
 

A local measure for perceived contrast

Citation for published version (APA):
van Overveld, W. M. C. J. (1996). A local measure for perceived contrast. (IPO-Rapport; Vol. 1115). Instituut
voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 13/06/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/a85d140d-2968-4277-a981-5ebe2abf164c


lnstitute tor Perception Research 
PO Box 513, 5600 MB Eindhoven 

Rapport no. 1115 

A local measure for perceived 
contrast 

W.M.C.J. van Overveld 

Voor akkoord: Dr.ir. J.B. Martens 

/ 

13.06.1996 



A local measure for perceived contrast 
W.M.C.J. van Overveld 

Summary 

In this report we investigate an objective measure which predicts the subjective, or perceived, 
contrast of an image. The measure, called the "local contrast index", makes use of the local grey­
value distribution in different parts of a grey-value image. This local information is then combined 
into a global measure tor contrast, This contrast measure is an extension of the contrast index as 
introduced by Kayargadde [Kay95]. · 
We check the validity of the contrast measure against the results of three experiments. In one 
experiment, we varied the so-called "gamma" of three X-ray images whilst keeping the luminance 
constant. Subjects were asked to rate the perceived contrast of the images on a scale trom 1 to 
10. In a second experiment, we varied both the physical contrast (the grey-value range) and the 
amount of blur in three X-ray images. Again subjects had to rate the perceived contrast. The third 
experiment was similar to the second, but now the amount of noise was varied simultaneously 
with the contrast. 
We found that the effect of gamma was predicted fairly well: both the contrast indices and the 
experiments showed that perceived contrast increases with gamma. The same holds tor the 
effect of window width: both the perceived contrast and the contrast indices decrease with 
decreasing window width . 
For the sharpness effect, the experiments showed a clear drop of perceived contrast when an 
image was blurred. The contrast index behaved differently tor different images: it either increased 
or decreased with increasing blur, depending on the image. We discuss some reasons tor this 
and possible ways to improve the performance of the contrast index in this case. 
For the effect of noise, finally, we found that perceived contrast dropped only slightly when noise 
was added to an image. This was found in the experiments, but the contrast indices were hardly 
sensitive to the effect of noise. Only in the case of a subtraction image, we found that the contrast 
index dropped with increasing noise. 
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1. lntroduction 

lt is known that brightness contrast plays an important role in the judgement of image quality, 
both tor "natural" images and tor medical images (cf. [RG88], [RKT94], [Ove94], [Ove95]). An 
objective measure of contrast (and preferably one of low computational complexity) can help a 
designer of an imaging system to optimize the image quality produced by the imaging system - or 
at least, to optimize the contrast. 
A few of these objective contrast measures already exist. Lillesaeter [Lil93] describes a proce­
dure tor computing the contrast of an object separated trom a background by a well-defined con­
tour. Peli [Pel90] gives a definition of contrast tor arbitrary images, using a description of the 
image in the trequency domain. The local contrast tor a given frequency band can be computed 
by band-pass and low-pass filtering the image, and dividing the two filtered versions of the 
image. This method, which is quite complex, does not give a single contrast measure that pre­
diets the overall perceived contrast in the image. Such a contrast measure is provided by the 
"global contrast index" as introduced by Kayargadde [Kay95]. Since the contrast measure pro­
posed by us is an extension of the global contrast index, we will explain this index in some detail. 
The computation of the global contrast index starts with a transformation trom the grey value 
image to the luminance image; that is, the luminance produced by the monitor or the combination 
of hard copy unit and view box when the digital grey value image is used as input. The next step 
is the pixel-by-pixel translation trom the luminance image to the (perceived) brightness image. 
For this, the psychometrie lightness formula proposed by the CIE in 1976 (cf. [Hun78]) is used, 
which is basically a power function with a power of 1 /3. 
The histogram of the brightness values is used to estimate the perceived contrast. The width of 
the brightness histogram indicates how large the global contrast is. When the brightness distribu­
tion is uniform, the cumulative histogram is linear and the inverse of the slope of this cumulative 
histogram is proportional to the width of the original brightness histogram. For an arbitrary bright­
ness distribution, linear regression is applied to find a linear part of the cumulative histogram and 
the inverse of the slope of this linear part is used as the global contrast index. To avoid instability 
of the linear regression due to isolated points at the lower and upper ends of the histogram, the 
algorithm only uses the part of the histogram between the cumulative tractions of 5% and 95%. 
Also, only the brightness values between 5 and 95 are used (where the brightness is computed 
on a scale trom O to 100).The procedure is illustrated in Figure 1. 
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FIGURE 1. Hypothetical cumulative brightness histogram with indication of the part used tor 
linear regression. 

We have extended the notion of "contrast index" as described in Section 2. This new type of con­
trast index is verified by means of three experiments, described in Sections 3 through 5. Final 
discussion and conclusions are given in Section 6. 
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2. The local contrast Index 

In this report, we extend the concept of the global contrast index toa "local contrast index". The 
reason for this is that we expect perceived contrast not to be exclusively determined by the 
dynamic range of the grey values or brightness. Apart from such global aspects of contrast, it is 
likely that local aspects play a role as well. We can think of things like local dynamic range and 
"edge contrast" (which is probably closely related to sharpness). lf local aspects of contrast play 
a role, we may try to capture these by computing the contrast index (as defined in Section 1) in 
some small region. The contrast in such a region will be called a "local contrast index". The local 
contrast indices in different regions can then be combined into one overall contrast index. 
In order to keep the complexity of the computation of the overall contrast index fairly low, we 
divide a - square - image into square windows where horizontal or vertical neighbouring windows 
have 50% overlap: thus we use windows of size 2m (m still has to be specified) with a sampling 
distance of m. lf we take just one window with size equal to the image size, then the local con­
trast index computed in this region is the same as the global contrast index defined before. By 
taking smaller and smaller windows, local effects of contrast will contribute more and more to the 
overall contrast index. However, if we make the windows too small, we run into problems with the 
linear regression. This will become very inaccurate when based on too few points. Also, if we 
consider a mondrian-like image with many small homogeneous regions, we would find a local 
contrast index of O in most of the windows, so that the overall contrast index is also likely to be 
small (although of course this depends on the combination rule, which we haven't specified yet) . 
Vet the small homogeneous regions may have very different grey values so that the perceived 
contrast may be high. 
As a compromise, we decided to follow the approach used for adaptive histogram equaliZation 
(cf. [PZS84]).Thus as a first guess, we take windows of width 1/8 times the width of the image. 
However, to study the effect of the window size we also consider windows of size 1/4 and 1/16 
times the image width, respectively. 
As for the combination of the various local indices into one overall index, we opt for a Minkowski 
sum: 

(1) 

In the above formula, w is an arbitrary window, Cw is the local contrast index computed in win­
dow w, and nw is the number of windows in which the local contrast index can be computed (see 
below). C0 is the overall contrast index. We do not use all windows in the computation, for rea­
sons al ready indicated above: when the "useful" part of the cumulative brightness histogram 
(between 5 and 95, and 5% and 95%) consists of too few points, we discard the local contrast 
index computed for that window and we exclude it from the Minkowski sum. We take a limit of 1 o 
pixels. 
We also exclude windows for which the local contrast index is close to zero. These values corre­
spond to nearly homogeneous regions. From the literature (e.g. , the first three chapters of 
[Gil94]) it is known that the human visual system uses intensity gradients (luminance edges) as a 
first stage in the encoding of image information, so that brightness and contrast impressions are 
also based on regions in which the intensity varies. 
The choice of a Minkowski sum is motivated by the literature (e.g. [Rid92]), where this combina­
tion rule is used to describe the combined effect of different perceptual attributes. The parameter 
p can be used to control the contribution of isolated regions with high contrast: for p=1, the con­
trast indices of all regions are weighted equally, and with increasing p, the regions with higher 
contrast index will get larger weights. As a limit case, for p infinitely large, the sum is equal to the 
largest one among the contributing terms. In fact it is easy to show that the Minkowski sum is a 
monotonously increasing function of p. To find out which value of p best fits the experimental 
data, we have used values of p equal to 1, 2 and 3 in our computations. 
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3. Experiment 1: gamma variation 

Stimuli 
The set-up of the experiment (method, stimuli, and viewing conditions) is the same as described 
in [Ove94], "Experiment 2". We used three angiographic images, hereafter called "scenes". 
These images had been digitally acquired in hospitals using an X-ray system with an image 
intensifier and a camera and consisted of 512 by 512 pixels. The scenes will be referred to as fol­
lows: 

• "contr'': a lateral image of the neck, jaw and part of the shoulder, showing the carotid artery in 
non-subtracted, positive contrast mode (dense regions are black). Some overexposure has 
occurred on the outside of the neck. 

• "ksub": a subtracted image of the kidney and the vessels feeding the kidney. The background 
is bright, the kidney is medium grey and the vessels are dark. Very thin low-contrast vessels 
(around a tumour) are visible in the original image. 

• "i32": a non-subtracted AP view of the upper part of the chest and the left shoulder, with con­
trast liquid in the subclavian artery. The brightest parts of this image are in the lung area, but 
there is no overexposure. 

The contrast of the images was changed by changing the grey-value-to-luminance exponent 
gamma. We used hard copy images. The hard copy had a g-to-L (or actually g-to-D) character­
istic of its own, but we changed this using look-up tables (LUTs), toa gamma curve with variable 
gamma "fv: 

Yv 
L =Cv· g (2) 

Here g is the 8-bit digital grey value (the digitized video level at the output of an image intensifier­
TV chain) and Lis the luminance as measured on a patch of film with grey value g when this film 
is mounted on a view box with a given luminance Lbox· The multiplicative constant Cv varied with 
gv to keep the average luminance in an image constant with varying 'Yv (without this, the image 
would get darker with increasing 'Yv ).The value of Cv was determined using the grey value histo­
gram of an image, where the black backgrounds of the images were excluded from the histogram 
in these computations. We used 'Yv = 1.5 through 6.0 with increments of 0.75. 

Method 
Images were viewed on a view box having a luminance of Lbox = 2000 cd/m2, which is a com­
mon value for view boxes encountered in hospitals. The viewing distance was 50 cm - a natural 
distance fora radiologist standing in front of a view box - and the radius of the images was 
12 cm. Thus the viewing angle was 13 degrees. To mimic the low level of ambient light in the 
average hospita! viewing room, we put a desk lamp behind the view box, which illuminated a 
white wall. The luminance reflecting from the front of the view box was 1 cd/m2, corresponding to 
70 cd/m2 being reflected from the white wall. 
All seven stimuli corresponding to one scene (the seven different gamma values) were mounted 
next to each other on a view box, in a random order. The remaining parts of the view box were 
completely covered. Subjects had to express the contrast of each image on a scale from 1 to 1 o. 
We used 16 subjects in this experiment: 8 non-experts and 8 radiologists. None of these had any 
previous experience with image quality experiments. All subjects had normal or corrected-to-nor­
mal visual acuity. 

Results 
We performed the following analysis of the contrast scores. To correct for the fact that one sub­
ject may only use scale values from 1 to 6 while another uses 4 to 1 O, we first computed z scores 
(by subtracting per subject the score averaged over the stimuli and dividing by the standard devi­
ation). We averaged the z scores over the 16 subjects and transformed these back to the original 
scale values. Since we found no significant differences between the scores of non-experts and 
experts, we averaged the results over all subjects irrespective of their level of expertise. 
The results are shown as the solid lines in Figures 2-4 below (after a linear transformation of the 
scores which will be described below). 
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Furthermore we computed the local contrast index tor each of these images by taking all combi­
nations of m and p with m = 16, 32 and 64; p = 1, 2 and 3. We also computed the global index by 
taking m = 256. The plots in Figures 2-4 show the 10 versions of the contrast index each time 
compared to the experimental data. The horizontal axis shows the seven different gamma values 
used, and the vertical axis shows the contrast scores and contrast index values. We linearly 
scaled the experimental data such that the square error between the data and the contrast index 
was minimum. The correlation coefficient r between the experimental data and the theoretica! 
predictions is also given in each plot. 

Discussion 
We see that all contrast measures give a good prediction of the perceived contrast, but the local 
contrast indices work better than the global ones. lntermediate window sizes generally give the 
highest correlation with the experimental results, and p=1 gives the best result tor most scenes 
and window sizes. Still the effect of p and m is extremely small. 
Further discussion is postponed to the final section. 
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4. Experiment 2: effect of sharpness 

Stimuli and method 
This experiment was meant to study perceived contrast in the presence of unsharpness: to see 
how both the experimentally assessed contrast and the objective measures behave when physi­
cal contrast (the grey value range) is varied simultaneously with physical blur (the kemel size of a 
Gaussian blurring filter). For this experiment, we used three different medica! images, as in 
[Ove95]: the subtraction angiogram "eer" and the contrast angiograms "kid" and "leg". 
Variation of physical contrast was done through linear windowing of the grey value range, with 
different window widths (i.e., ranges), keeping the average brightness constant by adjusting the 
window level (i.e., offset). In this case, constant brightness means: a constant average grey 
value. This is true because the hard copy unit contains a perceptually linearizing LUT, cf. [Piz81]. 
Variation of sharpness was achieved through linear filtering with Gaussian filters of different ker­
nel widths. The filters were applied to the images after the contrast variation had taken place. We 
used four levels of contrast: window widths of 100, 150, 200 and 255 in terms of grey values. We 
also used four levels of blur: Gaussian kemels with a radius of 0, 1, 2 and 3 pixels. We refer to 
these as blur levels O through 3 (note that blur level O means "no blur''). Thus we had 4 x 4 = 16 
stimuli per scene. These were viewed on the view box in exactly the same set-up as in Experi­
ment 1, except for the fact that stimuli were arranged in a 4x4 matrix instead of in one row. Eight 
subjects participated in the experiment, none of whom had any medica! background. Each image 
was assessed four times, where in each of the four presentations, the images were shown in a 
spatially different random order. 
After the experimental session, each subject was asked to point out the details which he or she 
had used for the contrast judgement. In th is way we could find out to which extent global and 
local image aspects played a role. 

Results 
We averaged the four scores assigned to a stimulus per subject and, since the results of different 
subjects agreed well, we also averaged over the eight subjects. The results are show in Figures 5 
to 7. Here we do not show the experimental data and the contrast indices in one graph as in the 
previous section, because we already have four curves in each plot due to the four blur levels. 
Again , the physical contrast parameter is shown on the horizontal axis (in this case, the window 
width in grey value units) and the perceived contrast is shown on the vertical axis. The length of 
the error bars indicates twice the standard error in the mean (over the 8x4 observations). In all 
plots in this section, the solid line depicts the images with the highest sharpness; and the shorter 
the dashes, the more blurred the images are. 
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FIGURE 5. Experimentally determined perceived contrast for scene "eer" when physical 
contrast and blur are varied. 
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We also computed local contrast indices for different values of m and p, as described in Sections 
2 and 3. Since these images consisted of 1024 x 1024 pixels instead of 512 x 512 as in Experi­
ment 1, however, we doubled the window sizes (parameter m) compared to those of Experiment 
1. The results are shown in Figures 8 to 1 0, where the ten different contrast indices are arranged 
into ten plots in a configuration similar to Figures 2 to 4. 
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Discussion 
First we discuss the experimental results. From Figures 5-7 it is observed that perceived contrast 
increases with window width and it decreases with the size of the Gaussian filter kemel. This is 
found for all three scenes, and also for all individual subjects (although a drop in sharpness has a 
stronger effect on perceived contrast for some subjects than for others). 
This is confirmed by the subjects' remarks: most of them looked at the visibility of thin blood ves­
sels and other fine details, which was clearly affected by blur. Thus the contrast judgements were 
lower for blurred images. 
As for the objective contrast measures, we find that these behave very differently for the three 
scenes. The figures for scene "eer'' show that the local contrast indices tend to increase with 
increasing blur levels, which is contrary to the experimental findings. In some extreme cases 
(small m and large p), blur has even a much larger effect than physical contrast: for the least 
sharp images, the contrast indices do not even increase with physical contrast. The fact that the 
objective measures do not correlate well with the scores found in the subjective experiment is 
supported by the correlation coefficients we find when we try to obtain a best fit for the experi­
mental data to the objective measures, like we did in the case of Experiment 1. When we apply a 
linear sealing to the scores of the experiment, we have to apply the same sealing to all stimuli 
that have been compared to each other: thus to all stimuli of a single scene. The correlation coef­
ficients of the experimental data with each of the ten different local contrast indices are given in 
the following tables (organized in the same configuration as the plots in Figures 8 to 10) . 

. 323 -.068 -.126 

.505 .404 .444 

.879 .820 .741 

.919 

Table 1: Correlation coefficients of contrast indices and experimental scores, scene "eer'' 

.944 .940 .928 

.954 .962 .969 

.947 .944 .943 

.927 

Table 2: Correlation coefficients of contrast indices and experimental scores, scene "kid" 

.841 .799 .722 

.860 .863 .873 

.874 .875 .877 

.898 

Table 3: Correlation coefficients of contrast indices and experimental scores, scene "leg" 

An explanation for the bad fit of the "eer'' data can be found in the fact that the brightness histo­
gram of this scene is extremely peaked. Fora local histogram, only very bright and very dark 
regions might occur, so that it is difficult to find a reliable estimate of the slope of the cumulative 
histogram. 
Also, it can be seen that if we blur this image, the dark regions are spread over a larger area. 
Thus the black regions will contribute more to the brightness histogram (discarding the bottom 
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5%) after blurring, so that the dark parts get more weight in the linear regression and the slope 
will become smaller. 
For the other two scenes, we find smaller effects of the blur, but the effects are contrary for the 
two scenes: for the "kid" scene we see that blur lowers the contrast index and for "leg" the oppo­
site holds. 
When taking all scenes and window sizes into account, the best fits are generally found for small 
p values. For "kid", intermediate m values give the best results, but for the other two scenes, the 
global contrast index is better than any of the local ones. 

One might think that local contrast indices should be able to describe the effects of blurring better 
than a global index, because of the local nature of the measurements. However, this was not 
found in our data. This could be due to the fact that local aspects of contrast can be divided into 
two types of effects (as mentioned in the beginning ofSection 2) : the local dynamic range and 
edge etfects. Local dynamic range effects may be explained using a local contrast index as pro­
posed in this report, but edge effects probably play a role in a much smaller environment than the 
size of the windows we used. This latter type of contrast can only be described by some edge­
finding procedure and a measurement of the "strength" of the edge, i.e. the luminance difference 
at either side of the edge. 
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5. Experiment 3: effect of noise 

The experiment described in this section is similar to Experiment 2, but naw the amount of noise 
was varied instead of the amount of blur. We first varied the noise in each of the scenes, using a 
computer package to simulate the effect of a varying X-ray dose. Thus noise with a Poisson dis­
tribution was computed tor each image, this noise pattern was filtered by the MTF of the imaging 
chain, and this filtered noise was added to the original image. For more details about this proce­
dure, the reader is referred to [Ove95]. We used tour different noise levels, indicated by 1 to 4 
where 1 is the lowest noise level (the highest X-ray dose). The contrast variation following the 
noise variation was the same as in Experiment 2. 
The results were treated in the same way as in the previous experiment. Figures 11 through 13 
show the result of the sealing experiments and Figures 14 through 16 show the corresponding 
results of contrast index computations. 
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Discussion 
In the results of the subjective experiments, we see a small but significant effect: perceived con­
trast slightly decreases with noise. This was found tor all three scenes, and it also holds tor all 
individual subjects. In the case of scene "eer'', this was confirmed by the subjects' remarks: most 
of them mentioned that the background in the subtraction gets darker when noise is added, so 
that the (dark) vessels don't stand out trom the background as well as in the case of the lowest 
noise level. For the other two scenes, we found the same effect, but there the subjects did not 
mention it explicitly. 
As tor the objective contrast measures, we find that these are not very sensitive to noise. Con­
trast indices drop a little when noise is added tor scenes "eer'' and "leg", but not tor "kid". Note 
that the effect is strongest tor "eer'', tor the largest window width. This indicates that it is actually a 
global effect of the darkening of the background, as mentioned by the subjects. 
To find out how well the contrast indices correlate with the experimental data, we computed the 
correlation coefficients as described in the previous section. lt is seen that all correlations are 
fairly high, and that the largest value of p seems - marginally - optimal. lf we compare the graphs 
in Figures 11 to 16 visually, it would seem that the experimentally found interaction of contrast 
and noise is captured best by the objective measure tor scene "eer'', but this is not reflected in the 
correlation coefficients, which are actually lowest tor this scene . 

.967 . 973 .974 

.972 .978 .981 

.973 .976 .979 

.965 

Table 4: Correlation coefficients of contrast indices and experimental scores, scene "eer'' . 

.978 .980 . 982 

.978 .980 .980 

.979 .979 .980 

.980 

Table 5: Correlation coefficients of contrast indices and experimental scores, scene "kid" . 

.979 . 982 .982 

.979 .980 .981 

.980 .979 .980 

.979 

Tab/e 6: Correlation coefficients of contrast indices and experimental scores, scene "leg". 
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6. Conclusions and discussion 

A number of conclusions can be drawn from the experiments described in this report. First of all , 
we have found how changes in physical sharpness and noise affect the perceived contrast of an 
image: a decrease in sharpness induces a lower perceived contrast, and an increase in noisi­
ness brings about a slightly lowered perceived contrast. This holds for all scenes and tor all 
observers. 
Secondly, we have studied how well perceived contrast can be described by an objective meas­
ure called the local contrast index. We have seen that fairly high correlations can be obtained tor 
a wide range of parameter choices (p and m). Among the values we tried, the choice p=1 gives 
the best overall results (taken over Experiments 1-3). As for the window size m, we have not 
found one value giving optimum results for all cases. Generally, most window sizes give reasona­
ble to good results. In particular, the global contrast index also does fairly well in genera!, 
although it is usually outperformed by a local contrast index with an intermediate window size (in 
Experiments 1 and 3). Only when the image is corrupted by blur (Experiment 2) and the bright­
ness histogram is strongly non-uniform, the global contrast index gives the best prediction of the 
perceived contrast. 
The fact that blur is not described well by the contrast index was found previously by Teunissen 
[Teu96]. He found this for the global contrast index; here we have shown that the localized ver­
sion of this does even worse. In fact, the smaller the window size, the worse the prediction for two 
of the three scenes. This is quite counterintuitive, since one would expect the local effects of blur­
ring to be reproduced best by the smallest window size. We see that smaller windows indeed 
have a large effect on the outcome of the computations, but the effect is contrary to the empirica! 
observations. An explanation of this finding is given at the end of Section 4. 
To better describe the effect of blur, we might use a separate measure of perceived sharpness 
(such as the one developed in [Kay95], [KM94]) and to base the final contrast measure both on 
the contrast index as computed here and on the sharpness measure. · 
Other possible extensions of the contrast measure presented here are: 1) a multiresolution 
approach (computing contrast indices over various window sizes, or scales), and 2) a feature­
based approach (first finding features such as edges in an image and deriving the local contrast 
trom differences in brightness in the neighbourhood of such a feature, more or less like [Lil93]). 
Both methods would require an extra combination rule by which to average the contrast indices 
computed at different scales and/or locations. Such approaches are however considerably more 
complex to implement than the one proposed here and tor that reason they fall outside the scope 
of this report. 
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