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1 Introduction

These notes contain the material of a series of four lectures given in the Grupo de Investi-
gación en Sistemas Dinámicos y Aplicaciones (GISDA)of the Departmento de Mathemática
at the Universidad del Bio Bio, Chile, in June 2017. It is an extended version of the text of
the used slides, to which references are added. Therefore these lecture notes are a sort of
compendium of results. For more details and proofs the reader should consult the literature
cited.

In this series of lectures the focus is on the geometry of the phase space of Hamiltonian
systems with symmetry. The symmetry causes the dynamics of the system to restrict to
invariant sets and the aim is to understand how the phase space is organised in invariant
sets such as energy manifolds, invariant tori, periodic solutions, stationary points etc. To do
so we exploit the Lie algebra structure, or Poisson structure, which is in a natural way present
in the theory of Hamiltonian systems. The tools we use will be momentum maps, energy-
momentum maps and orbit maps. The orbit map will be used in the reduction of Hamiltonian
systems with symmetry. Textbooks in which most of the basic material presented can be
found are Abraham and Marsden [1], Marsden and Ratiu [50], the Peyresq lecture notes
[12, 41, 75, 73, 77], Van der Meer [55].

In the first lecture (section 2) I will try to give a minimal set of definitions and theorems nec-
essary for the basic classical reduction theorems as formulated bij Marsden and Weinstein
[49]. The first section is concluded bij some reduction theorems in the context of Poisson
structures [50].

The second lecture (section 3) is devoted to reduction by invariants. It is shown how to
construct orbit spaces using a set of invariants for the symmetry. These orbit spaces are
foliated with reduced phase spaces. The dynamics on the reduced phase spaces shows how
the original phase space is organised. The connection with momentum maps and energy-
momentum maps is discussed. As examples the harmonic oscillator (see for instance [77]),
the Hamiltonian Hopf bifurcation [55] and the fourfold 1:1 resonance [24] are considered.

The third lecture (section 4) deals with normal forms for Hamiltonian systems and with con-
strained normalization of constraint Hamiltonian systems. After some general theorems con-
cerning normalization of systems of differential equations, Hamiltonian normalization is dis-
cussed. After that the ideas of constrained dynamics and constrained normalization are
introduced [56, 19]. This is illustrated by considering perturbed Kepler problems [56, 57].

The fourth lecture (section 5) deals with Hamiltonian Hopf bifurcations. It is shown how
normalization, Liapunov-Schmidt reduction and singularity theory lead to a standard form
through which this bifurcation can be analyzed. Several methods to prove the presence of
Hamiltonian Hopf bifurcation in more complex systems are shown.

3 On the Geometry of Hamiltonian Systems
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2 Geometric reduction

2.1. Some history

Geometric symplectic reduction was possibly first introduced by Reeb [74] who showed that
in systems where the phase space has the structure of a circle bundle, the system can be
reduced to the base space of the bundle.

Meyer [53], Marsden and Weinstein [49], and Arms, Marsden and Moncrief [2] finally formu-
lated more general theorems for regular reduction.

The more constructive framework for the construction of reduced phase spaces (Construc-
tive Geometric Reduction) was introduced Kummer [47], Cushman and Rod [16], and Van
der Meer [55].

The first two papers are on the 1:1 resonance, the third one on the 1:-1 resonance, the latter
one being an example of singular reduction.
The singular reduction was then put in a formal framework in by Arms, Cushman and
Gotay[3].

Much more on the different kinds of reduction and its history can be found in [52].

Note that the most classical way to perform symplectic reduction, for instance in celestial
mechanics, is by choosing clever symplectic coordinate transformations by which the number
of equations and variables reduces. Often chosen variables are invariants also appearing in
the constructive geometric reduction. A disadvantage is that these transformations are often
singular transformations.

2.2. Poisson manifolds

Hamiltonian systems are usually introduced in the context of symplectic geometry. However
I think it is more natural to use the context of Poisson geometry, because it emphasizes the
Lie algebra structure that is present when dealing with Hamiltonian systems. So we start
with introducing Poisson structures.

Let M be a manifold and { , } a bracket on C∞(M) such that
{F,G} is real bilinear
{F,G} = −{G, F} (antisymmetry)
{{F,G}, H} + {{G, H}, F} + {{H, F},G} = 0 (Jacobi identity)
{FG, H} = F{G, H} + {F, H}G (Leibnitz identity)

5 On the Geometry of Hamiltonian Systems
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Then { , } is a Poisson bracket, (M, { , }) is a Poisson manifold, (C∞(M,R), { , }) is
a Poisson algebra.

Due to the first three properties C∞(M,R) is a Lie algebra. Due to the last property the
Poisson bracket is a derivative in each of its components.

Let (M, { , }) be a Poisson manifold and H ∈ C∞(M), then there exists a unique vector field
X H such that X H (G) = {G, H} for all G ∈ C∞(M). We call X H the Hamiltonian vector field
with Hamiltonian function H w.r.t. the Poisson structure.

Let X(M) denote the space of vector fields on M . Then the map C∞(M)→ X(M); H → X H

is a Lie algebra morphism, that is, X{F,G} = [X f , XG].

If (M, { , }) is a Poisson manifold then there exists a contravariant antisymmetric two-tensor
B : T ∗M × T ∗M → R such that B(z)(d F(z), dG(z)) = {F,G}(z).

In coordinates (z1, · · · , zn) we have {F,G} = B i j ∂F
∂zi

∂G
∂z j , with B i j

= {zi , z j
} called the structure

matrix or just the matrix of the Poisson structure. For the vector field we have X i
H = B i j ∂H

∂z j .

If the Poisson structure is nondegenerate, i.e. B i j is invertible, then B i j is the negative inverse
of the matrix of a symplectic form. Note that a symplectic form is a covariant antisymmetric
two tensor which is nondegenerate.

Proposition 2.2.1 M is a Poisson manifold with a nondegenerate Poisson bracket if and
only if it is a symplectic manifold.

For X f , XG ∈ X(M) {F,G} = ω(X F , XG), with ω the symplectic form correponding to the
nondegenerate bracket {., .}.

On R2n we have the standard Poisson structure

{F,G} =
n∑

i=1

(
∂F
∂q i

∂G
∂pi
−
∂F
∂pi

∂G
∂q i

)
.

Then X H (q, p) = {
(

q
p

)
, H} = Jd H(q, p) with J =

(
0 In

−In 0

)
.

We have {F,G} = L XG F = d f · XG = d F · JdG, with L XG F the Lie derivative, or the direc-
tional derivative of F in the direction of the Hamiltonian vector field X H .

A Poisson map is a map ϕ : (M, { , }M)→ (N , { , }N ) such that {F, H}N ◦ϕ = {F◦ϕ, H ◦ϕ}M .
If { , }M and { , }N are nondegenerate ϕ is a symplectic map.

Consider the map

ϕ : R× Rn
→ Rn

; (t, x0)→ x(t) ,

such that x(t) is the solution of X H , with initial value x0. The flow of the vector field X H

is the map ϕt ;Rn
→ Rn given by ϕt(x) = ϕ(t, x). The flow of the Hamiltonian vector field

X H is a Poisson map.If ϕF
t is the flow of a Hamiltonian vector field X F and {F, H} = 0 then

H ◦ ϕF
t = H , i.e. ϕF

t leaves the Hamiltonian invariant and is a symmetry for X H .

6 On the Geometry of Hamiltonian Systems
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If ϕt is the flow of X H , then H ◦ ϕt = H , and {F,G} ◦ ϕt = {F ◦ ϕt ,G ◦ ϕt}. Differentiation with
respect to t then gives

{{F,G}, H} = {{F, H},G} + {F, {G, H}}

the Jacobi identity. Furthermore
d
dt
(F ◦ ϕt) = {F ◦ ϕt , H} = {F, H} ◦ ϕt .

A Poisson map leaving the Hamiltonian invariant maps solutions to solutions.

Definition 2.2.2 Let M be a Poisson manifold, Two points p1 and p2 on M are equiva-
lent if they can be connected by a trajectory of a locally Hamiltonian vector field. The
corresponding equivalence class is called a symplectic leaf.

Theorem 2.2.3 [Symplectic Stratification Theorem, [50] 10.4.4.] Let M be a finite dimen-
sional Poisson manifold. Then M is a disjoint union of its symplectic leaves. Each leaf is a
symplectically immersed Poisson submanifold, and the induced Poisson structure on the
leaf is symplectic. The dimension of the leaf through p equals the rank of the Poisson-
structure at p.
An immersion is a map f : M → N such that T f (m) : Tm M → T f (m)N is injective for
every m ∈ M . f is only locally a diffeomorphism. f (M) need not be a submanifold.

Recall that T f is the vector bundle mapping making the following diagram commute

T U
T f
−→ T VyτU

yτV

U
f
−→ V

where τU and τV are the vector bundle projections. More precisely, if T U = U × E , and
T V = V × F , then T F(u, e) = ( f (u), DF(u) · e).

Theorem 2.2.4 [Poisson-Darboux Theorem (Lie-Weinstein), [50] 10.4.6.] Let p be a point
on a Poisson manifold M . There is a neighborhood U of p and an isomorphism ϕ =

ϕS × ϕP : M → S × P, with S symplectic and P Poisson, and the rank of P at ϕP(p) is
zero. S and P are unique up to local isomorphism. If the rank of the Poisson manifold
is constant near p then there are coordinates (q1, · · · , qk, p1, · · · , pk, y1, · · · , yl) near p
satisfying {q i , q j

} = {pi , p j } = {q i , y j
} = {pi , y j

} = 0, {q i , p j } = δ
i
j .

Let (M, { , }) be a Poisson manifold and C ∈ C∞(M) such that {C, F} = 0 for all F ∈ C∞(M)
then C is called a Casimir function for the Poisson structure. C is constant along the flow
of all Hamiltonian vector fields, that is, XC = 0. The Casimir functions form the center of the
Poisson algebra.

Proposition 2.2.5 Let (M, { , }) be a Poisson manifold, C ∈ C∞(M) a Casimir, and S ⊂ M
a symplectic leaf, then C is constant on S.

Remark 2.2.6 Symplectic leaves need not be submanifolds.
Even if all the Casimir functions are constant the Poisson structure can still be degenerate.

7 On the Geometry of Hamiltonian Systems
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2.3. Group actions

Let G be a Lie group. A Lie group G is a finite-dimensional smooth manifold such that
multiplication and inversion are smooth maps. Let e denote the identity element.
On G consider the left and right translation maps Lg : G → G; h → gh and Rg : G → G; h →
hg

X (h) ∈ T G
Th Lg
−→ X (gh) ∈ T GyτG

yτG

h ∈ G
Lg
−→ gh ∈ G

A vector field X on G is left invariant if L∗g X = X , or Th Lg X (h) = X (gh) for every h ∈ G.
Consider XL(G) the space of left-invariant vector fields on G. Then TeG and XL(G) are
isomorphic as vector spaces. Thus there exists a Lie bracket on TeG given by [ξ, η] =
[Xξ , Xη](e).
TeG together with this bracket is the Lie algebra of G, denoted by g.

For a manifold M and a Lie group G we define the (left) action of G on M as a mapping
ϕ : G × M → M such that
ϕ(e,m) = m for all m ∈ M and ϕ(g, ϕ(h,m)) = ϕ(gh,m) for all g, h ∈ G and m ∈ M .

For every g ∈ G we have ϕg : m → ϕ(g,m) a diffeomorphism on M . The map g → ϕg is a
group homomorphism of G into Di f f (M).

The orbit of a point m ∈ M under the action of a Lie group G is O(m) = {ϕg(m)|g ∈ G} ⊂ M .

The isotropy subgroup (or stabilizer group or symmetry group) of G at m ∈ M is Gx = {g ∈
G|ϕg(x) = x} ⊂ G.

An action is transitive if there is only one orbit, that is, for every m, n ∈ M there is a g ∈ G
such that g · m = n.

An action is effective/faithful if ϕg = I dM implies g = e, that is, g→ ϕg is 1-1.

An action is free if it has no fixed points, that is, ϕg(m) = m implies g = e.

Corollary 2.3.1 An action is free if and only if Gm = {e} for all m ∈ M . Every free action is
effective.

An action is proper if 8 : G × M → M × M; (g,m) → (m, ϕ(g,m)) is a proper map. (A
map is proper if the inverse images of compact sets are compact)

The inner automorphism associated with g ∈ G is the map
Ig : G → G; h → ghg−1, that is, Ig = Rg−1 ◦ Lg.

Adjoint action: The adjoint action of G on g is given by Ad : G× g→ g; (g, ξ)→ Te Igξ . that
is, Adg = Te Ig : g→ g.

Coadjoint action: The coadjoint action of G on g∗ is given by 8∗ : G × g∗ → g∗; (g, α) →
Ad∗g−1α, with Ad∗g : g

∗
→ g∗ given by < Ad∗gα, ξ >=< α, Adgξ >. That is, Ad∗g−1 = (Te(Rg ◦

Lg−1))∗.

Consider a manifold M and a Lie group G acting on M . Two points m, n ∈ M are equivalent

8 On the Geometry of Hamiltonian Systems
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if they are in the same G-orbit This is an equivalence relation and we let M/G denote the set
of equivalence classes. M/G is called the orbit space for the action.

Theorem 2.3.2 [[1] 4.1.23.] If the action of G on M is proper and free then M/G is a
smooth manifold and π : M → M/G is a smooth submersion.

An submersion is a map f : M → N such that T f (m) : Tm M → T f (m)N is surjective for
every m ∈ M .

Consider an action ϕ : G × M → M . For ξ ∈ g define the map ϕξ : R × M → M by
ϕξ (t,m) = ϕ(exp tξ,m). ϕξ is an R-action on M and ϕexp tξ is a flow on M . The corresponding
vector field on M is given by

ξM(m) =
d
dt

∣∣∣∣
t=0
ϕexp tξ (m) .

It is called the infinitesimal generator of the action corresponding to ξ . The isotropy alge-
bra gm = {ξ ∈ g|ξM(m) = 0} is now the Lie algebra of the isotropy group Gm .

2.4. The Momentum Map

Consider a connected symplectic manifold (M, ω) with a symplectic action by a Lie group G
given by 8 : G×M → M . A symplectic action means that 8g is symplectic for each g ∈ G.
(M, ω,G) is then called a Hamiltonian G-space.

Suppose there is a linear map J : g → C∞(M) such that XJ(ξ) = ξM . Then the mapping
J : M → g∗ defined by J(ξ)(m) =< J (m), ξ > is a momentum mapping for the action of G.

This can be generalized to Poisson manifolds.

The momentum mapping is Ad∗ equivariant if J (8g(m)) = Ad∗g−1 J (m).

Suppose H : M → R is invariant under the action 8, that is, H(8g(m)) = H(m), for all
m ∈ M and g ∈ G. Thus for all ξ ∈ g we have H(8exp tξ (m)) = H(m). By differentiating this
expression at t = 0 we get

0 = d H(m)ξM(m) = L XJ(ξ) H = {H,J(ξ)}

Thus J(ξ) is an integral for the Hamiltonian system (M, ω, H).

Theorem 2.4.1 [Noether, [67], [50]] Let H be a G-invariant Hamiltonian on M with a mo-
mentum map J . Then J is conserved on the trajectories of the Hamiltonian vector field
X H .

2.5. Example: SO(3)

Consider R3 with basis {e1, e2, e3}, and standard inner product ( , ). Consider SO(3) =
{O ∈ GL(3,R)|O t O = O O t

= I, det (O) = 1}. Consider the diagonal action on R6, that is,

9 On the Geometry of Hamiltonian Systems
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O · (x, y) = (Ox, Oy). The Lie algebra is so(3) = {X ∈ gl(3,R)|X + X t
= 0}. A basis for so(3)

is {E1, E2, E3} with

E1 =

0 0 0
0 0 −1
0 1 0

 E2 =

 0 0 1
0 0 0
−1 0 0

 E3 =

0 −1 0
1 0 0
0 0 0


The bracket on so(3) is the usual commutator [X, Y ] = XY − Y X . We have [E1, E2] = E3,
[E2, E3] = E1, [E3, E1] = E2.
(R3,×) is a Lie algebra which can be identified with (so(3), [ , ]) through (x1, x2, x3) →

x1 E1 + x2 E2 + x3 E3.
Consider the momentum mapping J (x, y) = x × y. Then for ξ ∈ R3 we have < J (x, y), ξ >=
(ξ, x × y). Thus XJ(ξ) corresponds to rotation about the axis ξ .

2.6. Reduction

Theorem 2.6.1 [Classical regular reduction theorem (Meyer, Marsden, Weinstein), [1]
4.3.1., 4.3.5.] Let (M, ω,G) be a Hamiltonian G-space with Ad∗-equivariant momentum
mapping J : M → g∗. Let µ ∈ g∗ be a regular value of J and let the isotropy subgroup Gµ

for the coadjoint action on g∗ act freely and properly on J−1(µ). Then Mµ = J−1(µ)/Gµ

has a unique symplectic form ωµ making (Mµ, ωµ) into a symplectic manifold.
The orbit space Mµ = J−1(µ)/Gµ is the reduced phase space.

If H : M → R is invariant under the action of8 then the flow of H leaves J−1(µ) invariant and
commutes with the action of Gµ on J−1(µ). Thus the flow of H induces a flow on Mµ. This
flow is Hamiltonian with Hamiltonian function Hµ : Mµ→ R. Hµ is the reduced Hamiltonian.

2.7. Example: Harmonic oscillator [1]

Consider R2n with its canonical symplectic form ω =
∑n

i=1 dq i
∧ dpi . On this symplectic

manifold consider the flow of the vector field X H with H(q, p) = 1
2

∑n
i=1((q

i ))2+ p2
i ). This flow

defines a symplectic S1-action on (R2n, ω). This action is proper and free. The momentum
mapping is H itself. Moreover 1

2 is a regular value for H and H−1( 1
2 ) = S2n−1. We now have

the reduced phase space

H−1( 1
2 )/R = H−1( 1

2 )/S
1
= S2n−1/S1

= CPn−1

10 On the Geometry of Hamiltonian Systems
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2.8. Poisson reduction

Theorem 2.8.1 [Poisson reduction theorem, [50] 10.5.1.] Consider a Lie Group G acting
on a Poisson manifold M by an action 8 such that each 8g is Poisson map. Suppose the
action is free and proper. Then M/G is a manifold and π : M → M/G is a submersion.
Moreover there exists a unique Poisson structure on M/G such that π is a Poisson map.
If H is a G-invariant Hamiltonian on M ,then there is a function HG on M/G such that
H = HG ◦ π . Moreover π transforms X H on M to X HG on M/G.

Theorem 2.8.2 [Lie-Poisson reduction theorem, [50] 13.1.1.] If we identify the set of func-
tions on g∗ with the set of left-invariant functions on T ∗G then the canonical Poisson struc-
ture on T ∗G induces on g∗ a Poisson structure given by the Lie Poisson bracket
{F,G} = −

〈
µ,
[
δF
δµ
, δG
δµ

]〉
, with δF

δµ
the functional derivative.

FL ∈ C∞(T ∗G,R) is left-invariant if FL ◦ T ∗Lg = FL . Let C∞(T ∗G,R)L denote these
functions. For F : g∗ → R and αg ∈ T ∗G set FL(αg) = F(T ∗e Lgαg) = (F ◦ JR)(αg), with
JR : T ∗G → g∗;αg → T ∗e Lgαg the momentum mapping of the lift of the right translation on G.
FL = F ◦ JR is called the left-invariant extension of F from g∗ to T ∗G.

JR : (C∞(T ∗G,R)L , { , }T ∗G)→ (C∞(g∗,R)L , { , }g∗) is a Poisson isomorphism, with inverse
the restriction to g∗ = T ∗e G. We have {F,G}g∗ = {FL ,GL}T ∗G |g

∗, and{F,G}g∗ ◦ JR = {FL ◦

JR,GL ◦ JR}T ∗G . Note that we have the identification g∗ = T ∗G/G.

T ∗G is a symplectic manifold and each µ ∈ g∗ is a regular value of momentum mapping
JR. Consequently we have a reduced phase space J−1

R /Gµ. The symplectic form is the
Kirillov-Kostant-Souriau symplectic form.

We may identify J−1
R /Gµ with G/Gµ which we may in turn identify with O(µ), where O(µ) is

the coadjoint orbit through µ of the coadjoint action of G on g∗.

The symplectic form on the coadjoint orbits is the restriction of the Lie-Poisson structure on
g∗.

Coadjoint orbits of finite dimensional Lie groups are even dimensional.

2.9. Example: Rigid body

Consider the rigid body. Its configuration space is SO(3,R). Its phase space T ∗SO(3,R).
SO(3,R) acts on itself and this action lifts to an action on T ∗SO(3,R). Its momentum map-
ping is J : T ∗SO(3,R) → so(3,R)∗. The reduced phase spaces are the co-adjoint orbits of
SO(3,R) on so(3,R)∗ which can be identified with S2.
This can be shown by identifying so(3,R)∗ with a Lie subalgebra of the homogeneous quadratic
functions on R6 with the standard Poisson bracket. Let Si j = xi y j− x j yi , then S12, S31, and S23

generate a Lie algebra that can be identified with so(3,R)∗. Furthermore X = x2
1 + x2

2 + x2
3 ,

Y = y2
1 + y2

2 + y2
3 , and P = x1 y1 + x2 y2 + x3 y3 are invariant under the diagonal action of

SO(3), giving S2
12 + S2

31 + S2
23 = XY − P2

= constant . Which gives a Casimir and defines the
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co-adjoint orbit.
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3 Reduction through invariants

3.1. Invariant theory and reduction

We will start this section with some theorems about invariants, a minimal generating basis,
invariant functions and how invariant may describe the orbit space. The basic result is due
to Hilbert.

Theorem 3.1.1 [Hilbert, [40]] The algebra of polynomials over C of degree d in n variables
which are invariant under GL(n,C), acting by substitution of variables, is finitely generated.

This was extended to

Theorem 3.1.2 [Weyl, [85]] The algebra of invariants is finitely generated for any repre-
sentation of a compact Lie group or a complex semi-simple Lie group.

Let R[x]G denote the space of G-invariant polynomials with coefficients in R.

Corollary 3.1.3 Consider a compact Lie group G acting linearly on Rn. Then there ex-
ist finitely many polynomials ρ1, · · · , ρk ∈ R[x]G which generate R[x]G as an R algebra.
These generators can be chosen to be homogeneous of degree greater then zero. We call
ρ1, · · · , ρk a Hilbert basis for R[x]G .

Theorem 3.1.4 [Schwarz, [80] Consider a compact Lie group G acting linearly on Rn. Let
ρ1, · · · , ρk be a Hilbert basis for R[x]G , and let ρ : Rn

→ Rk
; x → (ρ1(x), · · · , ρk(x)). Then

ρ∗ : C∞(Rk,R)→ C∞(Rn,R)G is surjective, with ρ∗ the pull-back of ρ.

Theorem 3.1.5 [Poenaru, [71]] The map ρ is proper and separates the orbits of G. More-
over the following diagram commutes, with ρ̃ a homomorphism

Rn ρ
−→ ρ(Rn)

π ↘ ↙ ρ̃

Rn/G

Thus we can take ρ(Rn) as a model for the orbit space.

Consider (R2n, ω) on which a Lie group G acts linearly and symplectically. Then (C∞(R2n,R), { , })
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is a Poisson algebra. If we consider on Rk the Poisson structure induced by ρ by taking as
structure matrix Wi j = {ρi , ρ j } then (C∞(Rk,R), { , }W ) is a Poisson algebra and ρ a Poisson
map. We have a Poisson reduction if we restrict the bracket on Rk to ρ(R2n).

In general there will be relations and inequalities determining the image of ρ. Therefore
ρ(R2n) will in general be a real semi-algebraic subvariety of Rk . A semi-algebraic subset of
Rk is a finite union of sets of the form {x ∈ Rk

|R1(x) = · · · = Rr = 0 , Rr+1(x), · · · , Rm > 0}
. Define C∞(ρ(R2n),R) = {F : ρ(R2n) → R|ρ∗(F) ∈ C∞(R2n,R)}. This is a differential
structure on ρ(R2n) and the orbit map is smooth (see [21, 20]).

Let W be a real semi-algebraic variety in Rk . A point x ∈ W is nonsingular if there exists a
neighborhood U ⊂ W of x such that for each y ∈ U the matrix ∂Ri

∂x j
(x) has maximal rank. A

point x ∈ W is singular if the rank of ∂Ri
∂x j
(x) is strictly less than the maximal rank.

Let S(W ) denote the set of singular points of W .

Proposition 3.1.6 S(W ) is a proper semi-algebraic algebraic subvariety of W . W \ S(W )

is a non-empty smooth local manifold.

We may now stratify W in the following way by smooth manifolds Mi . S1 = W , Si+1 = S(Si ),
Mi = Si \ Si+1. This stratification is called the Whitney stratification.

Theorem 3.1.7 [Bierstone [7]] A stratum of the Whitney stratification of ρ(R2n) = R2n/G is
the image under the Hilbert map ρ of a connected component of symmetry type K for a
compact subgroup K of G.

For a compact subgroup K of G the set of symmetry type K is defined by
MK = {m ∈ R2n

|Gm = K }.

Theorem 3.1.8 Let N be a connected component of MK and let in : N → M be the
inclusion map. Then N is a submanifold of R2n and ωN = i∗Nω is a symplectic form on N . If
F ∈ C∞(R2n,R)G then N is an invariant manifold of X F and X F |N = X F |N .

If there exists a momentum mapping J : R2n
→ g∗, then for each µ ∈ g∗ every connected

component Mµ

K = J−1(µ) ∩ MK is a submanifold of R2n. ρ(Mµ

K ) is a symplectic submanifold
of the differential space (ρ(R2n),C∞(ρ(R2n),R)) with symplectic form ω

µ

H .

The symplectic leaves of (ρ(R2n), { , }) form a singular foliation. The symplectic leaves
are the connected components of ρ(Mµ

K ) as µ runs over g∗ and K runs over the compact
subgroups of G.

Thus the symplectic leaves of the orbit space correspond to the reduced phase spaces.

3.2. Example: S1 or SO(2) action [55]

Consider on R4 the S1-action given by the flow of L(x, y) = x1 y2− x2 y1. This flow is ϕt(x, y) =

(Rt x, Rt y) with Rt =

(
cos(t) − sin(t)
sin(t) cos(t)

)
. A Hilbert basis in terms of invariant polynomials

consist of: L(x, y), X (x, y) = 1
2 (x

2
1 + x2

2), Y (x, y) = 1
2 (y

2
1 + y2

2), P(x, y) = x1 y1 + x2 y2. With
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Figure 3.1: Reduced phase spaces for c = 0 and c 6= 0.

the usual Poisson bracket the polynomials X , Y , and P form a Lie algebra sl(2,R). These
invariants can be found by determining the kernel of adL = {L , }. The orbit map for the
S1-action is ρ : R4

→ R4
; (x, y) → (X, Y, P, L). Its image is determined by the relation

4XY = L2
+ P2 together with X, Y > 0. Consequently the orbit space is half of a solid

cone. The reduced phase spaces are obtained by taking L = c. See fig 3.1. (Note that
J : R4

→ R; (x, y) → S(x, y) corresponds to a momentum map for this action). These
surfaces correspond to the co-adjoint orbits for the action of SL(2,R) on sl(2,R)∗. For c = 0
the cone consists of two strata, the vertex and the remaining part of the surface.

3.3. Energy-momentum maps

Consider a Hamiltonian system (R2n, ω, H), with integrals F1, · · · , Fr , r 6 n − 1 which are
functionally independent of each other and H , that is, d H ∧ d F1 ∧ · · · ∧ d Fr 6= 0 on an open
and dense subset of R2n, then we call the map

EM : R2n
→ Rr+1

: x 7→ (H, F1(x), · · · , Fr (x))

an energy-momentum map. EM−1(c) is an invariant manifold for X H .

We have {H, Fi } = {Fi , F j } = 0 for i 6= j , i = 1, · · · , r . When r = n − 1 the system is called
Liouville integrable.

The energy-momentum mapping is studied because it gives information about the way the
phase space is organized. It gives a fibration in invariant surfaces EM−1(c) (Smale [81]).

The questions to be answered are:

• What is the topological type of the fibers?

• What does the singularity of the map looks like and what is the type of the singular
fibers?

• How do the fibers fit together?

• What is the flow on the fibers?
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3.4. Example: The harmonic oscillator [77]

Consider the Hamiltonian system (T ∗R2, ω, H), with ω = dx1 ∧ dy1 + dx2 ∧ dy2 and

H : T ∗R2
→ R : (x, y) 7→ 1

2 (x
2
1 + y2

1)+
1
2 (x

2
2 + y2

2) .

This system has integral L(x, y) = x1 y2 − x2 y1, L corresponds to the angular momentum.
Because both H and L are integrals of the harmonic oscillator

Mh,l = H−1(h) ∩ L−1(l) .

is an invariant manifold for the harmonic oscillator flow.

h

l

S

S

T

1

3

2

p t

Figure 3.2: EM mapping for
the harmonic oscillator

Define the energy-momentum mapping

EM : R4
→ R2

: (x, y) 7→ (H(x, y), L(x, y)) .

Then EM−1(h, l) =Mh,l .
Regular values, that is, d H and d L independent, correspond
to T 2. Singular values to S1 or the origin. The singular fibers
correspond to relative equilibria.

Note that EM is an energy momentum map, but can also be
considered as a T2 orbit map for the torus group G generated
by the flows of X H and X L .

EM can also be considered as a T2 momentum mapping.

One could also analyse the problem by doing a reduction
with respect to the L symmetry.

By reducing with respect to the H -symmetry one obtains the
Hopf fibration.

The EM image is a finite intersection of half-planes, that is,
a polytope.

3.5. Relative equilibria

In the example of the Harmonic oscillator a relative equilibrium was a topological S1 which
was an orbit for X H as well as X L . More generally (see for instance [12])

Definition 3.5.1 A point xe is called a relative equilibrium if for all t there exists gt ∈ G
such that xe(t) = gt(xe), where xe(t) is the dynamic orbit of X H with xe(0) = xe. In other
words, the trajectory is contained in a single group orbit.
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Proposition 3.5.2 Let J be a momentum map for the G-action on M and let H be a G-
invariant Hamiltonian on M . Let xe ∈ M and µ = J (xe). The following are equivalent:

i) xe is a relative equilibrium

ii) the group orbit G · xe is invariant under the dynamics

iii) there is a ξ ∈ g such that xe(t) = exp(tξ) · xe

iv) there is a ξ ∈ g such that xe is a critical point of the augmented Hamiltonian: Hξ (x) =
H(x)− < J (x), ξ >.

v) xe is a critical point of the restriction of H to J−1(µ).

vi) the image x̄e ∈ Mµ of xe is a critical point of the reduced Hamiltonian Hµ.
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3.6. Toral fibrations

When the fibers of the energy momentum mapping are tori, we speak of a toral fibration.
When a manifold is fibered with tori in algebraic geometry they speak of a toric manifold.

Theorem 3.6.1 [Arnol’d, Liouville, [5]] Consider a Hamiltonian system with Hamiltonian
function H : R2n

→ R. Suppose there are n functions F1 = H, F2, · · · , Fn such that
F1, · · · , Fn are integrals of X H , the flows of X Fi are complete, {Fi , F j } = 0 for all i, j ,
d F1 ∧ · · · ∧ d Fn 6= 0 on an open and dense subset of R2n. If the set of regular values R of
the energy-momentum mapping EM : R2n

→ Rn
: x 7→ (F1(x), · · · , Fn(x)) is a nonempty

open subset of Rn, and for c ∈ R, the set EM−1(c) is compact and connected then EM−1(c)
is an n-torus.

There are generalizations to the case where:

• The rank is not full (singular fibers). Under certain conditions the singular fibers corre-
sponding to a point of rank r < n correspond to a Tr . (Eliasson [28])

• The system is not completely integrable but has only k < n integrals. Under certain
conditions the fiber is a Tk . (Nekhoroshev [66])

• The set EM−1(c) is not compact. The fibers are Rk−m
× Tm . (Fiorani, Giachetta, Sar-

danashvilly [30])

3.7. Factorizing EM through ρ

Consider a Hamiltonian system (R2n, ω, H), with integrals F1, · · · , Fr , r 6 n − 1 and energy-
momentum map

EM : R2n
→ Rr+1

: x 7→ (H, F1(x), · · · , Fr (x)) .

The flows of Fi generate a group G which is a group acting symplectically on R2n. When this
group is compact and acting linearly it has a orbit mapping ρ : R2n

→ Rk
; x → (ρ1(x), · · · , ρk(x)).

Because H and the Fi are invariant under G there are functions H̄ and F̄i on ρ(R2n) such
that, H̄ ◦ ρ = H and F̄i ◦ ρ = Fi . Setting EM(ρ1, · · · , ρk) = (H̄ , F̄1, · · · , F̄r ) we have
EM ◦ ρ = EM. Thus the energy-momentum map factorizes through the orbit map.

Note that in certain situations it is possible to include H and the Fi in the set of generating
invariants, which might lose homogeneity. Now the factorization becomes a projection.

3.8. Example: Hamiltonian Hopf bifurcation

Consider H(x, y) = 1
2 (x

2
1 + x2

2)+ a(y2
1 + y2

2)
2 with integral L(x, y) = x1 y2 − x2 y1.

The energy-momentum map factorizes through the L orbit map
ρ : (x, y)→ (X, Y, P, L)→ (H, L).
We have H̄(X, Y, P, L) = X + 4Y 2 and L̄(X, Y, P, L) = L. The fibers of the energy-
momentum mapping H̄ × L̄ on ρ(R4) are just intersections of two surfaces. These are
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Figure 3.3: Reduced phase spaces and reduced energy surfaces.

the orbits of the reduced vector field. When the surfaces are tangent one obtains a relative
equilibrium.

3.9. Momentum polytopes

According to a theorem by Atiyah [6], and Guillimin and Sternberg [32] the image for a
momentum map for a torus action is a convex polytope.

Consider Sp(2,R2) the group of linear symplectic transformations of the plane. We may
identifiy its Lie algebra with the homogeneous quadratic polynomials on R2. 1

2 (p
2
+ q2) is

the infinitesimal generator for the group of rotations in the (q, p)-plane. Denote this group
by T1 and its Lie algebra by t1. Then t1 has a generator ξ such that 2πξ = id and the
ξ corresponds to the function 1

2 (p
2
+ q2). We may identify t1 with R and t∗1 with R The

momentum mapping is given by J (q, p) = 1
2 (p

2
+ q2) and < J (q, p), aξ >= 1

2 a(p2
+ q2).

If we now consider the product Tn we have momentum mapping J : R2n → Rn, (q, p) →
( 1

2 (p
2
1 + q2

1 ), · · · ,
1
2 (p

2
n + q2

n )). the image are all the points (x1, · · · , xn) with xi > 0.

The fact that the image of this momentum mapping for this linear representation of the torus
is a convex polytope can be extended to arbitrary linear actions of the torus and by using the
Darboux theorem to arbitrary torus actions in the neighborhood of a fixed point. One may
then prove the global result

Theorem 3.9.1 [[33], 32.4] Let M be a compact connected symplectic 2n dimensional
manifold and G a compact Lie group with Hamiltonian action G×M → M and momentum
mapping J : M → g∗. If G = Tn then the image of the momentum mapping J : M → t∗ is
a convex polytope.

The singularity of the momentum mapping is formed by the vertices, edges and faces of the
polytope.
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3.10. Example: fourfold 1:1 resonance [24]

Consider the quadratic functions on R8:

H2(q, Q) =
1
2
(Q2

1 + q2
1 )+

1
2
(Q2

2 + q2
2 )+

1
2
(Q2

3 + q2
3 )+

1
2

Q2
4 + q2

4 ) ,

L2(q, Q) = q1 Q2 − Q1q2 + q3 Q4 − Q3q4 ,

L1(q, Q) = q3 Q4 − Q3q4 − q1 Q2 + Q1q2 ,

K (q, Q) = −
1
2
(Q2

1 + q2
1 )−

1
2
(Q2

2 + q2
2 )+

1
2
(Q2

3 + q2
3 )+

1
2

Q2
4 + q2

4 ) .

The corresponding flows generate a linear torus action with momentum mapping J1 : R8
→

R4
; (q, Q) → (H2, L2, L1, K ). After reduction with respect to H2 trough the orbit mapping

ρ we get the reduced phase space ρ(R8) ∩ ρ(H−1
2 (c)) ∼= CP3. We may now factorize the

momentum mapping J2 : R8
→ R3

; (q, Q) → (L2, L1, K ) through the orbit map to obtain a
momentum mapping J̄2 : CP3

→ R3 which fulfills the conditions of the theorem.

As an image we obtain the Delzant polytope which in this case is a tetrahedron (see fig 3.4).

L 1

X

K

Figure 3.4: Delzant polytope

The fibration of J̄2 is now as follows:

At the vertices the rank of J̄ is zero.
The vertices have as fiber a point.

At the edges the rank of J̄ is 1.
The points on the edges have as fiber a
T 1.

At the faces the rank of J̄ is 2
The points an the faces have as fiber a
T 2,

In the interior J̄ has full rank.
The points in the interior have as fiber a T 3.

Next consider J̃2 : CP3
→ R2 obtained by

factorizing (q, Q)→ (L2, L1) through the H2

orbit mapping. This is a momentum map-
ping for a T2-action. dim(T2)= 1

2 dim(CP3)−1.
We call this a momentum mapping of deficiency one. Projecting the tetrahedron in the K di-
rection we obtain that the critical set is a square with its diagonals.
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4 Normal forms

4.1. Local Normal Forms

The text below describes the standard normal form theory and can be found in, for instance,
[84].

Consider

ẋ = Ax + f (x) ,

where A is a constant n × n matrix,
and f (x) can be expanded near 0 in homogeneous vector polynomials starting with degree
2. That is, f has a Taylor expansion

f (x) = f2(x)+ f3(x)+ · · · ,

where fm(x) is a vector with homogeneous components with terms

xm1
1 xm2

2 · · · x
mn
n with m1 + m2 + · · · + mn = m .

of degree m.

Consider near identity transformations of the form

x = y + h(y) = y + h2(y)+ h3(y)+ · · · .

Such a transformation transforms the equation into

ẏ = (I +
∂h
∂y
)−1 (Ay + Ah(y)+ f (y + h(y))) .

For terms of degree 2 one finds, the homological equation for h2

∂h2

∂y
Ay − Ah2(y) = f2(y) ,

which can be used to remove as many quadratic terms as possible. One may then proceed

with
∂hm

∂y
Ay − Ahm(y) = gm(y) , m > 2 , to remove higher order terms, where gm depends

on all solutions for the lower order terms.

Write

L A(h) =
∂h
∂y

Ay − Ah(y) .
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L A is a linear operator. Let A be in diagonal form with different eigenvalues λi with eigenvec-
tors ei . Then L A has eigenvectors ym1

1 ym2
2 · · · y

mn
n ei with eigenvalues

n∑
j=1

m jλ j − λi , i = 1, · · · , n .

The eigenvalues of A are resonant if for i ∈ {1, 2, · · · , n} one has
λi =

∑n
j=1 m jλ j , with m j ∈ {0} ∪ N and m = m1 + · · · + mn > 2.

Thus the eigenvalues tell us which terms are in the image of L A and which terms are in the
kernel. The terms in the image can be removed from the right-hand-side of the equation.

Consider the equation ẋ = Ax+ f (x), with f (0) = 0 and D0 f = 0. Below are some theorems
for normal forms for general systems of differential equations.

Theorem 4.1.1 [Poincaré, [72]] If the eigenvalues of A are nonresonant then the equation
ẋ = Ax + f2(x) + · · · can be transformed into the linear equation ẏ = Ay by the formal
transformation x = y + h(y) = y + h2(y)+ · · · .

Theorem 4.1.2 [Poincaré-Dulac, [26]] The equation ẋ = Ax + f2(x) + · · · can, by formal
transformations, be transformed into the equation ẏ = Ay + r(y), such that r(y) only
contains resonant term, i.e., consists of monomials that are eigenvectors corresponding to
resonant eigenvalues.
Examples of other normal form theorems are

Theorem 4.1.3 If the eigenvalues of A are lying either to the right or to the left of the
imaginary axis in C, then the equation can be reduced to a polynomial normal form by a
formal transformation of variables.

Theorem 4.1.4 (Hartman-Grobman) If A is hyperbolic, i.e. A has only eigenvalues with
nonzero real part, then there exists a homeomorphism in a neighborhood of the origin
locally transforming the equation ẋ = Ax + f (x) to ẏ = Ay.

We may reformulate the above using the Lie algebra structure of vector fields. Define adX by
adX Y = [X, Y ]. This is the adjoint action of the Lie algebra on itself. Consider the equation
ẋ = Ax + f (x), with f (0) = 0 and D0 f = 0. Let Xm(Rn) denote the space of polynomial
vector fields, homogeneous of degree m. Then adA : Xm(Rn) → Xm(Rn) is a linear map.
Transforming the equation by x = y + P(y), P(y) ∈ Xk(Rn), one obtains for the kth order
terms the homological equation

fk(y)− adA P(y) = 0 ,

While the terms of order < k are unchanged. Thus in f (x) = f2(x) + f3(x) + · · · one may
remove all terms in Im adA. The normal form consists of terms in some suitably chosen
complement of ImadA.
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4.2. Local Hamiltonian normal forms

For a given function H ∈ C∞(R2n,R), with H(0) = DH(0) = 0, consider its power series
evaluation in a neighbourhood of the origin

H = H2 + H3 + H4 + · · · .

Define adH by adH F = {H, F}. Consider near-identity transformations eadF , then eadF H =
H ◦ eadF . Let F3 be a homogeneous polynomial of degree 3

eadF3 H = H2 + H3 + {F3, H2} + h.o.t. .

If we can split H3 = H̃3 + H̄3 with H̃3 ∈ Im (adH2) then we can remove H̃3 by solving the
homological equation H̃3 + {F3, H2} = 0, and remove all third order terms in the image of
adH2 , giving

H = H2 + H̄3 + Ȟ4 + h.o.t.

Repeat this for the fourth order terms

eadF4 H = H2 + H̄3 + Ȟ4 + {F4, H2} + h.o.t.

Up to arbitrary order we may remove all terms in Im(adH2).

Thus we can normalize a system if we can solve the homological equation at each order. So
the real question is in how to solve these equations.

If the Jordan-Chevalley decomposition of H2 is H2 = S + N then we may choose as a
complement to Im(adH2)

C = ker(adS) ∩ ker(adM) ,

where M is the homogeneous quadratic polynomial such that the corresponding infinitesi-
mally symplectic matrix AM = AT

N . here we use the method from [27]. In the next chapter
you will find the method using the sl(2,R) Lie algebra structure from [17].

As a consequence {H̄n, S} = 0 for all n 6 2. We say H is in normal form up to order k, with
respect to S.

4.3. Example: saddle-node

Consider the Hamiltonian saddle-node with µ = 0.

H(q, p) =
1
2

p2
+

1
3

q3
+ f>3(q, p) .

Corresponding equations{
q̇ = ∂H

∂p = p + ∂ f
∂p (q, p) ,

ṗ = − ∂H
∂q = −q2

−
∂ f
∂q (q, p) .

It has normal form up to order k

H(q, p) =
1
2

p2
+

1
3

q3
+ a4q4

+ a5q5
+ · · · akqk

+ f>k(q, p) .

The terms in the normal form have to commute with q.
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4.4. Example: Two degrees of freedom, p:q resonance

Consider a Hamiltonian H = H2 + h.o.t., with

H2(x, y) = 1
2 p(x2

1 + y2
1)+

1
2 q(x2

2 + y2
2) .

Introduce complex conjugate coordinates by z j = x j + iy j , ζ j = z̄ j = x j − iy j . Then

adH2(z, ζ ) = −i
(

p(z1
∂

∂z1
− ζ1

∂

∂ζ1
)+ q(z2

∂

∂z2
− ζ2

∂

∂ζ2
)

)
This operator has eigenvectors zk1

1 zk2
2 ζ

l1
1 ζ

l2
2 with eigenvalue −i (p(k1 − l1)+ q(k2 − l2)).

If p and q are non-resonant, that is, p
q /∈ Q, then all terms in ker adH2 have ki = li thus the

normal form is generated by

I1 = z1ζ1 = x2
1 + y2

1 and I2 = z2ζ2 = x2
2 + y2

2 .

The normal form up to order 2k is

H̄ = H2 + F2(I1, I2)+ · · · Fk(I1, I2)+ h.o.t ,

with F ∈ R[I1, I2]. (Birkhof normal form, [8])

When p and q are resonant then the normal form is generated by I1, I2 and R1 =
1
2 (z

q
1ζ

p
2 +

ζ
q
1 z p

1 ), R2 =
1
2i (z

q
1ζ

p
2 − ζ

q
1 z p

1 ). The normal form up to order k is

H̄ = H2 + F(I1, I2, R1, R2)+ h.o.t ,

where F ∈ R[I1, I2, R1, R2] containing only terms of order s, 2 < s 6 k, in (x, y). (Moser,
[62]).
This is also called Gustavson normal form [35]. Note that H2 is an integral for the normalized
part.

If we write B1 = H2 =
1
2 I1 +

1
2 I2 and B2 =

1
2 I1 −

1
2 I2. Then the normalized terms are in

R[B1, B2, R1, R2]. We have the relation

R2
1 + R2

2 =

(
(B1 + B2)

p

)q (
(B1 − B2)

p

)p

.

Normal forms are not unique (see [78] and the references therein). One can for instance use
the above relation to write the normal form in R[B1, B2, R1] + R2(R[B1, B2, R1]). This can be
formalized using Groebner basis [79].

4.5. Constrained dynamics, [56, 19]

Consider R2n with coordinates (x1, ..., xn, y1, ..., yn) and standard symplectic form ω(x, y) =∑n
i=1 dxi ∧ dyi .

For m < n let M1, ...,M2m ∈ C∞(R2n) be such that d M1, ..., d M2m are independent on M =
{(x, y) ∈ R2n

|M1(x, y) = M2(x, y) = ... = M2m(x, y) = 0}, that is, M is a smoothly embedded
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submanifold of R2n. Furthermore suppose that the matrix C = (ci j ) = ({Mi ,M j }) is nonsin-
gular at every point of M . Then M is a symplectic manifold with symplectic form ω|M , the
restriction of the symplectic form ω to M . We say that M is a co-symplectic manifold of
R2n.

For H ∈ C∞(R2n) the restriction of the Hamiltonian vector field X H to M need not be tangen-
tial to M . However we can construct a vector field tangential to M by considering X H |M on
(M, ω|M), where H |M is the restriction of H to M .

We call X H |M the constrained Hamiltonian vector field corresponding to H . X H |M is the
image of the projection of X H on T M with respect to the splitting of TR2n into T M and its
ω-orthogonal complement.

Let I be the ideal of C∞(R2n) generated by M1, ...,M2m , that is, I is the ideal of functions
vanishing on M . Let L H denote the derivative defined by L H = {., H}, where {., .} is the
Poisson bracket on R2n.

Lemma 4.5.1 The following statements are equivalent:

(i) X H |M = X H on M .

(ii) {H,M j } ∈ I, for j = 1, ..., 2m.

(iii) (exp L H )(I) ⊂ I.

(iv) M is an invariant manifold of X H .

(v) X H is tangent to M at each point of M.

Let H ∈ C∞(R2n). When X H is not tangent to M we can construct a function Ĥ such that
Ĥ |M = H |M , X Ĥ is tangent to M , and X Ĥ |M = X H |M .

Lemma 4.5.2 If Ĥ = H +
∑2m

i=1 αi Mi , with αi =
∑2m

j=1 c−1
i j{H,M j }, then X H |M = X Ĥ on

M.

Note that here the αi are chosen such that {Ĥ ,Mi } = 0, however, we only need {Ĥ ,Mi } ∈ I.
Consequently the choice of the αi may be modified.

Note that Ĥ need not be a smooth function on all of R2n. In fact Ĥ is first constructed on M
and then extended to some open neighborhood of M in R2n.

The Poisson bracket {., .}M on (M, ω|M) can be computed in terms of the Poisson bracket
on R2n by using the Dirac bracket

[H,G] = {H,G} −
2m∑

i, j=1

{H,Mi }ci j
{M j ,G} .

Lemma 4.5.3 {H |M,G|M}M = {H,G} −
∑2m

i, j=1{H,Mi }ci j
{M j ,G} on M , where the right

hand side is calculated for any smooth extension of H |M and G|M to an open neighbor-
hood of M in R2n.
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Lemma 4.5.4 If X H |M = X H on M then {H |M,G|M}M = {H,G} on M for all G ∈ C∞(R2n).

Note that (C∞(R2n), { , }) as well as (C∞(M), { , }M) are Poisson algebra’s.

We may call two function F,G ∈ C∞(R2n) equivalent if F |M = G|M , or, in other words, if
F − G ∈ I. To compute a constrained bracket one may choose any two representatives for
the two functions within their equivalence classes.

4.6. Example: geodesic flow

Consider a free particle moving in R4. This gives a Hamiltonian system on T ∗R4. Using
coordinates (q, p) the Hamiltonian is given by G(q, p) = 1

2 |p|
2. The geodesic flow on S3

⊂

R4 is obtained by constraining this vector field to T S3 given by the constraints M1(q, p) =

|q|2 − 1 = 0, and M2(q, p) = 〈q, p〉 = 0. c−1
=

1
2|x |2

(
0 −1
1 0

)
. Thus T S3 is a co-symplectic

manifold. The constrained Hamiltonian is Ĝ = G+
∑2

i, j=1{G,Mi }ci j Mi . However, we will pick
another representative. Note that when G = F mod I then Ĝ = F̂ mod I and
X Ĝ = X F̂ = XG |M . Therefore take F = |q|2G. Then

F̂ =
1
2
(|q|2|p|2 − 〈q, p〉2) .

Thus we may replace G by F̂ on M .

4.7. Constrained normalization

Consider a Hamiltonian system with Hamiltonian H on R2n which is constrained to some
manifold M as above. We want to put H |M into normal form up to some order. We may do
this by mappings ead(Fk ) on R2n but these mappings should leave M invariant. Suppose that
X H2 has a periodic flow that leaves M invariant.

Theorem 4.7.1 If H is in normal form up to order k with respect to H2, then H |M is in
normal form up to order k with respect to H2|M .

Definition 4.7.2 ead(F)H is in normal form up to order k with respect to H2 modulo I if

(i) {F,M j } ∈ I for all j = 1, · · · , 2m,

(ii) All terms in ead(F)H of order 6 k are in (ker ad(H2))+ I.

Consequently if H is in normal form up to order k with respect to H2 modulo I then H |M is
in normal form up to order k with respect to H2|M .

We may now normalize H by mappings ead(Fk ), but at each step we take F̂k = Fk+
∑2m

i=1 αi Mi ,
with αi =

∑2m
j=1 ci j

{Fk,M j }. Now Fk is obtained by solving the homological equation H̃k +
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{Fk, H2} = 0, and it follows that {F̂k, H2} = −H̃k + I , with I = {H2,
∑2m

i=1 αi Mi } ∈ I. Splitting
Hk = (H̄K + I )+ (H̃k − I ) we get Hk + {F̂k, H2} = H̄k + I . This way we obtain a normal form
up to order k with respect to H2 modulo I

4.8. Example: Perturbed Kepler problems, [56, 57]

We start with regulariztion of the Kepler problem with negative energy using Moser’s regu-
larization [63].

Consider the Kepler Hamiltonian

K̃ (q, p) =
1
2
〈p, p〉 −

1
|q|

.

Suppose that K̃ = E < 0 and consider

K̂ (q, p) =
|q|
√
−2E

(K̃ (q, p)+ |E |)+
µ

√
−2E

=
1

2
√
−2E
|q|(|p|2 + 2|E |) .

Then the Hamiltonian vector field for K̂ is

dq
ds
=

1
√
−2E
|q|
∂ K̃
∂p

,
dp
ds
= −

1
√
−2E
|q|
∂ K̃
∂q

.

After re-scaling time according to ds
dt =

√
−2E
|q| this becomes the Kepler vector field.

The Hamiltonian vector field corresponding to K̂ with energy µ
√
−2E

is a re-parametrzation of

the Kepler vector field with Hamiltonian K̃ with energy E . Without loss of generality we may
assume that µ = 1 by choosing appropriate units, while scaling q by 2|E | and p by 1

√
2|E |

allows us to restrict to E = − 1
2 . Thus we may set

K̂ (q, p) =
1
2
|q|(|p|2 + 1) .

Consider Moser’s map based on the stereographic projection

µ : Tp S3
⊂ R8

→ T ∗R3
⊂ R6
; (u, v)→ (p, q) ,

with

pk =
uk+1

1+ u1
, qk = vk+1(1− u1)+ v1uk+1 , k = 1, 2, 3. .

The inverse is given by

uk+1 =
2pk

1+ |p|2
, u1 =

|x |2 − 1
|x |2 + 1

,

vk+1 =
1
2
(|p|2 + 1)qk − 〈p, q〉pk , v1 = 〈p, q〉 , k = 1, 2, 3 ,
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with 〈·, ·〉 the standard inner product on R3.
µ is a symplectic map when restricting the standard symplectic form to Tp S3.

We have |v| = K̂ = 1
2 |q|(|p|

2
+ 1).

In the Kepler system we have to exclude the collision orbits corresponding to |q| = 0. So we
should consider only T+p S3, that is |u| = 1, 〈u, v〉 = 0, |v| 6= 0, u 6= (1, 0, 0, 0).

The regularized flow is now obtained by including |v| = 0. The Kepler flow corresponds to
the constrained flow of |v| on Tp S3. As Hamiltonian we may choose

H0(u, v) =
√
|u|2|v|2 − 〈u, v〉2 .

The regularized Kepler flow is a re-parametrization of the geodesic flow.

Consider perturbed Kepler system K (q, p) + εK1(q, p) + ε2 K2(q, p) + · · · . Using Moser’s
map this transforms to H0(u, v)+ εH1(u, v)+ ε2 H2(u, v)+ · · · . Where Hi , i > 0 are functions
on R8.

The invariants for the periodoc H0-flow are

|u|2 , |v|2 , 〈u, v〉 , Si j = uiv j − u jvi , i, j = 1, · · · , 4 , i 6= j .

|u|2 , |v|2 , 〈u, v〉 span a Lie algebra isomorphic to sl(2,R), the Si j span a Lie algebra
isomorphic to so(4).

In the relation |u|2|v|2 − 〈u, v〉2 = S2
12 + S2

13 + S2
14 + S2

23 + S2
24 + S2

34 the left hand side is the
Casimir for sl(2,R), while the right hand side is the Casimir for so(4).

Consequently

ρ : Tp S3
→ (S12, S13, S14, S23, S24, S34)

is an orbit map for the H0-flow. The reduced phase spaces are given by∑
16i, j64

S2
i j = H 2

0 , S12S34 − S13S24 + S14S23 = 0 .

and can be shown to be isomorphic to S2
× S2.

Note that Si j |Tp S3
◦µ−1 give the integrals for the Kepler problem spanning the Lie algebra of

its symmetry group SO(4).

By the constrained normal form algorithm we may now normalize

H0(u, v)+ εH1(u, v)+ ε2 H2(u, v)+ · · ·

such that the normalized Hi become functions in the Si j .
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5 Hamiltonian Hopf bifurcations

5.1. Introduction

Consider a C∞ function H : R4
→ R; (x, y)→ H(x, y).

The system of ordinary differential equations

ẋ = −
∂H
∂y

, ẏ =
∂H
∂x

,

is the Hamiltonian system with Hamiltonian function H .
With z = (x, y) the system can be written as

ż = Jd H(z) = X H (z) with J =
(

0 −I2

I2 0

)
.

X H is called the Hamltonian vector field.

Assume

H(0) = d H(0) = 0 .

That is, (0, 0) is a stationary point and the powerseries expansion of H starts with quadratic
terms

H(x, y) = H2(x, y)+ H3(x, y)+ · · · .

The linearized vector field corresponds to H2, i.e.

X H2(z) = Az .

Define a Poisson bracket by

{F,G} =
∂F
∂x1

∂G
∂y1
+
∂F
∂x2

∂G
∂y2
−
∂F
∂y1

∂G
∂x1
−
∂F
∂y2

∂G
∂x2

=< d F, J−1dG > .

C∞ with the bracket {., .} is a Poisson algebra, and adF = {F, .} is a derivative. Note the
Hamiltonian equations corresponding to H can also be written as

ż = {H, z} .
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Figure 5.1: Eigenvalues for ν > 0, ν = 0, and ν < 0.

Consider a Hamiltonian system such that the linearized system

ż = Az

has purely imaginary eigenvalues, and is not diagonalizable.
The normal form of corresponding quadratic Hamiltonian, with eigenvalues ±iα,±iα, is

H2(x, y) = α(x2 y1 − x1 y2)+
1
2 (x

2
1 + x2

2) .

H2 has a nontrivial Jordan-Chevalley decomposition in a semisimple part S = α(x2 y1 − x1 y2)

and a nilpotent part X = 1
2 (x

2
1 + x2

2), {X, S} = 0.

The theory of normal forms for lineair Hamiltonian systems (infinitesimal symplectic matrices)
was developped by Williamson (1936) [86], Burgoyne and Cushman (1974) [13], Melbourne
and Dellnitz (1993) [60].

5.2. Versal deformation

If we consider an homogeneous quadratic Hamiltonian, and consider it as a point in the
space of all quadratic Hamiltonians, we might wonder if, applying diffeomorphisms, we might
cover a complete neighbourhood of the point. In general this will not be possible and we will
need versal deformations or versal unfoldings.

H2 has a versal deformation or versal unfolding

H2(x, y; δ, ν) = (α + δ)(x2 y1 − x1 y2)+
1
2 (x

2
1 + x2

2)+
1
2 ν(y

2
1 + y2

2) .

The eigenvalue behaviour is given in figure 5.1. Versal deformations are studied by Arnold
[4], Galin [31], Hoveijn [43], Dellnitz, Melbourne, and Marsden [22], Van der Meer [58].

5.3. Bifurcation of periodic orbits

Consider a nonlinear Hamiltonian system such that the linear system has Hamiltonian H2 as
above.We want to study the bifurcation of relative equilibria of such a system.
Steps in attacking the bifurcation problem:

• Put the nonlinear Hamiltonian function into normal form up to sufficiently high order.
(introducing additional symmetry)
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• Show by a Liapunov-Schmidt like procedure that the set of periodic solutions of the
original system and the normalized system are diffeomorphic.

• Determine, using singularity theory, a sufficient jet to describe the bifurcation. (Stan-
dard form)

• Analyse the standard form by geometrical reduction.

One of the first known examples of such a bifurcation is in the planar restricted problem of
three bodies. The bifurcation value of the parameter is, in the restricted three body problem
also known as Routh critical mass ratio (Routh (1875), [76]). The bifurcation was studied
by Brown (1911), [11], Krein (1955), [46], Meyer and Schmidt (1971), [61], Sokol’skij (1974),
[82], and Van der Meer (1985), [55].

5.4. Examples in the literature

• Restricted three body problem, Van der Meer, 1985, [55].

• Lagrange top, Cushman and Van der Meer, 1990, [18].

• Spinning orthogonal planar pendulum, Bridges, 1990, [9]

• Double spherical pendulum, Marsden and Scheurle, 1993, [51]

• Water wave problem, Bridges, 1992, [10], Dias and Iooss, 1996, [23].

• Hydrodynamical stability problems (reversible), Iooss and Pérouème, 1993, [44]

• Torsional buckling, Champneys and Thompson, 1996, [14]

• Buckling of a strut on a elastic foundation, Champneys, 1998, [15].

• Ferroelectric liquid cristals, Pitanga, Ribeiro Filho, and Mundim, 1996, [70].

• Rotating H+3 , Kozin, Roberts, and Tennyson, 1999, [45].

• Rydberg electron in rotating electric field. Lahiri and Roy, 2001, [48].

• The 3-D Hénon-Heiles family. Ferrer, Hanßmann, Palacián and Yanguas, 2002. [29],
Hanßmann, Van der Meer, 2002, 2005, [36, 38].

• Gyrostat in an incompressible ideal fluid, Guirao, J.L. and Vera-López, J.A., 2012, [34].

5.5. Standard form for the HHB

The complement C to im(adH2) (recall H2 = S + X ) is

C = ker(adS) ∩ ker(adY ) with Y = 1
2 (y

2
1 + y2

2) .
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A theorem of Jacobson-Morosov says: there exist Y = 1
2 (y

2
1 + y2

2) and P = x1 y1 + x2 y2 such
that

{S, X} = {S, Y } = {S, P} = 0 ,

{X, Y } = P , {X, P} = 2X , {Y, P} = −2Y .

That is, X , Y , and P span a Lie algebra isomorphic to sl(2,R).
Normal form of the Hamiltonian up to order k

H = αS + X + aY 2
+ bY S + cS2

+ · · · + Hk(S, Y )+ R>k(x, y)

= HNF + R>k(x, y)

The following theorem is a Liapunov-Schmidt reduction theorem [55, 83]. It relates an ar-
bitrary system in HHB to a system with a Hamiltonian which is fully in normal and has a
diffeomorphic set of X S relative equilibria.

It is followed by a theorem based on algberaic geometric singularity theory. This theory
shows how to find a simple as possible representation within a set of maps haven diffeo-
morphc singular sets. In our case we want to find a simple as possible form for the energy
momentum map of the HHB in such a way that its singular set is only changed up to dif-
feomorphism. This singular set corresponds to the stationary points and the X S relative
equilibria.

In these theorems transformations need not be symplectic. We are only focussing on the
geometry of the singular set of the energy-momentum map.

Theorem 5.5.1 There exists for each k ≥ 2 a Ck+1-mapping H̃ : U × 3 → R, and a
Ck-mapping 9 : U ×3→ V , with the following properties:

(i) H̃(0, λ) = 0 and Du H̃(0, λ) = 0 for all λ ∈ 3, and H̃(u, λ) = HNF(u, λ) + O(‖u‖k+2)

as u → 0;

(ii) 9(0, λ) = 0 for all λ ∈ 3, and Du9(0, λ0) · u = u,∀u ∈ U ;

(iii) H̃ and 9 are C∞ on (U − {0})×3;

(iv) {H̃λ, S̃}U = 0, ∀λ ∈ 3;

(v) x̃ : R→ V is a T -periodic solution of X H (x, λ) if and only if

x̃(t) = 9(ũ(t), λ), ∀t ∈ R,

where ũ : R → U is a sufficiently small T -periodic solution of the reduced Hamilto-
nian system

u̇ = XH̃ (u, λ).
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Figure 5.2: Eigenvalues for ν > 0, ν = 0, and ν < 0. H2 = αS + X + νY .

Theorem 5.5.2 Let % denote the S1–action given by the flow of X S. Consider a %–invariant
mapping

(H̃ , S) : R4
−→ R2

; (S, X, Y, P) 7→ (H̃(S, X, Y, P), S) with

H̃(S, X, Y, P) = S + X + aY 2
+ b SY + c S2

+ h.o.t.

where a 6= 0. Then there exists a %–equivariant origin preserving diffeomorphism ϕ on R4

and a origin preserving diffeomorphism ψ on R2 such that

ψ ◦ (H̃ , S) ◦ ϕ = (Ĝ, S)

with

Ĝ(S, X, Y, P) = X + aY 2 .

Moreover, the universal unfolding of (Ĝ, S) is (G, S) with

G(S, X, Y, P; ν) = X + νY + aY 2 .

and every deformation H̃(S, X, Y, P;µ) of H̃(S, X, Y, P) is right-left equivalent to
G(S, X, Y, P; ν).

Standard form (singularity theoretic normal form)

Gν = X + νY + aY 2 .

5.6. Eigenvalues of the linear system

In figure 5.2 and figure 5.3 we see the eigenvalue behavior for the Hamiltonian Hopf bifurca-
tion. Note that in the case of zero eigenvalues the S-symmetry is crucial.

Note that, provided an S1-invariant setting, with the S1-action given by the flow of X S, also
the eigenvalue behavior as given in figure 5.3 gives an hamiltonian Hopf bifurcation.
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Figure 5.3: Eigenvalues for ν > 0, ν = 0, and ν < 0. H2 = X + νY .

5.7. Geometric Reduction

Consider the symplectic S1-action induced by the flow of X S. The invariants for this action
are S, X , Y , and P. They span a Lie algebra isomorphic to R× sl(2,R))
We have the following relation among the invariants

4XY = S2
+ P2 .

The orbit mapping for S1-action is

ρ : (x, y)→ (X, Y, P, S) .

The orbit space has a Poisson structure given by

{F,G} =< d F,W dG > .

with

W =


0 −P −2X 0
P 0 2Y 0

2X −2Y 0 0
0 0 0 0

 .

The reduced (symplectic) phase spaces

ρ(S−1(s)) .

are given in (X, Y, P)-space by the equation

C(X, Y, P; s) = 4XY − P2
− s2
= 0 .

The Poisson structure on the image is given by {F,G} =< ∇C,∇G × ∇F > . Brackets of
this form can be considered as Nambu-brackets [65]. It is the Casimir C that determines the
Poisson structure.

Tangent points of Gν = X + νY + aY 2 with the reduced phase space give periodic orbits.
Tangent points are always in the plane P = 0. How the energy surfaces and the reduced
phase spaces intersect can be found in figures 5.4, 5.5, 5.6.

34 On the Geometry of Hamiltonian Systems



Technische Universiteit Eindhoven University of Technology

Figure 5.4: Reduced phase spaces for s = 0 and s 6= 0.

Figure 5.5: Intersection of energy surface and reduced phase space, a > 0

Figure 5.6: Intersection of energy surface and reduced phase space, a < 0
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Figure 5.7: a > 0, Gν at the cone for ν > 0, ν = 0, and ν < 0.

Figure 5.8: a > 0, bifurcation in (S,G)-plane for ν > 0, ν = 0, and ν < 0.

The bifurcation is completely determined by the tangency of the energy surface to the vertex
of the cone at ν = 0. For a > 0 we have supercritical bifurcation, for a < 0 we have subcritical
bifurcation. Of course the derivative at the origin should change sign as a function of ν in
order to have a genuine bifurcation. When a = 0 we say that the bifurcation is degenerate.
The essence of the tangency is captured in figures 5.7, and 5.9. The corresponding bifurca-
tion is illustrated in 5.8, 5.10 where the curve of relative equilibria is given in the image of the
energy momentum map.

The image of the reduction map is the Lie algebra sl(2,R). The map

ψ : R3
→ R3

; (X, Y, P)→ (G, Y, P)

is a diffeomorphism. The energy-momentum map can now easily be factorized through ψ ◦ρ.
It changes C into

C̃(G, Y, P; s, ν) = 4Y G − 4νY 2
− 4aY 3

− P2
− s2 ,

which gives the energy-momentum representation of the Poisson structure [59]. Note that
in the energy-momentum representation the bifurcation equation, which also describes the
singularity of the energy-momentum map, is identified with the singularity of the Poisson
structure.

In figure 5.11 the reduced phase spaces are given after the transformation that makes the
vertical axis the G-axis.

Figure 5.9: a < 0, Gν at the cone for ν > 0, ν = 0, and ν < 0.
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Figure 5.10: a < 0, bifurcation in (S,G)-plane for ν > 0, and ν ≤ 0.

Figure 5.11: Reduced phase space for different values of s in energy-representation.
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Figure 5.12: Projection of C̃(G, Y, 0; S, ν) on the (S,G)-plane for ν > 0 and a < 0.

In figure 5.12 one can see how the family of periodic solutions in the (S,G) parameter plane
is obtained by projection of C̃(G, Y, 0; S, ν) = 0 surface on the (S,G)-plane.

5.8. Nondegenerate Hamiltonian Hopf bifurcations

How to determine (nondegenerate) Hamiltonian Hopf bifurcations in three degree of freedom
systems

• Flattening the Poisson structure.
Perform a first reduction. One obtains a reduced system with a nonlinear Poisson
structure. The aim is to obtain a system with standard symplectic form. Linearize
the Poisson structure or symplectic structure within the local chart on the first reduced
phase space. (see for instance [25].)

• Singularity theoretic equivalence.
Perform a double reduction. Choose coordinates such that the S1–action on the second
reduced phase space is standard. Apply singularity theory to the energy-momentum
mapping.(see [37])

• The geometric method.
Perform a double reduction. Perform an analysis of the relative position of the reduced
phase space and the energy level sets of the one–degree–of–freedom system (see
figures 5.7, and 5.9). The second reduction is not regular and leads to a conical singu-
larity.(see [36].)

To apply the geometric method certain hypotheses should be checked.

H1. The stratification of the orbit space into reduced phase spaces should locally be equiv-
alent to the standard case.
At the critical value of the integral one locally has a cone deforming into a hyperboloid
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Figure 5.13: Heavy symmetric rigid body with one point fixed.

when the value of the integral is varied, locally the invariants form a Lie algebra iso-
morphic to sl(2,R).

H2. As the bifurcation parameter varies, the energy level set through the vertex of the cone
should change “with non–zero speed” from passing outside the cone to intersecting
the interior of the cone.
Ensures that the unfolding of the linear part is (uni)versal.

H3. The energy level set should have second order contact at the vertex of
the cone at the bifurcation value of the parameter.
Non–degeneracy condition.

5.9. Lagrange Top

The Lagrange top problem is completely integrable on its phase space T ∗SO(3) with canon-
ical symplectic form. The two symmetries are a right S1–action corresponding to rotation
about the axis of symmetry of the body and a left S1–action corresponding to rotation about
the vertical axis in space. Reduction with respect to the left S1–action gives the Euler–
Poisson equations

ẋ = x ×
∂H
∂y

, ẏ = x ×
∂H
∂x
+ y ×

∂H
∂y

.

With Hamiltonian

H =
1
2
(y2

1 + y2
2) +

γ

2
y2

3 + x3 .

We will first perform reduction like in [18]. The reduced phase space is a 4–dimensional
smooth submanifold

Ta S2
=

{
(x, y) ∈ R6

| C1 = 1 , C2 = a
}
⊆ R6 .
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with

C1 = x2
1 + x2

2 + x2
3 ,

C2 = x1 y1 + x2 y2 + x3 y3 .

The equilibrium point (x, y) = (0, 0, 1, 0, 0, a) is the upright standing position of the top, which
becomes gyroscopically stabilized (“sleeping”) if the top spins sufficiently fast.

The reduced system still has the integral of motion L(x, y) = y3, which is the angular mo-
mentum corresponding to rotation about the symmetry axis of the top.

The invariants for the right S1-action are

π1 = x2
1 + x2

2 , π3 = x1 y1 + x2 y2 , π5 = x3 ,

π2 = y2
1 + y2

2 , π4 = x1 y2 − x2 y1 , π6 = y3

with relations

π2
3 + π2

4 = π1π2 , π1 ≥ 0 , π2 ≥ 0 .

Furthermore

C1 = π1 + π
2
5 = 1 , C2 = π3 + π5π6 = a , L = π6 = b

Twice reduced phase space is given by

V b
a =

{
(π2, π4, π5) ∈ R3

| Rb
a(π) = 0 , π2 ≥ 0 , |π5| ≤ 1

}
with

Rb
a(π) = π2

4 + (a − bπ5)
2
− (1− π2

5 )π2 .

After skipping constant terms the reduced Hamiltonian on V b
a is

H =
1
2
π2 + π5

The twice reduced phase space is smooth for |a| 6= |b| and degenerates into a cone at a = b
(and also at a = −b, but this “hanging top” is always stable). Figure 5.14 shows that one can
show the presence of a Hamiltonian Hopf bifurcation using the geometric method [38].

The map ψ : R3
→ R3

; (π5, π4, π2)→ (π5, π4,H) is a diffeomorphism. It changes Rb
a into

R̃b
a(π5, π4,H; a, b) = −π2

4 − (a − bπ5)
2
+ 2(H − π5)(1− π2

5 ) .

which gives an energy-momentum representation for the Poisson structure [59]. The follow-
ing theorems are also taken from [59].

Theorem 5.9.1 The Poisson structure given by Rb
a is at (π5, π4, π2) = (1, 0, 0) locally of

type sl(2).

Proof : Set a = N + 1
2 S and b = N − 1

2 S, replacing the integrals for the right and left
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Figure 5.14: Relative position of {H = h} and V a
a within {π4 = 0} for |a| < 2 , |a| = 2

and |a| > 2. The horizontal axis is π5 and the vertical axis is 1
3π2.

action by N and S. Furthermore apply the translation π5 = 1 − π̃5, 0 6 π̃5 6 2, then Rb
a

becomes

− π2
4 − S2

+ 2π̃5π2 − 2N Sπ̃5 + S2π̃5 − π2π̃
2
5 − N 2π̃2

5 + N Sπ̃2
5 −

1
4

S2π̃2
5 ,

0 6 π̃5 6 2 , π2 > 0 ,

which is at zero locally equivalent to −π2
4 − S2

+ 2π̃5π2. q.e.d.

Theorem 5.9.2 The Poisson structure given by R̃b
a(π5, π4,H; a, b) is at (π5, π4, π2) =

(1, 0, 0) locally projection equivalent to C̃(H, Y, Z; s, ν).

Here projection equivalent means that the projections on the energy-momentum plane (like
in figure 5.12) are diffeomorphic.

Proof : Set a = N + 1
2 S̃ and b = N − 1

2 S̃. Furthermore apply π5 = 1 − π̃5, 0 6 π̃5 6 2 and
H = H̃ + 1

2 N S. Then R̃b
a transforms to

−S̃2
− π2

4 + 4H̃ π̃5 + S̃2π̃5 + 4π̃2
5 − 2H̃ π̃2

5 −
1
4

S̃2π̃2
5 − 2π̃3

5 .

Finally transform S = S̃− 1
2 S̃σ̃1, and H = H̃− 1

2 H̃ π̃5. Setting π4 = Z , π̃5 = Y , and 1− 1
4 N 2
= ν

finally gives

4Y H − 4νY 2
− 2Y 3

− Z2
− S2 .

q.e.d.
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