In addition, we analytically characterize a switching curve that determines the
optimal commonality decision under both approaches. We prove that commonality
is selected strictly more when service parts are considered for the reliability and
commonality decisions, and numerically we illustrate that we can obtain a different
commonality decision even when the unit cost of a common component increases
by 9.5%. Finally, we illustrate that considering service parts in the reliability and
commonality decisions may lead to much lower relevant life cycle costs, being as
much as 10% lower in specific cases.

Line Replaceable Units

In Chapters 3 and 4, we study the design of Line Replaceable Units (LRUs). A LRU
is a collection of parts that is replaced entirely when one of the parts in the LRU
has to be maintained. The design decision of LRUs is typically made late(r) in the

157

design phase of a life cycle, where the design of a system is used as input. The design
of LRUs has an impact on the operational costs that are incurred later in the life
cycle: the design of LRUs determines the downtime and maintenance costs, which
are predominant cost factors in the usage phase of a life cycle.Therefore, a good LRU
design is essential for lowering the total life cycle costs. The cost effects of a certain
LRU design are twofold. On the one hand, LRUs can lower the time an engineer
spends on replacing the failed parts. If certain parts are combined together in an
LRU it may be easier and faster to replace them, thereby lowering the downtime.
On the other hand, failed LRUs are replaced by ready–for–use ones that have been
purchased or repaired. When LRUs are small they contain less value than larger
LRUs, and thus the cost for purchasing or repairing increases for larger LRUs.

In Chapter 3 we represent a technical system with its existing disassembly characte-
ristics in terms of two graphs. A system consists of multiple parts that are connected
to each other, and each part has a failure rate and a purchase cost. Furthermore,
breaking and re–establishing a connection between two parts costs time (and money),
which we use as edge weights. We represent a system as an undirected graph,
where each part corresponds to a vertex with a failure rate and purchase cost, and a
connection is an edge with an edge weight. Furthermore, we include the disassembly
sequence that exists for maintenance (e.g. remove part A before part B) by using
a directed acyclic graph. With the system representation in place, we make an
important assumption in Chapter 3 that each part belongs to exactly one LRU. Next,
we use both graphs to derive an optimization model called LRU Design, and this
model optimizes the design of LRUs such that the total replacement costs and total
purchase (or repair) costs are minimized. We present the most natural binary non–
linear programming formulation (BNLP) for this problem. Subsequently, we linearize
the BNLP to obtain a binary linear programming (BLP) formulation. Furthermore,
we present a set partitioning formulation of LRU Design that allows for branch–and–
price algorithms. We prove that branching is unnecessary to obtain an optimal integer
solution for the set partitioning formulation. Moreover, we compare the computation
times of the two formulations (BLP and set partitioning) in our numerical experiments
to conclude that the set partitioning formulation is suitable for large instances, while
the BLP formulation is not. Finally, we illustrate (in Chapter 3) that higher downtime
costs per time unit result in larger LRUs, and that it is crucial to reduce the number
of connections and the complexity of the disassembly sequences in order to lower the
life cycle costs.

In Chapter 4, we relax the assumption that each part belongs to exactly one LRU.
Consider, for instance, a student who owns a city bike. If one of the spokes of the
rear wheel breaks, the student decides to only replace the broken spoke. However,
if the rim breaks, the student replaces the entire rear wheel (consisting of a rim, all
spokes, a wheel hub, and a cassette). Hence, a spoke is replaced upon its own failure
or upon the failure of the rim. Therefore, we say that a spoke belongs to more than
one LRU. This differs from our approach in Chapter 3, and thus we conceptualize a
LRU differently in Chapter 4: we describe a LRU by a tuple consisting of a failure

158 Summary

set and a replacement set. All parts in the replacement set are replaced if any of
the parts from the failure set fails (this also means that the failure set is a subset
of the replacement set). Using this new conceptualization of a LRU, we present an
optimization model called C–LRU Design that optimizes the design of LRUs such
that the total replacement and purchase (or repair) costs are minimized. We prove
that C–LRU Design is separable in the number of parts constituting the system.
Using this decomposition result, we present a binary linear program for each part
and we numerically show that this formulation is efficient, even for large instances.
We find that C–LRU Design behaves the same as LRU Design to changes in the
downtime costs per time unit, the number of connections and the complexity of the
disassembly sequences. The computation times of the set partitioning formulation
of LRU Design increase dramatically compared C–LRU Design, by as much as
4555%. Furthermore, we observe that LRU Design can substantially increase the
costs by as much as 27%.

Implementation of system modifications

In Chapter 5, we study an OEM responsible for a number of systems used for a finite
horizon, in the order of magnitude of 10–30 years. We focus on critical and repairable
parts of a single component, and each part occurs once in a system. The OEM keeps a
number of parts on stock to respond quickly to failures. The parts that are currently
installed or on stock are called old parts. At a certain time, the OEM observes that
the old parts underperform, and thus a new component is designed. New parts fail
less frequently and/or generate more revenue than old parts. Hence, the OEM has
to decide whether and when to replace the old parts by the new parts and what to
do with the old parts on stock. Therefore, he considers the following implementation
strategies:

• Stay Put: The OEM does not produce any new parts, repairs the old parts if
they fail, and salvages old parts at the end of the horizon.

• Rapid Upgrade: The OEM produces new parts and directly replaces all old
parts by new parts. He salvages the old parts immediately (at the start of the
horizon). The OEM repairs the new parts once they fail, and he salvages new
parts at the end of the horizon.

• Instant Invest: The OEM produces all new parts before the start of the horizon
and decides whether to replace a failed part by a new or old one upon each
failure. He repairs all new failed parts and old parts are salvaged. Salvaging of
old parts occurs during and at the end of the horizon, while salvaging of new
parts only occurs at the end of the horizon.

• Phased Invest: The same strategy as Instant Invest, except for the fact that
the OEM produces some parts before the horizon and some parts arrive after a
number of periods.

159

We present a model that explores all four implementation strategies, and we focus
on the formulations of Instant Invest and Phased Invest because Stay Put and Rapid
Upgrade are fairly easy formulations and they serve as benchmark strategies. For
Instant Invest and Phased Invest, we formulate a finite horizon, discounted, discrete
time Markov decision process that maximizes profit. For these two strategies, we show
that it is not necessarily optimal to replace a failed part by a new part (if available).
However, for practical instances, we do find that new parts (if available) are used
to replace a failed one. Furthermore, we discuss how to optimize the production
quantities of new parts (for Rapid Upgrade, Instant Invest, and Phased Invest) and
the arrival time of the second production order (for Phased Invest).

In our numerical experiments, we illustrate that Stay Put is a good strategy if the
old and new component have nearly identical failure rates and generate revenue at
nearly identical rates. In this case, the OEM is not motivated enough to implement
the new parts. If the difference in the revenue rate between both components is large,
then Rapid Upgrade is the optimal strategy to pursue: the OEM should use the new
parts as soon as possible. For instances in which the new component is marginally
better than the old one, Phased Invest and Instant Invest can increase the expected
profit notably. Thus, the OEM should gradually implement the new parts. Finally,
we find that Phased Invest generates strictly more profit than Instant Invest and this
difference can be notable, but it should be weighted against the increased complexity
of Phased Invest’s formulation and its optimization.

About the author

Joni Driessen was born in Helden (The Netherlands) on November 23, 1988. He
finished his pre–university education at the Willibrord Gymnasium in Deurne (The
Netherlands) in 2007. Thereafter, he obtained a BSc in Industrial Engineering
and Management Science in 2011 and a MSc in Operations Management and
Logistics (cum laude) in 2014, both from Eindhoven University of Technology (The
Netherlands).

In 2014, he started his PhD research at the same university under the supervision
of prof.dr.ir. Geert–Jan van Houtum and dr.ir. Joachim Arts. During this PhD
project, Joni cooperated with a number of companies, in particular with ASML and
Dutch Railways. Furthermore, he visited Carnegie Mellon University in Pittsburgh
(Pennsylvania, United States) for four months to work with prof.dr. Alan Scheller–
Wolf.

	Introduction
	A system life cycle
	Lowering life cycle costs

	Research problems
	Service part effects in commonality and reliability decisions
	Line Replaceable Units
	Implementation of system modifications

	Research objective
	Contributions of thesis
	Service part effects in commonality and reliability decisions
	Line Replaceable Units
	Implementation of system modifications

	Thesis outline

	Service part effects for commonality and reliability
	Introduction
	Literature
	Models
	Anticipating approach
	Non–anticipating approach

	Optimal reliability and stock levels
	Anticipating approach
	Non–anticipating approach
	Comparing optimal reliability decisions

	Commonality decision
	Non–anticipating approach
	Anticipating approach
	Comparing commonality decisions

	Cost effects
	Conclusion
	Proofs
	Poisson distributed demand
	Extra numerical insights

	Design of disjoint Line Replaceable Units
	Introduction
	Literature

	Model
	An illustrative example
	A generic model

	Binary programming formulation
	Set partitioning
	The relationship between M and LPM
	Solving LPM and M

	Numerical experiments
	Instance generator
	Computational results

	Conclusions
	Deriving H(e)

	Design of non–disjoint Line Replaceable Units
	Introduction
	Model
	Binary programming formulation
	Numerical experiments
	Results of C–LRU Design
	Comparing LRU Design to C–LRU Design

	Conclusion
	Numerical examples

	Implementation of system modifications
	Introduction
	Literature
	Model
	Instant Invest
	Phased Invest
	Numerical experiments
	Conclusion
	Stay Put
	Rapid Upgrade

	Conclusions
	Main results
	Service part effects in commonality and reliability decisions
	Line Replaceable Units
	Implementation of system modifications

	Future research

	Bibliography
	Summary
	About the author

