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Improved Statistical Model on the Effect of
Random Errors in the Phase and Amplitude of

Element Excitations on the Array Radiation Pattern
A.J. van den Biggelaar, U. Johannsen, P. Mattheijssen, A.B. Smolders

Abstract—Due to errors in the phase and amplitude of element
excitations in an antenna array, the array radiation pattern gets
distorted. In order to derive statistical results on this distortion,
specifically on determining the probability of exceeding a certain
side lobe level, it is often assumed that the magnitude of the array
amplitude pattern follows a Rician distribution. It is shown that
the Rician distribution implies two assumptions and, therefore, a
more general Beckmann distribution is proposed to describe the
distribution of the magnitude of the array amplitude pattern.
Using Monte Carlo simulations, it is shown that the use of
a Beckmann distribution outperforms the Rician distribution.
Also, the seemingly counterintuitive result, that the maximum
probability of exceeding a certain side lobe level, in general,
does not have to be at the angle where the highest side lobe in
the error-free case is located, is obtained. Due to this result, the
importance of using an angular probability plot is emphasized.
Furthermore, a physical explanation for the observed seemingly
counterintuitive behavior is given.

Index Terms—Antenna radiation patterns, error analysis,
phased arrays, probability, random noise.

I. INTRODUCTION

The next generation radio access networks, often called 5G, will
make use of beam steering techniques to improve the data throughput
to mobile users. To realize a beam steering radio, active phased arrays
will be used. In order to reduce interference to other users, the side
lobe level (SLL) needs to be well controlled. It is a straightforward
task to determine the proper element excitations to get a desired array
radiation pattern using standard synthesis techniques. However, due
to errors in the phase and amplitude of the element excitations, the
array radiation pattern gets distorted. This distortion can result in an
array radiation pattern having a higher SLL than initially designed
for. Therefore, knowledge about the impact of these errors on the
array radiation pattern, specifically the SLL, is of high importance
for future 5G networks. These errors can, in general, be divided in
two types; systematic/predictable and random/unpredictable errors.
In the past, a lot of effort has already been done in order to derive
statistical results on the effect of the array radiation pattern due to the
random errors. In fact, in 1952 the first statistical results on distorted
array radiation patterns were already obtained by Ruze [1].

In [1], the claim has been made that the distribution of the
magnitude of the array amplitude pattern follows a modified Rayleigh
(nowadays commonly known as Rician) distribution. Many publi-
cations addressing this problem followed, see e.g. [2-7], and this
Rician distribution is used in all these publications to model the
distribution of the magnitude of the array amplitude pattern. However,
as presented in this paper, in some cases the use of the Rician
distribution is not sufficient. Therefore, the Beckmann distribution
is proposed to address this problem and it is shown, that the usage of
the proposed distribution outperforms the usage of the conventionally
used Rician distribution. Using the Beckmann distribution, also a
seemingly counterintuitive result is obtained, i.e. that the maximum

probability of exceeding a certain SLL does not have to be at the
position(s) of the highest side lobe(s). Therefore, angular probability
plots are introduced, which cover the whole angular domain, rather
than only looking at the highest side lobe(s).

The outline of this paper is as follows. In Section II, the random
errors and the random variables for the real and imaginary values of
the distorted array amplitude pattern are introduced. In Section III
statistical quantities of these random variables are presented. Sec-
tion IV is devoted to choosing the proper distribution for the array
amplitude pattern. Here, both the Rician and Beckmann distribution
are discussed. Section V introduces the angular probability plots
and compares the Rician and Beckmann cumulative distribution
functions (CDFs) with Monte Carlo simulations. Here, it is shown
that the use of the Beckmann CDF yields more accurate results
compared to the usage of the Rician CDF. Section VI is devoted to a
physical interpretation of the obtained results. Finally, in Section VII,
conclusions and future work is presented.

II. THE ARRAY AMPLITUDE PATTERN
IN THE PRESENCE OF RANDOM ERRORS

For a one-dimensional linear antenna array, the complex-valued
array amplitude pattern F0pθq (sometimes also called array field or
voltage pattern) in the azimuth plane can be expressed as

F0pθq �
Ņ

n�1

gnpθqane
jk0dpN�nq sin θ. (1)

Here, N is the number of antenna elements, gnpθq and an are
the real-valued element pattern and the complex-valued excitation
coefficient of the nth antenna element, respectively, k0 is the wave
number in vacuum and d is the spacing between the individual
antenna elements. The array amplitude pattern as given in (1) can be
split in a real and imaginary field component using Euler’s formula,
i.e.,

RerF0pθqs �
Ņ

n�1

AnpθqRerejCnpθqs �
Ņ

n�1

Anpθq cosCnpθq,

ImrF0pθqs �
Ņ

n�1

AnpθqImrejCnpθqs �
Ņ

n�1

Anpθq sinCnpθq,

(2)

where,

Anpθq � gnpθq|an|,

Cnpθq � k0dpN � nq sin θ � argpanq.
(3)

Here, arg(.) represents the function to calculate the argument or
phase of a complex number. In the remainder of the paper, the
notation of F0pθq, gnpθq, Anpθq and Cnpθq is shortened by omitting
the explicit mentioning of the θ-dependency.

The phase and amplitude of the element excitations are subject
to nondeterministic noise and errors and, therefore, two random
variables are introduced for each individual element. The random
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variables δpn and δan represent the phase and relative amplitude
error of the nth antenna element, respectively. Both random variables
are Gaussian distributed and have zero mean, but, in general, have
a different variance. However, the variance in the phase error is
assumed to be identical amongst the different elements. The same
holds for the variance of the amplitude error. Mathematically this
can be expressed as

δpn � N p0, σ2
pq,

δan � N p0, σ2
aq,

where n � 1, ..., N,

(4)

with σ2
p and σ2

a the variance of the phase and relative amplitude
error, respectively. Furthermore, no correlation between errors is
assumed, i.e.,

corrpδpn, δpmq � 0, for n � m,

corrpδan, δamq � 0, for n � m,

corrpδan, δpmq � 0, for all n,m,
where n � 1, ..., N , and m � 1, ..., N.

(5)

The error-free array amplitude pattern F0 will be distorted as a
result of the introduced random errors. The distorted array amplitude
pattern Fd can be written as

Fd �
Ņ

n�1

Anp1� δanqe
jδpnejCn . (6)

Again, this distorted array amplitude pattern can be split in a real
and imaginary component using Euler’s formula, i.e.,

X � RerFds �
Ņ

n�1

Anp1� δanqpcos δpn cosCn � sin δpn sinCnq,

Y � ImrFds �
Ņ

n�1

Anp1� δanqpcos δpn sinCn � sin δpn cosCnq.

(7)

III. STATISTICAL QUANTITIES OF
THE ARRAY AMPLITUDE PATTERN

According to the Central Limit Theorem (CLT), for sufficiently
large N , the random variables X and Y will follow a Gaussian
distribution. In the following subsections, some statistical quantities
of these Gaussian distributions are presented.1

A. Mean value

The mean values of X and Y can be written as

ErXs � µx � e�
σ2p
2 RerF0s, (8)

ErY s � µy � e�
σ2p
2 ImrF0s. (9)

1For a complete derivation of these statistical quantities, please send an
e-mail to the main author.
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Fig. 1: Variance of X , Y and its average. Parameters as given in Section IIIb.

B. Variance

The variances of X and Y can be written as

VarpXq � σ2
x �

1

2
p1� σ2

aqp1� e�2σ2
pq

Ņ

n�1

A2
n

�

�
p1� σ2

aqe
�2σ2

p � e�σ
2
p


 Ņ

n�1

A2
n cos

2 Cn,

(10)

VarpY q � σ2
y �

1

2
p1� σ2

aqp1� e�2σ2
pq

Ņ

n�1

A2
n

�

�
p1� σ2

aqe
�2σ2

p � e�σ
2
p


 Ņ

n�1

A2
n sin

2 Cn.

(11)

Please note that Cn has a θ-dependency (see (3)), and therefore
the variance of X and Y are dependent on θ as well. In Fig. 1,
this dependency is shown. To generate this result, and the results in
the subsequent sections, an array of N � 16 elements with half-
wavelength spacing d � 1

2
λ0 has been chosen. Chebyshev tapering

with a designed SLL of SLL0 � �40 dB has been applied to this
array. The standard deviation of the phase and amplitude errors were
chosen to be σp � 5o and σa � 0.1 dB, respectively. Furthermore,
the amplitude pattern of the individual elements gn is isotropic (i.e.,
gn � 1), unless otherwise specified. The following derived results
and drawn conclusion are in principle, however, valid for other sets
of parameters as well.

Note that in Fig. 1, around θ � �90o, θ � 0o and θ � 90o, the
variances show large variations. In Section VI, a physical interpreta-
tion for this behavior is presented.

C. Correlation

The correlation coefficient ρxy between random variables X and
Y with expected values µx and µy and standard deviations σx and
σy is defined as

ρxy �
covpX,Y q
σxσy

�
covpX,Y qa

VarpXqVarpY q
. (12)

The covariance between the random variables X and Y can be
written as



3

-80 -60 -40 -20 0 20 40 60 80

Angle  [o]

-1

-0.5

0

0.5

1

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 

xy
 [-

]

Fig. 2: Correlation between X and Y . Parameters as given in Section IIIb.

covpX,Y q �
�
p1�σ2

aqe
�2σ2

p�e�σ
2
p


 Ņ

n�1

A2
n cosCn sinCn. (13)

By substituting (10), (11) and (13) into (12), an expression for
the correlation coefficient ρxy can be found. This will give rise to
a tedious expression and therefore this expression has been omitted
in this paper. However, the reader is able to compute the correlation
coefficient ρxy using the equations presented in this section.

In Fig. 2, the correlation between X and Y is shown as function
of θ for the parameters as specified in Section IIIb. As can be seen
in Fig. 2, there is a strong correlation at certain angles. This means
that although the phase and relative amplitude errors are uncorrelated,
the real and imaginary value of the distorted array amplitude pattern
can, in general, be highly correlated at certain angles. In Section VI,
a physical interpretation for this observed correlation is presented.

IV. STATISTICS ON THE MAGNITUDE
OF THE ARRAY AMPLITUDE PATTERN

In the previous section, statistical quantities are presented which
allow the calculation of the distribution of the real and imaginary
value of the array amplitude pattern. From a designer’s perspective,
however, it is far more interesting to be able to calculate the
distribution of the magnitude of the array amplitude pattern. It is often
assumed that the magnitude of the array amplitude pattern follows
a Rician distribution. However, by using the Rician distribution,
two assumptions are implicitly made and therefore a Beckmann
distribution is proposed in this paper. In this section, both distributions
are discussed and compared.

A. Rician distribution

Supposing there are two orthogonal and uncorrelated Gaussian
distributions. If these Gaussian distributions have a nonzero and
unidentical mean µx and µy , but share the same variance σ2, then the
magnitude r of the sum of these Gaussian distributions will follow
a Rician distribution. The Rician probability density function (PDF)
is defined as

PDFriceprq �
r

σ2
exp
�
�
r2 � ν2

2σ2



I0

�
rν

σ2



. (14)

Here, I0 is the modified Bessel function of the first kind with order
zero and ν is defined as

ν �
b
µ2
x � µ2

y. (15)

The CDF of a Rician distribution is given by

CDFriceprq � 1�Q1

�
ν

σ
,
r

σ



, (16)

with Q1 the Marcum Q-function [8].
This Rician PDF is often used to describe the distribution of the

magnitude of the array amplitude pattern. However, by using the
Rician distribution, two assumptions on the statistic quantities of the
random variables X and Y are implicitly made; the variances of X
and Y are identical, and the correlation between X and Y has to
be zero. In [1], the variances of X and Y are averaged and zero
correlation between X and Y is assumed. [4-7] follow the result
found in [1]. In [2,3], the authors come to the same expressions for the
variances and correlation as presented in Section III. However, when
assessing the distribution of the magnitude of the array amplitude
pattern, the same assumptions on the variances and correlation as in
[1] are made.

Following the approach in [1] and averaging the variance found
in (10) and (11) yields

Varavg �
VarpXq � VarpY q

2
�

1

2
p1� σ2

a � e�σ
2
pq

Ņ

n�1

A2
n. (17)

As can be seen in (17), the averaged variance is constant with
respect to θ. In Fig. 1, the averaged variance is compared to the
variance of X and Y for the parameters as specified in Section IIIb.
Hence, if the designer is interested in the maximum probability of
exceeding a specified SLL, the Rician CDF only has to be calculated
at the angle with the highest value of ν to obtain the maximum
probability of exceeding a specified SLL. This turns out to be at the
position(s) of the highest side lobe(s).

B. Beckmann distribution

The Beckmann distribution is a more general distribution com-
pared to the Rician distribution. Again, supposing there are two
orthogonal Gaussian distributions, but in this case these distributions
can be correlated. These Gaussian distributions can have a nonzero
and unidentical mean µx, µy and variance σ2

x, σ2
y . Then, the

magnitude r of the sum of these Gaussian distributions will follow
a Beckmann distribution. Note that for the case that σ2

x � σ2
y and

ρxy � 0, the Beckmann distribution reduces to a Rician distribution.
The Beckmann PDF is defined by [9]

PDFbeckprq �
r

2πσxσy
a
1� ρ2xy

» 2π

0

exp
�
�

z

1� ρ2xy



dθ, (18)

with

z �
pr cos θ � µxq

2

2σ2
x

�
pr sin θ � µyq

2

2σ2
y

�
ρxypr cos θ � µxqpr sin θ � µyq

σxσy
.

(19)

The CDF can then be calculated by

CDFbeckprq �

» r
0

PDFbeckpr
1qdr1. (20)

Equation (20) unfortunately does not have a closed-form solution
and, therefore, has to be calculated numerically.
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V. RESULTS

To verify that the magnitude of the array amplitude pattern follows
a Beckmann distribution, the CDF of (20) is compared to Monte Carlo
simulations. For each Monte Carlo simulation, a phase and amplitude
error is generated for each element according to the probability
distributions as defined in (4), where σp � 5o and σa � 0.1 dB. The
resulting array power pattern is calculated and for each simulation, as
function of angle, is determined whether a certain desired side lobe
level SLLe [dB], with respect to the error-free case, is exceeded.
In Fig. 3, an example of this process is shown. Here, the error-
free array radiation pattern and one of the calculated distorted array
radiation patterns is shown. At 53o   θ   59o, the distorted
pattern exceeds SLLe. For these angles the value 1 is assigned,
whereas for the other angles the value 0 is assigned. Averaging these
values over all simulations leads to an estimate of the probability of
exceeding SLLe as function of angle. This estimate is compared to
the probability determined by the Rician and Beckmann CDF. In the
upcoming angular probability plots, the desired side lobe level is set
to SLLe � �25 dB and the Monte Carlo simulation curve is the
determined probability as a result of 1 million simulations.

Figure 4 shows an angular probability plot with the parameters
as described in Section IIIb. The main lobe can, in general, be
discarded from the analysis and is illustrated by a gray area. The
Monte Carlo simulation is compared to the results of the conventional
Rician CDF and the proposed Beckmann CDF. One can see that
the 3 methods agree for |θ|   60o. For |θ| ¡ 60o, the calculated
values of the Rician CDF starts to show a probability mismatch
compared to the calculated values of the Beckmann CDF and Monte
Carlo simulations. The Beckmann CDF, however, still agrees with
the Monte Carlo simulations over the whole angular domain.

The behavior of the Monte Carlo simulations and Beckmann CDF
beyond |θ| � 60o may seem counterintuitive. Although the side lobes
of the error-free pattern have equal amplitudes (see Fig. 3), the most
outward side lobes dominate in this case the probability of exceeding
a certain radiation level. A physical interpretation of this behavior is
given in Section VI.

One may argue that for a lot of practical antennas, the radiation
pattern of the individual elements used in antenna arrays hardly have
radiation in the end-fire directions, and therefore the mismatch found
in Fig. 4 is not of high importance. However, in Fig. 5, the same
angular probability plot is shown, but now a linear phase distribution
is applied, such that the beam is steered to 45o. Here, one can see
that the probability mismatch is shifted to the region �25o   θ  
�10o. The question might arise why this shift occurs and whether
the position of the probability mismatch is predictable. In Section VI,
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Fig. 3: Example of one out of million Monte Carlo simulations. Around 53o   θ  
59o, the distorted pattern exceeds SLLe.
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Fig. 4: Angular probability plot. For |θ| ¡ 60o, the Rician CDF starts to deviate from
the Beckmann CDF and Monte Carlo simulation.

insight in this shift is given and a method is presented which enables
the prediction of the location of this increase in probability.

To illustrate that this sudden increase in probability can impose
a problem for a practical antenna array, a configuration with a
different individual radiation pattern has been chosen. In this case,
the power pattern of the individual elements follows a cosine shape,
i.e., g2npθq � cospθq for n � 1, ..., N . In Fig. 6 the result is shown.
Again, the beam is steered to 45o using a linear phase distribution.

A few things have to be noted here. Chebyshev tapering does not
take into account the cosine shaped radiation pattern of the individual
elements. Therefore, the side lobes of the error-free radiation pattern
will not be constant. Instead, the envelope of the array radiation
pattern will follow a cosine shape, as can be observed in Fig. 7. Due to
this, the envelope of the biggest part of the probability curve in Fig. 6
also follows a cosine shape. Moreover, the overall probability of
exceeding the threshold value is increased compared to the case where
only uniform radiators were being used. Furthermore, by properly
inspecting Fig. 6 and 7, it can be seen that the highest probability of
exceeding SLLe is not at the location of the largest side lobe in the
error-free case. Finally, for such a practical setting, the probability
mismatch between the Rician CDF and the Monte Carlo simulations
is large, making the usage of the Beckmann CDF preferable compared
to the Rician CDF.
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Fig. 5: Angular probability plot with a steering angle of 45o. The mismatch in probability
is shifted to the region �25o   θ   �10o.
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Fig. 6: Angular probability plot with g2npθq � cospθq and a steering angle of 45o. For
this practical setting, the performance of the Rician CDF is not sufficient.

VI. PHYSICAL INTERPRETATION
OF THE OBSERVED BEHAVIOR

In the previous section, results are presented which might seem
counterintuitive at first. To give a physical interpretation of this
behavior, instead of only relying on the derived mathematical de-
scriptions, a step back has to be taken. In this section, first the root
cause of the largely varying variances around the angles θ � �90o,
θ � 0o and θ � 90o (see Fig. 1) is presented. Next, the nonzero
correlation between X and Y (see Fig. 2) is examined. After that,
the impact of this unidentical variance and the nonzero correlation
on the distribution of the magnitude of the array amplitude pattern
is explained. Finally, the impact of beam steering on the angular
probability plots is explained as well.

A. Variance
In order to interpret the behavior of the variance, the effect of

the phase and amplitude errors are examined separately. First, the
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Fig. 7: Zoom of the error-free radiation pattern with g2npθq � cospθq and a steering
angle of 45o. Note that the side lobes do not have the same magnitude.

amplitude error is assumed to be zero and only the phase is distorted.
In this case, (6) reduces to

Fd �
Ņ

n�1

Ane
jδpnejCn �

Ņ

n�1

Vne
jδpn �

Ņ

n�1

Vn,d. (21)

Equation (21) represents a summation of vectors in the complex
plane, where Vn and Vn,d are the error-free and distorted vector of
the nth element respectively. Each error-free vector Vn is distorted
by the ejδpn -term. This error-term only accounts for a change in
angle of the vector in the complex plane, but the amplitude of the
error-free vector and the distorted vector will remain the same, i.e.,
|Vn| � |Vn,d|.

In Section III, a sufficiently large N was assumed to let X and Y
approach a Gaussian distribution. However, the definitions of variance
of a random variable and correlation between two random variables
are independent of the underlying distribution(s), and therefore the
choice of N is not of high importance in the upcoming analysis. For
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visualization purposes, the array contains only N � 2 elements in
the upcoming analysis. Moreover, An � 1, d � 1

2
λ0 and no phase

difference is applied amongst the elements.
For θ � 0o, V1 � V2 � 1, the resulting individual error-free

vectors V1 and V2 are visualized in the unit circle in Fig. 8a. Also,
one example of the distorted variants V1,d and V2,d is visualized in
Fig. 8a. Here one can see that for a relatively small phase error, the
resulting error in X is small compared to the error in Y . This gives
rise to a large variance in Y and only a small variance in X .

Next, θ � 90o is considered. In this case the resulting vectors are
out of phase and therefore a null is created in the error-free radiation
pattern in that direction. The variance of Y , however, is quite large in
this case. This scenario is visualized in Fig. 8b. Note that the scenario
of θ � 90o gives rise to exactly the same variance in X and Y as
in the case of θ � �90o and θ � 0o.

Another interesting scenario to consider is when the variance in X
and Y are equal. It is geometrically straightforward to see in Fig. 8c
that the variances in X and Y are equal for a 90o phase difference
between V1 and V2 in the complex plane. This corresponds to the
following values of θ

π sin θ �
1

2
π Ñ θ � 30o,

π sin θ � �
1

2
π Ñ θ � �30o.

(22)

The variances of X and Y for σa � 0 dB and σp � 5o are
calculated according to (10) and (11), and visualized in Fig. 8d. Note
that for the special cases which are visualized in Fig. 8a-c, the graph
of Fig. 8d matches the predictions.

As a second step, an amplitude error is assumed and the error in
phase is omitted. In this case, (6) reduces to

Fd �
Ņ

n�1

Anp1� δanqe
jCn �

Ņ

n�1

Vnp1� δanq �
Ņ

n�1

Vn,d. (23)

Again, (23) represents a summation of vectors in the complex
plane. However, the error term now only counts for a change in
magnitude, rather than changing the angle of the vector.

The resulting individual error-free vectors V1 and V2 for θ � 0o are
visualized in the unit circle in Fig. 8e. One example of the distorted

variants V1,d and V2,d is also visualized in Fig. 8e. It can be observed
that for an amplitude error, the resulting error in X is large, whereas
the error in Y is zero. This gives rise to a large variance in X and
zero variance in Y .

In Fig. 8f, θ � 90o is considered. The variance of X is in this case
quite large, whereas the variance in Y is again zero. Also here, note
that the scenario of θ � 90o gives rise to exactly the same variance
in X and Y as in the case of θ � �90o and θ � 0o.

Figure 8g illustrates the scenario where the variance in X and Y
are equal. As calculated in (22), this scenario corresponds to θ � 30o

and θ � �30o.
The variances of X and Y for σa � 0.1 dB and σp � 0o are

calculated according to (10) and (11), and visualized in Fig. 8h. Note
that for the special cases which are visualized in Fig. 8e-g, the graph
of Fig. 8h again matches the predictions.

B. Correlation
The nonzero correlation between X and Y can be explained by

using a similar analysis as used in explaining the behavior of the
variance of X and Y . However, in this analysis, certain regions are
explored rather than looking at a few special cases.

Again, first the amplitude error is omitted. In Fig. 9a, the error-
free and distorted vectors are depicted. One can see that if an error
is made in V2, the error made in X and Y are uncorrelated. On the
other hand, if an error has been made in V1, the error in X and Y
show opposite behavior. If the error in Y is positive, the error in X
will be negative, and vice versa. Therefore, the total error in X and
Y will have a negative correlation coefficient. Note that this behavior
is present in the whole first quadrant.

If V1 is somewhere in the second quadrant, the errors in X and Y
show the same behavior. If the error in Y is positive, the error in X
will also be positive, and the same for the errors being negative. This
results in a positive correlation coefficient. This situation is visualized
in Fig. 9b.

Next, the case for no correlation between X and Y is examined. As
can be seen in Fig. 9c, this occurs for a 90o phase difference between
V1 and V2, which again corresponds to θ � 30o and θ � �30o.

The correlation between X and Y for σa � 0 and σp � 5o

is calculated according to (12) and visualized in Fig. 9d. Note that
for the special cases which are visualized in Fig. 9a-c, the graph of
Fig. 9d matches the predictions.

0o   θ   30o 30o   θ   90o ρxy � 0 Correlation versus angle
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Fig. 9: Vector representation of the element excitations to explain the correlation, N � 2.
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(a) Rician distribution.
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Fig. 10: Visual representations of the Rician and Beckmann distributions.

If the phase error is omitted, one can see in Fig. 9e, that if V1

is located in the first quadrant, the error in X and Y show similar
behavior. If the error in Y is positive, the error in X will also be
positive, and the same for the errors being negative. Therefore, the
total error in X and Y will have a positive correlation coefficient.

On the other hand, if V1 is somewhere in the second quadrant,
the errors in X and Y show opposite behavior. If the error in Y is
positive, the error in X will be negative, and vice versa. This results
in a negative correlation coefficient. This situation is visualized in
Fig. 9f.

Again, if there is a 90o phase difference between V1 and V2, it
is geometrically straightforward to see in Fig. 9g that there is no
correlation between X and Y . As calculated in (22), this corresponds
to θ � 30o and θ � �30o.

The correlation between X and Y for σa � 0.1 dB and σp � 0o

is calculated according to (12) and visualized in Fig. 9h. Note that
for the special cases which are visualized in Fig. 9e-g, the graph of
Fig. 9h again matches the predictions.

C. Effect on magnitude
Previous subsections have only given a physical interpretation to

the unidentical variance σ2
x and σ2

y and the correlation between X
and Y being nonzero. The impact of this unidentical variance and
nonzero correlation on the distribution of the magnitude of the array
amplitude pattern is discussed here.

As mentioned in Section IV, the magnitude r of the sum of two
orthogonal and uncorrelated Gaussian distributions having mean µx
and µy and variance σ2, follows a Rician distribution. This can be
graphically visualized as shown in Fig. 10a. The point P represents
the expected value of the array amplitude pattern for a particular
angle. The parameter ν is the distance between the origin and the
point P . Due to the variance σ2, the random variables X and Y
will take on other values than their expected values µx and µy . This
is illustrated using an intensity profile. The likelihood that a certain
combination of X and Y is acquired, is represented by the intensity. If
the particular position is dark blue, the likelihood of that combination
of X and Y is high, and vice versa. Note that, since the variances
for X and Y are equal, the intensity profile has the form of a circle.

Two quarter circles are drawn to visualize two sets of values with
constant magnitude. Using the Rician CDF, the likelihood that the
magnitude stays below a certain limit, e.g., the likelihood that the
randomly picked points stay below one of the green curves, can be
calculated. As one can see in Fig. 10a, it is, for example, in this case
very likely that a randomly picked combination of X and Y stays
below R1, but likely to be larger than R2.

In Fig. 10b, the effect of the unidentical variance is visualized.
In this case σx ¡ σy , and therefore, the shape of the blue intensity

profile is changed into an ellipse. Note that this completely changes
the probability of crossing a certain magnitude. Compared to the
circular intensity profile of Fig. 10a, it is now more likely to cross
R1, but at the same time is has a higher probability of staying below
R2.

In Fig. 10c, the effect of correlation between X and Y is
visualized. In this case, σx � σy and ρxy   0. The negative
correlation coefficient means that if a positive error in X is made,
it is more likely to make a negative error in Y . Therefore, due to
this negative correlation, the blue intensity profile takes the shape of
a 45 degrees tilted ellipse. Note that in this case, it is more likely
to stay between R2 and R1 compared to both other cases. Again, it
is clear that a nonzero correlation coefficient completely changes the
probability for the magnitude of crossing a certain radiation level.2

For the parameters as specified in Section IIIb, the large variation
in variance (see Fig. 1) and strong correlation (see Fig. 2) changes
the distribution of X and Y for |θ| ¡ 60o and around θ � 0o. For
θ � 0o, this change in distribution is not visible for the main lobe
region in Fig. 4, simply because the main lobe region will in principle
always exceed the specified radiation level. At |θ| ¡ 60o, however,
the probability of exceeding the specified SLL is increased compared
to the rest of the side lobe region as a result of the variance and the
correlation, as shown in this section. Note that, in general, for other
values of SLLe, the probability of exceeding this level can also be
less compared to the rest of the side lobe region.

D. Effect of steering
So far, only the case of a nonzero steering angle has been analyzed.

However, in practice other scan angles will be used as well. In Fig. 5,
it can be observed that for a certain scan angle, the peak of higher
probability shifted to a different angle. In order to understand this
shift, one has to go back to the vector representations.

The large variations in the variance in X and Y for θ � �90o

and θ � 90o are found at the angles where V1 and V2 are out of
phase. This essentially means that C1 � π or C1 � �π. The linear
phase distribution used in Section V is defined as follows

argpanq � �k0dpN � nq sin θ0, (24)

with θ0 the desired steering angle. By combining (3) and (24), the
following expressions for C1 can be found

C1 � k0dpsin θ � sin θ0q. (25)

2Note that these examples are for illustration purposes only. It is to show
the reader how unidentical variances and correlation between X and Y can
impact the probabilities of exceeding a certain magnitude, rather than showing
quantitative results.
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Solving (25) for C1 � �π, k0d � π and θ0 � 45o gives θ �
�17o. Note that this result exactly matches the behavior in Fig. 5.
This physical interpretation can provide the designer knowledge about
where higher probabilities of exceeding a certain radiation level are
to be expected.

VII. CONCLUSION AND FUTURE WORK

In this paper, it has been shown that the magnitude of a distorted
array amplitude pattern, which is the result of random errors in the
phase and amplitude in the element excitations, follows a Beckmann
distribution, instead of the often assumed Rician distribution. A
practical example is given where the probability of exceeding a
certain radiation level is determined. In this example, it is evident
that the Beckmann CDF more accurately predicts this probability
compared to the Rician CDF. Moreover, the result that the maximum
probability of exceeding a certain side lobe level, in general, does
not have to be at the angle of the highest side lobe in the error-free
case, is obtained. Due to this result, the conclusion can be drawn that
angular probability plots are a necessity in properly determining the
probability of exceeding a certain radiation level.

In this analysis, it is assumed that the phase and amplitude errors
in the element excitations are uncorrelated. Moreover, the element
patterns are assumed to be identical. In practice, however, this will
not be the case. Therefore, to complete this analysis a derivation
has to be performed where the random errors are correlated and the
element patterns are unidentical.
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