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Umberto Mart́ınez-Peñas · Ruud Pellikaan

Received: date / Accepted: date

Abstract Error-correcting pairs were introduced as a general method of decoding
linear codes with respect to the Hamming metric using coordinatewise products
of vectors, and are used for many well-known families of codes. In this paper, we
define new types of vector products, extending the coordinatewise product, some
of which preserve symbolic products of linearized polynomials after evaluation and
some of which coincide with usual products of matrices. Then we define rank error-
correcting pairs for codes that are linear over the extension field and for codes that
are linear over the base field, and relate both types. Bounds on the minimum rank
distance of codes and MRD conditions are given. Finally we show that some well-
known families of rank-metric codes admit rank error-correcting pairs, and show
that the given algorithm generalizes the classical algorithm using error-correcting
pairs for the Hamming metric.

Keywords Decoding · error-correcting pairs · linearized polynomials · rank
metric · vector products.
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1 Introduction

Error-correcting pairs were introduced independently by Pellikaan in [20,21] and
by Kötter in [14]. These are pairs of linear codes satisfying some conditions with
respect to the coordinatewise product and a given linear code, for which they define
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Department of Mathematical Sciences, Aalborg University, Denmark
E-mail: umberto@math.aau.dk

Ruud Pellikaan
Department of Mathematics and Computing Science, Eindhoven University of Technology, The
Netherlands
E-mail: g.r.pellikaan@tue.nl



2 Umberto Mart́ınez-Peñas, Ruud Pellikaan

an error-correcting algorithm with respect to the Hamming metric in polynomial
time.

Linear codes with an error-correcting pair include many well-known families,
such as (generalized) Reed-Solomon codes, many cyclic codes (such as BCH codes),
Goppa codes and algebraic geometry codes (see [7,21,22]).

Error-correcting codes with respect to the rank metric [9] have recently gained
considerable attention due to their applications in network coding [26]. In the
rank metric, maximum rank distance (MRD) Gabidulin codes, as defined in [9,
15], have been widely used, and decoding algorithms using linearized polynomials
are given in [9,15,17]. A related construction, the so-called q-cyclic or skew cyclic
codes, were introduced by Gabidulin in [9] for square matrices and generalized
independently by himself in [10] and by Ulmer et al. in [2].

However, more general methods of decoding with respect to the rank metric
are lacking, specially for codes that are linear over the base field instead of the
extension field.

The contributions of this paper are organized as follows. In Section 3, we intro-
duce some families of vector products that coincide with usual products of matri-
ces for some sizes. One of these products preserves symbolic products of linearized
polynomials after evaluation and is the unique product with this property for some
particular sizes. In Section 4, we introduce the concept of rank error-correcting pair
and give efficient decoding algorithms based on them. Subsection 4.1 treats linear
codes over the extension field, and Subsection 4.2 treats linear codes over the base
field. In Section 5, we prove that the latter type of rank error-correcting pairs
generalize the former type. In Section 6, we derive bounds on the minimum rank
distance and give MRD conditions based on rank error-correcting pairs. Finally,
in Section 7, we study some families of codes that admit rank error-correcting
pairs, showing that the given algorithm generalizes the classical algorithm using
error-correcting pairs for the Hamming metric.

2 Preliminaries

2.1 Notation

Fix a prime power q and positive integers m and n, and fix from now on a basis
α1, α2, . . . , αm of Fqm over Fq. Fnqm denotes the Fqm -linear vector space of row
vectors over Fqm with n components, and Fm×nq denotes the Fq-linear vector space
of m× n matrices over Fq.

We will also use the following notation. Given a subset A ⊆ Fnqm , we denote
by 〈A〉Fq

and 〈A〉Fqm
the Fq-linear and Fqm -linear vector spaces generated by A,

respectively. For an Fqm -linear (respectively Fq-linear) code C ⊆ Fnqm (respectively
C ⊆ Fnq ), we denote its dimension over Fqm (respectively over Fq) by dim(C). If
C ⊆ Fnqm or C ⊆ Fm×nq is Fq-linear, we denote its dimension over Fq by dimFq

(C).

2.2 Rank-metric codes

In the literature, it is usual to consider two types of rank-metric codes: Fqm -linear
codes in Fnqm , and Fq-linear codes in Fm×nq .
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We will use the following classical matrix representation of vectors in Fnqm to
connect both types of codes. Let c ∈ Fnqm , there exist unique ci ∈ Fnq , for i =
1, 2, . . . ,m, such that c =

∑m
i=1 αici. Let ci = (ci,1, ci,2, . . . , ci,n) or, equivalently,

c = (c1, c2, . . . , cn) and cj =
∑m
i=1 αici,j . Then we define the m× n matrix, with

coefficients in Fq,
M(c) = (ci,j)1≤i≤m,1≤j≤n. (1)

The map M : Fnqm −→ Fm×nq is an Fq-linear vector space isomorphism. Unless it
is necessary, we will not write subscripts for M regarding the values m, n, or the
basis α1, α2, . . . , αm (which of course change the map M).

By definition [9], the rank weight of c is wtR(c) = Rk(M(c)), the rank of the
matrix M(c), for every c ∈ Fnqm . We also define the rank support of c as the
row space of the matrix M(c), that is, RSupp(c) = Row(M(c)) ⊆ Fnq . We may
identify any non-linear or Fq-linear code C ⊆ Fnqm with M(C) ⊆ Fm×nq and write
dR(C) = dR(M(C)) for their minimum rank distance [9].

2.3 Hamming-metric codes as rank-metric codes

We briefly discuss how to see Hamming-metric codes as rank-metric codes. We
define the map D : Fnq −→ Fn×nq as follows. For every vector c ∈ Fnq , define the
matrix

D(c) = diag(c) = (ciδi,j)1≤i≤n,1≤j≤n, (2)

that is, the diagonal n× n matrix with coefficients in Fq whose diagonal vector is
c. The map D is Fq-linear and one to one. Moreover, the Hamming weight of a
vector c ∈ Fnq is wtH(c) = Rk(D(c)).

This gives a way to represent error-correcting codes C ⊆ Fnq in the Ham-
ming metric as error-correcting codes D(C) ⊆ Fn×nq in the rank metric, where
the Hamming weight distribution of C corresponds bijectively to the rank weight
distribution of D(C). In particular, the minimum Hamming distance of C satisfies
dH(C) = dR(D(C)).

On the other hand, let φ : C1 −→ C2 be an Fq-linear Hamming-metric equiv-
alence between Fq-linear codes C1, C2 ⊆ Fnq . It is well-known that φ is a mono-
mial map, that is, there exist a1, a2, . . . , an ∈ F∗q and a permutation σ with
φ(c) = (a1cσ(1), a2cσ(2), . . . , ancσ(n)), for all c ∈ C1. We may trivially extend
this map to a rank-metric equivalence φ′ : D(C1) −→ D(C2) by the same for-
mula. Hence Hamming-metric equivalent codes correspond to rank-metric equiva-
lent codes.

2.4 Error-correcting pairs for the Hamming metric

We conclude by defining error-correcting pairs (ECPs) for the Hamming metric,
introduced independently by Pellikaan in [20,21] and by Kötter in [14]. Define the
coordinatewise product ∗ of vectors in Fnq by

a ∗ b = (a1b1, a2b2, . . . , anbn),

for all a,b ∈ Fnq . For two linear subspaces A,B ⊆ Fnq , we define the linear subspace
A ∗ B = 〈{a ∗ b | a ∈ A,b ∈ B}〉 ⊆ Fnq .
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Definition 1 Let A,B, C ⊆ Fnq be linear codes and t a positive integer. The pair
(A,B) is called a t-error-correcting pair (t-ECP) for C if the following properties
hold:

1. A ∗ B ⊆ C⊥.
2. dim(A) > t.
3. dH(B⊥) > t.
4. dH(A) + dH(C) > n.

In [20,21] it is shown that, if C has a t-ECP, then it has a decoding algorithm
with complexity O(n3) that can correct up to t errors in the Hamming metric
(and therefore, dH(C) ≥ 2t+ 1). This algorithm is analogous to the ones that we
will describe in Subsections 4.1 and 4.2. Actually, as we will see in Subsection
7.1, the algorithm presented in Subsection 4.2 extends the classical algorithm for
Hamming-metric codes.

3 Vector products for the rank metric

In this section, we define and give the basic properties of a family of products of
vectors in Fnqm , which will play the same role as the coordinatewise product ∗ for
vectors in Fnq .

Definition 2 We first define the product ? : Fmqm × Fnqm −→ Fnqm in the following
way. For every c ∈ Fmqm and every d ∈ Fnqm , we define

c ? d =
m∑
i=1

cidi,

where d =
∑m
i=1 αidi and di ∈ Fnq , for all i = 1, 2, . . . ,m, and c = (c1, c2, . . . , cm).

Note that the second argument of ? and its codomain are the same, whereas its
first argument is different if m 6= n.

On the other hand, given a map ϕ : Fnqm −→ Fmqm , we define the product
?ϕ : Fnqm × Fnqm −→ Fnqm in the following way. For every c,d ∈ Fnqm , we define

c ?ϕ d = ϕ(c) ? d =
m∑
i=1

ϕ(c)idi,

where d =
∑m
i=1 αidi and di ∈ Fnq , for all i = 1, 2, . . . ,m, and ϕ(c) = (ϕ(c)1, ϕ(c)2,

. . . , ϕ(c)m).

Remark 1 The following basic properties of the previous products hold:

1. The product ? depends on the choice of the basis α1, α2, . . . , αm of Fqm over
Fnq , whereas the coordinatewise product ∗ does not.

2. The product ? is Fqm -linear in the first component and Fq-linear in the second
component.

3. If ϕ is Fq-linear, then the product ?ϕ is Fq-bilinear.
4. On the other hand, if ϕ is Fqm -linear, then the product ?ϕ is Fqm -linear in the

first component and Fq-linear in the second component.
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It is of interest to see if two maps give the same product:

Lemma 1 Given maps ϕ,ψ : Fnqm −→ Fmqm , it holds that ?ϕ = ?ψ if, and only if,
ϕ = ψ.

Proof Fix i and take d ∈ Fnqm such that di = e1, the first vector in the canonical
basis of Fnq and dj = 0, for j 6= i. Since c?ϕd = c?ψd, it follows that ϕ(c)i = ψ(c)i.
This is valid for an arbitrary i, hence ϕ(c) = ψ(c), for any c ∈ Fnqm , which implies
that ϕ = ψ. The reverse implication is trivial.

One of the most important properties of the coordinatewise product ∗ is that it
preserves multiplications of polynomials after evaluation. We now define a natural
product that will preserve symbolic multiplications of linearized polynomials after
evaluation.

Definition 3 (q-linearized polynomials) A q-linearized polynomial over Fqm
is a polynomial of the form

F = a0x+ a1x
[1] + · · ·+ adx

[d],

where a0, a1, . . . , ad ∈ Fqm and [i] = qi, for all i ≥ 0.

These polynomials induce Fq-linear maps in any extension field of Fqm .

Definition 4 (Evaluation map) For a vector b ∈ Fnqm , we will define the eval-
uation map

evb : LqFqm [x] −→ Fnqm

by evb(F ) = (F (b1), F (b2), . . . , F (bn)), for F ∈ LqFqm [x].

We start by the following interpolation lemma, where we denote by LqFqm [x]
the set of q-linearized polynomials over Fqm .

Lemma 2 If n ≤ m, and c ∈ Fnqm , there exists a unique q-linearized polynomial
F ∈ LqFqm [x] of degree strictly less than qn = [n] such that F (αi) = ci, for all
i = 1, 2, . . . , n.

Proof Consider the evaluation map evα : LqFqm [x] −→ Fnqm for the vector α =
(α1, α2, . . . , αn).

Since it is Fqm -linear and the Fqm -linear space of q-linearized polynomials of
degree less than [n] has dimension n, it is enough to prove that, if F (αi) = 0, for
i = 1, 2, . . . , n, then F = 0.

By the linearity of F , we have that F (
∑
i λiαi) =

∑
i λiF (αi) = 0, for every

λ1, λ2, . . . , λn ∈ Fq. Therefore, F has qn different roots and degree strictly less
than qn, hence F = 0, and we are done.

Now we may define the desired products:

Definition 5 If n ≤ m, we denote by Fc the q-linearized polynomial of degree
less than [n] corresponding to c ∈ Fnqm .

For c ∈ Fnqm and n ≤ m, we define the vector ϕn(c) ∈ Fmqm as ϕn(c)i = Fc(αi),
for i = 1, 2, . . . ,m. If n ≥ m, we define ϕn(c) = (c1, c2, . . . , cm).

Finally, we will define the product ? = ?ϕn : Fnqm×Fnqm −→ Fnqm (see Definition
2).
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Note that if m = n, both definitions of ϕn lead to ϕn(c) = c. Also note that
ϕn depends on the basis α1, α2, . . . , αm for n < m, while it does not for n ≥ m.

When m = n, the product ? in the previous definition coincides with the
product ? in Definition 2, whereas if m 6= n, then there is no confusion between
these products, since the first argument is different. Hence the meaning of ? is
clear from the context.

In the following remark we show how to perform interpolation using symbolic
multiplications of linearized polynomials. Recall that the symbolic multiplication
of two linearized polynomials F,G ∈ LqFqm [x] is defined as their composition
F ◦G, which lies in LqFqm [x].

Remark 2 Interpolation as presented in Lemma 2 can be performed as follows.
First, we see that the map c ∈ Fnqm 7→ Fc is Fqm -linear. Therefore,

Fc =
n∑
i=1

ciFei ,

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the i-th vector in the canonical basis of Fnqm
over Fqm , for i = 1, 2, . . . , n. On the other hand, it holds that

Fei =
Gi

Gi(αi)
, where Gi =

∏
β∈〈αj |j 6=i〉

(x− β),

and where 1 ≤ j ≤ n. The polynomial Gi/Gi(αi) in this expression is well-defined
since αi does not belong to the Fq-linear vector space generated by the elements
αj , for j 6= i, and the expression in the numerator is a q-linearized polynomial by
[16, Theorem 3.52] and has degree less than qn. However, the complexity of con-
structing Gi in this way is of O(qn−1) conventional multiplications. The following
expression shows how to compute Gi with O(n− 1) symbolic multiplications:

Gi = Li,n ◦ Li,n−1 ◦ · · · ◦ L̂i,i ◦ · · · ◦ Li,2 ◦ Li,1,

where Li,1 = x[1] − (α
[1]
1 /α1)x and, for j = 2, 3, . . . , n,

Li,j = x[1] − (L̃i,j(αj)
[1]/L̃i,j(αj))x

and L̃i,j = Li,j−1 ◦ · · · ◦ L̂i,i ◦ · · · ◦ Li,2 ◦ Li,1. The notation L̂i,i means that the
polynomial Li,i is omitted.

Next we see the linearity properties of the maps ϕn and hence of the product ?.

Lemma 3 For any values of m and n, the map ϕn : Fnqm −→ Fmqm is Fqm-linear.

Proof For n ≥ m, it is clear. For n ≤ m, it is enough to note that Fγc+δd =
γFc + δFd as in the remark above, for all γ, δ ∈ Fqm and all c,d ∈ Fnqm .

The interesting property of the product ? is that it preserves symbolic multi-
plications of linearized polynomials, as we will see now, and in the case n ≤ m, it
is the unique product with this property.

From now on, we denote αn = (α1, α2, . . . , αn) if n ≤ m, and we complete the
vector with other elements if n > m, αn = (α1, α2, . . . , αm, γ1, γ2, . . . , γn). We
will also denote α = (α1, α2, . . . , αm). Observe that ϕn(αn) = α in all cases, and

moreover, ϕn(α
[j]
n ) = α[j], if j < n.
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Proposition 1 The following properties hold:

1. α[j] ? c = c[j], for all c ∈ Fnqm and all j. In particular,

evb(F ◦G) = evα(F ) ? evb(G),

for all b ∈ Fnqm and all F,G ∈ LqFqm [x].

2. α
[j]
n ? c = c[j], for all c ∈ Fnqm and all j < n. In particular,

evb(F ◦G) = evαn(F ) ? evb(G),

for all b ∈ Fnqm and all F,G ∈ LqFqm [x], where F has degree strictly less than
[n].

3. If n ≤ m, then ? is associative, that is, a ? (b ? c) = (a ? b) ? c, for all
a,b, c ∈ Fnqm .

Moreover, if n ≤ m, and if � is another product that satisfies item 2 for b = αn
(or item 1 for b = α), then � = ?. In particular, by Lemma 1, if ?ϕ satisfies this
property, then ϕ = ϕn.

Proof 1. The first part follows from the following chain of equalities:

α[j] ? c =
m∑
i=1

α
[j]
i ci =

(
m∑
i=1

αici

)[j]

= c[j].

The second part follows from the first part, since α[j] = evα(x[j]) and therefore,

evα(x[j]) ? evb(G) = evb(G)[j] = evb(G[j]) = evb(x[j] ◦G).

Hence the item follows since ? is Fqm -linear in the first component, by Remark
1 and Lemma 3.

2. It follows from item 1, since ϕn(α
[j]
n ) = α[j], if j < n.

3. It follows from item 2, since evαn is surjective (by Lemma 2) and symbolic
multiplication of linearized polynomials is associative.

If n ≤ m, the last part of the proposition follows from the fact that evαn (or
evα) is surjective, which follows from Lemma 2.

We will now give a matrix representation of the products ?ϕ, and show that
the product ? actually extends the product ∗. For that purpose, we define the
“extension” map E : Fnq −→ Fnqn by E = M−1 ◦ D (recall Subsection 2.2 and
Subsection 2.3), which is Fq-linear and one to one. In other words,

E(c) = (α1c1, α2c2, . . . , αncn), (3)

for all c ∈ Fnq , which satisfies that wtR(E(c)) = wtH(c). We gather in the next
proposition the relations between the products ?ϕ and ∗, and the maps M,D and
E. The proof is straightforward.
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Proposition 2 For all values of m and n, all maps ϕ and all vectors c′ ∈ Fmqm
and c,d ∈ Fnqm , we have that

M(c′ ? d) = M(c′)M(d) and M(c ?ϕ d) = M(ϕ(c))M(d).

On the other hand, if m = n and a,b ∈ Fnq , then

D(a ∗ b) = D(a)D(b) and E(a ∗ b) = E(a) ? E(b).

Hence, the product ? : Fmqm × Fnqm −→ Fnqm is just the usual product of m×m
matrices with m× n matrices over Fq, whereas the products ?ϕ are also products
of matrices after expanding the m× n matrix in the first argument to an m×m
matrix over Fq.

4 Rank error-correcting pairs

We will define in this section error-correcting pairs (ECPs) for the rank metric,
using the products ? and ?ϕ (recall Definition 2 and Definition 5). However, which
inner product to use for defining orthogonality and duality in Fnqm , or in Fm×nq , is
not clear. First of all, we will always use the standard (Fq-bilinear) inner product
· in Fnq . On the other hand, we will first present ECPs in Fnqm that use the (Fqm -
bilinear) “extension” inner product,

c · d = c1d1 + c2d2 + · · ·+ cndn ∈ Fqm , (4)

for all c = (c1, c2, . . . , cn),d = (d1, d2, . . . , dn) ∈ Fnqm , and afterwards we will use
the (Fq-bilinear) “base” (or “trace”) inner product in Fm×nq ,

〈C,D〉 = c1 · d1 + c2 · d2 + · · ·+ cm · dm = Tr(CDT ) =
∑
i,j

ci,jdi,j ∈ Fq, (5)

for C,D ∈ Fm×nq ,where ci,di ∈ Fnq , for i = 1, 2, . . . ,m, are the rows of C and D,
respectively, and ci,j , di,j ∈ Fq are the entries of C and D, respectively. Tr denotes
the usual trace of a square matrix.

Whereas the product · is the standard Fqm -bilinear product in Fnqm , the product
〈, 〉 corresponds to the standard Fq-bilinear product in Fmnq ∼= Fm×nq . A duality
theory for the product 〈, 〉 and Fq-linear rank-metric codes is developed originally
in [5] and further in [23], where it is also shown that duals of Fqm -linear codes
with respect to the “extension” inner product are equivalent to duals with respect
to the “base” inner product (see [23, Theorem 21]). We will come back to this in
Section 5, where we will relate both kinds of error-correcting pairs.

Now we will give some relations between the product ? and the previous inner
products that we will use later. If c,d ∈ Fnqm , d =

∑m
i=1 αidi and di ∈ Fnq , for all

i = 1, 2, . . . ,m, then we define

c(d) = (c · d1, c · d2, . . . , c · dm) ∈ Fmqm . (6)

Lemma 4 Given c,d ∈ Fnqm and a,b ∈ Fmqm , and given C,D ∈ Fm×nq and A,B ∈
Fm×mq , the following properties hold:

1. M(c(d)) = M(c)M(d)T .
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2. 〈B,AT 〉 = 〈BT , A〉.
3. (b ? c) · d = b · d(c).
4. 〈BC,D〉 = 〈B,DCT 〉 = 〈BT , CDT 〉 = 〈BTD,C〉.
5. c(d) = 0 if, and only if, d(c) = 0 if, and only if, RSupp(c) ⊆ RSupp(d)⊥.
6. CDT = 0 if, and only if, DCT = 0 if, and only if, Row(C) ⊆ Row(D)⊥.

Proof They are straightforward computations. For item 1, observe that

c(d) = (c · d1, c · d2, . . . , c · dm) =
m∑
i=1

αi(ci · d1, ci · d2, . . . , ci · dm).

Hence

M(c(d))i,k = ci · dk =
n∑
j=1

ci,jdk,j =
n∑
j=1

M(c)i,jM(d)Tj,k.

Therefore, M(c(d)) = M(c)M(d)T .
For item 3,

(b ? c) · d =

(
m∑
i=1

bici

)
· d =

m∑
i=1

bi(ci · d) = b · d(c).

The first equivalence in Item 5 follows from item 1. Now, the second equivalence
follows from the following chain of equivalences:

c(d) = 0⇐⇒ ck · di = 0,∀i, k ⇐⇒ RSupp(c) ⊆ RSupp(d)⊥.

4.1 Using the extension inner product

Denote by D⊥ the dual of an Fqm -linear code D ⊆ Fnqm with respect to the exten-

sion product ·. Fix Fqm -linear codesA, C ⊆ Fnqm and B ⊆ Fmqm such that B?A ⊆ C⊥,
where B ?A is defined as

B ?A = 〈{b ? a | a ∈ A,b ∈ B}〉Fqm
. (7)

In many cases, B = ϕ(B′), where ϕ : Fnqm −→ Fmqm and B′ ⊆ Fnqm are both Fqm -
linear. In that case, we denote B′ ?ϕ A = ϕ(B′) ?A.

Observe that, since B is Fqm -linear and ? is Fqm -linear in the first component,
it holds that 〈{b ? a | a ∈ A,b ∈ B}〉Fqm

= 〈{b ? a | a ∈ A,b ∈ B}〉Fq
.

We next compute generators of this space:

Proposition 3 If a1,a2, . . . ,ar generate A and b1,b2, . . . ,bs generate B, as
Fqm-linear spaces, then the vectors

bi ? (αlaj),

for 1 ≤ i ≤ s, 1 ≤ j ≤ r and 1 ≤ l ≤ m, generate B ?A as an Fqm-linear space.

In the case B = ϕ(B′) and b′1,b
′
2, . . . ,b

′
s generate B′ as an Fqm -linear space,

then the elements b′i ?ϕ (αlaj) generate B′ ?ϕ A as an Fqm -linear space.
Regarding the dimension of B?A (or B?ϕA), that is, how many of the elements

bi?(αlaj) are linearly independent, the next example shows that any number may
be possible in the case n ≤ m, where the previous proposition says that an upper
bound in the general case is min{dim(A) dim(B)m,n}:
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Example 1 Assume that n ≤ m, fix 1 ≤ t ≤ n, and define a = (α1, α2, . . . , αn) ∈
Fnqm and b = a+a[1]+· · ·+a[t−1] ∈ Fnqm . Let γ ∈ Fqm be such that γ, γ[1], . . . , γ[t−1]

are pairwise distinct, and write γi = γ[i], for i = 0, 1, . . . , t − 1. Let A and B be
the Fqm -linear spaces generated by a and b, respectively. By Proposition 1, item
2, we have that

b ? (γja) =

t−1∑
i=0

a[i] ? (γja) = γj0a + γj1a[1] + · · ·+ γjt−1a
[t−1] ∈ B ?A,

for j = 0, 1, 2, . . . , t−1, and these elements are linearly independent over Fqm , since
the coefficients γji of the vectors a[i] form a Vandermonde matrix. Furthermore,

B ?A is contained in the subspace generated by a,a[1], . . . ,a[t−1], hence they are
equal. Therefore, dim(A) = dim(B) = 1, whereas dim(B ?A) = t.

Let d ∈ Fnqm and define

K(d) = {a ∈ A | (b ? a) · d = 0,∀b ∈ B}.

Then K(d) is Fq-linear and the condition defining it may be verified just on a basis
of B as Fqm -linear space. Observe that (precomputing the values ϕ(b′), where the
vectors b′ are in a basis of B′, in the case B = ϕ(B′)), we can efficiently verify
whether a ∈ K(d). On the other hand, if L ⊆ Fnq is a linear subspace, define

A(L) = {a ∈ A | RSupp(a) ⊆ L⊥},

as in [12,13]. We briefly connect this definition with the so-called rank-shortened
codes in [19, Definition 6], where AL⊥ = A ∩ V⊥L and VL = L ⊗ Fqm is defined as
the Fqm -linear vector space in Fnqm generated by L:

Lemma 5 It holds that A(L) = AL⊥ . In particular, it is an Fqm-linear space.

Proof Fix a basis v1,v2, . . . ,vw of L, and take a =
∑m
i=1 αiai ∈ A, where ai ∈

Fnq , for i = 1, 2, . . . ,m. The result follows from the following chain of equivalent
conditions

RSupp(a) ∈ L⊥ ⇐⇒ ai ∈ L⊥,∀i⇐⇒ ai·vj = 0,∀i, j ⇐⇒ a·vj = 0,∀j ⇐⇒ a ∈ V⊥.

The following properties are the basic tools for the decoding algorithm of error
correcting pairs:

Proposition 4 Let r = c + e, where c ∈ C and wtR(e) ≤ t. Define also L =
RSupp(e) ⊆ Fnq . The following properties hold:

1. K(r) = K(e).
2. A(L) ⊆ K(e).
3. If t < dR(B⊥), then A(L) = K(e). In this case, K(e) is Fqm-linear.

Proof 1. It follows from B ?A ⊆ C⊥.
2. Let a ∈ A(L). It follows from the definitions (recall (6)) that e(a) = 0. Hence,

by Lemma 4, (b ? a) · e = b · e(a) = 0, for all b ∈ B. Thus a ∈ K(e).
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3. By the previous item, we only need to prove that K(e) ⊆ A(L).
Let a ∈ K(e). It follows from Lemma 4 that e(a) ∈ B⊥. Moreover, since
M(e(a)) = M(e)M(a)T by the same lemma, it holds that wtR(e(a)) ≤ wtR(e)
≤ t.
Let a =

∑m
i=1 αiai, with ai ∈ Fnq , for i = 1, 2, . . . ,m. Since t < dR(B⊥), it

follows that e(a) = 0 or, in other words, ai ·e = 0, which implies that ai ∈ L⊥,
for all i = 1, 2, . . . ,m, and therefore, RSupp(a) ⊆ L⊥.

We now come to the definition of t-rank error-correcting pairs of type I, where
we use the extension inner product ·.

Definition 6 Given the Fqm -linear codes A, C ⊆ Fnqm and B ⊆ Fmqm , the pair
(A,B) is called a t-rank error-correcting pair (t-RECP) of type I for C if the
following properties hold:

1. B ?A ⊆ C⊥.
2. dim(A) > t.
3. dR(B⊥) > t.
4. dR(A) + dR(C) > n.

If B = ϕ(B′), where ϕ and B′ ⊆ Fnqm are Fqm -linear, we say that (A,B′) is a
t-RECP of type I for ϕ and C, and if ϕ = ϕn, we will call it simply a t-RECP of
type I for C.

In order to describe a decoding algorithm for C using (A,B), we will need [19,
Proposition 17], slightly modified (the proof is the same), which basically states
that error correction is equivalent to erasure correction if the rank support of the
error is known:

Lemma 6 ([19]) Assume that c ∈ C and r = c + e, where RSupp(e) ⊆ L and
dim(L) < dR(C). Then, c is the only vector in C such that RSupp(r− c) ⊆ L.

Moreover, if G is a generator matrix of L⊥, then c is the unique solution in
C of the system of equations rGT = xGT , where x is the unknown vector. And if
H is a parity check matrix for C over Fqm , then e is the unique solution to the
system rHT = xHT with RSupp(x) ⊆ L.

Now we present, in the proof of the following theorem, a decoding algorithm
for C using (A,B).

Theorem 1 If (A,B) is a t-RECP of type I for C, then C verifies that dR(C) ≥
2t+ 1 and admits a decoding algorithm able to correct errors e with wtR(e) ≤ t of
complexity O(n3) over the field Fqm .

Proof We will explicitly describe the decoding algorithm. As a consequence, we
will derive that dR(C) ≥ 2t+ 1. Assume that the received codeword is r = c + e,
with c ∈ C, RSupp(e) = L and dim(L) ≤ t.

Compute the space K(r), which is equal to K(e) by the first condition of t-
RECP and Proposition 4, item 1. Observe that K(r) can be described by a system
of O(n) linear equations by Proposition 3.

By the third condition of t-RECP and Proposition 4, we have that A(L) =
K(e) = K(r). Therefore, we have computed the space A(L).
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By the second condition of t-RECP and Lemma 5, we have that A(L) =
A∩V⊥L 6= 0, where VL = L⊗Fqm , and therefore we may take a nonzero a ∈ A(L).
Define L′ = RSupp(a)⊥. Since a ∈ A(L), we have that L ⊆ L′.

Now, by the fourth condition of t-RECP, we have that

dim(L′) = n− wtR(a) ≤ n− dR(A) < dR(C).

Hence, by Lemma 6, we may compute e or c by solving a system of linear equations
using a generator matrix G of L′⊥, or a parity check matrix H of C, respectively.
This has complexity O(n3) over Fqm .

Finally, assume that dR(C) ≤ 2t and take two different vectors c, c′ ∈ C and
e, e′ ∈ Fnqm such that r = c + e = c′ + e′ and wtR(e),wtR(e′) ≤ t. The previous
algorithm gives as output both vectors e and e′, but the output is unique, hence
e = e′. This implies that c = c′, contradicting the hypothesis. Therefore, dR(C) ≥
2t+ 1.

If m = n, then the order of complexity over Fq increases, although it still is
polynomial in n. On the other hand, if m is considerably smaller than n, then the
complexity is O(n3) also over Fq.

Gabidulin codes [9] have decoding algorithms of cubic complexity (see for in-
stance [9]), and an algorithm of quadratic complexity was obtained in [17]. As we
will see in Section 7, the previous decoding algorithm may be applied to a wider
variety of rank-metric codes.

Remark 3 Observe that, from the proof of the previous theorem, if the pair (A,B)
satisfies the first three properties in Definition 6, then we may use it to find a
subspace L′ ⊆ Fnq that contains the rank support of the error vector.

Therefore, we say in this case that (A,B) is a t-rank error-locating pair of type
I for C.

4.2 Using the base inner product

Now we turn to the case where we use the base inner product 〈, 〉. We will denote
by D∗ the dual of an Fq-linear code D ⊆ Fm×nq with respect to 〈, 〉.

We will use the same notation as in the previous subsection, although now
A, C ⊆ Fm×nq and B ⊆ Fm×mq are Fq-linear, and BA ⊆ C∗, where

BA = 〈{BA | A ∈ A, B ∈ B}〉Fq
. (8)

Observe that M(B′ ?A′) = M(B′)M(A′), if A′,B′ ⊆ Fnqm are Fq-linear spaces, by
Proposition 2. Generators of the space (8) are now simpler to compute:

Proposition 5 If A1, A2, . . . , Ar generate A and B1, B2, . . . , Bs generate B, as
Fq-linear spaces, then the matrices

BiAj ,

for 1 ≤ i ≤ s and 1 ≤ j ≤ r, generate BA as an Fq-linear space.
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Let D ∈ Fm×nq and define

K(D) = {A ∈ A | 〈BA,D〉 = 0,∀B ∈ B}.

Then K(D) is again Fq-linear and the condition may be verified just on a basis of
B as Fq-linear space. On the other hand, if L ⊆ Fnq is a linear subspace, we define
in the same way

A(L) = {A ∈ A | Row(A) ⊆ L⊥},

which is Fq-linear (recall that we use the classical product · in Fnq ), since we still

have that M−1(A(L)) = M−1(A) ∩ V⊥L , VL = L ⊗ Fqm .
The following properties still hold:

Proposition 6 Let R = C + E, where C ∈ C and Rk(E) ≤ t. Define also L =
Row(E) ⊆ Fnq . Then

1. K(R) = K(E).
2. A(L) ⊆ K(E).
3. If t < dR(B∗), then A(L) = K(E).

Proof 1. It also follows from BA ⊆ C∗.
2. Take A ∈ A(L). Hence by definition, it holds that EAT = 0, since Row(E) = L

and Row(A) ⊆ L⊥. Therefore, for every B ∈ B, we have that

〈BA,E〉 = 〈B,EAT 〉 = 0,

by Lemma 4. Then item 2 follows.
3. By the previous item, we only need to prove that K(E) ⊆ A(L).

Let A ∈ K(E). It follows from Lemma 4 that EAT ∈ B∗. Moreover, it holds
that Rk(EAT ) ≤ Rk(E) ≤ t. Since t < dR(B∗), it follows that EAT = 0, which
implies that Row(A) ∈ L⊥.

We now define t-rank error-correcting pairs of type II, where we use the base
product 〈, 〉, in contrast with the t-RECP of last subsection.

Definition 7 Given the Fq-linear codes A, C ⊆ Fm×nq and B ⊆ Fm×mq , the pair
(A,B) is called a t-rank error-correcting pair (t-RECP) of type II for C if the
following properties hold:

1. BA ⊆ C∗.
2. dimFq

(A) > mt.
3. dR(B∗) > t.
4. dR(A) + dR(C) > n.

The same decoding algorithm, with the corresponding modifications, works in
this case with polynomial complexity:

Theorem 2 If (A,B) is a t-RECP of type II for C, then C satisfies that dR(C) ≥
2t + 1 and admits a decoding algorithm able to correct errors E with Rk(E) ≤ t
with polynomial complexity in (m,n) over the field Fq.
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Proof The proof is the same as in Theorem 1, with the corresponding modi-
fications. Note that in this case, if L = Row(E) and VL = L ⊗ Fqm , then
dimFq

(VL) = mdim(L) ≤ mt. On the other hand, M−1(A(L)) = M−1(A) ∩ VL,
as in the previous subsection. Hence the condition dimFq

(A) > mt ensures that
A(L) 6= 0.

Remark 4 As in Remark 3, if the pair (A,B) satisfies the first three properties
in Definition 7, then we may use it to find a subspace L′ ⊆ Fnq that contains
the rank support of the error vector. We say in this case that (A,B) is a t-rank
error-locating pair of type II for C.

5 The connection between the two types of RECPs

So far we have three types of error-correcting pairs: classical ECPs for linear codes
in Fnq that correct errors in the Hamming metric, ECPs for Fqm -linear codes in
Fnqm (RECPs of type I), and ECPs for general Fq-linear codes in Fnqm or Fm×nq

(RECPs of type II), where the two latter types correct errors in the rank metric.
In this section we will see that RECPs of type II generalize RECPs of type I. In
Section 7 we will see that, in some way, RECPs of type II also generalize ECPs
for the Hamming metric.

We will need the following:

Definition 8 Given the basis α1, α2, . . . , αm of Fqm over Fq, we say that it is
orthogonal (or dual) to another basis α′1, α

′
2, . . . , α

′
m if

Tr(αiα
′
j) = δi,j ,

for all i, j = 1, 2, . . . ,m. Here, Tr denotes the trace of the extension Fq ⊆ Fqm .

It is well-known that, for a given basis α1, α2, . . . , αm, there exists a unique
orthogonal basis (see for instance the discussion after [16, Definition 2.50]). We
will denote it as in the previous definition: α′1, α

′
2, . . . , α

′
m. In particular, the dual

basis of α′1, α
′
2, . . . , α

′
m is α1, α2, . . . , αm.

Now denote by Mα,Mα′ : Fnqm −→ Fm×nq the matrix representation maps
(recall (1)) associated to the previous bases, respectively. The following lemma is
[23, Theorem 21]:

Lemma 7 ([23]) Given an Fqm-linear code C ⊆ Fnqm , it holds that

Mα′(C⊥) = Mα(C)∗.

On the other hand, we have the following:

Lemma 8 For every Fqm-linear code D ⊆ Fnqm , it holds that

dR(D⊥) = dR(Mα(D)∗) = dR(Mα′(D)∗).

Proof It follows from the fact that dR(D⊥) = dR(Mα′(D⊥)) = dR(Mα(D)∗), and
analogously interchanging the roles of α and α′.

Therefore, we may now prove that RECPs of type II generalize RECPs of
type I:
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Theorem 3 Take Fqm-linear codes A, C ⊆ Fnqm and B ⊆ Fmqm . If (A,B) is a t-
RECP of type I for C (in the basis α), then (Mα(A),Mα(B)) is a t-RECP of type
II for Mα′(C).

Proof Using Lemma 7 and Proposition 2, we obtain that

Mα(B)Mα(A) = Mα(B ?A) ⊆Mα(C⊥) = Mα′(C)∗,

and the first condition is satisfied.
The second condition follows from the fact that dimFq

(A) = mdimFqm
(A), and

Mα is an Fq-linear vector space isomorphism.
Finally, the third condition follows from Lemma 8 and the fourth condition

remains unchanged. Hence the result follows.

Observe that in the same way, t-rank error-locating pairs of type II generalize
t-rank error-locating pairs of type I.

6 MRD codes and bounds on the minimum rank distance

In this section we will give bounds on the minimum rank distance of codes that
follow from the properties of rank error-correcting pairs, in a similar way to the
bounds in [22]. We will also see that, in some cases, MRD conditions on two of
the codes imply that the third is also MRD.

We will fix Fq-linear codes A, C ⊆ Fm×nq and B ⊆ Fm×mq . Due to Lemmas 7
and 8, and Proposition 2, the results in this section may be directly translated into
results where we consider the “extension” inner product · and Fqm -linear codes in
Fnqm .

We will make use of the following consequence of the Singleton bound:

Lemma 9 For every Fq-linear code D ⊆ Fm×nq it holds that

dR(D) + dR(D∗) ≤ n+ 2.

Proof The Singleton bound implies that

dimFq
(D)/m ≤ n− dR(D) + 1, and dimFq

(D∗)/m ≤ n− dR(D∗) + 1.

Adding both inequalities up and using that dimFq
(D) + dimFq

(D∗) = mn, the
result follows.

Proposition 7 Assume that BA ⊆ C∗. If dR(A∗) > a > 0 and dR(B∗) > b > 0,
then dR(C) ≥ a+ b.

Proof Take C ∈ C and A ∈ A, and define L = Row(C) ⊆ Fnq . By Lemma 4, we
have that

0 = 〈BA,C〉 = 〈BT , ACT 〉,

for all B ∈ B and all A ∈ A, which means that the Fq-linear space A(C) = {ACT |
A ∈ A} ⊆ (BT )∗, and hence dR(A(C)) > b.

Let G be a t × n generator matrix over Fq of L (where t = Rk(C)). Taking a
subset of rows of C that generate L, we see that A(C) is Fq-linearly isomorphic
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and rank-metric equivalent to A1 = {AGT | A ∈ A} ⊆ Fm×tq . Take D ∈ A∗1. For
every A ∈ A, it holds that

〈A,DG〉 = 〈AGT , D〉 = 0,

by Lemma 4. Therefore, DG ∈ A∗. Moreover, Rk(D) = Rk(DG) since G is full
rank, and hence Rk(D) > a. Therefore, dR(A∗1) > a. Together with dR(A1) > b
and the previous lemma, we obtain that

a+ 1 + b+ 1 ≤ dR(A1) + dR(A∗1) ≤ t+ 2,

that is, t ≥ a+ b, and the result follows.

We obtain the following corollary on MRD codes:

Corollary 1 Assume that n ≤ m (otherwise, take transposed matrices), dR(A) =
n− t, dimFq

(A) = m(t+ 1), dR(B) = m− t+ 1 and dimFq
(B) = mt. Then, for all

D ⊆ (BA)∗, it holds that dR(D) ≥ 2t+ 1 and (A,B) is a t-RECP of type II for D.

Proof A and B are MRD codes, since their minimum rank distance attains the
Singleton bound. By [5, Theorem 5.5] (see also [23, Corollary 41]), A∗ and B∗ are
also MRD, which implies that

dR(A∗) > t+ 1, and dR(B∗) > t.

By the previous proposition, it holds that dR(D) ≥ 2t+ 1. We see that the prop-
erties of RECPs of type II are satisfied, and the result follows.

Now we obtain bounds on dR(A) from bounds on dR(B∗) and dR(C∗):

Proposition 8 Assume that BA ⊆ C∗. If dR(B∗) > b > 0 and dR(C∗) > c > 0,
then dR(A) ≥ b+ c.

Proof The proof is analogous to the proof of Proposition 7. In this case, we fix
A ∈ A, with L = Row(A), t = Rk(A), and consider A(C) = {ACT | C ∈ C}. The
rest of the proof follows the same lines, interchanging the roles of A and C, and
using the fact that 〈BA,C〉 = 〈BTC,A〉, from Lemma 4, and dR(B∗) = dR((BT )∗).

Again, we may give the following corollary on MRD codes:

Corollary 2 Assume that BA ⊆ C∗ and n ≤ m. If dR(C) = 2t + 1, dimFq
(C) =

m(n − 2t) and (A,B) is a t-RECP of type II for C, then dR(A) ≥ n − t and
mt < dimFq

(A) ≤ m(t + 1). If dimFq
(A) is a multiple of m (in particular, if

M−1(A) is Fqm-linear), then A is MRD.

Proof By the properties of RECPs of type II, we have that dR(B∗) > t, and since
C is MRD, then C∗ is also MRD and we have that dR(C∗) = n− 2t+ 1. Therefore,
dR(A) ≥ n− t by the previous proposition. By the properties of RECPs of type II,
dimFq

(A) > mt, and we are done. The last statement follows from the Singleton
bound for A.
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We now turn to a bound analogous to [22, Proposition 3.1]. The BCH bound on
the minimum Hamming distance of cyclic codes is generalized by the Hartmann-
Tzeng bounds [11] and further generalized by the Roos bound [24,25]. The next
proposition is the rank-metric equivalent of the Roos bound [24,25] for the Ham-
ming metric, as mentioned in [8, Proposition 5].

Proposition 9 Assume the following properties for a, b > 0:

(1) BA ⊆ C∗, (2) dimFq
(A) > ma, (3) dR(B∗) > b,

(4) dR(A) + a+ b > n, and (5) dR(A∗) > 1.

Then it holds that dR(C) > a+ b.

Proof Take C ∈ C and let L = Row(C) ⊆ Fnq and t = Rk(C). Conditions (1), (3)
and (5) imply that t > b by Proposition 7.

Assume that b < t ≤ a + b. Take linear subspaces L−,L+,U ⊆ Fnq such
that L− ⊆ L ⊆ L+, L+ = U ⊕ L−, b = dim(L−) and a + b = dim(L+). Since
mdim(U) = ma < dimFq

(A) by condition (2), we have that A(U) 6= 0, and

therefore there exists a non-zero A ∈ A with Row(A) ⊆ U⊥.
It holds that every row in C is in L+. Since the rows in A are in U⊥, it holds

that ACT = ANT , where N is obtained from C by substituting every row by its
projection from U ⊕ L− to L−.

Therefore Rk(ACT ) ≤ Rk(N) ≤ dim(L−) = b, but ACT ∈ (BT )∗ by condi-
tion (1) and Lemma 4, and hence ACT = 0 by condition (3). This means that
Row(A) ⊆ L⊥− ∩U⊥ = L⊥+. Thus, Rk(A) ≤ n− a− b < dR(A), which is absurd by
condition (4), since A 6= 0. We conclude that t > a+ b and we are done.

Taking a = b = t for some t > 0, where a and b are as in the previous proof,
we obtain the following particular case:

Corollary 3 For all Fq-linear codes D ⊆ (BA)∗ such that dimFq
(A) > mt,

dR(B∗) > t, dR(A) > n − 2t and dR(A∗) > 1, it holds that dR(D) ≥ 2t + 1
and (A,B) is a t-RECP of type II for D.

Observe that the previous result states that, if some conditions on A and B
hold, then they form a t-RECP of type II for all Fq-linear codes contained in
(BA)∗. That is, we have found a t-rank error-correcting algorithm for all Fq-linear
subcodes of (BA)∗.

7 Some codes with a t-RECP

In this section, we study families of codes that admit a t-RECP of some type.

7.1 Hamming-metric codes with ECPs

Take Fq-linear codesA,B, C ⊆ Fnq such that (A,B) is a t-ECP for C in the Hamming
metric. We will see that the algorithm presented in Theorem 2 is actually an
extension of the decoding algorithm in the Hamming metric using t-ECPs [20,21].
We observe the following (recall the definition of D in (2)):
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Remark 5 For all a,b ∈ Fnq , it holds that

a · b = 〈D(a), D(b)〉.

Moreover, it holds that

D(B)D(A) ⊆ D(C)∗.

Therefore, from the previous remark and the properties of D, the Fq-linear
codes D(A), D(B), D(C) ⊆ Fn×nq satisfy the following conditions:

1. D(B)D(A) ⊆ D(C)∗.
2. dimFq

(D(A)) > t.
3. dR(D(B)∗) = 1.
4. dR(D(A)) + dR(D(C)) > n.

That is, (D(A), D(B)) satisfy the same conditions as t-RECPs of type II for
D(C), except that conditions 2 and 3 are weakened. However, the previous condi-
tions are enough to correct any error D(e) ∈ Fn×nq , where e ∈ Fnq and wtH(e) ≤ t,

Assume the received vector is R = D(c) + D(e), with c ∈ C and wtH(e) ≤ t.
Correcting the diagonal of R = D(c) +D(e) for the Hamming metric is the same
as correcting the matrix R = D(c) +D(e) itself for the rank metric. We will next
show that the algorithm in Theorem 2 is exactly the same as the algorithm for
ECPs in the Hamming metric.

Define I ⊆ {1, 2, . . . , n} as the Hamming support of e ∈ Fnq , that is, I =
HSupp(e) = {i ∈ {1, 2, . . . , n} | ei 6= 0}, and define

KH(e) = {a ∈ A | (b ∗ a) · e = 0,∀b ∈ B}, and

A(I) = {a ∈ A | HSupp(a) ⊆ Ic},

where Ic denotes the complementary of I. It holds that Row(D(e)) = LI ⊆ Fnq ,
the space generated by the vectors ei in the canonical basis, for i ∈ I. Therefore,
by Remark 5, the properties of D, Proposition 2 and the fact that L⊥I = LIc , it
holds that

K(R) = K(D(e)) = D(KH(e)) and (D(A))(LI) = D(A(I)).

Moreover, since A(I) = KH(e) by the properties of ECPs in the Hamming metric,
we also have that

K(R) = D(KH(e)) = D(A(I)) = (D(A))(LI).

Hence, computing K(R) implies computing (D(A))(LI). Finally, since A(I) 6= 0 by
the properties of ECPs, we have that (D(A))(LI) 6= 0. The rest of the algorithm
goes in the same way as in Theorem 2. That is, the decoding algorithm in Theorem
2 actually extends the decoding algorithm given by ECPs in the Hamming metric.
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7.2 Gabidulin codes

Gabidulin codes, introduced in [9], are a well-known family of MRD Fqm -linear
codes in Fnqm , when n ≤ m. In [15], a generalization of these codes is given, also
formed by MRD codes.

Fix n ≤ m. They can be defined as follows. For each b = (b1, b2, . . . , bn) ∈ Fnqm ,
where b1, b2, . . . , bn are linearly independent over Fq, each k = 1, 2, . . . , n and each
integer r such that r and m are coprime, we define the (generalized) Gabidulin
code of dimension k in Fnqm as

Gabk,m,n(r,b) = {(F (b1), F (b2), . . . , F (bn)) | F ∈ Lq,r,kFqm [x]},

where Lq,r,kFqm [x] denotes the Fqm -linear space of q-linearized polynomials of the
form

F (x) = a0x+ a1x
[r] + a2x

[2r] + a3x
[3r] + · · ·+ ak−1x

[(k−1)r],

for some a0, a1, . . . , ak−1 ∈ Fqm . Observe that classical Gabidulin codes as defined
in [9] are obtained by setting r = 1. Also observe that, for any invertible matrix
P ∈ Fn×nq , it holds that

Gabk,m,n(r,b)P = Gabk,m,n(r,bP ),

and hence Fqm -linearly rank-metric equivalent codes to Gabidulin codes are again
Gabidulin codes.

The following lemma follows from Proposition 1:

Lemma 10 For every positive integers k, l with k + l − 1 ≤ n, it holds that

Gabk,m,m(r,α) ?Gabl,m,n(r,b) = Gabk+l−1,m,n(r,b).

In the case r = 1, it holds that

Gabk,m,n(1,αn) ?Gabl,m,n(1,b) = Gabk+l−1,m,n(1,b).

On the other hand, for r = 1 and the maps ϕn, the following lemma follows
from the definitions:

Lemma 11 It holds that

ϕn(Gabk,m,n(1,αn)) = Gabk,m,m(1,α).

With these two lemmas, we can prove that Gabidulin codes have t-RECP of
type I. Recall from [15] that

Gabk,m,n(r,b)⊥ = Gabn−k,m,n(r,b′),

for some b′ ∈ Fnqm that can be computed from b.

Theorem 4 If t > 0, A = Gabt+1,m,n(r,b), B = Gabt,m,m(r,α) and C =
Gab2t,m,n(r,b)⊥, then (A,B) is a t-RECP of type I for C. In the case r = 1,
we may take B = Gabt,m,n(r,αn).
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Proof The first condition follows from Lemma 10. On the other hand, dimFqm
(A) =

t + 1, so the second condition follows. The third condition is trivial, and for the
case r = 1 and B = Gabt,m,n(1,αn) it follows from Lemma 11. Finally, the fourth
condition follows from the following computation:

dR(A) + dR(C) = n− t+ 2t+ 1 = n+ t+ 1.

We see that dR(A) = n − t > n − 2t. Hence, the pair (Mα(A),Mα(B)), with
notation as in Section 5, can be used by Corollary 3 to efficiently correct any error
of rank at most t for every Fq-linear subcode of a (generalized) Gabidulin code.
Such efficient decoding algorithms seem not to have been obtained yet.

Corollary 4 Let t,A,B and C be as in the previous theorem. Then, for every
Fq-linear subcode D ⊆ C, the pair (Mα(A),Mα(B)) is a t-RECP of type II for
Mα′(D).

Proof It follows from the previous theorem, Theorem 3 and Corollary 3.

On the other hand, decoding algorithms for generalized Gabidulin codes with
r 6= 1 seem to have been obtained only in [15], also of cubic complexity.

7.3 Skew cyclic codes

Skew cyclic codes (or qr-cyclic codes) play the same role as cyclic codes in the the-
ory of error-correcting codes for the rank metric. They were originally introduced
in [9] for r = 1 and m = n, and further generalized in [10] for r = 1 and any m
and n, and for any r in the work by Ulmer et al. [2,3]. In this subsection we will
only treat the case r = 1.

Assume that n = sm is a multiple of m. We will see in this subsection that, in
that case, some Fqm -linear q-cyclic codes have rank error-locating pairs of type I,
in analogy to the ideas in [7]. We say that an Fqm -linear code C ⊆ Fnqm is q-cyclic
if the q-shifted vector

(cqn−1, c
q
0, c

q
1, . . . , c

q
n−2)

lies in C, for every c = (c0, c1, . . . , cn−1) ∈ C. As in [18], we say that an Fq-linear
subspace T ⊆ Fqn is a q-root space (over Fqm) if it is the root space in Fqn of a
linearized polynomial in LqFqm [x].

By [18, Theorem 3], Fqm -linear q-cyclic codes are codes in Fnqm with a parity
check matrix over Fqn of the form

M(β1, β2, . . . , βn−k) =


β1 β

[1]
1 β

[2]
1 . . . β

[n−1]
1

β2 β
[1]
2 β

[2]
2 . . . β

[n−1]
2

...
...

...
. . .

...

βn−k β
[1]
n−k β

[2]
n−k . . . β

[n−1]
n−k

 ,

where β1, β2, . . . , βn−k is a basis of T over Fq, for some q-root space T . Moreover
by [18, Corollary 2], Fqm -linear q-cyclic codes are in bijection with q-root spaces
over Fqm .

The next bound, which is given in [18, Corollary 4], is an extension of the
rank-metric version of the BCH bound (by setting w = 0 and c = 1) found in [3,
Proposition 1]:



Rank error-correcting pairs 21

Lemma 12 (Rank-HT bound) Let b, c, δ and w be positive integers with δ +
w ≤ m and d = gcd(c, n) < δ, and α ∈ Fqn be such that the set A = {α[b+i+jc] |
0 ≤ i ≤ δ − 2, 0 ≤ j ≤ w} is a linearly independent set of vectors.

If C is the Fqm-linear q-cyclic code corresponding to the q-root space T and
A ⊆ T , then dR(C) ≥ δ + w.

To use it, we need to deal with normal bases. First, it is well-known [16] that
the orthogonal (or dual) basis of a normal basis α, α[1], . . . , α[n−1] ∈ Fqn over Fq
is again a normal basis β, β[1], . . . , β[n−1] ∈ Fqn . Define α = (α, α[1], . . . , α[n−1])
and β = (β, β[1], . . . , β[n−1]). Then it holds that

α[i] · β[j] = Tr(α[i]β[j]) = δi,j

by definition. On the other hand, for a subset I ⊆ {1, 2, . . . , n}, define the matrix

Mα(I) =M(α[i] | i ∈ I),

and similarly for β.
Define the Fqm -linear codes A,B ⊆ Fnqm as the subfield subcodes of the codes

in Fnqn with generator matrices Mα(I) and Mα(J), for some subsets I, J ⊆
{1, 2, . . . , n}, respectively.

In order to obtain q-cyclic codes, we will assume that the space generated
by {α[i] | i ∈ I} is a q-root space, and similarly for J . Due to the cyclotomic
space description of q-root spaces in [18, Proposition 2], this holds if the following
condition holds: if i ∈ I, then i+m ∈ I (modulo n), and similarly for J .

Define the Fqm -linear q-cyclic code C ⊆ Fnqm with parity check matrixMα(I +
J). Observe that I + J also gives a q-root space by the previous paragraph. We
have the following lemmas:

Lemma 13 A and B are the q-cyclic codes with parity check matrices Mβ(Ic)
and Mβ(Jc) over Fqn , respectively.

Proof We prove it for A. Define Ã as the Fqn -linear code in Fnqn with generator

matrixMα(I). It is enough to prove thatMβ(Ic) is a parity check matrix for Ã.

However, since α[i] · β[j] = 0, for every i ∈ I and j /∈ I, it holds that
Mα(I)Mβ(Ic)T = 0. On the other hand, these two matrices are full rank and
the number of rows in Mα(I) together with the number of rows in Mβ(Ic) is
#I + #(Ic) = n, and the result follows.

Lemma 14 It holds that B ?A ⊆ C⊥.

Proof By Proposition 1, item 2, we see that B ? A is contained in the Fqn -linear
code with generator matrixMα(I+J). Denote such code by D, that is, B?A ⊆ D
and D ⊆ Fnqn .

By definition, C = D⊥ ∩ Fnqm , and by [18, Corollary 3], D is Galois closed

over Fqm , which means that D⊥ ∩ Fnqm = (D ∩ Fnqm)⊥ by [19, Proposition 2] and
Delsarte’s theorem [6, Theorem 2]. Hence

B ?A ⊆ D ∩ Fnqm = (D⊥ ∩ Fnqm)⊥ = C⊥.
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We may now prove that (A,B) is a t-rank error-locating pair of type I (see
Remark 3) for C, and with some stronger hypotheses, it is also a t-rank error-
correcting pair for C.

Theorem 5 Fix a positive integer t and assume that #I > t and J contains δ−1
consecutive elements, for some δ > t. Then (A,B) is a t-rank error-locating pair
for C. If moreover, dR(A) + dR(C) > n, then (A,B) is a t-rank error-correcting
pair of type I for C.

Proof From the previous lemma, we have that B ?A ⊆ C⊥. On the other hand, A
satisfies that dim(A) = #I > t, and B satisfies that dR(B⊥) ≥ δ > t by Lemma
12. Then (A,B) is a t-rank error-locating pair of type I for C.

Observe that we may obtain the bound dR(C) ≥ δ+w by Proposition 7 assum-
ing that I contains the elements ic, for 0 ≤ i ≤ w. This means that, for q-cyclic
codes constructed with a normal basis, the rank-HT bound found in [18, Corollary
4] is implied by Proposition 7, as in the classical case. Further cases are left open.
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