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Abstract

We study the average nearest neighbor degree a(k) of vertices with degree k. In many
real-world networks with power-law degree distribution a(k) falls off in k, a property ascribed
to the constraint that any two vertices are connected by at most one edge. We show that
a(k) indeed decays in k in three simple random graph null models with power-law degrees:
the erased configuration model, the rank-1 inhomogeneous random graph and the hyperbolic
random graph. We consider the large-network limit when the number of nodes n tends to
infinity. We find for all three null models that a(k) starts to decay beyond n(τ−2)/(τ−1) and
then settles on a power law a(k) ∼ kτ−3, with τ the degree exponent.

1 Introduction

Complex networks are studied through mathematical analysis of null models that can match the
network degree distribution. For scale-free networks, this degree distribution follows a power law.
In many real-world networks, like the Internet, social networks and biological networks, the power-
law exponent τ is found to be between 2 and 3 [1,18,27,41]. In such scale-free networks, high-degree
vertices called hubs are likely present, and give rise to scale-free properties such as ultra-small
distances and ultra-fast information spreading. The hubs also crucially influence local properties
such as clustering [23, 38] and the occurrence of subgraphs [33]. Clustering can be measured in
terms of the probability c(k) that a degree-k vertex creates triangles. Both empirically [30, 35]
and theoretically [16, 38] it was shown that c(k) falls off with k, and hence that hubs are less
likely to take part in triadic closures. This phenomenon can be explained by viewing the scale-free
networks as an hierarchical structure, in which the hubs are not part of communities, but instead
connect several communities of small dense collections of vertices. Triangles then occur within
and not between the communities.

Where triangles and even larger subgraphs require to study the correlation between at least
three vertices, we study in this paper the degree correlation between pairs of two nodes in terms of
a(k), the average nearest neighbor degree of vertices of degree k. According to several studies [2,14],
this degree-degree correlation is an essential local network property, because it also falls off with
k and can largely explain the fall-off of c(k) [9,14,37]. We also provide support for his statement,
by identifying an explicit relation between a(k) and c(k) for large k. But the main goal of this
paper is to explain the full spectrum k 7→ a(k) for all k, and providing theoretical underpinning
for the widely observed a(k) fall-off.

There exist a vast array of papers, empirical, non-rigorous and rigorous, on a(k) [2,3,9,10,14,
31,34,35,40,43]. The function k 7→ a(k) describes the correlation between the degrees on the two
sides of an edge, and classifies the network into one of the following three categories [32]. When
a(k) increases with k, the network is said to be assortative: vertices with high-degrees mostly
connect to other vertices with high-degrees. When a(k) decreases in k, the network is said to be
disassortative. Then high-degree vertices typically connect to low-degree vertices. When a(k) is
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Figure 1: a(k) for the Youtube friendship network [29]

independent of k, the network is said to be uncorrelated. In this case, the degrees on the two
different sides of an edge can be viewed as fully independent, a desirable property when studying
the mathematical properties of networks. But the fact is that the majority of real-world networks
with power-law degrees and unbounded degree fluctuations (τ ∈ (2, 3)) show a clear decay of a(k)
as k grows large [30,35]. Figure 1 illustrates this for the Youtube friendship network [29]. Hence,
such scale-free networks are inherently disassortative, and hubs are predominantly connected to
small-degree nodes. In complex network theory, such a well established empirical fact then asks
for a theoretical explanation. Typically, this explanation comes in the form of a null model that
only matches the degree distribution and has the empirical observation as a property, in this case
disassortivity, or more specifically, the essential features of the curve k 7→ a(k).

The popular configuration model [11] generates random networks with any prescribed degree
distribution, but only results in uncorrelated networks when including self-loops and multi-edges.
Hence, the configuration model can never explain the a(k) fall-off. We therefore resort to different
null models that, contrary to the configuration model, generate random networks without self-
loops and multi-edges. The resulting simple random networks are therefore prone to the structural
correlations and hierarchical features that come with the presence of hubs. We study a(k) for three
widely used null models: the erased configuration model, the rank-1 inhomogeneous random graph
(also called hidden variable model) and the hyperbolic random graph. We show that these models
display universal a(k)-behavior: For k sufficiently small, a(k) is independent of k. Thus, in simple
scale-free networks, the uncorrelated structure is still visible for small-degree vertices. We then
identify the value of k as of which a(k) starts decaying, and the degree correlations start playing a
role. An intuitive explanation for the a(k) fall-off is that in simple networks, high-degree vertices
have so many neighbors that they must reach out to lower-degree vertices, because networks
typically only contain a small amount of high-degree vertices. Thus, single-edge constraints may
cause the decaying a(k). We show that k 7→ a(k), for all three null models with n vertices, remains
constant until k = n(τ−1)/(τ−2) and then settles on the power law a(k) ∼ kτ−3 with an exponent
depending on τ .

2 Main results

We first define the average nearest neighbor degree a(k) in more detail. Let (Di)i∈[n] be the
degree sequence of the graph, where [n] = 1, . . . , n. Furthermore, let Nk denote the total number
of degree k vertices in the graph, and Ni denote the neighborhood of vertex i. The average nearest
neighbor degree is then defined as

a(k) =
1

kNk

∑
i:Di=k

∑
j∈Ni

Dj . (1)
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While it is possible that no vertex with degree equal to k exists, definition (1) should be understood
as that at least one vertex of degree k is present. We will now analyze a(k), first for the erased
configuration model in Subsection 2.1 and then for the rank-1 inhomogeneous random graph and
the hyperbolic random graph in Subsection 2.3.

2.1 The erased configuration model

Given a positive integer n and a degree sequence (d1, d2, . . . , dn) such that the sum of the degrees
is even, the configuration model is a (multi)graph where vertex i has degree di [11]. We start
with dj free half-edges adjacent to vertex j, for j = 1, . . . , n. The configuration model is then
constructed by pairing free half-edges uniformly at random into edges, until no free half-edges
remain. Conditionally on obtaining a simple graph, the resulting graph is a uniform graph with
the prescribed degrees. This is why the configuration model is often used as a null model for
real-world networks with given degrees. When the degree distribution has an infinite second
moment however, the probability of obtaining a simple graph tends to zero as n grows large (see
e.g., [21, Chapter 7]). In this setting the configuration model cannot be used as a null model
for simple real-world networks anymore. The erased configuration model is the model where all
multiple edges are merged and all self-loops are removed [12]. Where the configuration model has
hard constraints on the degrees but does not create a simple graph, the erased configuration model
generates a simple graph while putting soft constraints on the degrees. In particular, we take the
degrees to be an i.i.d. sample from the distribution

P(D = k) = ck−τ (1 + o(1)), when k →∞, (2)

where τ ∈ (2, 3) so that E[D2] =∞. We denote E [D] = µ. When this sample constructs a degree
sequence such that the sum of the degrees is odd, we add an extra half-edge to the last vertex.
This does not affect our computations.

Here is the main result for the erased configuration model:

Theorem 2.1 (a(k) in the erased configuration model). Let G be an erased configuration model,
where the degrees are an i.i.d. sample from (2) and let Γ denote the Gamma function.

1. For k � n(τ−2)/(τ−1),

a(k)

n(3−τ)/(τ−1)

d−→ 1

µ

(
2cΓ( 5

2 −
1
2τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2, (3)

where S(τ−1)/2 is a stable random variable.

2. For k � n(τ−2)/(τ−1),
a(k)

n3−τkτ−3

d−→ −cµ2−τΓ(2− τ). (4)

Remark 2.1. The convergence in (3) also holds jointly in k and n, so that for m ≥ 1 and
1 ≤ k1 < k2 < · · · < km � n(τ−2)/(τ−1),

(a(k1), . . . , a(km))

n(3−τ)/(τ−1)

d−→ 1

µ

(
2cΓ( 5

2 −
1
2τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/21, (5)

where 1 ∈ Rm is a vector with m entries equal to 1.

Figure 2 illustrates the behavior of a(k). First, a(k) stays flat and does not depend on k. After
that, a(k) starts decreasing in k, which shows that the erased configuration model indeed is a
disassortative random graph. Theorem 2.1 shows that n(τ−2)/(τ−1)serves as a threshold. Thus,
the negative degree-degree correlations due to the single-edge constraint only affect vertices of
degrees at least n(τ−2)/(τ−1). This can be understood as follows. In the erased configuration
model the maximum contribution to a(k) (see Propositions 3.1 and 3.2) comes from vertices with
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Figure 2: Illustration of the behavior of a(k) in the erased configuration model

degrees proportional to n/k. The maximal degree in an observation of n i.i.d. power-law distributed
samples is proportional to n1/(τ−1) w.h.p. Therefore, if k � n(τ−2)/(τ−1), such vertices with degree
proportional to n/k do not exist w.h.p. This explains the two regimes.

For k small, a(k) converges to a stable random variable, as was also shown in [43] for k fixed.
Thus, for k small, different instances of the erased configuration model show wild fluctuations.
The joint convergence in k of Remark 2.1 shows that a(k) still forms a flat curve in k for one
realization of an erased configuration model when k is small. In contrast, a(k) converges to a
constant for large k-values, so that different realizations of erased configuration models will result
in similar a(k)-values.

2.2 Sketch of the proof

We now give a heuristic proof of Theorem 2.1. Conditionally on the degrees, the probability
that vertices with degrees Di and Dj are connected in the erased configuration model can be
approximated by [22]

1− e−DiDj/µn. (6)

Let 1{i↔k} denote the indicator that vertex i is connected to a randomly chosen vertex of degree
k. The expected degree of a neighbor of a vertex with degree k can then be approximated by

a(k) ≈ k−1
∑
i∈[n]

DiP (i↔ k) ≈ k−1
∑
i∈[n]

Di(1− e−Dik/(µn)). (7)

The maximum degree in an i.i.d. sample from (2) scales as n1/(τ−1) w.h.p.. Thus, as long as
k � n(τ−2)/(τ−1), we can Taylor expand the exponential so that

a(k) ≈ 1

µn

∑
i∈[n]

D2
i . (8)

Because (Di)i∈[n] are samples from a power-law distribution with infinite second moment, the
Stable Law Central Limit Theorem gives Theorem 2.1(i).

When k � n(τ−2)/(τ−1), we approximate the sum in (7) by the integral

a(k) ≈ cnk−1

∫ ∞
1

x1−τ (1− e−xk/(µn))dx = cµ2−τ
(n
k

)3−τ ∫ ∞
k/(µn)

y1−τ (1− e−y)dy, (9)

using the degree distribution (2) and the change of variables y = xk/(µn). When k � n, we can
approximate this by

a(k) ≈ cµ2−τ
(n
k

)3−τ ∫ ∞
0

y1−τ (1− e−y)dy = −cµ2−τ
(n
k

)3−τ
Γ(2− τ). (10)

The proof of Theorem 2.1(ii) then consists of showing that the above approximations are indeed
valid. We prove Theorem 2.1 in detail in Sections 3.2 and 3.3.
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2.3 Two more null models

We now turn to the rank-1 inhomogeneous random graph (or hidden variable model). This model
constructs simple graphs with soft constraints on the degree sequence [9, 15]. The graph consists
of n vertices with weights (hi)i∈[n]. These weights are an i.i.d. sample from the power-law distri-
bution (2). We denote the average value of the weights by µ. Then, every pair of vertices with
weights (h, h′) is connected with probability p(h, h′). In this paper, we take

p(h, h′) = min

(
hh′

µn
, 1

)
, (11)

which is the Chung-Lu version of the rank-1 inhomogeneous random graph [15]. This connection
probability ensures that the degree of a vertex with weight h will be close to h [9]. We show the
following result:

Theorem 2.2 (a(k) in the rank-1 inhomogeneous random graph). Let G be a rank-1 inhomoge-
neous random graph, where the weights are an i.i.d. sample from (2) and Γ denotes the Gamma
function.

1. For k � n(τ−2)/(τ−1),

a(k)

n(3−τ)/(τ−1)

d−→ 1

µ

(
2cΓ( 5

2 −
1
2τ)

(τ − 1)(3− τ)
cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2, (12)

where S(τ−1)/2 is a stable random variable.

2. For k � n(τ−2)/(τ−1),
a(k)

n3−τkτ−3

d−→ cµ2−τ

(3− τ)(τ − 2)
. (13)

Theorem 2.2 is almost identical to Theorem 2.1. The proof of Theorem 2.2 exploits the deep
connection between both models, and essentially carries over the results for the erased configuration
model to the rank-1 inhomogeneous random graph. Why a(k) is highly similar in both models
can be understood by noticing that in the erased configuration model the probability that vertices
i and j with degrees Di and Dj are connected can be approximated by (6) which is close to

min(1,
DiDj
µn ), the connection probability in the rank-1 inhomogeneous random graph. Similar

arguments that lead to (7) show that a(k) can be approximated by

a(k) ≈ k−1
∑
i∈[n]

hi min(hik/µn, 1)dx. (14)

This sum behaves very similarly to the sum in (7), so that the only difference between Theorem 2.1
and 2.2 is the limiting constants in (4) and (13). The main difference between both models is that
in the rank-1 inhomogeneous random graph the presence of all edges is independent as soon as
the weights are sampled. This is not true in the erased configuration model, because we know
that a vertex with sampled degree Di cannot have more than Di neighbors, creating dependence
between the presence of edges incident to vertex i. We show that these correlations between the
presence of different edges in the erased configuration model are small enough for a(k) to behave
similarly in the erased configuration model and the rank-1 inhomogeneous random graph.

The third null model we consider is the hyperbolic random graph. This model was introduced
in [28] and samples n vertices on a disk of radius R = 2 log(n/ν), where the density of the radial
coordinate r a vertex p = (r, φ) is

ρ(r) = α
sinh(αr)

cosh(αR)− 1
(15)
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with α = (τ − 1)/2. The angle of p is sampled uniformly from [0, 2π]. Then, two vertices are
connected if their hyperbolic distance is at most R. The hyperbolic distance of points u = (ru, φu)
and v = (rv, φv) satisfies

cosh(d(u, v)) = cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(∆θ), (16)

where ∆θ denotes the relative angle between φu and φv. This creates a simple random graph with
power-law degrees with exponent τ [28]. The parameter ν fixes the average degree k̄ of the graph.

The hyperbolic random graph creates simple sparse random graphs with power-law degrees,
but in contrast to the erased configuration model and the rank-1 inhomogeneous random graph,
can at the same time create many triangles due to its geometric nature [13,28]. In both the rank-1
inhomogeneous random graph and the erased configuration model, the connection probabilities
of different pairs vertices are (almost) independent. In the hyperbolic random graph, this is not
true. When u is connected to v and u is connected to w, then v and w should also be close to one
another by the geometric connection probabilities. However, if we define

t(u) = e(R−ru)/2 (17)

then we can write the probability that two randomly chosen vertices u and v are connected as [7]

P (u↔ v | t(u), t(v)) = min

(
2νt(u)t(v)

n
, 1

)
(1 + o(1)), (18)

which is very similar to the connection probability in the rank-1 inhomogeneous random graph.
Furthermore, by [7, Lemma 1.3],

P (t(u) > x) = τ−1
2 x−τ+1(1 + o(1)), (19)

so that on a high level the hyperbolic random graph can be interpreted as a rank-1 inhomogeneous
random graph with (t(u))u∈[n] as weights.

The next theorem shows that this high level equivalence to the rank-1 inhomogeneous random
graph makes a(k) in the hyperbolic random graph is similar to a(k) in the rank-1 inhomogeneous
random graph:

Theorem 2.3 (a(k) in the hyperbolic random graph). Let G be a hyperbolic random graph with
power-law degrees with exponent τ and parameter ν.

1. For k � n(τ−2)/(τ−1),

a(k)

n(3−τ)/(τ−1)

d−→=
2ν

π

(
τ − 1

3− τ
Γ( 5

2 −
1
2τ) cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2, (20)

where S(τ−1)/2 is a stable random variable.

2. For k � n(τ−2)/(τ−1)

a(k)

n3−τkτ−3

d−→ (τ − 1)2

2(3− τ)(τ − 2)

( π
2ν

)2−τ
. (21)

2.4 Discussion

Universality. The behavior of a(k) is universal across the three null models we considered.
The erased configuration model and the rank-1 inhomogeneous random graph are closely related.
They are known to behave similarly for example under critical percolation [4, 5] or in terms of
distances [39] when τ > 3, and in terms of clustering when τ ∈ (2, 3) [38]. The hyperbolic
random graph typically shows different behavior, for example in terms of clustering [13, 20], or
connectivity [7, 8]. Still, the behavior of a(k) is similar in the hyperbolic random graph and
the other two null models. In all three null models, the main contribution to a(k) for k �
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n(τ−2)/(τ−1) comes from vertices with degrees proportional to n/k (see Propositions 3.1 and 3.2).
In the hyperbolic random graph, we can relate this maximum contribution to the geometry of the
hyperbolic sphere. A vertex i of degree k has radius ri ≈ R − 2 log(k). Similarly, a vertex j of
degree n/(νk) has radius rj ≈ R− 2 log(n/(kν)) = 2 log(k). Then, rj ≈ R− ri, so that the major
contributing vertices all have radial coordinate proportional to R− ri.

Expected average nearest neighbor degree. In Theorems 2.1-2.3 we show that a(k) con-
verges in probability to a stable distribution when k is small. Thus, when we generate many
samples of random graphs, we will see that for fixed k, the distribution of the values of a(k) across
the different samples will look like a stable distribution. We can also study the expected value
of a(k) across the different samples. For the rank-1 inhomogeneous random graph for example,
using similar techniques as in the proof of Theorem 2.2(ii), we can show that

E [a(k)]

(n/k)3−τ →
cµ2−τ

(3− τ)(τ − 2)
(22)

for k � 1 as n → ∞. The difference between the scaling of the expected value of a(k) and the
typical behavior of a(k) in Theorem 2.2(i) is caused by high-degree vertices. In typical degree
sequences, the maximum degree will be proportional to n1/(τ−1). It is unlikely that vertices with
higher degrees are present, but if they are, they have a high impact on the average nearest neighbor
degree of low degree vertices, causing the difference between the expected average nearest neighbor
degree and the typical average nearest neighbor degree. This shows that the expected value of
a(k) is not very informative when k is small, since Theorem 2.2 shows that a(k) will almost always
be smaller than its expected value when k is small.

Figure 3 illustrates this difference in terms of the mean and median value of a(k) over many
realizations of the erased configuration model, the rank-1 inhomogeneous random graph and the
hyperbolic random graph. Here indeed we see that the expected average neighbor degree is a
linear function of k over the entire range of k, where the median shows the straight part of the
curve from Theorem 2.2. Thus, it is important to distinguish between mean and median when
simulating random graphs.

Fixed degrees. In the proof of Theorem 2.1 we show that the fluctuations that come with the
stable laws for small k are not present when we condition on the degree sequence. Thus, the large
fluctuations in a(k) for small k are only caused by fluctuations of the i.i.d. degrees, weights or
radii. For a given real-world network, the degrees of the network are often preserved, and many
samples of erased configuration models or rank-1 inhomogeneous random graphs for the observed
degree sequence are created. In this setting, the degrees are fixed, so that the sample-to-sample
fluctuations of a(k) will be relatively small.

Relation with local clustering. The local clustering coefficient c(k) of vertices of degree k
measures the probability that two randomly chosen neighbors af a randomly chosen vertex of
degree k are connected. In many real-world networks as well as simple null models, c(k) decreases
as a function of k [9,23,36,38,41]. The relation between the decay rate of c(k) and the decay rate
of a(k) has been investigated for the rank-1 inhomogeneous random graph, where it was shown
that c(k) < a(k)/k [37]. Using recent results for c(k) on the erased configuration model and
the rank-1 inhomogeneous random graph, we can make the relation between c(k) and a(k) more
precise. When k �

√
n, c(k) in the erased configuration model satisfies [23]

c(k) = c2Γ(2− τ)2µ3−2τn5−2τk2τ−6(1 + oP(1)). (23)

Then, by Theorem 2.1, when k �
√
n,

c(k) =
a2(k)

µn
(1 + oP(1)). (24)

7
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(c) hyperbolic random graph

Figure 3: a(k) for different random graph models with n = 106. The solid line is the median
of a(k) over 104 realizations of the random graph, and the dashed line is the average over these
realizations. The dotted line is the asymptotic slope kτ−3.

Intuitively, we can see this relationship in the following way. Pick two neighbors of a vertex with
degree k. By definition, these vertices have degree a(k) on average. Since k �

√
n, by Theorem 2.2

a(k) �
√
n. Therefore, the probability of two vertices with weight a(k) to be connected is

approximately 1 − e−a(k)2/µn ≈ a(k)2/µn. Since the clustering coefficient can be interpreted as
the probability that two randomly chosen neighbors are connected, the clustering coefficient should
satisfy c(k) ∼ a(k)2/µn when k �

√
n. In particular, the decay of the clustering coefficient should

be twice as fast as the decay of the average neighbor degree. Analytical results on c(k) on the
rank-1 inhomogeneous random graph show that (24) is also the correct relation between clustering
and degree correlations in the rank-1 inhomogeneous random graph [38]. Future research might
explore the relation between c(k) and a(k) in other null models, such as the hyperbolic random
graph or the preferential attachment model. It would also be interesting to see if the difference
between expectation and typical behavior that is present in a(k) also occurs for the local clustering
coefficient c(k).

Correlations in the hyperbolic random graph. The relation between a(k) and c(k) in the
rank-1 inhomogeneous random graph and the erased configuration model is based on the fact that
in these two models, the connection probabilities of vertices i, j, vertices i, k and vertices j, k are
(almost) independent. In the hyperbolic random graph, the geometry causes a strong dependence
between these connection probabilities. If we know that vertices j and k are neighbors of i, they are
likely to be geometrically close to one another. This makes the probability that j and k larger than
in the rank-1 inhomogeneous random graph or the erased configuration model. These correlations

8
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Figure 4: The neighbors of a vertex of degree k have average degree a(k)

do not play a role when computing a(k), since a(k) only involves the connection probability of
two different vertices. When computing statistics of the hyperbolic random graph that include
three-point correlations, the equivalence between the hyperbolic random graph and the rank-1
inhomogeneous random graph may fail to hold, as in the example of c(k).

Interestingly, the number of cliques was also shown to be similar in the hyperbolic random
graph, the rank-1 inhomogeneous random graph and the erased configuration model [19], even
though cliques clearly involve three-point correlations. Cliques in the hyperbolic random graph
are typically formed between vertices at radius proportional to R/2 [19], so that their degrees
are proportional to

√
n [7]. These vertices form a dense core, which is very similar to what

happens in the erased configuration model and the rank-1 inhomogeneous random graph [26].
In the erased configuration model, many other small subgraphs typically occur between vertices
of degrees proportional to

√
n [24]. It would be interesting to see if the number of these small

subgraphs behaves similarly in the hyperbolic random graph.

3 Average nearest neighbor degree in the ECM

In this section, we prove Theorem 2.1. When k = o(n
τ−2
τ−1 ), we couple the degrees of a uniformly

chosen neighbor to i.i.d. samples of the size-biased degree distribution in Section 3.2. When

k � n
τ−2
τ−1 , this coupling is no longer valid. We then show in Section 3.3 that there is a specific

range of degrees that contributes to a(k).

3.1 Preliminaries

We often want to interchange the sampled degree of a vertex i, Di and its erased degree D(er)

i . We
say that Xn = OP(bn) for a sequence of random variables (Xn)n≥1 if |Xn|/bn is a tight sequence

of random variables, and Xn = oP(bn) if Xn/bn
P−→ 0. Then, by [12, Eq. A(9)]

D(er)

i = Di(1 + oP(1)), (25)

when Di = o(n). Let Ln denote the total number of half-edges, so that Ln =
∑
iDi. We define

the event
Jn = {|Ln − µn| ≤ n−1/(τ−1)}. (26)

By [25], P (Jn) → 1 as n → ∞. In the rest of this section, we will often condition on the degree
sequence. For some event E , we use the notation Pn (E) = P

(
E | (Di)i∈[n]

)
, and we define En and

Varn similarly.

3.2 Small k: Coupling to i.i.d. random variables

In this section we investigate the behavior of a(k) when k = o(n(τ−2)/(τ−1)). We first pick a
random vertex v of degree k. We will couple the degrees of the neighbors of v to i.i.d. copies of

9



the size-biased degree distribution D∗n, where

Pn (D∗n = k) =
k

Ln

∑
i∈[n]

1{Di=k}. (27)

We then use this coupling to compute a(k).

Proof of Theorem 2.1(i). We first condition on the degree sequence (Di)i∈[n]. Let v be a uniformly
chosen vertex of degree k. In the erased configuration model, neighbors of v are constructed by
pairing the half-edges of v uniformly to other half-edges. We use a similar coupling as in [6,
Construction 4.2] to couple the degrees of the neighbors of v, Bi to i.i.d. samples of D∗n, Yi.
Denote the degrees of the neighbors of v by B1, . . . , Bk, in the order in which we encounter them.
Let Y1, . . . , Yk be i.i.d. samples of D∗n. These samples can be obtained by sampling uniform half-
edges with replacement. Then, Yi = dv′i , where v′i denotes the vertex incident to the ith drawn
half-edge. Then for i ∈ [k] the coupling is defined in the following way:

• If v′i /∈ {v, v1, . . . , vi−1}, then Bi = Yi and vi = v′i. We say that Bi and Yi are successfully
coupled.

• If v′i ∈ {v, v1, . . . , vi−1}, we redraw a uniformly chosen half-edge from the set of half-edges
incident to {v, v1, . . . , vi−1}. Let vi denote the vertex incident to the chosen half-edge, and
Bi = dvi . We then say that Bi and Yi are miscoupled.

By [6, Lemma 4.3], the probability of a miscoupling at step i can be bounded as

Pn (Bi 6= Yi | Fi−1) ≤ Ln−1
(
k +

i−1∑
s=1

Bs

)
. (28)

Thus, the expected number of miscouplings up to time t, Nmis(t), satisfies

En [Nmis(t)] ≤
kt

Ln
+

1

Ln

t∑
i=1

i−1∑
s=1

En [Bs] . (29)

When Bs is successfully coupled, En [Bs] = En [D∗n] =
∑
iD

2
i /Ln. When Bs is not successfully

coupled, it is drawn in a size-biased manner from the vertices that are not chosen yet. Let
Vs = {v, v1, . . . , vs−1}. Then

En [Bs] =

∑
i/∈Vs D

2
i∑

i/∈sDi
≤

∑
i∈[n]D

2
i∑

i∈[n]Di −
∑
i∈Vs Di

=

∑
i∈[n]D

2
i∑

i∈[n]Di

(
1 +

∑
i∈Vs Di∑

i∈[n]Di −
∑
i∈Vs Di

)
. (30)

Since Dmax = OP

(
n1/(τ−1)

)
,
∑
i∈Vs Di = OP

(
sn1/(τ−1)

)
. Thus, as long as s = o(n(τ−2)/(τ−1)),

En [Bs] = OP

(
L−1
n

∑
i∈[n]

D2
i

)
= OP

(
n(3−τ)/(τ−1)

)
, (31)

where the last step follows from the Stable Law Central Limit Theorem (see for example [42,
Theorem 4.5.2]). Then, for k = o(n(τ−2)/(τ−1))

En [Nmis(k)] =
k2

Ln
+

1

Ln
OP

(
n(3−τ)/(τ−1)

) k∑
i=1

(i− 1) = OP

(
k2n2 2−τ

τ−1

)
. (32)

Thus, as long as k = o(n
τ−2
τ−1 ),

En [Nmis(k)] = oP(1). (33)

10



Then, by the Markov inequality

Pn (Nmis(k) = 0) = 1− Pn (Nmis(k) ≥ 1) ≥ 1− En [Nmis(k)] = 1− oP(1). (34)

Thus, when k = o(n(τ−2/(τ−1))), we can approximate the sum of the degrees of the neighbors of
a vertex with degree k by i.i.d. samples of the size-biased degree distribution. Because D(er)

i ≤ Di

and D(er)

i = Di(1 + oP(1)), conditionally on the degrees

a(k) | (Di)i≥1 =
1

kNk

∑
i:D

(er)
i =k

∑
j∈Ni

D(er)

j =
1

k
En

[ ∑
j∈NVk

D(er)

j

]
= (1 + oP(1))En

[
DNVk (U)

]
, (35)

where Vk denotes a uniformly chosen vertex of degree k, andNVk(U) is a uniformly chosen neighbor
of vertex Vk. With high probability, we can couple the degrees in the neighborhood of a uniformly
chosen vertex of degree k to i.i.d copies of D∗n. Then,

a(k) | (Di)i≥1 = (1 + oP(1))En [D∗n] = (1 + oP(1))L−1
n

∑
i∈[n]

D2
i . (36)

Note that this expression is independent of k. Using that for t large

P
(
D2 > t

)
= P

(
D >

√
t
)

=
c

τ − 1
t(1−τ)/2(1 + o(1)) (37)

we can again use the Stable Law Central Limit Theorem to conclude that

a(k)

n(3−τ)/(τ−1)

d−→ 1

µ

(
2c

(τ − 1)(3− τ)
Γ( 5

2 −
1
2τ) cos

(
π(τ − 1)

4

))2/(τ−1)

S(τ−1)/2, (38)

where S(τ−1)/2 is a stable distribution. The fact that (36) is independent of k proves the joint
convergence of Remark 2.1.

3.3 Large k

Now we study the value of a(k) when k grows large. For k � n(τ−2)/(τ−1) there exists a specific
range of degrees W k

n (ε) which gives the largest contribution to a(k). We define

W k
n (ε) = {u : Du ∈ [εn/k, n/(εk)]} , (39)

and we write
a(k) = a(k,W k

n (ε)) + a(k, W̄ k
n (ε)), (40)

where a(k,W k
n (ε)) denotes the contribution to a(k) from vertices in W k

n (ε), and a(k, W̄n(ε)) the
contribution from vertices not in W k

n (ε). In the rest of this section, we prove the following two
propositions, which together show that the largest contribution to a(k) indeed comes from vertices
in W k

n (ε).

Proposition 3.1 (Minor contributions). There exists κ > 0 such that for k � n(τ−2)/(τ−1),

lim sup
n→∞

E
[
a(k, W̄ k

n (ε))
]

(n/k)3−τ = O (εκ) . (41)

Proposition 3.2 (Major contributions).

a(k,W k
n (ε))

(n/k)3−τ
P−→ cµ2−τ

∫ 1/ε

ε

x1−τ (1− e−x)dx (42)

We now show how these propositions prove part (ii) of Theorem 2.1.

11



Proof of Theorem 2.1 (ii). By the Markov inequality and Proposition 3.1,

a(k, W̄ k
n (ε))

(n/k)3−τ = OP (εκ) . (43)

Combining this with Proposition 3.2 results in

a(k)

(n/k)3−τ
P−→ cµ2−τ

∫ 1/ε

ε

x1−τ (1− e−x)dx+OP (εκ) . (44)

Taking the limit of ε→ 0 then proves the theorem.

The rest of this section is devoted to proving Propositions 3.1 and 3.2.

3.3.1 Conditional expectation

We first compute the expectation of a(k,W k
n (ε)) when we condition on the degree sequence.

Lemma 3.3. When k � n(τ−2)/(τ−1),

En
[
a(k,W k

n (ε))
]

=
1

k

∑
u∈Wk

n (ε)

Du(1− e−Duk/Ln)(1 + oP(1)). (45)

Proof. It suffices to prove the lemma under the event Jn from (26), since P (Jn) → 1, so that we
may assume that Ln = µn(1 + o(1)). Let X̂ij denote the number of edges between i and j in

the erased configuration model, so that X̂ij ∈ {0, 1}. If w is a uniformly chosen vertex such that
D(er)
w = k, by (1)

En
[
a(k,W k

n (ε))
]

=
1

kNk

∑
v:D

(er)
v =k

∑
u∈Wk

n (ε)

En
[
D(er)

u 1{u↔v}
]

=
1

k

∑
u∈Wk

n (ε)

D(er)

u Pn(X̂uw = 1). (46)

By [22, Eq. (4.9)]

Pn
(
X̂uw = 1

)
= 1− eDuDw/Ln +O

(
D2
wDu +D2

uDw

L2
n

)
= (1− eDuDw/Ln)(1 + oP(1)), (47)

where the last step follows because Du ∈ n/k[ε, 1/ε] and by (25) Dw = k(1 + oP(1)). Using that
D(er)
u = Du(1 + oP(1)) and Dw = k(1 + oP(1)) we can write (46) as

En
[
a(k,W k

n (ε))
]

=
1

k

∑
u∈Wk

n (ε)

Du(1− e−Duk/LneoP(Du/Ln))(1 + oP(1))

=
1

k

∑
u∈Wk

n (ε)

Du(1− e−Duk/Ln)(1 + oP(1)) (48)

for k � n, which proves the lemma.

3.3.2 Convergence of conditional expectation

We now show that En
[
a(k,W k

n (ε))
]

as computed in Lemma 3.3 converges to a constant when we
take the i.i.d. degrees into account.

Lemma 3.4. When k � n(τ−2)/(τ−1),

En
[
a(k,W k

n (ε))
]

n3−τkτ−3

P−→ cµ2−τ
∫ 1/ε

ε

x1−τ (1− e−x)dx. (49)
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Proof. Define the random measure

M (n)[a, b] =
1

µ1−τn2−τkτ−1

∑
u∈[n]

1{Du∈[a,b]µn/k}. (50)

Since the degrees are i.i.d. samples from a power-law distribution, the number of vertices with
degrees in interval [a, b] is binomially distributed. Then,

M (n)[a, b] =
1

µ1−τn2−τkτ−1
|{u : Du ∈ [a, b]µn/k}| P−→ 1

(µn)1−τkτ−1
P (D ∈ [a, b]µn/k)

=
1

(µn)1−τkτ−1

∫ bµn/k

aµn/k

cx−τdx =

∫ b

a

cy−τdy =: λ[a, b], (51)

where we used the change of variables y = xk/(µn). By Lemma 3.3,

En
[
a(k,W k

n (ε))
]

=

∑
u∈Wk

n (ε)Du(1− e−Duk/Ln)

k
(1 + oP(1))

=
µn

k

∑
u∈Wk

n (ε)
Duk
µn (1− e−Duk/Ln)

k
(1 + oP(1))

=
µ2−τn3−τ

k3−τ

∫ 1/ε

ε

t(1− e−t)dM (n)(t)(1 + oP(1)). (52)

Fix η > 0. Since t(1 − e−t) is bounded and continuous on [ε, 1/ε], we can find m < ∞, disjoint
intervals (Bi)i∈[m] and constants (bi)i∈[m] such that ∪Bi = [ε, 1/ε] and∣∣∣t(1− e−t)−

m∑
i=1

bi1{t∈Bi}

∣∣∣ < η/λ([ε, 1/ε]), (53)

for all t ∈ [ε, 1/ε]. Because M (n)(Bi)
P−→ λ(Bi) for all i, M (n)(Bi) = OP (λ(Bi)). Then,∣∣∣ ∫ 1/ε

ε

t(1− e−t)dM (n)(t)−
∫ 1/ε

ε

t(1− e−t)dλ(t)
∣∣∣ ≤ ∣∣∣ ∫ 1/ε

ε

t(1− e−t)−
m∑
i=1

bi1{t∈Bi}dM
(n)(t)

∣∣∣
+
∣∣∣ ∫ 1/ε

ε

t(1− e−t)−
m∑
i=1

bi1{t∈Bi}dλ(t)
∣∣∣

+
∣∣∣ m∑
i=1

bi(M
(n)(Bi)− λ(Bi))

∣∣∣
≤ ηM (n)([ε, 1/ε])/λ([ε, 1/ε]) + η + oP(η).

(54)
Using that M (n)([ε, 1/ε]) = OP (λ([ε, 1/ε])) proves that∫ 1/ε

ε

t(1− e−t)dM (n)(t)
P−→
∫ 1/ε

ε

t(1− e−t)dλ(t) = c

∫ 1/ε

ε

x1−τ (1− e−x)dx, (55)

which proves the lemma.

3.3.3 Conditional variance of a(k)

We now show that the variance of a(k,W k
n (ε)) is small when conditioning on the degree sequence,

so that a(k,W k
n (ε)) concentrates around its expected value computed in Lemma 3.3.

Lemma 3.5. When k � n(τ−2)/(τ−1),

Varn
(
a(k,W k

k (ε))
)

En [a(k,W k
n (ε))]

2

P−→ 0. (56)
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Proof. Again, it suffices to prove the lemma under the event Jn from (26). We denote Sk = {i ∈
[n] : D(er)

i = k}. We write the variance of a(k,W k
n (ε)) as

Varn
(
a(k,W k

n (ε))
)

=
1

k2N2
k

∑
i,j∈Sk

∑
u,v∈Wk

n (ε)

D(er)

u D(er)

w

× (Pn (Xiu = Xjv = 1)− Pn (Xiu = 1)Pn (Xjv = 1))

=
(1 + oP(1))

k2N2
k

∑
i,j∈Sk

∑
u,v∈Wk

n (ε)

DuDw

× (Pn (Xiu = Xjv = 1)− Pn (Xiu = 1)Pn (Xjv = 1)) . (57)

Equation (57) splits into various cases, depending on the size of {i, j, u, v}. We denote the contri-
bution of |{i, j, u, v}| = r to the variance by V (r)(k). We first consider V (4)(k). We can write

Pn (Xiu = Xjv = 0) = Pn (Xiu = 0)Pn (Xjv = 0 | Xiu = 0) . (58)

For the second term, we first pair all half-edges adjacent to vertex i, conditionally on not pairing
to vertex u. Then the second term can be interpreted as the probability that vertex j does not
pair to vertex v in a configuration model with Ln −Di = Ln(1 + o(1)) vertices, where the degree
of vertex j is reduced by the amount of half-edges from vertex i that paired to j, as well as
the degree of vertex v. Since the expected number of half-edges from i that pair to vertex j is
O(DiDj/Ln) [17], the new degree of vertex j is Dj(1 + oP(1)), and a similar statement holds for
vertex v. Thus, by (47)

Pn (Xiu = Xjv = 0) = e−DiDu/Lne−DjDv/Ln(1 + oP(1)). (59)

This results in

Pn (Xiu = Xjv = 1) = 1− Pn (Xiu = 0)− Pn (Xjv = 0) + Pn (Xiu = Xjv = 0)

= 1 + (−e−
Duk
Ln − e−

Dvk
Ln + e−

Duk
Ln
−DvkLn )(1 + oP(n

−(τ−2)/(τ−1)))

= (1− e−Duk/Ln)(1− e−Dvk/Ln)(1 + oP(1)), (60)

because Duk = Θ(n) and Dvk = Θ(n). Therefore

V (4)(k) =
1

N2
kk

2

∑
i,j∈Sk

∑
u,v∈Wk

n (ε)

DuDv(1− e−Duk/Ln)(1− e−Dvk/Ln)(1 + oP(1))

−DuDv(1− e−Duk/Ln)(1− e−Duk/Ln)(1 + oP(1))

=
∑

u,v∈Wk
n (ε)

oP

(
k−2DuDv(1− e−Duk/Ln)(1− e−Dvk/Ln)

)
= oP

(
En
[
a(k,W k

n (ε))
]2)

,

(61)
where the last equality follows from Lemma 3.3. Since there are no overlapping edges when
{i, j, u, v} = 3, V (3)(k) can be bounded similarly.

We then consider the contribution from V (2), which is the contribution where the two edges are
the same. By Lemma 3.4, we have to show that this contribution is small compared to n6−2τk2τ−6.
We bound the summand in (57) as

D2
u

(
Pn (Xiu = 1)− Pn (Xiu = 1)

2
)
≤ D2

u. (62)

Thus, V (2), can be bounded as

V (2) ≤ 1

k2N2
k

∑
i∈Sk

∑
u:Du∈Wk

n (ε)

D2
u =

1

k2Nk

∑
u:Du∈Wk

n (ε)

D2
u = O

(
n2

k4Nk

) ∣∣W k
n (ε)

∣∣ . (63)
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Since the degrees are i.i.d. samples from (2),
∣∣W k

n (ε)
∣∣ is distributed as a Binomial(n,C(n/k)1−τ )

for some constant C. Therefore, ∣∣W k
n (ε)

∣∣ = OP

(
n (n/k)

1−τ
)
. (64)

Then, using that Nk ≥ 1,
V (2) = OP

(
n4−τkτ−5

)
, (65)

which is smaller than n6−2τk2τ−6 when k � n
τ−2
τ−1 , as required.

Proof of Proposition 3.2. Lemma 3.5 together with the Chebyshev inequality show that

a(k,W k
n (ε))

En [a(k,W k
n (ε))]

P−→ 1. (66)

Combining this with Lemmas 3.3 and 3.4 yields

a(k,W k
n (ε))

n3−τkτ−3

P−→ cµ2−τ
∫ 1/ε

ε

x1−τ (1− e−x)dx. (67)

3.3.4 Contributions outside W k
n (ε)

In this section, we prove Proposition 3.1 and show that the contribution to a(k) outside of the
major contributing regimes as described in (39) is negligible.

Proof of Proposition 3.1. We use that Pn(X̂ij = 1) ≤ min(1, DiDlLn
). This yields

E
[
a(k, W̄ k

n (ε))
]

= E
[
En
[
a(k, W̄ k

n (ε))
]]
≤ n

k
E
[
Dmin

(
1,
kD

Ln

)
1{D∈W̄k

n (ε)}

]
=
n

k

∫
x∈W̄k

n (ε)

x1−τ min
(

1,
kx

µn

)
dx. (68)

For ease of notation, we assume that µ = 1 in the rest of this section. We have to show that the
contribution to (68) from vertices u such that Du < εn/k or Du > n/(εk) is small. First, we study
the contribution to (68) for Du < εn/k. We can bound this contribution by taking the second
term of the minimum, which bounds the contribution as∫ εn/k

0

x2−τdx =
ε3−τ

τ − 3
(k/n)τ−3. (69)

Then, we study the contribution for Du > n/(kε). This contribution can be bounded very similarly
by taking 1 for the minimum in (68)

n

k

∫ ∞
n/(εk)

x1−τdx =
ετ−2

τ − 2
(k/n)τ−3. (70)

Taking κ = min(τ − 2, 3− τ) > 0 then proves the proposition.

4 Proofs of Theorem 2.2 and 2.3

We now briefly show how the proof of Theorem 2.1 can be adapted for the rank-1 inhomogeneous
random graph and the hyperbolic random graph to prove Theorems 2.2 and 2.3. We denote by
Pn the probability conditioned on the weights in the rank-1 inhomogeneous random graph or
conditioned on the radial coordinates in the hyperbolic model.
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4.1 Small k

First, we show how to prove Theorem 2.2(i). Similar to (25), the degree of a vertex with weight
h, Dh, satisfies Dh = h(1 + oP(1)) when h � 1 [38], so that Dh � n(τ−2)/(τ−1) implies h �
n(τ−2)/(τ−1) with high probability. Furthermore, the largest weight is of order n1/(τ−1) with high
probability. Thus, when h� n(τ−2)/(τ−1), w.h.p. p(h, h′) = hh′/(µn) for all vertices. Let u be a
randomly chosen vertex of degree k � n(τ−2)/(τ−1). Then,

a(k) | (hi)i∈[n] =
1

k

∑
i∈[n]

DiPn (i↔ u) = (1 + oP(1))
1

k

∑
i∈[n]

hi
hik

µn
= (1 + oP(1))

∑
i∈[n]

h2
i

µn
, (71)

which is equivalent to (36) because the weights are also sampled from (2). This proves Theo-
rem 2.2(i).

For the hyperbolic random graph, we use that the degree of a vertex u is distributed as a
Poisson random variable with parameter t(u), so that Du = tu(1 + oP(1)) when t(u) � 1. Since
the t(u)s are sampled from (19), the largest t(u) is of order n1/(τ−1) with high probability. Let u
again be a randomly chosen vertex of degree k � n(τ−2)/(τ−1). Then, similarly as for the rank-1
inhomogeneous random graph, by (18) we obtain with ζ = π/(2ν),

a(k) =
1

k

∑
i∈[n]

DiPn (i↔ u) = (1 + oP(1))
1

k

∑
i∈[n]

t(i)
t(i)t(u)

ζn
= (1 + oP(1))

∑
i∈[n]

t(i)2

ζn
. (72)

Combining this with the fact that the t(i) are sampled from the power-law distribution (19), this
proves Theorem 2.3(i) (which is Theorem 2.2(i) where µ is replaced by ζ and c/(τ−1) by (τ−1)/2).

4.2 Large k

Similarly to (39), we define for the rank-1 inhomogeneous random graph

W k,HVM

n (ε) = {u : hu ∈ [εµn/k, µn/(εk)]}, (73)

and for the hyperbolic random graph

W k,HRG

n = {u : t(u) ∈ [εζn/k, ζn/(εk)]} (74)

with t(u) as in (17) and ζ = π/(2ν). Then it is easy to show that Proposition 3.1 also holds
for the rank-1 inhomogeneous random graph and the hyperbolic random graph, with (73) or (74)
instead of W k

n (ε). For the rank-1 inhomogeneous random graph, we use that Pn (Xij = 1) =
min(hihj/(µn), 1). Because the weights are sampled from (2), (68) also holds for the rank-1
inhomogeneous random graph, so that Proposition 3.1 indeed holds for the rank-1 inhomoge-
neous random graph. In the hyperbolic random graph, the t(u) variables are sampled form a
distribution similar to (2) (apart from constants), and by (18) the connection probabilities are
min(t(u)t(v)/(ζn), 1). Then, as for the rank-1 inhomogeneous random graph (68) also holds for
the hyperbolic random graph, apart from a multiplicative constant, and from there we can follow
the rest of the proof of Proposition 3.1.

We now sketch how to adjust the proof of Proposition 3.2 to prove an analogous version for
the rank-1 inhomogeneous random graph, which states that

a(k,W kHVM
n (ε))

(n/k)3−τ
P−→ cµ2−τ

∫ 1/ε

ε

x1−τ min(x, 1)dx. (75)

Following the proofs of Lemmas 3.3-3.5, we see that these lemmas also hold for the rank-1 in-
homogeneous random graph if we replace the connection probability of the erased configuration
model of 1 − e−DiDj/Ln by min(hihj/µn, 1). Note that for the rank-1 inhomogeneous random
graph the contribution to (57) from 4 different vertices is 0, because the edge probabilities in
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the rank-1 inhomogeneous random graph conditioned on the weights are independent. Then (75)
follows from these lemmas. This then shows similarly to (44) that

a(k)

(n/k)3−τ
P−→ cµ2−τ

∫ ∞
0

x1−τ min(x, 1)dx =
cµ2−τ

(3− τ)(τ − 2)
. (76)

which proves Theorem 2.2(ii).
For the hyperbolic random graph, similar arguments hold. Here, we can prove an analogous

proposition to Proposition 3.2 which states that

a(k,W k,HRG
n (ε))

(n/k)3−τ
P−→ (τ − 1)2

2

( π
2ν

)2−τ ∫ 1/ε

ε

x1−τ min(x, 1)dx. (77)

As stated before, connection probabilities in the hyperbolic random graph between two vertices
with uniform radial coordinate are similar as in the rank-1 inhomogeneous random graph, with
weights t(u). Therefore, Lemmas 3.3-3.5 also hold for the hyperbolic random graph, replacing the
connection probability 1− e−DiDj/(µn) of the erased configuration model by min(t(i)t(j)/(ζn), 1)
and replacing the constant c from (2) by its equivalent constant for the hyperbolic model of
(τ − 1)2/2 (see (19)). Again, similar steps that lead to (44) then show that

a(k)

(n/k)3−τ
P−→ (τ − 1)2

2

( π
2ν

)2−τ ∫ ∞
0

x1−τ min(x, 1)dx =
(τ − 1)2

2(3− τ)(τ − 2)

( π
2ν

)2−τ
, (78)

which proves Theorem 2.3(ii).

Acknowledgements. This work was supported by NWO TOP grant 613.001.451. The author
would like to thank Remco van der Hofstad and Johan S. H. van Leeuwaarden for their useful
comments.

References

[1] R. Albert, H. Jeong, and A.-L. Barabási. Internet: Diameter of the world-wide web. Nature,
401(6749):130–131, 1999.

[2] A.-L. Barabási. Network Science. Cambridge University Press, 2016.

[3] A. Barrat, M. Barthlemy, R. Pastor-Satorras, and A. Vespignani. The architecture of complex
weighted networks. Proc. Natl. Acad. Sci. U.S.A., 101(11):3747–3752, 2004.

[4] S. Bhamidi, S. Dhara, R. van der Hofstad, and S. Sen. Universality for critical heavy-tailed
network models: metric structure of maximal components. arXiv:1703.07145, 2017.

[5] S. Bhamidi, S. Sen, and X. Wang. Continuum limit of critical inhomogeneous random graphs.
Probab. Theory Related Fields, pages 1–77, 2016.

[6] S. Bhamidi, R. van der Hofstad, and G. Hooghiemstra. Universality for first passage perco-
lation on sparse random graphs. Ann. Probab., 45(4):2568–2630, 2017.

[7] M. Bode, N. Fountoulakis, and T. Mller. On the largest component of a hyperbolic model of
complex networks. Electron. J. Combin., 22(3):P3–24, 2015.

[8] M. Bode, N. Fountoulakis, and T. Mller. The probability of connectivity in a hyperbolic
model of complex networks. Random Structures & Algorithms, 49(1):65–94, 2016.
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