
 

Mesoscopic scales in hierarchical configuration models

Citation for published version (APA):
van der Hofstad, R. W., van Leeuwaarden, J. S. H., & Stegehuis, C. (2016). Mesoscopic scales in hierarchical
configuration models. arXiv, (1612.02668), Article 1612.02668. https://arxiv.org/abs/1612.02668

Document status and date:
Published: 08/12/2016

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://arxiv.org/abs/1612.02668
https://research.tue.nl/en/publications/e5085de2-3c60-4be2-b8bb-131efe2cbfe8


Mesoscopic scales in hierarchical configuration models
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December 9, 2016

Abstract

To understand mesoscopic scaling in networks, we study the hierarchical configuration
model (HCM), a random graph model with community structure. The connections between
the communities are formed as in a configuration model. We study the component sizes of
the hierarchical configuration model at criticality when the inter-community degrees have a
finite third moment. We find the conditions on the community sizes such that the critical
component sizes of the HCM behave similarly as in the configuration model. Furthermore,
we study critical bond percolation on the HCM. We show that the ordered components of a
critical HCM on N vertices are of sizes O(N2/3). More specifically, the rescaled component
sizes converge to the excursions of a Brownian motion with parabolic drift, as for the scaling
limit for the configuration model under a finite third moment condition.

1 Introduction

Random graphs serve as basic models for networked structures that occur in many sciences, in-
cluding physics, chemistry, biology, and the social sciences. In these networked structures, it is
common to distinguish between two levels, referred to as “microscopic” and “macroscopic”. Ver-
tex degrees and edges between vertices provide a microscopic description, whereas most network
functionalities require a macroscopic picture. Random graph models are typically defined at the
microscopic level, in terms of degree distributions and edge probabilities, leading to a collection
of local probabilistic rules. This provides a mathematical handle to characterize the macroscopic
network functionality related to global characteristics such as connectivity, vulnerability and in-
formation spreading.

Intermediate or “mesoscopic” levels are less commonly considered in random graph models
and network theory at large, and apply to substructures between the vertex and network levels.
Mesoscopic levels are however becoming increasingly in focus, for example because of community
structures or hidden underlying hierarchies, common features of many real-world networks. It is
not easy to define what is precisely meant with mesoscopic, apart from the obvious definition of
something between microscopic and macroscopic. This paper deals with large-network limits, in
which the network size N (number of vertices) will tend to infinity. The mesoscopic scale then
naturally refers to structures of size Nα, where it remains to be determined what values of α need
to be considered.

We will associate the mesoscopic level with the community structure, defined as the collection
of subgraphs with dense connections within themselves and sparser ones between them. Once
the number and sizes of the network communities are identified, not only the community sizes
are mescoscopic characteristics, but also the connectivity between communities and their internal
organization.

To investigate the mesoscopic scales, we shall work with the Hierarchical Configuration Model
(HCM) [13], a random graph model that incorporates community structures. On the macroscopic
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(a) Subcritical (b) Critical (c) Supercritical

Figure 1: Phase transition for the component sizes in a configuration model

level, the HCM is a configuration model, but every vertex is then replaced by a community, which
is a small connected graph. The HCM crucially deviates from the classical random graph models,
which are all locally tree-like (contain few short cycles). Many real-world networks are not locally
tree-like, and have a community structure, with many short cycles inside the communities. The
HCM allows to study such networks with community structure. Where the classical configuration
model (CM) can create a random graph for any given degree sequence, the HCM can generate
random graphs with any given community structure. In [22,23] the HCM is compared to real-world
networks, and found to describe real-world networks much better than the CM, while remaining
analytically tractable. As such, the CM model was found in [22, 23] to be a better model for the
mesoscopic scale than for the microscopic scale, where mesoscopic means that each vertex in the
CM structure represents a community. The CM is a special case of the HCM with all communities
of size one.

To better understand the mesoscopic scale, we shall study the HCM in the critical regime,
when the random graphs is on the verge of having a giant connected component. This critical
regime has been explored for wide classes of random graph models, including the CM. Indeed,
most random graph models undergo a transition in connectivity, a so-called phase transition, as
illustrated in Figure 1. The component sizes of random graphs at criticality were first investigated
for Erdős-Rényi random graphs [1,3], and more recently for inhomogeneous random graphs [5,24]
and for the CM [7, 17–19]. All these models were found to follow qualitatively similar scaling
limits, and hence can be considered to be members of the same universality class.

Taking the HCM as the null model for studying critical connectivity, we can investigate the
influence of the community structure. A relevant question is under what conditions the HCM will
show the same scaling limit as in the classical random graph models and hence is a member of the
same universality class. An alternative formulation of the same question is to ask what the natural
order of the mesoscopic scale should be, to influence or even alter the critical graph behavior. Our
analysis shows that α = 2/3 is a strong indicator for the extent to which mesoscopic scales
changes the global network picture. When communities are of size n2/3 or smaller, the mesoscopic
scales are small (yet not negligible), and the critical structures that arise are comparable to the
structures encountered in the classical CM. When communities are potentially larger than n2/3,
the communities themselves start to alter the critical structures, and have the potential to entirely
change the macroscopic picture.

We then proceed to study percolation on the HCM. We will exploit the fact that any super-
critical HCM can be made critical by choosing a suitable percolation parameter. Therefore, we
also study the scaling limits of the component sizes of a HCM under critical bond percolation. We
show that under percolation, the community structure not only affects the component sizes, but
also the width of the critical window.

Our main results for the critical components, both before and after percolation, crucially
depend on the mesoscopic scale of the community structure. We obtain the precise conditions
(Conditions 1 and 2) under which the mesoscopic scale does not become dominant. These condi-
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(a) Communities (b) Possible result of HCM

Figure 2: Illustration of HCM

tions describe the maximum order of the community sizes that can be sustained in order not to
distort the picture generated by the CM. In other words, when the community sizes remain rela-
tively small, the results proven for the CM remain valid, despite the fact that the locally tree-like
assumption is violated. And equally important, the same conditions indicate when the community
sizes become large enough for the mesoscopic scale to take over. In that case, the CM is not an
appropriate model.

Notation. We use
d−→ for convergence in distribution, and

P−→ for convergence in probability.
We say that a sequence of events En happens with high probability (w.h.p.) if limn→∞ P(En) =
1. We write f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) if |f(n)|/g(n) is
uniformly bounded, where (g(n))n≥1 is nonnegative. We say that Xn = OP(bn) for a sequence of
random variables (Xn)n≥1 if |Xn|/bn is a tight sequence of random variables, and Xn = oP(bn) if

Xn/bn
P−→ 0.

1.1 Detailed model description

We now describe the HCM in more detail. Consider a random graph G with n communities
(Hi)i∈[n]. A community H is represented by H = (F,d), where F = (VF , EF ) is a simple,
connected graph and d = (d(b)

v )v∈VF , where d(b)
v is the number of edges from v ∈ VF to other

communities. Thus d describes the degrees between the communities. We call d(b)
v the inter-

community degree of a vertex v in community F . A vertex inside a community also has an
intra-community degree d(c)

v : the number of edges from that vertex to other vertices in the same
community. The sum of the intra-community and the inter-community degrees of a vertex is the
degree of the vertex, i.e., dv = d(b)

v + d(c)
v . Let dH =

∑
v∈VF d

(b)
v be the total number of edges out

of community H. Then the (HCM) is formed in the following way. We start with n communities.
Every vertex v has d(b)

b half-edges attached to it, as shown in Figure 2a. These inter-community
half-edges are paired uniformly at random. This results in a random graph G with a community
structure, as shown in Figure 2b. On the macroscopic level, G is a configuration model with
degrees (dHi)i∈[n]. We will need to use some assumptions on the parameters of our model. For
this, we start by introducing some notation.

Let Hn denote a uniformly chosen community in [n] = {1, 2, . . . , n}. Furthermore, denote
the number of communities of type H in a graph with n communities by n(n)

H . Then n(n)

H /n is
the fraction of communities that are of type H. Let Dn be the number of outgoing edges from
a uniformly chosen community, i.e., Dn = dHn =

∑
v∈VFn

d(b)
v . Let the size of community i be

denoted by si, and the size of a uniformly chosen community in [n] by Sn. Then the total number
of vertices in the graph is N =

∑n
i=1 si = nE[Sn]. Let S and D be the limiting distributions of

Sn and Dn respectively, as n→∞. We assume that the following conditions hold:

Condition 1 (Community regularity).

(i) Pn(H) = n(n)

H /n
P−→ P (H), where P (H) is a probability distribution on labeled graphs of

arbitrary size.
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(ii) limn→∞ E[Sn] = E[S] <∞.

(iii) E[DnSn]→ E[DS] <∞.

(iv) smax = maxi∈[n] si � n2/3

log(n) .

Condition 2 (Inter-community connectivity).

(i) limn→∞ E[D3
n] = E[D3] <∞.

(ii) P(D = 0) < 1, P(D = 1) ∈ (0, 1).

(iii) ν(n)

D := E[Dn(Dn−1)]
E[Dn] = 1 + λn−1/3 + o(n−1/3), for some λ ∈ R.

Remark 1. Condition 1(i) implies that (Fn,dn)
d−→ (F,d), Dn

d−→ D and Sn
d−→ S. The

condition also implies that dmax = o(n1/3) [11], where dmax is the maximal inter-community
degree. Define

p(n)

k,s =
∑

H=(F,d):|F |=s,dH=k

Pn(H), (1.1)

pk,s =
∑

H=(F,d):|F |=s,dH=k

P (H), (1.2)

as the probabilities that a uniformly chosen community has size s and inter-community degree k.
Then Condition 1 implies that p(n)

k,s → pk,s for every (k, s). Furthermore, let `n denote the sum of
the inter-community degrees of all half-edges, `n =

∑
i∈[n] dHi .

1.2 Results on critical component sizes

For a connected component ofG, we can either count the number of communities in the component,
or the number of vertices in it. We denote the number of communities in a component C by
v(H)(C ), and the number of communities with inter-community degree k by v(H)

k (C ). The number
of vertices in component C is denoted by v(C ). Define

νD =
E[D(D − 1)]

E[D]
, (1.3)

where D is the asymptotic community degree in Condition 2. Let pk = P(D = k).

Let Bµλ,η(t) denote Brownian motion with a parabolic drift [10,12]: Bµλ,η(t) =
√
η

µ B(t)+λt− ηt2

2µ3 ,

where B(t) is a standard Brownian motion. Let Wλ(t) be the reflected process of Bµλ,η(t), i.e.,

Wλ(t) = Bµλ,η(t)− min
0≤s≤t

Bµλ,η(s), (1.4)

and let γλ denote the vector of ordered excursion lengths of Wλ. Choose µ = E[D], η =
E[D3]E[D] − E[D2]. Let C(j) denote the jth largest component of a HCM, and C (CM)

(j) the jth

largest component of the underlying CM (i.e.,C (CM)

(j) is the j-th largest component measured in

terms of the number of communities). Since the underlying CM satisfies Condition 1, by [7],

n−2/3
(
v(H)(C (CM)

(j) )
)
j≥1
→ γλ. (1.5)

Thus, the number of communities in the components of a HCM follows the same scaling limit as
the configuration model, since the communities are connected as in a configuration model.

The following theorem shows that the scaled component sizes of a HCM converge to a constant
times γλ as well:

4



Theorem 3. Fix λ ∈ R. For a hierarchical configuration model satisfying Conditions 1 and 2,

N−2/3(v(C(j)))j≥1
d−→ E[S]−2/3E[DS]

E[S]
γλ, (1.6)

with respect to the product topology.

In the Erdős-Rényi random graph, the inhomogeneous random graph as well as in the CM, the
scaled critical component sizes converge in the `2↓ topology [1, 5, 7], defined as

`2↓ := {x = (x1, x2, x3, . . . ) : x1 ≥ x2 ≥ x3 ≥ . . . and

∞∑
i=1

x2
i <∞}, (1.7)

with the 2-norm as metric. Theorem 3 only proves convergence of the scaled component sizes
of a HCM in the product topology. In the CM, the conditions for convergence in the product
topology and convergence in the `2↓-topology are the same. In the HCM however, the conditions
for convergence in the product topology turn out to be different than the conditions for convergence
in the `2↓-topology:

Theorem 4. Suppose G is a hierarchical configuration model satisfying Conditions 1 and 2. Then
the convergence of Theorem 3 also holds with respect to the `2↓-topology if and only if G satisfies

E[S2
n] = o(n1/3).

Remark 2. This theorem shows that there exist graphs where the critical component sizes converge
in the product topology, but not in the `2↓-topology. As mentioned before, this does not happen in
other random graph models such as Erdős-Rényi random graph, the inhomogeneous random graph
and the CM [1, 5, 7]. Furthermore, we can find the exact condition under which the component
sizes only converge in the product topology. This theorem also shows that the conditions for
convergence in the product topology and the `2↓-topology are equivalent in the CM: the CM is a
special case of the HCM with size one communities. Therefore, E[Sn] = 1 for the CM, and the
component sizes always converge in the `2↓-topology if they converge in the product topology. It
is surprising that the condition on the `2↓ convergence only depends on the community sizes, but
not on the joint distribution of the community sizes and the inter-community degrees.

Remark 3. The results that we show in this paper can also be applied to a CM or a HCM with
vertex attributes. In this setting, every vertex of a CM has a positive, real-valued vertex attribute
S, where S satisfies Conditions 1 and 2. These vertex attributes may for example denote the
capacity or the weight of a vertex. If we are interested in the sum of the vertex attributes in each
connected component, then these sums scale as in Theorem 3. In an even more general setting,
the random graph has a community structure, and every vertex within the communities again
has a vertex attribute. Then we are back in the HCM setting, only now the community size S
does not denote the number of vertices in a community, but the sum over the vertex attributes
in a certain community. Therefore, also in a random graph with community structure and vertex
attributes, the critical sum over vertex attributes satisfies Theorem 3 under appropriate conditions
as in Condition 1.

1.3 Results on critical percolation on the HCM

We now consider bond percolation on the hierarchical configuration model, where every edge is
removed independently with probability 1− π. In the CM, the random graph that remains after
percolation can be described in terms of a CM with a different degree sequence [9,14]. Furthermore,
if the CM is supercritical, it is possible to choose π such that the resulting graph is distributed as
a critical CM. Similarly, after percolating a HCM, we again obtain a HCM, but with a different
community distribution since the communities are percolated [13]. By adjusting the parameter π
we can make sure that the HCM is critical after percolation. Thus, given any supercritical HCM,
it is possible to create a critical HCM, by setting π correctly.
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In the hierarchical configuration model, it is convenient to percolate first only the edges inside
communities. This percolation results in a HCM with percolated communities. These percolated
communities may be disconnected. However, if we define the connected components of the perco-
lated communities as new communities, we have a new HCM. Let S(π)

n and D(π)
n denote the size

and degree of communities after percolation only inside the communities with probability π, and
S(π) and D(π) their infinite size limits. After this, we percolate only the inter-community edges.
This percolation is similar to percolation on the CM, since the inter-community edges are paired
as in the CM.

We assume the following:

Condition 5 (Critical percolation window).

(i) Sn and Dn satisfy Conditions 1 and 2(i) and (ii), and

ν(n)

D(πn) :=
E[D(πn)

n (D(πn)
n − 1)]

E[D(πn)
n ]

→ E[D(π)(D(π) − 1)]

E[D(π)]
> 1. (1.8)

(ii) For some λ ∈ R,

πn = πn(λ) :=
1

ν(n)

D(πn(λ))

(
1 +

λ

n1/3

)
. (1.9)

Here π is the solution to π = 1/νD(π) .

Remark 4. It can be shown that ν(n)

D(π) is increasing in π. Thus, (1.9) has a unique solution for
every λ ∈ R when n is large enough.

Equation (1.8) makes sure that after percolation of the intra-community edges, the new HCM
is supercritical, otherwise there is no hope of making the graph critical by removing more edges.
After percolating inside communities, ν(n)

Dπ is the value of ν of the new macroscopic CM.

Let D̃(π) denote the exploded version of D(π), that is, every half-edge of a percolated community
is kept with probability

√
π, and with probability 1−√π, it explodes, it creates a new community

of the same shape with only one half-edge attached to it. Then, by [7, Thm. 3], the component
sizes of a percolated CM have similar scaling limits as the original configuration model, but
with D replaced by its exploded version. For the HCM, a similar statement holds. Let γ̃λ

denote the ordered excursions of the reflected Brownian motion Bλη,µ, with µ = E[D̃(π)] and

η = E[(D̃(π))3]E[D̃(π)]− E[(D̃(π))2]2.

Theorem 6. Under Condition 5 in the percolated hierarchical configuration model,

N−2/3(v(C(j)))j≥1 → E[S̃(π)]−2/3E[D̃(π)S̃(π)]

E[D̃(π)]

√
πγ̃λ, (1.10)

in the product topology.

Remark 5. By [7], a critical CM has

πn(λ) =
1

ν(n)
(1 + λ/n1/3) = πn(0)(1 + λ/n1/3). (1.11)

Therefore, the critical window (1.9) in the HCM is similar to the critical window in the CM,
with the difference that in the HCM, we first perform an extra step of percolation inside the
communities. For this reason, the critical window of the HCM (1.9) is in an implicit form, as it
depends on both the percolation inside communities, captured in ν(n)

D(πn) , and it depends on the
inter-community percolation. In Section 3.2, we show that the critical window in the HCM can
be written as

πn(λ) = πn(0)

(
1 +

c∗λ

n1/3

)
, (1.12)
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Figure 3: The value of πout corresponding to a given πin for star-shaped communities with five
end points (as in Figure 5), with n = 105. The intersection with the line y = x gives the critical
value πn(λ).

for some constant c∗ ≤ 1 when E[D2
nSn] → E[D2S] < ∞. In this case, the critical window for

the HCM is very similar to the critical window in the CM. The constant c∗ captures how much
smaller the critical window becomes when adding a community structure. The more vulnerable
the communities are to percolation, the smaller the constant c∗.

Remark 6. When percolating inside the communities with parameter πin results in a supercritical
graph, it is always possible to find πout = 1/νD(πin)(1+λ/n1/3) such that the resulting graph is in the
critical window with parameter λ if we then percolate the inter-community edges with probability
πout(λ). The critical value of the HCM is then defined as the value such that πin(λ) = πout(λ).
Figure 3 illustrates this for several values of λ for star-shaped communities.

Remark 7. Theorem 6 shows the convergence of the percolated component sizes in the product
topology. As in Theorem 4, by assuming that E[S2

n] = o(n1/3), we can also show convergence
in the `2↓-topology. However, in the case of percolation, E[S2

n] = o(n1/3) is not a necessary
condition for convergence in the `2↓-topology. After percolating first only edges inside communities,
we apply Theorem 3 or 4 to show the convergence of the percolated clusters. In the example
of line communities, communities that have the shape of a line, we can make the lines large
enough such that E[S2

n] > εn1/3. However, if we then percolate inside these line communities,
E[(S(π)

n )2] = o(n1/3). Thus, after percolating inside the communities we can use Theorem 4 to
show that the percolated component sizes converge in the `2↓-topology, even though E[S2

n] ≥ εn1/3.

1.4 Discussion

What makes communities “small”? Communities form a mesoscopic structure of a graph.
If the communities become very large, then the critical component sizes will be determined by the
sizes of the largest communities. In this paper, we find the conditions under which the influence of
the mesoscopic structure on the critical component sizes is small when the inter-community degrees
have a finite third moment. In this situation, the mesoscopic structures of the configuration model
are small enough for the model to be in the same universality class as the configuration model.
Theorems 3 and 4 show that there are different scales on which communities can be “small”.
Theorem 3 shows that the communities are small on the mesoscopic scale when Condition 1 holds.
In particular, the maximum size of a “small” community is n2/3/ log(n). This is much smaller than
the total number of vertices in the graph, but it still goes to infinity when n → ∞, which shows
the mesoscopic nature of the communities. Under these conditions, the order of the components
is determined by the order of the components in the underlying CM. Since the convergence of
Theorem 3 holds in the product topology, this only holds for the first k components, for k fixed.
Theorem 4 shows that an additional condition is necessary for the communities to be small on a
macroscopic scale. If this condition does not hold, the first k components are still determined by
the macroscopic CM for any fixed k, but some large components that are small in the macroscopic
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sense will be discovered eventually.

Similarity to the configuration model. The scaling limit of Theorem 3 is similar to the
scaling limit of the configuration model; it only differs by a constant. In fact, the CM is a special
case of the HCM: the case where all communities have size one. One could argue that therefore the
HCM is in the same universality class as the CM. However, there are still some differences. Note
that the variable D in the HCM counts the number of edges going out of the communities. Then,
if D has finite third moment, the scaling limit of a HCM is similar to the scaling limit of a CM with
finite third moment of the degrees. However, it is possible to construct a HCM with finite third
moment of D, but infinite third moment of the degree distribution [13]. One example of this is a
hierarchical configuration model where all communities are households [2]: complete graphs, where
all vertices of the complete graphs have inter-community degree one. In this household model,
every community of inter-community degree k, contains also k vertices of degree k. Therefore, the
inter-community degree distribution may have finite third moment, while the degree distribution
has an infinite third moment. In the CM, the scaling limit under an infinite third moment is very
different from the one with finite third moment [8]. However, using this household model, it is
possible to construct a random graph with an infinite third moment of the degree distribution, but a
similar scaling limit as the CM under the finite third moment assumption. Similarly, it is possible
to create a community structure such that the inter-community degrees have an infinite third
moment, but the degree distribution has a finite third moment. Therefore, adding a community
structure to a graph while keeping the degree distribution fixed may change the scaling limits
significantly.

Surplus edges. The number of surplus edges of a connected graph G is defined as SP(G) :=
(# edges of G) − |G| + 1 and indicates how far G deviates from being a tree. In the CM, the
rescaled component sizes and the number surplus edges in the components converge jointly. Note
that a surplus edge in the macroscopic CM stays a surplus edge of the HCM, since all communities
are connected. In the intuitive picture of densely connected communities, the communities have
many surplus edges. In the HCM, we give each vertex in the macroscopic CM a weight: the size
of the corresponding community. Then, in Theorem 3 and 4, we are interested in the weighted
size of the components. Counting surplus edges is very similar, now we also give each vertex in
the macroscopic CM a weight: the number of surplus edges in the corresponding community. We
are again interested in the weighted component sizes, which counts the total number of surplus
edges inside communities. The surplus edges between different communities are the surplus edges
of the macroscopic CM. The number of such edges rescaled by N2/3 goes to zero by [7]. Therefore,
if the surplus edges satisfy the same conditions as the community sizes in Condition 2(ii), they
scale similarly to the component sizes. Thus, if SPn denotes the number of surplus edges inside
a uniformly chosen community, and E[SPn] → E[SP] < ∞, E[SPn · Dn] → E[SP · D] < ∞ and

SPmax � n2/3

log(n) , then

N−2/3(v(C(j)),SP(C(j)))j≥1
d−→ E[S]−2/3γλ

(
E[DS]

E[S]
,
E[SP ·D]

E[S]

)
, (1.13)

in the product topology, where SP(C ) denotes the number of surplus edges in component C .
Unsurprisingly, this scaling of the surplus edges is very different from the scaling of the surplus

edges in the CM, which is locally tree-like, even though the scaling of the component sizes is very
similar to the one in the CM.

Let Nλ = (Nλ(s))s≥0 denote a counting process of marks with intensity Wλ(s)/E[D] con-
ditional on (Wλ(u))u≤s, with Wλ(s) as in (1.4). Furthermore, let N(γ) denote the number of
marks in the interval γ. Let SP(H)(C ) denote the number of surplus edges of component C that
are inter-community edges. These the surplus edges are the surplus edges of the macroscopic CM.
By [7], these surplus edges converge jointly with the component sizes to N(γλ). Therefore, in the
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HCM,

(N−2/3v(C(j)),SP
(H)(C(j)))j≥1

d−→
(
E[S]−2/3γλ

E[DS]

E[S]
, N(γλ)

)
. (1.14)

Infinite third moment. We investigate the scaled component sizes of a random graph with
communities, where the inter-community degrees have a finite third moment. A natural question
therefore is what happens if we drop the finite third moment assumption. The scaled component
sizes of random graphs with infinite third moment, but finite second moment have been investigated
for several models. If the degrees follow a power-law with exponent τ ∈ (3, 4), then the component
sizes of an inhomogeneous random graph as well as a CM scale as n(τ−2)/(τ−1) [4,8]. In the HCM
this may also be the correct scaling, but clearly then we need to replace Condition 1(iv) by
smax = o(n(τ−2)/(τ−1)), since otherwise the largest community will dominate the component sizes.
This indicates that the heavier the power-law tail, the smaller the maximal community size can
be for the HCM to be in the same universality class as the CM. What exact assumptions on the
community size distribution are needed to obtain the same scaling limit as in the CM remains
open for further research.

Optimality of conditions. Condition 2 is necessary for the macroscopic CM to have component
sizes of size O(n2/3). Clearly it is also necessary that the maximum community size is o(n2/3),
since otherwise the largest community could dominate the component sizes. For example, it
would be possible to create communities of size larger than n2/3 that have no half-edges. Then,
these components are the smallest components of the macroscopic CM, but may be the largest
components in the HCM. Condition 1(iv) has an extra factor 1/ log(n), which we need to prove
that the component sizes are not dominated by the community sizes. Probably this condition is
not optimal, we believe the optimal condition to be smax = o(n2/3). Furthermore, Conditions 1(ii)
and (iii) are necessary for taking the limit in (1.6).

Outline. The remainder of this paper is organized as follows. In Section 2 we prove Theorem 3.
This proof relies heavily on the fact that the macroscopic CM follows a similar scaling limit [7].
Then we prove Theorem 4 in Section 2.3. In Section 3, we study percolation on the HCM. First we
prove Theorem 6, and after that we show in Section 3.2 that the critical window of a HCM is similar
to the critical window of the CM. We conclude Section 3 with some examples of communities.

2 Proof of the scaling of the critical HCM

In this section, we prove Theorem 3 and 4. We start by describing an exploration process that finds
the component sizes in Section 2.1. We use this exploration process to show that the components
that are found before time Tn2/3 for some large T converge to the right scaling limit. After that,
we prove in Section 2.2 that the probability that a large component is found after that time is
small, which completes the proof of Theorem 3. Then we prove Theorem 4 in Section 2.3.

2.1 Exploration process.

To find the component sizes, we use the same depth-first exploration process for the CM as [7,
Algorithm 1]. However, instead of exploring vertices, we now explore communities. This means
that we only explore the macroscopic CM. In each step of the exploration process, we discover an
entire community, and we explore further using only the inter-community connections. Therefore,
the only difference between our exploration process and the standard exploration process for the
CM, is that we count the number of vertices in each community that we discover. At each step
k, an inter-community half-edge can be in the set of active half-edges Ak, in the set of sleeping
half-edges Sk, or none of these two sets. Furthermore, every vertex of the HCM is alive or dead.
When a vertex is dead, it is in the set of dead vertices Dk.
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Algorithm 1. For k = 0, all inter-community half-edges are in S0, and both D0 and A0 are
empty. While Ak 6= ∅ or Sk 6= ∅ we set k = k + 1 and perform the following steps:

(i) If Ak 6= ∅, then take the smallest inter-community half-edge a from Ak.

(ii) Take the half-edge b that is paired to a. By construction of the algorithm, the community
H to which b is attached, is not discovered yet. Let bH1, . . . , bHr be the other half-edges
attached to community H, and let VH denote the set of vertices of community H. Let
b, bH1, . . . , bHr be smaller than all other elements of Ak, and order them as bH1 > bH2 >
· · · > bHr > b. Let Ck ⊂ {bH1, . . . , bHr} denote all edges attached to community H that
attach to another half-edge adjacent to H. Furthermore, let Bk ⊂ Ak∪{bH1, . . . , bHr} denote
the collection of half-edges in Ak that have been paired to one of the bHi’s, including the
corresponding half-edges incident to community H. Then, set Ak+1 = Ak∪{bH1, . . . , bHr}\
(Bk ∪ Ck), Sk+1 = Sk \ {b, bH1, . . . , bHr} and Dk+1 = Dk ∪ VH .

(iii) If Ak = ∅, then we pick a half-edge a from Sk uniformly at random. Let H be the community
to which a is attached, and aH1, . . . , aHr the other half-edges attached to community H.
Again, order them as aH1 > aH2 · · · > aHr > a. Let VH denote the vertices of community
H. Declare H to be discovered. Let Ck again denote the collections of half-edges of H in
a community self-loop. Then set Ak+1 = {a, aH1, . . . , aHr}, Sk+1 = Sk \ {a, aH1, . . . , aHr}
and Dk+1 = Dk ∪ VH .

Algorithm 1 discovers one community at each step. When the edges going out of the community
create a cycle, double edge or self-loop, the corresponding half-edges are in Bk or Ck, and they
are thrown away. Therefore, at each step, an unexplored community is discovered. Since the
communities are found by selecting a half-edge at random, the communities are explored in a size-
biased manner with respect to the number of edges going out of the community. The dead vertices
correspond to all vertices inside communities that have already been discovered. We define the
additive functional

Zn(k) = |Dk| (2.1)

as the number of vertices that have been discovered up to time k. The exploration process finds
an undiscovered community of the HCM at each step, and therefore

Zn(k) =

k∑
i=1

s(i), (2.2)

where s(i) denotes the size of the ith discovered community.
Let d(j) be the inter-community degree of the jth explored community. Define Qn(k) as

Qn(0) = 0,

Qn(i) =

i∑
j=1

(d(j) − 2− 2c(j)), (2.3)

where c(j) denotes the number of cycles/self-loops or double edges that are found when discovering
the jth community. Let Ck denote the kth component that is found by the exploration process,
and define

τk = inf{i : Qn(i) = −2k}. (2.4)

Then, τk − τk−1 is the number of communities in component Ck [7], so that

v(H)(Ck) = τk − τk−1. (2.5)

Furthermore, the size of Ck equals

v(Ci) = Zn(τk)− Zn(τk−1). (2.6)
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By [7], the rescaled process Qn(t) converges to the reflected version of a Brownian motion with
negative parabolic drift. To derive the sizes of the component sizes in the hierarchical configuration
model, we now study the convergence of the process Zn(k):

Lemma 7. For any u ≥ 0,

sup
t≤u

∣∣∣∣n−2/3Zn(btn2/3c)− E[DS]

E[D]
t

∣∣∣∣ P−→ 0. (2.7)

Proof. We use [7, Proposition 29], choosing α = 2/3 and fn(i) = si. This yields

sup
t≤u

∣∣∣n−2/3

btn2/3c∑
i=1

s(i) −
E[DS]

E[D]
t
∣∣∣ = OP(n−1/3√usmax ∨ n−1/3u2dmax). (2.8)

Using that dmax = o(n1/3) and smax = o(n2/3) by Condition 1(iv) gives the result.

Lemma 8. For any u ≥ 0,(
n−1/3Qn(tn2/3), n−2/3Zn(tn2/3)

)
t≤u

d−→
(
Wλ(t),

E[DS]

E[S]
t

)
t≤u

(2.9)

in the J1 × J1 topology.

Proof. Since t 7→ E[DS]
E[S] t is deterministic,

(
n−1/3Qn(tn2/3)

) d−→
(
Bλ(t)

)
by [7, Thm. 8] and(

n−2/3Zn(tn2/3)
) P−→

(
E[DS]
E[S] t

)
in the J1 topology, an analogy of Slutsky’s theorem for processes

proves the lemma.

By [7], the excursion lengths of Q̄n converge to γλ, where

Q̄n(t) = n−1/3Qn(tn2/3). (2.10)

Since the excursions of Qn encode the number of communities in the components, and Zn encodes
the sum of the corresponding community sizes, Lemma 8 shows that the components that have
been discovered before time Tn2/3 satisfy (1.6).

2.2 Sizes of components that are discovered late and convergence in
product topology

By Lemma 8, the component sizes that have been discovered up to time Tn2/3 converge to a
constant times the excursion lengths of a reflected Brownian motion with parabolic drift. To
prove that the ordered components of the HCM converge, we need to show that the probability
of encountering a large component after time Tn2/3, is small. From [7, Lemma 14], we know that
for every η > 0

lim
T→∞

lim sup
n→∞

P
(
v(H)(C ≥Tmax) > ηn2/3

)
= 0, (2.11)

where C ≥Tmax is the largest component found after time Tn2/3. Therefore, we only need to show that
the probability that there exists a hierarchical component smaller than ηn2/3 such that its size is
larger than δn2/3 is small when η � δ. We prove that the probability that a given component C
satisfies this property is exponentially small in n. Therefore, the probability that such a component
exists is also small.

We first explore the HCM according to Algorithm 1 until the first time after Tn2/3 a component
has been explored. Then, we remove all components that have been found so far. We denote the
resulting graph by G≥T . The probability p≥Tk,s(n) that a community in G≥T has degree k and size
s can be bounded as

p≥Tk,s(n) ≤ nk,s
n− Tn2/3

= p(n)

k,s(1 + o(n−1/3)), (2.12)
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where nk,s denotes the number of communities of size s and inter-community degree k. There-
fore, the expected size of a community in G≥T , E[S≥T ] < ∞, and similarly E[D≥T ] < ∞ and
E[(DS)≥T ] < ∞. Now, we start exploring G≥T as in Algorithm 1. We want to show that with
high probability G≥T does not contain components larger than δn2/3. By [7], the CM with high
probability does not contain any components of size ηn2/3 that are discovered after time Tn2/3.
Therefore, with high probability G≥T does not contain components with more than ηn2/3 com-
munities.

We now explore G≥T using Algorithm 1 for ηn2/3 steps, and investigate the sum of the com-
munity sizes that have been explored until time ηn2/3. Lemma 9 shows that the probability of
finding more than δn2/3 vertices after exploring the first ηn2/3 communities is very small. This is
a key step in proving Theorem 3.

Lemma 9. For any η, δ > 0 satisfying δ > 2ηE[DS]/E[D],

P

(
ηn2/3∑
i=1

s(i) > δn2/3

)
≤ e−ζn

2/3/smax , (2.13)

for some ζ > 0.

Proof. Let Ti be independent exponential random variables with rate di/`n. Furthermore, let
M(k) = #{j : Tj ≤ k}. Then,

E[M(k)] =
∑
i∈[n]

(
1− e−kdi/`n

)
≤ k, (2.14)

using that 1− e−x ≤ x. Similarly, using that 1− e−x ≥ x− x2/2,

E[M(k)] ≥
∑
i∈[n]

(
kdi
`n
− k2d2

i

`2n

)
= k − k2E[D2

n]

nE[Dn]
. (2.15)

Furthermore, for n large enough, if k = o(n),

P(M(2k) < k) ≤ P
(
M(2k) <

3

2
k

(
1− kE[Dn]

nE[D2
n]

))
≤ P

(
M(2k) <

3

4
E[M(2k)]

)
= P(e−tM(2k) > e−

3
4 tE[M(2k)])

≤ e
3
4 tE[M(2k)]E[e−tM(2k)], (2.16)

for any t > 0, where the last inequality uses the Markov inequality. Let qi = 1 − e−
2kdi
`n . Since

M(2k) is a sum of independent indicator variables,

E[e−tM(2k)] =
∏
i∈[n]

(
1 + qi(e

−t − 1)
)
≤
∏
i∈[n]

eqi(e
−t−1) = eE[M(2k)](e−t−1), (2.17)

where the inequality uses that 1 + x ≤ ex, with x = qi(e
−t − 1). Plugging this into (2.16) and

setting t = − log( 3
4 ) yields

P(M(2k) < k) ≤ eE[M(2k)]( 3
4 t+e−t−1) = eE[M(2k)](− 3

4 log( 3
4 )− 1

4 ). (2.18)

Then, using that −(1− x) log(1− x) ≤ x− x2

2 ,

P(M(2k) < k) ≤ e−
E[M(2k)]

32 ≤ e−Ck(1− kn ), (2.19)

for some C > 0, where we used (2.15).
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Consider Yk =
∑M(k)
i=1 s(i) − k E[DnSn]

E[Dn] . Let Fk denote the sigma-field generated by the infor-

mation revealed up to time k. Then,

E[Yk | Fk−1] = Yk−1 +
∑
i∈[n]

siP(Ti ∈ [k − 1, k])− E[DnSn]

E[Dn]

= Yk−1 +
∑
i∈[n]

si(1− e−di/`n)− E[DnSn]

E[Dn]
≤ Yk−1. (2.20)

Therefore, Yk is a supermartingale. Furthermore,

Var(Yk | Fk−1) = Var(
∑
i∈[n]

si1{Ti∈[k−1,k]}) =
∑
i∈[n]

s2
i (1− e−di/`n)e−di/`n

≤
∑
i∈[n]

s2
i di/`n ≤ smax

E[DnSn]

E[Dn]
. (2.21)

Thus, we can apply [6, Thm. 7.3], which states that for a supermartingale X with Var(Xi |
Fi−1) ≤ σ2

i and Xi − E[Xi | Fi−1] ≤ K for all i,

P(Xn ≥ X0 + t) ≤ exp

(
− t2∑n

i=1 σ
2
i +Kt/3

)
. (2.22)

Applying this to Yb2ηn2/3c with Y0 = 0, σ2
i = smax and K = smax, we obtain

P(Yb2ηn2/3c > t) ≤ exp

(
− t2

2ηn2/3smax + smaxt/3

)
. (2.23)

Because by assumption ξ = δ − 2ηE[DS]/E[D] > 0,

P

(
M(2n2/3η)∑

i=1

s(i) > δn2/3

)
= P

(
Yb2n2/3ηc > δn2/3 − 2ηn2/3E[DnSn]

E[Dn]

)
= P

(
Yb2n2/3ηc > ξn2/3

)
≤ exp

(
− ξ2n4/3

2ηn2/3smax + smaxξn2/3/3

)
≤ e−ζn

2/3/smax , (2.24)

for some ζ > 0. Thus,

P

(
ηn2/3∑
i=1

s(i) > δn2/3

)
≤ P

(
M(2ηn2/3)∑

i=1

s(i) > δn2/3

)
+ P(M(2ηn2/3) < ηn2/3)

≤ e−ζn
2/3/smax + e−Cn

2/3(1−n−1/3), (2.25)

which proves the lemma.

Using the previous lemma, we can now show that the probability that a component of size
δn2/3 is found after time Tn2/3 is small for T large enough:

Lemma 10. Let C ≥Tmax denote the largest component of a hierarchical configuration model satisfying
Conditions 1 and 2, of which the first vertex is explored after time Tn2/3. Then, for all δ > 0,

lim
T→∞

lim sup
n→∞

P(v(C ≥Tmax) ≥ δn2/3) = 0. (2.26)
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Proof. We condition on the size of the components of the underlying configuration model. Choose
η > 0 satisfying δ > 2ηE[DS]/E[D]. Then,

P(v(C ≥Tmax) > δn2/3)

= P(v(C ≥Tmax) > δn2/3 | v(H)(C ≥Tmax) ≤ ηn2/3)P(v(H)(C ≥Tmax) ≤ ηn2/3)

+ P(v(C ≥Tmax) > δn2/3 | v(H)(C ≥Tmax) > ηn2/3)P(v(H)(C ≥Tmax) > ηn2/3)

≤ P(v(C ≥Tmax) > δn2/3 | v(H)(C ≥Tmax) ≤ ηn2/3) + P(v(H)(C ≥Tmax) > ηn2/3). (2.27)

By [7], for any η > 0,
lim
T→∞

lim sup
n→∞

P(v(H)(C ≥Tmax) > ηn2/3) = 0, (2.28)

so that the second term in (2.27) tends to zero.
Now we study the first term in (2.27). Given any component C , we start exploring at a

vertex of that component, until time ηn2/3. In Lemma 9, the probability that more than δn2/3

vertices have been found at time ηn2/3 is quite small. Furthermore, we know that C has been
fully explored, since v(H)(C ≥Tmax) < ηn2/3. Then, by the union bound and by Lemma 9,

P (v(C ≥Tmax) > δn2/3 | v(H)(C ≥Tmax) ≤ ηn2/3)

≤
n∑
j=1

P(v(Cj) > δn2/3 | v(H)(C ≥Tmax) ≤ ηn2/3)

=

∑n
j=1 P(v(Cj) > δn2/3, v(H)(C ≥Tmax) ≤ ηn2/3)

P(v(H)(C ≥Tmax) ≤ ηn2/3)

≤
∑n
j=1 P(v(Cj) > δn2/3, v(H)(C ≥Tj ) ≤ ηn2/3)

P(v(H)(C ≥Tmax) ≤ ηn2/3)

≤
∑n
j=1 P(v(Cj) > δn2/3 | v(H)(C ≥Tj ) ≤ ηn2/3)

P(v(H)(C ≥Tmax) ≤ ηn2/3)

≤ ne−ζn
2/3/smax

P(v(H)(C ≥Tmax) ≤ ηn2/3)
, (2.29)

for some ζ > 0. Since smax � n2/3/ log(n), using (2.28) and taking limits proves the lemma.

Proof of Theorem 3. By [7], the excursions of the process Q̄n(t) defined in (2.3) converge to γλ,
the excursions of a reflected Brownian motion with parabolic drift. Then, by Lemma 8 and (2.6),
the component sizes of the HCM that have been discovered up to time Tn2/3 for some T > 0
converge to E[DS]/E[D]γλ. Combining this with Lemma 10 then shows that

n−2/3(v(C(j)))j≥1 →
E[DS]

E[S]
γλ, (2.30)

in the product topology. Then, using that N/n→ E[S] completes the proof of Theorem 3.

2.3 Convergence in `2↓ topology: Proof of Theorem 4.

To prove Theorem 4, we show that the probability that a uniformly chosen vertex is in a large
component is small, by using the Markov inequality. Thus, we need to bound the expected com-
ponent size of a uniformly chosen vertex in a HCM. To do this, we bound the expected component
size of a uniformly chosen community of size s and inter-community degree k in Lemma 12. To
prove Lemma 12, we first count the number of paths in the macroscopic configuration model in
Lemma 11: the number of paths from community to community, ignoring the internal community
structures. Let P (H0)

L be the set of all macroscopic paths of length L in a HCM, starting from
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community H0. Furthermore, define PW (H0)

L as the number of macroscopic paths of length L,
starting in H0, weighted by the size of the last community, i.e.,

PW (H0)

L =
∑
P

(H0)

L

slast community. (2.31)

Lemma 11. For any L < 1
4n and for some K > 0,

E[PW (H0)

L ] ≤ KE[DnSn]

E[Dn]
dH0

νL−1
n . (2.32)

Proof. This proof is very similar to the proof of [15, Lemma 5.1]. If L = 1, then the equation

states that E[PW (H0)

1 ] ≤ K E[DnSn]
E[Dn] dH0 , which is true, since there are at most dH0 paths from H0,

and the expected weight of the community at the end of the path is E[DnSn]/E[Dn].
For L ≥ 2, the path consists of communities H0, H1, . . . ,HL. This path consists of two half-

edges at communities H1, . . . HL−1, and one half-edge at the start and at the end of the path. The
probability that these half-edges are paired is (`n− 1)−1(`n− 3)−1 . . . (`n− 2L+ 1)−1. Therefore,

E[PW (H0)

L ] =
dH0

∑∗

i1,...,iL

∏L−1
j=1 dij (dij − 1)diLsiL∏L

j=1(`n − 2j + 1)
, (2.33)

where
∑∗

denotes the sum over distinct indices, since all communities in the path must be distinct.
If we only sum over iL 6= {H0, i1, . . . iL−1}, we obtain∑

iL 6={H0,i1,...iL−1}

diLsiL =
∑
i∈[n]

disi − dH0
sH0
−
L−1∑
j=1

dijsij ≤ nE[DnSn]− 2(L− 1)− 1

≤ `n
E[DnSn]

E[Dn]
− 2L− 1 ≤ E[DnSn]

E[Dn]
(`n − 2L− 1) , (2.34)

where we used that dij ≥ 2 for j = 1, . . . L− 1 and that si ≥ 1 for all i. Therefore,

E[PW (H0)

L ] ≤ E[DnSn]

E[Dn]

dH0

∑∗

i1,...,iL−1

∏L−1
j=1 dij (dij − 1)∏L−1

j=1 (`n − 2j + 1)

≤ E[DnSn]

E[Dn]
(nE[Dn])−L+1

dH0

∑∗

i1,...,iL−1

∏L−1
j=1 dij (dij − 1)∏L−1

j=1 (1− 2j/`n)
. (2.35)

By arguments of [15, Lemma 5.1]∑∗

i1,...,iL−1

L−1∏
j=1

dij (dij − 1) ≤ (nE[Dn(Dn − 1)])
L−1

L−2∏
j=0

(
1− j

r

)
, (2.36)

where r denotes the number of communities with inter-community degree larger than or equal to
2. Since r ≤ 1

2`n,

E[PW (H0)

L ] ≤ E[DnSn]

E[Dn]

(
E[Dn(Dn − 1)]

E[Dn]

)L−1 dH0

∏L−2
j=0

(
1− j

r

)∏L−1
j=1 (1− 2j

`n
)

≤ E[DnSn]

E[Dn]
νL−1
n dH0

∏L−2
j=0

(
1− 2j

`n

)
∏L−1
j=1 (1− 2j

`n
)

≤ E[DnSn]

E[Dn]
νL−1
n dH0

(
1− 2L− 2

nE[Dn]

)−1

≤ E[DnSn]

E[Dn]
νL−1
n dH0

(
1− 1

2E[Dn]

)−1

, (2.37)
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where we have used that L < 1
4n. This proves the claim, since E[Dn] > 1.

Using Lemma 11, we can bound the expected component size in a HCM. We are interested
in the expected component size of a randomly chosen community of size s and inter-community
degree k, v(C(k,s)).

Lemma 12. For some C > 0,

E[v(C(k,s))] ≤ s+ C
k

1− νn
+ o(1). (2.38)

Proof. We split the expectation into two different parts,

E[v(C(k,s))] = E[v(C(k,s))1{v(H)(Cmax)≤ 1
4n}

] + E[v(C(k,s))1{v(H)(Cmax)> 1
4n}

]. (2.39)

We bound the first part similar to the argument in [16, Lemma 4.6]. For every community H ′ in the
same component as community H0, there is at least one path between H0 and H ′. Furthermore,
H ′ adds sH′ vertices to the component. Therefore,

v(C (H0)) ≤
∑
L

PW (H0)

L (2.40)

This yields

E[v(C(k,s))] ≤
∑
L

E[PW
H(k,s)

L ], (2.41)

where H(k,s) is a community of size s and inter-community degree k. The sum of the first term

in (2.39) only goes up to L = 1
4n, since the maximal path size is smaller than the maximal

component size. Thus, by Lemma 11,

E[v(C(k,s))1{v(H)(Cmax)≤ 1
4n}

] ≤ s+

1
4n∑
L=1

E[PW
H(k,s)

L ] ≤ s+
E[DnSn]

E[Dn]
Kk

∞∑
L=1

νL−1
n

= s+
E[DnSn]

E[Dn]

kK

1− νn
. (2.42)

For the second term, we use that the maximal component size is bounded from above by the
total number of vertices N = E[Sn]n. Then we need to bound the probability that the maximal
hierarchical component is at least 1

4n. This is the probability that the size of the largest component
in a regular configuration model is larger than 1

4n. We can use the same arguments as in [7, Lemma
14] to show that

P
(
v(H)(Cmax) >

1

4
n

)
≤ 16E[Dn]

n(1− νn)
+ o(n−1). (2.43)

This gives

E[v(C(k,s))1{v(H)(Cmax)> 1
4n}

] ≤ 16NE[Dn]

n(1− νn)
+ o(1) ≤ 16kE[Sn]E[Dn]

(1− νn)
+ o(1), (2.44)

for k > 0. Combining (2.43) and(2.44) then yields

E[v(C(k,s))] ≤ s+ C
k

1− νn
+ o(1), (2.45)

for some C > 0.
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Proof of Theorem 4. We first show that E[S2
n] = o(n1/3) is a necessary condition for convergence

in the `2↓-topology. Thus, we assume that E[Sn] ≥ εn1/3 for some ε > 0. Let iT denote the index

of the first component that is explored after time Tn2/3. Then, for any δ > 0,

P(
∑
i≥iT

v(C ≥T(i) )2 ≥ δn4/3) (2.46)

needs to be small for convergence in the `2↓ topology. Because x2 is a convex function,∑
i≥iT

v(C(i))
2 ≥

∑
j≥Tn2/3

s2
(j) =

∑
s

n≥Ts s2 =
∑
s

nss
2 −

∑
s

n≤Ts s2, (2.47)

where n≥Ts and n≤Ts s2 denote the number of communities of size s, discovered after or before time
Tn2/3 respectively.

We can use a martingale argument similar to [7, Proposition 29], to show that

sup
u≤t

∣∣∣∣∣∣n−2/3

bun2/3c∑
i=1

s2
(i) −

∑
k,s ks

2nk,s

`n
u

∣∣∣∣∣∣ = oP(n2/3). (2.48)

Therefore ∑
s

n≤Ts s2 = Tn2/3

∑
k,s ks

2nk,s

`n
+ o(n4/3) = T

o(n)

`n

∑
s

s2ns + oP(n4/3), (2.49)

where we have used that dmax = o(n1/3). Therefore, we obtain∑
s

s2n≥Ts =
∑
s

s2ns (1− To(1)) + oP(n4/3) ≥ εn4/3(1− To(1) + oP(1)). (2.50)

Taking the limit first for n→∞, and then for T →∞ shows that

lim
T→∞

lim
n→∞

P

∑
i≥iT

v(C(i))
2 > δn4/3

 6= 0 (2.51)

for δ < ε, hence the component sizes do not converge in the `2↓-topology.

Now we show that E[S2
n] = o(n1/3) is sufficient for convergence in the `2↓-topology. Let G≥T

denote the graph that is obtained by removing all components that have been explored before time
Tn2/3. To show that E[S2

n] = o(n1/3) is sufficient for convergence in the `2↓ topology, we calculate

P

∑
i≥iT

v(C(i))
2 > δn4/3

 ≤ 1

δn4/3
E[
∑
i≥iT

v(C(i))
2] =

1

δn1/3
E[v(C ≥T (Vn))]

=
1

δn1/3
E[S≥THnv(C ≥T (Hn))], (2.52)

where Vn denotes a randomly chosen vertex ofG≥T , andHn denotes a randomly chosen community.
Furthermore,

E[S≥THnv(C ≥T (Hn))] =
∑
k,s

p≥Tk,s(n)sE[v(C ≥Tk,s )], (2.53)

where v(C ≥Tk,s ) denotes the size of a component where the first explored community has size s and
inter-community degree k. By [7], the criticality parameter of G≥T , ν̄n, satisfies

ν̄n ≤ νn − CTn−1/3 + oP(n−1/3). (2.54)
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Then, combining Lemma 12 and (2.53) gives

E[SHnv(C ≥T (Hn))] = E[(S≥Tn )2] +KE[(DnSn)≥T ]
n1/3

CT − λ. (2.55)

Furthermore, E[(S≥Tn )2] ≤ E[S2
n]/(n − Tn2/3) = E[S2

n](1 + O(n−1/3)). By assumption, E[S2
n] =

o(n1/3). Combining this with (2.52) and (2.55) yields

P

∑
i≥iT

v(C(i))
2 > δn4/3

 ≤ oP(1) +
K

δ(CT − λ)
, (2.56)

so that

lim
T→∞

lim
n→∞

P

∑
i≥iT

v(C(i))
2 > δn4/3

 = 0. (2.57)

Thus, if E[S2
n] = o(n1/3), then Theorem 3 also holds in the `2↓ topology.

3 Percolation on the HCM

In this section we prove Theorem 6, which identifies the scaling limit for the cluster sizes of a HCM
under critical percolation. As described in Section 1.3, it is convenient to percolate first only the
edges inside communities. This percolation results in a HCM with percolated communities. These
percolated communities may be disconnected. However, if we define the connected components
of the percolated communities as new communities, we retrieve an updated HCM. After this, we
percolate the inter-community connections. These edges are distributed as in the CM. Therefore,
for this second step of percolation, we follow a similar approach as in [14]. Combining these two
steps of percolation results in the following algorithm that constructs a percolated HCM:

Algorithm 2. (S1) For each community H, remove every edge in H independently with proba-
bility 1 − π. Let n̄ denote the number of connected components of communities after per-
colation inside the communities. Then, define the connected components of the percolated
communities as new communities (H(π)

i )i∈[n̄].

(S2) Let H(π)
e be the percolated community attached to inter-community half-edge e. Then, every

inter-community half-edge e explodes with probability 1 − √π, it detaches from H(π)
e , and

is associated to a new community H ′(π)
e of the same shape, but with e as its only inter-

community half-edge. Let nH+ denote the number of new communities of shape H that are
created in this way, and ñ = n̄ +

∑
H nH+. Let (H̃(π)

i )i∈[ñ] be the new communities after
detaching the half-edges.

(S3) Construct a hierarchical configuration model with community sequence (H̃(π)

i )i∈[ñ].

(S4) For all community shapes H, delete the exploded communities with inter-community degree
one.

Figure 4 illustrates Algorithm 2. By [16], a similar algorithm creates a percolated CM. There-
fore, by adding the extra step of percolation inside communities, Algorithm 2 creates a percolated
HCM. In this bond percolation procedure, there are three sources of randomness: the percolated
communities H(π) are random, the explosion procedure is random, and then pairing the edges to
construct a HCM is random as well.

Remark 8. In percolation on the regular configuration model, [14] showed that instead of deleting
the exploded vertices n+, it is also possible to choose n+ vertices uniformly at random from all
vertices with degree one, and to delete them. This procedure also results in a multigraph with the
same distribution as a percolated configuration model. Similar to this, in our setting it is possible
to replace step (S4) of Algorithm 2 by
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(a) A set of communities (b) Step (S1): percolation inside
communities

(c) New communities H(π)

(d) Step (S2): exploding half-
edges (red) results in communi-
ties H̃(π)

(e) Step (S3): connect as in the
CM

(f) Step (S4): delete exploded
communities

Figure 4: Illustration of Algorithm 2. In this example n = 3, n̄ = 7, ñ = 9.

(S4’) For all community shapes H, choose nH+ communities uniformly at random from all com-
munities of shape H and inter-community degree one. Delete these communities.

Remark 9. In the CM, each percolated half-edge is replaced by a single half-edge attached to
a new vertex. In Algorithm 2, each percolated inter-community half-edge is attached to a new
community of the same shape as the original community, but with only one half-edge adjacent to
it (see Figure 4d). This difference is caused by the fact that in the HCM, communities of the same
inter-community degree do not have to be equal. Different communities with inter-community
degree k may have different sizes. Therefore, the effect on the component sizes of percolating
a half-edge of a community of inter-community degree k is not the same if the community sizes
are not the same. Percolating the half-edge adjacent to a larger community has more effect on
the component sizes than percolating the half-edges adjacent to a smaller community. For this
reason, we replace exploded half-edges by half-edges attached to a community of the same size as
the original community, instead of replacing it by a vertex of degree one.

3.1 The sizes of critical percolation clusters.

We now analyze Algorithm 2 to prove Theorem 6. Let S(πn)
n and D(πn)

n denote the size and degree
of communities after percolation only inside the communities with probability πn, and S(π) and
D(π) their infinite size limits [13]. Furthermore, let g(H, v, k, πn) denote the probability that
after percolating community H with parameter πn, the connected component containing vertex v
contains k half-edges. By [13, (41)],

P(D(π) = k) =

∑
H

∑
v∈VH P (H)d(b)

v g(H, v, k, π)/k∑
H

∑
v∈VH

∑
l P (H)d(b)

v g(H, v, l, π)/l
. (3.1)

We denote the number of communities in the original graph by n, the number of communities
after percolating only the intra-community edges by n̄, and the number of communities after
the explosion procedure by ñ. Note that after percolation inside the communities, the number of
vertices N remains the same. Furthermore, similarly to [7], let Pn̄πn denote the probability measure
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containing the shapes of the exploded communities after Algorithm 2, step (S2). Then Pπ denotes
the product measure of (Pn̄πn)n̄≥1. Since nH+ ∼ Bin(dH n̄H , 1−

√
πn), a.s. with respect to Pπ

nH+ = dH n̄H(1−√πn) + o (dH n̄H) . (3.2)

Therefore,
ñ

n̄
= 1 +

∑
H nH+

n̄
= 1 + E[D(π)](1−√π) + o(1), (3.3)

a.s. with respect to Pπ.
The following lemma proves that the HCM with community sequence (H̃(πn)

i )i∈[ñ] satisfies
Conditions 1 and 2, so that we can apply Theorem 3 to find its component sizes:

Lemma 13. Let G be a hierarchical configuration model satisfying Condition 5 with community se-
quence (Hi)i∈[n]. Then the hierarchical configuration model with community sequence (H̃(πn)

i )i∈[ñ],
constructed as described in Algorithm 2, satisfies Conditions 1 and 2.

Proof. By (3.1),

E[(D(πn)

n )3] =

∑
H

∑
v∈VH

∑
k Pn(H)d(b)

v g(H, v, k, πn)k2∑
H

∑
v∈VH

∑
l Pn(H)d(b)

v g(H, v, k, πn)/l
. (3.4)

Let H(πn)
v denote the connected component of the percolated community H containing vertex v.

Then,∑
v∈VH

∑
k

Pn(H)d(b)

v g(H, v, k, πn)k2 =
∑
v∈VH

Pn(H)d(b)

v E[(# outgoing edges of H(πn)

v )2]

≤
∑
v∈VH

Pn(H)d(b)

v d
2
H = Pn(H)d3

H . (3.5)

To show that E[(D(πn)
n )3] converges, we use the General Lebesgue Dominated Convergence The-

orem (see for example [20, Thm. 19]), which states that if |fn(x)| ≤ gn(x) for all x ∈ E,∑
x∈E gn(x) → ∑

x∈E g(x) < ∞, and fn converges pointwise to f , then also
∑
x∈E fn(x) →∑

x∈E fn(x). By condition 2, E[D3
n] → E[D3], so by the General Lebesgue Dominated Conver-

gence Theorem and (3.5), E[(D(πn)
n )3]→ E[(D(π))3]. Similarly,

E[D(πn)

n S(πn)

n ] =

∑
H

∑
v∈VH

∑
k Pn(H)d(b)

v g(H, v, k, πn)s
H

(π)
v∑

H

∑
v∈VH

∑
l Pn(H)d(b)

v g(H, v, k, πn)/l
. (3.6)

We can bound the summands in the numerator as∑
v∈VH

∑
k

Pn(H)d(b)

v g(H, v, k, πn)s
H

(π)
v
≤
∑
v∈VH

∑
k

Pn(H)d(b)

v g(H, v, k, πn)sH

= Pn(H)dHsH , (3.7)

so that again by the General Lebesgue Dominated Convergence Theorem and Condition 1 E[S(πn)
n D(πn)

n ]→
E[S(π)D(π)]. By a similar reasoning E[S(πn)

n ]→ E[S(π)]. Thus, we have proved that D(πn)
n and S(πn)

n

satisfy Conditions 1 and 2(i). Hence, after percolating inside the communities, the HCM still
satisfies these conditions.

We want to prove that D̃(πn)
n and S̃(πn)

n also satisfy Conditions 1 and 2(i), so that after the
explosion process the conditions are still satisfied. Since D(πn)

n satisfies Condition 2, [7, Lemma
24] shows that D̃(πn)

n also satisfies Condition 2.
Now we prove the convergence of the first moment of S̃(πn)

n . After explosion, the first n̄ entries
of (S̃(πn)

i )i∈[ñ] are the same as in (S(πn)

i )i∈[n̄], since the community sizes are not changed when
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percolating the inter-community edges. Furthermore, there are nH+ duplicated communities of
shape H. Thus, the limiting distribution (S̃(π), D̃(π)) can be written as

P
(
S̃(π) = s, D̃(π) = k

)
=

P (S(π) = s,D(π) = k)

1 + E[D(π)](1−√π)

+ 1{k=1}

∑
j j(1−

√
π)P (S(π) = s,D(π) = j)

1 + E[D(π)](1−√π)
. (3.8)

By (3.2) and (3.3)

1

ñ

∑
i∈[ñ]

s̃(πn)

i =
1

ñ

∑
i∈[n̄]

s(πn)

i +

ñ∑
i=n̄+1

s̃(πn)

i

 =
n̄

ñ
E[S(πn)

n ] +

∑
H sHnH+

ñ

=
E[S(πn)

n ] + (1−√πn)E[D(πn)
n S(πn)

n ]

1 + E[D(πn)
n ](1−√πn)

+ o(1), (3.9)

so that E[S̃(πn)
n ]→ E[S̃(π)]. Furthermore,

1

ñ

∑
i∈[ñ]

s̃(πn)

i d̃(πn)

i =
1

ñ

∑
i∈[n̄]

s(πn)

i d(πn)

i , (3.10)

and therefore the combined moment also converges, and Condition 1 is satisfied.
To prove Condition (iii), note that

ν
D̃

(πn)
n

=

∑
i∈[ñ] d̃

(πn)

i (d̃(πn)

i − 1)∑
i∈[ñ] d̃

(πn)

i

=
πn
∑
i∈[n̄] d

(πn)

i (d(πn)

i − 1) + o(n2/3)∑
i∈[n̄] d

(πn)

i

= πnνD(πn)
n

+ o(n−1/3) = 1 + λn−1/3 + o(n−1/3), (3.11)

where the second equality follows from [7, equation (7.2)].

Remark 10. In Lemma 13, we have assumed that the HCM satisfies Conditions 1 and 2 (i) and (ii)
before percolation. Then, we have shown that S(π)

n and D(π)
n also satisfy these conditions. However,

it is also possible to assume from the start that S(π)
n and D(π)

n satisfy these conditions. This
means for example that the inter-community degrees only need to have finite third moment after
percolating inside the communities, they may have an infinite third moment before percolating
inside the communities. We gave an example of such a community in Remark 7.

Proof of Theorem 6. After explosion, the HCM satisfies the assumptions of Theorem 3 by Lemma 13.
Then Theorem 3 gives the component sizes of the exploded HCM. To obtain the sizes of the com-
ponents of the percolated HCM, we need to know how many vertices are deleted in the last step
of Algorithm 2. We denote the number of deleted vertices from component Cj by vd(Cj). If a
community of size s is deleted, s vertices are deleted. Thus, this number can be written as

vd(C̃(j)) =

v(H)(C̃(j))∑
i=1

sHi1{Hi is deleted}. (3.12)

Let ñH,1 denote the number of communities of shape H and inter-community degree one. Using [7,
Proposition 29] with α = 2/3 and fn(i) as the indicator function that community i is of shape H
and has inter-community degree one, we can show that the number of communities of shape H
with inter-community degree one in a component C(j) satisfies

v(H)

H,1(C(j)) = v(H)(C(j))
ñH,1

ñE[D̃(πn)]
+ oPπ

(
n1/3 ñH,1∑

H ñH,1

)
. (3.13)
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Therefore, the number of vertices in communities of shape H with inter-community degree one in
a component C(j) satisfies

vH,1(C(j)) = v(H)(C(j))
sH ñH,1

ñE[D̃(πn)]
+ oPπ

(
n1/3 sH ñH,1∑

H ñH,1

)
. (3.14)

A fraction of nH+/ñH,1 communities of shape H with outside degree one is removed uniformly.
Therefore, for j fixed,

vd(C̃(j)) = v(H)(C̃(j))

∑
H sHnH+

ñE[D̃(πn)]
+ oPπ

(
n1/3

∑
H sH ñ+H∑
H ñH,1

)
+ oPπ

(∑
H

n+H

)

= v(H)(C̃(j))

∑
H sHnH+

ñE[D̃(πn)]
+ oPπ (n1/3) + oPπ (n2/3),

(3.15)

where we used (3.2) and the fact that ñH,1 ≥ nH+. Thus, by (3.15), (3.2), (3.10) and (1.6),

vd(C̃(j)) = v(H)(C̃(j))

∑
H sHn+H

ñE[D̃(πn)]
+ oPπ (n2/3)

=
(1−√πn)

∑
H dHsH n̄H

ñE[D̃(πn)]
v(H)(C̃(j)) + oPπ (n2/3)

= (1−√πn)

∑
k,s ksn̄k,s

ñE[D̃(πn)]
v(H)(C̃(j)) + oPπ (n2/3)

= (1−√πn)

∑
k,s ksñk,s

ñE[D̃(πn)]
v(H)(C̃(j)) + oPπ (n2/3)

= (1−√πn)
E[D̃(πn)S̃(πn)]

E[D̃(πn)]
v(H)(C̃(j)) + oPπ (n2/3)

= (1−√πn)v(C̃(j)) + oPπ (n2/3). (3.16)

Then, Theorem 3 gives

ñ−2/3(v(C(j)))j≥1
d−→ E[D̃(π)S̃(π)]

E[S̃(π)]

√
πγ̃λ. (3.17)

Noting that N =
∑ñ
i=1 s̃

(πn)

i leads to

N

n̄

P−→ E[S̃(π)], (3.18)

so that (1.10) follows.

3.2 The critical window.

Equation (1.9) gives an implicit equation for the critical window. We want to know whether it is
possible to write (1.9) in the form

πn(λ) = πn(0)

(
1 +

λc∗

n1/3

)
+ o(n−1/3), (3.19)

for some c∗ ∈ R, so that the width of the critical window in the hierarchical configuration model
is similar to the width of the critical window in the configuration model.

Since g(H, v, k, πn(λ)) is not necessarily increasing in λ, we rewrite (1.9) as

πn(λ) =
E[Dn]∑

H Pn(H)
∑
v∈VH d

(b)
v
∑DH−1
k=1 B(H, v, k + 1, πn(λ))

(
1 +

λ

n1/3

)
, (3.20)
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where B(H, v, k, πn(λ)) is the probability that after percolating H with probability πn(λ), the
connected component of v contains at least k inter-community half-edges, which is increasing in
λ.

Lemma 14. For a hierarchical configuration model satisfying Condition 5 and limn→∞ E[D2
nSn] =

E[D2S] <∞,

πn(λ) = πn(0)

(
1 +

λc∗

n1/3

)
+ o(λn−1/3), (3.21)

where

c∗ =
E[D]

E[D] + π2
∑
H P (H)

∑
v d

(b)
v
∑
k
d
dpB(H, v, k + 1, p)p=π

. (3.22)

Remark 11. Equation (3.22) shows that c∗ ≤ 1, so that the critical window of a HCM is smaller
than the critical window of a CM where no communities are inserted. Here d

dpB(H, v, k, p)p=π cap-

tures how vulnerable communityH is to percolation inside the community. The larger d
dpB(H, v, k, p)p=π

will be, the larger the difference between λ and λc∗ will be. Intuitively, when d
dpB(H, v, k, p)p=π

is small, this indicates that changing the percolation probability changes the degrees of the per-
colated communities very little. Therefore, the critical behavior is almost entirely explained by
the macroscopic CM in that case. On the other hand, when d

dpB(H, v, k, p)p=π is large, increasing
the percolation probability by a small amount increases the degrees of the communities by a lot.
Then λc∗ may be much smaller than λ.

Proof. We can write (3.20) as

πn(λ) = Ln(πn(λ))

(
1 +

λ

n1/3

)
, (3.23)

where

Ln(πn(λ)) =
E[Dn]∑

H Pn(H)
∑
v∈VH d

(b)
v
∑DH−1
k=1 B(H, v, k + 1, πn(λ))

. (3.24)

Calculating the derivative gives

π′n(λ) =
Ln(πn(λ))

n1/3(1− L′n(πn(λ))(1 + λ/n1/3))
(3.25)

Then, by the mean value theorem, there exists λ∗ ∈ [0, λ] such that

πn(λ) = πn(0) +
λ

n1/3

Ln(πn(λ∗))

1− L′n(πn(λ∗))(1 + λ∗/n1/3)
. (3.26)

Since B(H, v, k, π) is the probability of an increasing event, Ln(πn(λ)) is continuous. Calculating
the derivative of Ln(πn(λ)) gives

L′n(πn(λ)) = −E[Dn]
∑
H Pn(H)

∑
v d

(b)
v

∑
k B
′(H, v, k + 1, πn(λ))(∑

H Pn(H)
∑
v d

(b)
v
∑
k B(H, v, k + 1, πn(λ))

)2 , (3.27)

where we denoted

B′(H, v, k, π) =
d

dp
B(H, v, k, p)p=π. (3.28)

Since B is an increasing function of the percolation parameter p, L′n(πn(λ)) ≤ 0. By [13, Thm. 9]

ν(n)

D(πn) =

∑
H Pn(H)

∑
v∈VH d

(b)
v

∑DH−1
k=1 B(H, v, k + 1, πn)

E[Dn]
, (3.29)
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Therefore, by (1.8) and (3.29),

|L′(πn(λ))| = E[Dn]
∑
H Pn(H)

∑
v d

(b)
v

∑
k B
′(H, v, k + 1, πn(λ))(∑

H Pn(H)
∑
v d

(b)
v
∑
k B(H, v, k + 1, πn(λ))

)2
≤
∑
H Pn(H)

∑
v d

(b)
v

∑
k B
′(H, v, k + 1, πn(λ))

E[Dn]
. (3.30)

Hence, we need to bound B′(H, v, k, πn(λ)). The event that v is connected to at least k half-edges
is increasing in λ. Let E(H, v, k) denote the event that vertex v is connected to at least k half-edges
of community H. An edge is pivotal for E(H, v, k) in a certain configuration, if the event occurs
if the edge is present, and the event does not occur if the edge is not present. Then, by Russo’s
formula [21],

B′(H, v, k, πn(λ)) =
∑
e∈H

Pπn(λ)(e pivotal for E(H, v, k + 1))

=
1

πn(λ)

∑
e∈H

Pπn(λ)(e present and pivotal for E(H, v, k + 1))

=
1

πn(λ)
Eπn(λ)[# pivotal, present edges for E(H, v, k + 1)]

≤ 1

πn(λ)
(SH − 1), (3.31)

because at most SH − 1 pivotal edges can be present in a community, since otherwise, they would
form a cycle. Therefore,

|L′n(πn(λ))| ≤
∑
H Pn(H)

∑
v d

(b)
v

∑dH−1
k=1 (sH − 1)

E[Dn]πn(λ)
≤
∑
H Pn(H)d2

HsH
E[Dn]πn(λ)

. (3.32)

Since E[D2
nSn]→ E[D2S], we can use the General Lebesgue Dominated Convergence Theorem

to conclude that

lim
n→∞

L′n(πn(λ∗)) = −E[D]
∑
H P (H)

∑
v d

(b)
v

∑
k B
′(H, v, k + 1, π)(∑

H P (H)
∑
v d

(b)
v
∑
k B(H, v, k + 1, π)

)2
= −π

2
∑
H P (H)

∑
v d

(b)
v

∑
k B
′(H, v, k + 1, π)

E[D]
, (3.33)

where the last inequality follows from (3.29) and (1.9). Furthermore, we can use the General
Lebesgue Dominated Convergence Theorem (see the proof of [13, Thm. 9]) to conclude that

lim
n→∞

Ln(πn(λ)) = L(π) = π. (3.34)

Inserting this into (3.26) proves (3.21).

Example 15 (Star-shaped communities). We now consider the case where all communities are
star-shaped, so that every community has one vertex in the middle, connected to l other vertices
that all have inter-community degree one (as in Figure 5). Then (1.9) becomes

πn(λ) =
1

(l − 1)πn(λ)2

(
1 +

λ

n1/3

)
, (3.35)

or

πn(λ) =
1

(l − 1)1/3

(
1 +

λ

n1/3

)1/3

. (3.36)
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Figure 5: A star-shaped com-
munity

Figure 6: A line community of
length 5

A first order Taylor approximation then gives

πn(λ) =
1

(l − 1)1/3
+

λ

3n1/3(l − 1)1/3
+O(n−2/3)

=
1

(l − 1)1/3

(
1 +

λ

3n1/3

)
+O(n−2/3), (3.37)

so that c∗ = 1/3, which is the same result that is obtained when computing (3.21). Table 1
compares the approximation of (3.21) with the exact values of πn(λ).

n = 105 n = 106

λ πn(λ) πn(λ) appr. πn(λ) πn(λ) appr.

-10 0,581 0,585 0,608 0,609
-1 0,625 0,625 0,628 0,628
0 0,630 0,630 0,630 0,630
1 0,634 0,634 0,632 0,632

10 0,672 0,675 0,650 0,651

Table 1: Values of πn(λ) for star-shaped communities with 5 end points, and the approximation
by (3.21).

Example 16 (Line communities). We now consider the case where all communities are either
line communities of length 5 (as in Figure 6), or single vertices of degree 3, both with probability
1/2. Here a line community is a community that consists of a line of 5 vertices. The two vertices
at the ends of the line have inter-community degree one, the other vertices have inter-community
degree zero. It is possible to calculate (3.21) analytically in this setting. Table 2 compares this
approximation with the exact values of πn(λ). We can see that the approximation is very close to
the actual value of πn(λ), especially for n large and λ small.

n = 105 n = 106

λ πn(λ) πn(λ) appr. πn(λ) πn(λ) appr.

-10 0,623 0,636 0,696 0,698
-1 0,741 0,741 0,747 0,747
0 0,753 0,753 0,753 0,753
1 0,764 0,764 0,758 0,758

10 0,858 0,870 0,804 0,807

Table 2: Values of πn(λ) for line communities and single vertex communities, and the approxima-
tion by (3.21).
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4 Conclusion

We investigated the influence of mesoscopic structures on critical component sizes by studying
the hierarchical configuration model (HCM). In the HCM, the mesoscopic structures refer to com-
munity structures, and the connections between different communities are as in the configuration
model. We considered the critical component sizes of the HCM when the inter-community con-
nections have a finite third moment. These critical component sizes converge as n → ∞ to a
similar scaling limit as the critical component sizes in the CM, as long as the mesoscopic scales
remain smaller than n2/3. The critical component sizes of the HCM only depend on the sizes
of the communities, and are independent of the precise community shapes. We also obtained an
implicit critical percolation window for the HCM, that depends on both the connections between
communities, as well as the connections inside communities. We found that under stricter condi-
tions on the community sizes and the inter-community edges, the critical window can be written
in an explicit form. The question whether this stricter condition is necessary to write the critical
window in an explicit form remains open for further research.

The HCM can be used to model real-world networks with a community structure. Since many
real-world networks have diverging third moments of their inter-community connections [23], it
would be worthwhile to investigate the scaling limits of the HCM in this setting.
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