

XES Software Telemetry Extension

Citation for published version (APA):
Leemans, M., & Liu, C. (2017). XES Software Telemetry Extension. XES Working Group.
http://www.win.tue.nl/ieeetfpm/lib/exe/fetch.php?media=shared:downloads:2017-06-22-xes-software-telemetry-
v5-2.pdf

Document status and date:
Published: 20/11/2017

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

http://www.win.tue.nl/ieeetfpm/lib/exe/fetch.php?media=shared:downloads:2017-06-22-xes-software-telemetry-v5-2.pdf
http://www.win.tue.nl/ieeetfpm/lib/exe/fetch.php?media=shared:downloads:2017-06-22-xes-software-telemetry-v5-2.pdf
https://research.tue.nl/en/publications/1d883659-a028-4042-82e8-f4182382cc3e

XES Software Telemetry Extension

M. Leemans C. Liu

June 22, 2017

Documents: XES Software Telemetry Extension
Authors: M. Leemans, C. Liu

Email: m.leemans@tue.nl
Date: June 22, 2017

Version: 5.2

1 Introduction and Background

During the execution of software, execution data can be recorded. With the
development of process mining techniques on the one hand, and the growing
availability of software execution data on the other hand, a new form of software
analytics comes into reach. That is, applying process mining techniques to
analyze software execution data. To enable process mining for software, event
logs should be capable of capturing software-specific data.

When analyzing the performance of software applications, not only timing,
but also resource utilization is of importance. The Software Telemetry extension
supports the recording of basic performance profile related resource utilizations
commonly used in many software profiler tools 1. The resource utilizations
covered in this extension are: CPU usage, thread usage and memory usage.

Note that detailed timing information is already captured via the Software
Event extension. Advanced resource utilization, like database requests, cache
usage, network and socket usage and file I/O, are considered out of scope for
this extension.

Extension definition

Name: Software Telemetry
Prefix: swtelemetry

URI: http://www.xes-standard.org/swtelemetry.xesext
XML: <extension name="Software Telemetry"

prefix="swtelemetry"

uri="http://www.xes-standard.org/

swtelemetry.xesext"/>

1 See for example: Valgrind (http://valgrind.org/), YourKit (https://www.yourkit.com/),
gprof (https://sourceware.org/binutils/docs/gprof/), Blackfire (https://blackfire.io/), Appdy-
namics (https://www.appdynamics.com/), etc.

1

m.leemans@tue.nl
http://www.xes-standard.org/ swtelemetry.xesext
http://valgrind.org/
https://www.yourkit.com/
https://sourceware.org/binutils/docs/gprof/
https://blackfire.io/
https://www.appdynamics.com/

The remainder of this extension is organized as follows. In Section 2 we
explain some basic terminology. In Sections 3, 4 and 5 we detail how various
telemetry stats are recorded. Section 6 provides an example, and the XES
Extension definition is given in Section 7. Finally, in Section 8 provides a
reference glossary.

2 Terminology

In this extension, we will use some software-specific terminology. We provided a
reference glossary in Section 8. As explained in the introduction, this extension
supports the recording of basic performance profile related resource utilizations
commonly used in many software profiler tools: CPU usage, thread usage and
memory usage.

CPU usage When a program is executing, it consumes processor / CPU
time. Most of this time is consumed in what is known as user space. When
a program loops through an array, it is accumulating user CPU time. System
time is the amount of time the CPU was busy executing code in kernel space.
When a program executes a system call such as exec or fork, it is accumulating
system CPU time. The CPU usage telemetry indicates how much of the CPU
time was used. This gives a load indication for the CPU resource.

Thread usage A thread is a program’s path of execution. A multi-threaded
program can execute multiple code paths in parallel, and possibly concurrently.
A daemon thread is a background thread, typically used for providing a partic-
ular service for other threads. The thread count telemetry gives an indication
of how many execution paths are concurrently active.

Memory usage As a program is executing, various objects and arrays are
instantiated and destroyed. These objects are stored in what is known as the
heap memory. The heap memory is used to allocate blocks of RAM memory on
demand for use by the program, and can grow during the execution of a program.
The memory usage telemetry indicates how much of the RAM memory was
used. This gives a load indication for the RAM memory resource. Typically,
this telemetry refers to the used heap memory.

3 CPU Usage

The CPU usage telemetry indicates how much of the CPU time was used. This
gives a load indication for the CPU resource. We define the following CPU

2

usage attributes.

Level Key Type Description

event cpuTotalUser int The total time in milliseconds that the
CPUs spent in user space.

event cpuTotalKernel int The total time in milliseconds that the
CPUs spent in kernel space.

event cpuTotalIdle int The total time in milliseconds that the
CPUs spent idle.

event cpuLoadUser float The fraction of time that the CPUs
spent in user space. 1 represents 100%
usage, 0 represents 0% usage.

event cpuLoadKernel float The fraction of time that the CPUs
spent in kernel space. 1 represents 100%
usage, 0 represents 0% usage.

4 Thread Count

The thread count telemetry gives an indication of how many execution paths
are concurrently active. We define the following thread count attributes.

Level Key Type Description

event threadTotal int The total number of active threads.
event threadDaemon int The number of active daemon threads.

5 Memory Usage

The Memory usage telemetry indicates how much of the RAM memory was
used. This gives a load indication for the RAM memory resource. Typically,
this telemetry refers to the used heap memory. We define the following memory
usage attributes.

Level Key Type Description

event memoryUsed int The amount of memory used, measured
in bytes.

event memoryTotal int The amount of memory available, mea-
sured in bytes.

event memoryLoad float The fraction of memory in use. 1 repre-
sents 100% usage, 0 represents 0% usage.

6 Example

In Listing 1 an example XES trace is given for a simple application with teleme-
try data. We have annotated the load attributes with how the load values

3

were computed based on the differences between events. For example, the cpu-
LoadUser value in the second event is calculated by taking the difference in
cpuTotalUser divided by the total difference, i.e., user plus kernel plus idle. In
Figure 1, example performance charts are given, based on the telemetrydata
recorded in the example XES log in Listing 1.

0%

20%

40%

60%

80%

100%

1 2 3 4

CPU Usage
user + kernel

kernel

(a) CPU Usage

0

1

2

3

1 2 3 4

Thread count
all threads

daemon

(b) Thread count

0 MB

5 MB

10 MB

15 MB

20 MB

1 2 3 4

Memory usage

(c) Memory Usage

Figure 1: Example performance charts for the telemetry data recorded in the
example XES trace in Listing 1.

Listing 1: Example XES log for a simple application with telemetry data.
1 <log>
2 <extension name="Concept" prefix="concept"
3 uri="http://www.xes-standard.org/concept.xesext"/>
4 <extension name="Software Telemetry" prefix="swtelemetry"
5 uri="http://www.xes-standard.org/swtelemetry.xesext"/>
6 <trace>
7 <event> – Event 1
8 <string key="concept:name" value="readSettings" />
9 <int key="swtelemetry:cpuTotalUser" value="20" />

10 <int key="swtelemetry:cpuTotalKernel" value="0" />
11 <int key="swtelemetry:cpuTotalIdle" value="60" />

12 <float key="swtelemetry:cpuLoadUser" value="0.25" /> – – – – – – – – – – 20
20+0+60

13 <float key="swtelemetry:cpuLoadKernel" value="0" /> – – – – – – – – – – – 0
20+0+60

14 <int key="swtelemetry:threadTotal" value="1" />
15 <int key="swtelemetry:threadDaemon" value="0" />
16 <int key="swtelemetry:memoryUsed" value="2097152" />– – – – – – – – – – – – 2 MB
17 <int key="swtelemetry:memoryTotal" value="1073741824" /> – – – – – – – – – 1 GB

18 <float key="swtelemetry:memoryLoad" value="0.00" />– – – – – – – – – – 20480 bytes
1073741824

19 </event>
20 <event> – Event 2
21 <string key="concept:name" value="loadFile" />
22 <int key="swtelemetry:cpuTotalUser" value="37" />
23 <int key="swtelemetry:cpuTotalKernel" value="34" />
24 <int key="swtelemetry:cpuTotalIdle" value="159" />

25 <float key="swtelemetry:cpuLoadUser" value="0.1" /> – – – 37−20
(37+34+159)−(20+0+60)

26 <float key="swtelemetry:cpuLoadKernel" value="0.2" /> – – 34−0
(37+34+159)−(20+0+60)

27 <int key="swtelemetry:threadTotal" value="1" />
28 <int key="swtelemetry:threadDaemon" value="0" />
29 <int key="swtelemetry:memoryUsed" value="6291456" />– – – – – – – – – – – – 6 MB
30 <int key="swtelemetry:memoryTotal" value="1073741824" /> – – – – – – – – – 1 GB

31 <float key="swtelemetry:memoryLoad" value="0.01" />– – – – – – – – – 6291456 bytes
1073741824

32 </event>
33 <event> – Event 3

4

34 <string key="concept:name" value="parseInput" />
35 <int key="swtelemetry:cpuTotalUser" value="129" />
36 <int key="swtelemetry:cpuTotalKernel" value="57" />
37 <int key="swtelemetry:cpuTotalIdle" value="203" />

38 <float key="swtelemetry:cpuLoadUser" value="0.4" />– – 129−37
(129+57+203)−(37+34+159)

39 <float key="swtelemetry:cpuLoadKernel" value="0.1" />– 57−34
(129+57+203)−(37+34+159)

40 <int key="swtelemetry:threadTotal" value="2" />
41 <int key="swtelemetry:threadDaemon" value="1" />
42 <int key="swtelemetry:memoryUsed" value="15728640" />– – – – – – – – – – – 15 MB
43 <int key="swtelemetry:memoryTotal" value="1073741824" /> – – – – – – – – – 1 GB

44 <float key="swtelemetry:memoryLoad" value="0.02" /> – – – – – – – – 15728640 bytes
1073741824

45 </event>
46 <event> – Event 4
47 <string key="concept:name" value="ouputResult" />
48 <int key="swtelemetry:cpuTotalUser" value="231" />
49 <int key="swtelemetry:cpuTotalKernel" value="57" />
50 <int key="swtelemetry:cpuTotalIdle" value="255" />

51 <float key="swtelemetry:cpuLoadUser" value="0.3" /> – 231−129
(231+57+255)−(129+57+203)

52 <float key="swtelemetry:cpuLoadKernel" value="0.0" /> 57−57
(231+57+255)−(129+57+203)

53 <int key="swtelemetry:threadTotal" value="2" />
54 <int key="swtelemetry:threadDaemon" value="1" />
55 <int key="swtelemetry:memoryUsed" value="16777216" />– – – – – – – – – – – 16 MB
56 <int key="swtelemetry:memoryTotal" value="1073741824" /> – – – – – – – – – 1 GB

57 <float key="swtelemetry:memoryLoad" value="0.02" /> – – – – – – – – 16777216 bytes
1073741824

58 </event>
59 </trace>
60 </log>

7 XES Extension

Listing 2: XES Extension - Software Telemetry.
1 <extension name="Software Telemetry" prefix="swtelemetry"
2 uri="http://www.xes-standard.org/swtelemetry.xesext"/>
3 <event>
4 <int key="cpuTotalUser">
5 <alias mapping="EN" name="CPU usage - total time in user space, in milliseconds"/>
6 </int>
7 <int key="cpuTotalKernel">
8 <alias mapping="EN" name="CPU usage - total time in kernel space, in milliseconds"/>
9 </int>

10 <int key="cpuTotalIdle">
11 <alias mapping="EN" name="CPU usage - total time spent idle, in milliseconds"/>
12 </int>
13 <float key="cpuLoadUser">
14 <alias mapping="EN" name="CPU usage - load in user space"/>
15 </float>
16 <float key="cpuLoadKernel">
17 <alias mapping="EN" name="CPU usage - load in kernel space"/>
18 </float>
19 <int key="threadTotal">
20 <alias mapping="EN" name="Total number of threads"/>
21 </int>
22 <int key="threadDaemon">
23 <alias mapping="EN" name="Number of daemon threads"/>
24 </int>
25 <int key="memoryUsed">
26 <alias mapping="EN" name="Total memory used, measured in bytes"/>
27 </int>
28 <int key="memoryTotal">
29 <alias mapping="EN" name="Total memory available, measured in bytes"/>
30 </int>

5

31 <float key="memoryLoad">
32 <alias mapping="EN" name="Memory usage load"/>
33 </float>
34 </event>
35 </extension>

8 Glossary

user CPU time User time is the amount of time the CPU was busy execut-
ing code in user space. When a program loops through an array, it is
accumulating user CPU time.

system CPU time System time is the amount of time the CPU was busy
executing code in kernel space. When a program executes a system call
such as exec or fork, it is accumulating system CPU time.

kernel CPU time See System CPU time.
heap memory The heap memory is used to allocate blocks of RAM memory

on demand for use by the program, and can grow during the execution of
a program.

thread A thread is a program’s path of execution. A multi-threaded program
can execute multiple code paths in parallel, and possibly concurrently.

daemon thread A background thread, typically used for providing a particu-
lar service for other threads.

6

	Introduction and Background
	Terminology
	CPU Usage
	Thread Count
	Memory Usage
	Example
	XES Extension
	Glossary

