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Geometry and the onset of rigidity in a disordered network

Mathijs F. J. Vermeulen,1 Anwesha Bose,1 Cornelis Storm,1,2 and Wouter G. Ellenbroek1,2,*

1Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands
2Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands

(Received 7 September 2017; published 20 November 2017)

Disordered spring networks that are undercoordinated may abruptly rigidify when sufficient strain is applied.
Since the deformation in response to applied strain does not change the generic quantifiers of network architecture,
the number of nodes and the number of bonds between them, this rigidity transition must have a geometric origin.
Naive, degree-of-freedom-based mechanical analyses such as the Maxwell-Calladine count or the pebble game
algorithm overlook such geometric rigidity transitions and offer no means of predicting or characterizing them.
We apply tools that were developed for the topological analysis of zero modes and states of self-stress on regular
lattices to two-dimensional random spring networks and demonstrate that the onset of rigidity, at a finite simple
shear strain γ �, coincides with the appearance of a single state of self-stress, accompanied by a single floppy
mode. The process conserves the topologically invariant difference between the number of zero modes and
the number of states of self-stress but imparts a finite shear modulus to the spring network. Beyond the critical
shear, the network acquires a highly anisotropic elastic modulus, resisting further deformation most strongly in the
direction of the rigidifying shear. We confirm previously reported critical scaling of the corresponding differential
shear modulus. In the subcritical regime, a singular value decomposition of the network’s compatibility matrix
foreshadows the onset of rigidity by way of a continuously vanishing singular value corresponding to the nascent
state of self-stress.

DOI: 10.1103/PhysRevE.96.053003

I. INTRODUCTION

Fibrous networks feature broadly in natural as well as syn-
thetic materials. Examples include rubbers [1], hydrogels [2],
and most biopolymer-based cellular and extracellular matter,
including the actin cytoskeleton [3], collagenous extracellular
matrix [4], and fibrin-based blood clots [5,6]. These networks
are all characterized by a fairly low connectivity: In most
cases, the network is held together by cross-links that connect
precisely two fibers together. Treating the cross-linking points
as positional coordinates or “nodes” and fiber segments as
bonds connecting these nodes, each node will have four bonds,
although it will have fewer if one discards dangling ends [7].

While real fibrous networks have one or more features
that make them rigid despite this low connectivity, such as a
bending stiffness or prestresses of mechanical, thermal, and/or
osmotic origin, the mechanical properties can still, to a large
extent, be determined by the pure geometry of the network.
The basic spring network that one is then left with is governed
by the arguments of Maxwell [8] and Calladine [9], which
count degrees of freedom and constraints to determine answers
to two basic mechanical questions: How many ways N0 can
the network deform without energy cost? And how many ways
NSSS can the network support a stress without needing external
forces? In other words, how many floppy modes and states
of self-stress does the network possess? Calladine’s findings
prove that for every network with N nodes and Nb bonds, the
difference ν = N0 − NSSS is the same, regardless of the spatial
arrangement of its nodes and bonds. As a result, ν cannot
change when the network is deformed, for instance, in response
to external loading. Because of this robustness and the fact that
N0 and NSSS are each related to the dimensionality of certain
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solution spaces, ν may be regarded as a topological index,
protected from spatial change [10]. Importantly, however,
the individual numbers N0 and NSSS depend on the local
details and will, generally, change during deformation [11].
What we will demonstrate is precisely how these changes
affect the transition from floppy to rigid in disordered
networks.

We use the Mikado model, a well-studied and often
employed two-dimensional model for fibrous networks. It has
an extensive number of floppy modes in the limit of zero
bending stiffness [12], but its states of self-stress (SSSs) are
a nontrivial matter that has been unexplored. The SSSs are
intimately related to mechanical performance: For small shear
strains, these networks can deform freely, suggesting that they
either do not have any SSSs or that the ones they do have are
orthogonal to the shear deformation [11,13]. At finite strain,
however, these networks rigidify in a manner bearing some
of the hallmarks of a continuous phase transition [14–16].
Even for networks that do have some degree of subisostatic
rigidity due to fiber bending, the sharp increase at finite strain is
conserved, highlighting the broad relevance of the geometric
rigidity transition. Rigidity can come about only when the
network is capable of bearing a load and therefore indicates
the presence of at least one SSS. The question of how the SSS
arises is complementary to the recent finding that the floppy
modes that live on the Mikado sticks can be localized to one
end of the stick by slightly deforming it, similar to how floppy
modes in kagome lattices can be localized to the boundary by
perturbing the geometry [17].

Our central finding is that Mikado networks do not have
any states of self-stress as they are created. Upon deformation
and precisely at the critical strain, a single SSS appears (see
Fig. 1). This SSS is purely geometrically induced through the
nonaffine displacements of the nodes. The SSSs are difficult
to extract due to the combination of the strict geometric
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conditions for SSSs to exist and the disordered nature of
Mikado networks. We show that a singular value decompo-
sition of the equilibrium matrix [19] sensitively captures the
approach to, and onset of, rigidity. We also demonstrate that the
resulting rigidified network is mechanically highly anisotropic.
Finally, we validate our numerical mechanical experiment by
comparing the scaling of the shear modulus beyond the critical
strain with known results [15,16].

II. THE MIKADO MODEL: DEFINITION AND MODE
STRUCTURE

The Mikado model is often used to study the mechanical
properties of disordered semiflexible fibrous or polymer
networks [12,20–22]. Straight, segmented fibers (“sticks”)
are placed randomly in a doubly periodic two-dimensional
simulation box. In our work, the simulation box is a square
with side L during the Mikado procedure, but we will deform
the networks later by changing the shape of the periodic
box using a simple shear strain γ , as illustrated in Fig. 1.
The coordinates of the intersection points of the fibers (the
“cross-links” or “nodes”) are the degrees of freedom of the
model. A mean-field estimate for the number of nodes N

in a Mikado network consisting of Nsticks sticks of length
Lstick follows straightforwardly from the probability that two
randomly placed sticks intersect and reads

N � 1

π

(
NsticksLstick

L

)2

. (1)

This estimate works well in dense systems where each stick
intersects at least two other sticks. In such systems, the average
connectivity of the networks is given by

z = 4 − 2Nsticks/N � 4 − 2π

Nsticks

(
L

Lstick

)2

, (2)

which illustrates that, although nodes in the middle of the
sticks all have four neighbors, the connectivity of the whole
network is always below 4 because the first and last nodes on
each stick have fewer than four neighbors.

(b)(a)

FIG. 1. Floppy to rigid. (a) A network, as initially generated with
the Mikado method. The periodically repeated simulation area is
outlined by the thick black boundary. The average connectivity of this
sample network is z = 3.6. (b) The same network, after a simple shear
strain of γ = 0.12 has been applied (using Lees-Edwards boundary
conditions [18]). The network is now rigid, betrayed by a single,
system-spanning state of self-stress comprising extended (red) and
compressed (green) segments. Black segments are unstrained.

Interactions between nodes that are connected by a stick
capture the mechanical response of the sticks. The original
Mikado model, for instance, energetically penalizes both the
stretching and the bending of a stick; in this paper we focus
on the limit of vanishing bending energy. The network is thus
a central force (spring) network. The energy of the model is
given by

E = 1

2

Nb∑
i=0

Y
�0,i

(�i − �0,i)
2. (3)

Here, Y is Young’s modulus of a single fiber, and �0,i is the
rest length of the ith spring. The spring constant of spring
i is therefore ki = Y/�0,i . �i is the instantaneous length of
spring i spring, which is a function of the coordinates of
the cross-links. Specifically, for a network with N nodes
and Nb springs, we may collect the deviations of all cross-
links from their initial (unstrained) positions into the 2N -
dimensional displacement vector U, which is mapped onto
the Nb-dimensional vector E containing all spring elongations
by the Nb × 2N compatibility matrix C:

CU = E. (4)

A floppy or zero mode, now, is a set of node displacements
that costs zero energy, i.e., that does not change the length of
any of the bonds. That is, the vector E contains only zeros.
Floppy modes may thus be determined as vectors in the null
space of the compatibility matrix C. As a result, the number of
floppy modes N0 equals the nullity (the dimension of the null
space) of C.

A state of self-stress is a configuration of tensions in all
of the springs satisfying mechanical equilibrium. That is, the
sum of forces

∑
f = 0 on each node separately. Mapping

from the tensions in the springs to the forces on the nodes
is effected by the 2N × Nb equilibrium matrix Q. It is a
function of the positions of the nodes and hence indirectly of
the shear strain γ on the network. Collecting all bond tensions
in a Nb-dimensional vector T and all spring forces f into
the 2N -dimensional vector F, the condition for mechanical
equilibrium may be expressed as

QT = −F = 0. (5)

Nontrivial solutions T �= 0 to this equation are called states of
self-stress; the number of states of self-stress NSSS is equal to
the nullity of Q [23].

Our main numerical results concern networks that have
been deformed by changing the shape of the periodic
simulation box. In order for this to represent a quasistatic
deformation, we minimize the energy, Eq. (3), after each box
shape change, using the conjugant gradient algorithm [24]. In
networks that have been deformed beyond the critical strain,
we determine the components of the virial stress

σij = 1

2L2

∑
〈kl〉

(xk,i − xl,i)fkl,j , (6)

where L is the box size, i,j = x,y, 〈kl〉 is shorthand for
summation over all node indices k,l connected by a spring,
xk,i is the i component of the coordinates of node k, and fkl,j

is the j component of the force along the spring connecting
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nodes k and l. The shear modulus is then computed as

G(γ ) = ∂σxy

∂γ
, (7)

which we evaluate in linear response using the full Hessian (as
the network will be stressed when γ > γ �) [25].

Maxwell-Calladine counting dictates that the difference
between the number of floppy modes and the number of states
of self-stress is fixed by the count of degrees of freedom and
constraints,

ν = N0 − NSSS = 2N − Nb − 3, (8)

where the right-hand side can be understood to represent the
number of degrees of freedom (the 2N node positions) minus
the number of constraints imposed by the springs (one for each
of the Nb springs) minus the number of trivial zero modes
(in two dimensions, two translations and one rotation) [9,11].
Thus, the value of ν can be obtained simply by counting nodes
and springs, but finding N0 and NSSS separately requires more
effort. As long as the geometry of the network is completely
generic, the pebble game algorithm can be used to keep track
of the redundant bonds [26,27]. This algorithm is sensitive to
local properties, while the Maxwell-Calladine argument gives
only global information. The pebble game is, however, still
topological in the sense that it takes as input only which node
is connected to which other nodes but is otherwise blind to
geometric happenstance. Mikado networks transition from soft
to rigid upon deformation, and this transition does not change
their topology. This belies a geometric origin: Beyond the
critical strain, there is a state of self-stress that was not there
earlier, even though no bonds were created or destroyed during
the deformation. Both the Maxwell-Calladine count and the
pebble game give the same result, below and beyond the critical
strain. The only way to reveal the actual floppy modes and
states of self-stress of these networks is therefore to use an
algebraic analysis that is sensitive to the geometric details
underpinning the rigidity transition.

Equation (8) suggests that Mikado networks have an
extensive excess of zero modes relative to their states of
self-stress; ν ∼ Nsticks. To see this note that in a Mikado
network, most nodes have four bonds connecting to them
because they are the intersection of two lines, so that the
number of bonds should be Nb = 2N (dividing by 2 to
avoid double counting). However, each Mikado stick has two
dangling ends which do not contribute to the network, so
Nb = 2N − Nsticks (each dangling end corresponds to half
a bond). Thus, N0 − NSSS = Nsticks − 3. Alternatively, [17]
points out that the addition of each stick creates a floppy mode
corresponding to the longitudinal displacement of the new
stick. In dilute networks, the actual tally of floppy modes can
be a bit lower than the number of sticks.

As an illustration, we calculate the number of floppy modes
for Mikado networks as a function of the number of fibers for
different fiber lengths. The results are shown in Fig. 2. Initially,
all the curves deviate from the predicted linear asymptote. This
is a low-density effect; the fibers are deposited at a random
position and orientation, and a newly added fiber may not
intersect any other fiber, adding no degrees of freedom in the
model. At higher densities, all lines converge to the predicted

100 200 500 1000
Nsticks

102
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104
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106

N
/L

2 st
ic

k

2
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0 200 400 600 800 1000
Nsticks

0

200

400

600

800

1000

N
0

(b)

FIG. 2. Properties of Mikado networks as a function of the num-
ber of sticks (fibers) used for stick sizes ranging from 10% of the box
size to 19% of the box size in steps of 1% from bottom to top in both
panels. (a) The number of nodes in a Mikado network approaches for
large numbers of sticks, N � (NsticksLstick/Lsystem)2/π , as expected
from Eq. (1). (b) The number of floppy modes approaches the number
of fibers in the network in the same limit.

asymptote to the same line, showing that indeed each added
fiber contributes one zero mode: N0 = Nsticks.

While the excess is thus decidedly extensive (and large
Mikado networks are certainly riddled with floppy modes),
we cannot yet say anything about the density dependence of
N0 and NSSS separately; we now investigate the partitioning
of ν.

III. CONNECTIVITY AND RIGIDITY

Getting straight to the point, unstrained Mikado networks
do not have any states of self-stress. To see this, consider what
happens when a single Mikado stick is added to an existing
network, as sketched in Fig. 3. This increases the topological
index ν defined in Eq. (8) by 1; the newly added fiber adds
μ (the number of previously present fibers it crosses; in this
example, 3) new nodes to the network and adds 2μ − 1 new
springs. Of these new springs, μ − 1 connect the new nodes,
and the remaining μ new springs connect previously existing
nodes. The right-hand side of Eq. (8) has therefore increased
by 1. Thus, at least one zero mode has been created; possibly,
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FIG. 3. The addition of a Mikado stick to an already existing
network gives rise to μ (in this example μ = 3) intersections and
2μ − 1 new springs. Turning the intersection points into nodes before
adding the springs that represent the new stick creates a floppy mode
at each new node, indicated with the arrows. Adding the μ − 1 new
springs couples these into a single floppy mode.

more have been created, but then these should be accompanied
by states of self-stress, 	N0 = 	NSSS + 1. One new floppy
mode is readily identified and consists of an infinitesimal,
coherent motion of the newly created nodes as indicated in
Fig. 3.

It turns out that 	NSSS = 0 and thus that exactly one floppy
mode is created by adding a new stick. To see this, consider
the force balance equations on any of the newly created nodes.
Because the two fibers that intersect at this node are both
straight, these equations can be decomposed into components
along the fibers. First, the forces along the new fiber must all
be equal, and because the fiber has finite length (there is a node
with only two or three springs connecting to it at each end),
they must all be zero. More importantly, the forces in the two
springs into which the existing spring was divided are equal, so
that nothing has changed about the possible force networks on
the existing network. The conclusion is that adding a Mikado
fiber to any network does not create any states of self-stress
and adds precisely one floppy mode. By induction, a network
that consists solely of Mikado fibers does not have any states
of self-stress and will, in general, not support a mechanical
load.

Large deformations, however, may rigidify a Mikado
network: Without changing the network topology, a state
of self-stress appears. We now explore how this happens,
focusing on simple shear (other modes of deformation such
as global stretching will produce similar phenomena). As
a preliminary, we note that the critical shear strain γ � at
which rigidity sets in depends primarily on the coordination
number of the network, becoming more narrowly distributed
as the system size increases. Figure 4 shows this distribution
for a range of system sizes, keeping the connectivity fixed
at z = 3.6. Thus, the notion of a z-dependent critical strain
becomes tightly defined in the large-system-size limit of
the Mikado model. Beyond this critical strain γ �, since the
boundaries are periodic (Lees-Edwards), there can be no
external forces on any of the nodes. Thus, the force network
comprising the stretched and compressed springs giving rise
to the finite modulus represents a state of self-stress. We
emphasize, again, that this state of self-stress cannot be found
by purely topological methods such as the pebble game.
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0
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0.20

γ

FIG. 4. Probability density of the critical strain γ �, the strain
at which the network acquires a modulus, for Mikado networks at
z = 3.6 with a stick length of 0.57. System sizes are L = 1 (pluses),√

2 (circles), 2 (stars), 2
√

2 (diamonds) for decreasing distribution
width. The inset shows the average γ � as a function of connectivity z

(calculated at L = √
2).

Instead, we must directly compute the nontrivial solutions
of Eq. (5). A reliable and numerically stable way to establish
these is to use a singular value decomposition [19,28,29],
decomposing the equilibrium matrix Q as

Q = AS B†, (9)

whereA (2N × 2N ) andB (Nb × Nb) are orthogonal matrices,
the dagger denotes a Hermitian conjugate, and S is a 2N × Nb

rectangular diagonal matrix, holding as its Nb main-diagonal
entries (S)ii the so-called singular values si . If any of those
singular values is equal to zero, the corresponding column of
B† is in the kernel of the equilibrium matrix Q and thus a state
of self-stress of the system.

We performed a series of numerical simple shear experi-
ments on an ensemble of Mikado networks with an average
connectivity of z = 3.6 and fibers of initial length 2

5

√
2 ≈ 0.57

in box sizes ranging from L = 1 to L = 2
√

2. The number
of Mikado sticks involved ranges from order 50 for the
smallest system to order 400 for the largest one, in accordance
with Eq. (2). We numerically minimize the network energy,
Eq. (3), after each shear step and compute the differential
shear modulus, the fraction of springs that carries a nonzero
tension, and the three lowest singular values of the equilibrium
matrix. In addition, we calculate the linear response to a shear
in the “perpendicular” shear direction to assess the extent to
which the network has become anisotropic. The result of these
calculations is shown in Figs. 5 and 6, as a function of the
strain.

The differential shear modulus (in the direction of the
applied nonlinear deformation) jumps at the critical strain.
This can be rationalized from the fact that the SSS that appears
needs to span the entire system and will generally involve a
finite fraction of the bonds. Such a SSS immediately gives
a strong contribution to the modulus, provided it has some
overlap with the associated strain [11,13]. To see if this effect
is diminished for larger system sizes (as would be the case
if the induced SSS has a fractal structure), we analyze the
behavior of the jump as a function of system size. We fit the
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FIG. 5. The scenario for shear-induced rigidification of the
Mikado network: As the critical strain γ � is approached, one singular
value drops to zero, spawning a state of self-stress that carries the
load, prompting a finite shear modulus. We plot the lowest singular
value in black and the second and third lowest singular values in blue
and red, respectively. It is evident that even well beyond the transition
there remains only one state of self-stress. The lines are guides to the
eye.

measured moduli to the following equation:

G(γ ) = 	G� +
(

γ − γ �

γ �

)f

, (10)

allowing us to simultaneously quantify the post-rigidification
behavior and the jump. Figure 6(b) and the inset summarize
the scaling behavior: beyond the critical strain, the modulus
rises according to a power law, with an exponent f = 0.82,
in agreement with earlier findings for the two-dimensional
Mikado model without bending. From the same fits, we have
determined that the jump 	G� decreases as the system size
is increased but appears to remain finite as L → ∞. While
this result appears to contradict the continuous transition
for networks with a finite fiber bending modulus reported
in Ref. [15], closer analysis of the computational results in
Ref. [15] reveals that when the bending modulus is taken
to be zero, a jump in the modulus at the critical strain is
also present [30]. If the rigidity transition in networks of
stretch-only springs is continuous, our systems are too small
to see this. The true nature therefore remains uncertain and
deserves further study.

To assess the mechanical anisotropy of the induced SSS,
we also calculate the “perpendicular” linear shear modulus
that governs the pure shear (corresponding to the volume-
conserving combination of compression in the x direction and
equal extension along the y direction). As can be seen in
Fig. 6(a), this modulus is much smaller than the differential
modulus in the direction of the nonlinear deformation and does
not jump noticeably. Hence, even at these moderate strains
where alignment of bonds in the direction of the shear is
hardly visible (see Fig. 1), the network becomes mechan-
ically highly anisotropic. We note that the bulk modulus
also jumps (not shown), which might have been expected
since the SSS that arises consists, predominantly, of tensile
forces [13,31].
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Δ
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FIG. 6. (a) The differential modulus in the direction of the
nonlinear deformation (solid symbols) is much larger than the
linear modulus in the other shear direction (open symbols). Circles,
diamonds, and stars denote system sizes of 1,

√
2, and 2, respectively.

(b) Beyond the critical strain, the shear modulus rises as a power law;
G − 	G� ∼ [(γ − γ �)/γ �]f with f = 0.82. Plus symbols, circles,
stars, and diamonds denote system sizes of 1,

√
2, 2, and 2

√
2,

respectively. The line through the shear modulus graph is a fit to
Eq. (10).

The overall scenario for the emergence of rigidity at finite
strain is collected in Fig. 5. In the deeply subcritical regime,
there are no states of self-stress, and the system is floppy
with respect to shear. Approaching the critical strain, one of
the singular values drops steeply. When it touches zero, a
significant fraction of the network is engaged mechanically,
and the shear modulus begins to rise in power law fashion,
as shown in Fig. 6. That there should initially be a single
SSS underlying the rigidity transition is to be expected in
a disordered system: Absent any periodicity, the mechanical
modes will be distinct, as will their onset strains. In other
words, one has to be the first. However, as far as we have
been able to discern and up to the highest strains we have
considered, no secondary states of self-stress are ever created,
and the mechanical response remains completely supported
by the first SSS to appear. Based on our results, however, we
cannot rule out that in larger systems or at higher strains other
SSS modes will appear.
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IV. DISCUSSION

We have shown that the lowest singular value of the
equilibrium matrix vanishes at the critical strain. At this same
strain a state of self-stress emerges. Of course, this event also
coincides with the emergence of a finite modulus. Across the
ensemble of random networks we generated, we have only
ever seen a single state of self-stress being responsible for the
onset of rigidity. Moreover, this mode continues to be the sole
mode supporting the load for some range of strains; the second
and third smallest singular values remain nonzero well beyond
the transition.

This finding suggests that in order to understand the striking
similarities between induced rigidity and critical transitions in
Ising-like models in the presence of aligning fields (evidenced,
for instance, by the Widom collapse of the scaled modulus
before and after the critical strain in [15]) we should direct
our attention to the properties of the first critical state of
self-stress, as it is the only structure responsible for the finite
modulus. Its contribution to this modulus may be split up
into two parts, one having to do with the springs (providing
a constant contribution proportional to the spring constant per
spring) and a contribution proportional to the spring tension
[25,32]; a closer look at the statistical properties of the critical

SSS (participation ratio, tension distribution) will likely offer
a deeper understanding of the scaling near the rigidification
threshold.

Geometric rigidification offers great advantages over archi-
tected rigidity. These are materials that are initially vanishingly
soft and malleable; the application of a load rigidifies them.
There is an intimate connection between the critical SSS and
the strain that prompted it; the SSS induced by nonlinear
simple shear brings a relatively large modulus for simple
shear. Shearing in another direction will prompt enhanced
resistance to that deformation. In other words, the material
becomes resilient to the strain that prompted rigidity (but
not necessarily against other modes of deformation). Because
tailored resilience may be coaxed out of very sparse network
geometries, protocols leveraging this effect may be relevant
to produce generic, lightweight architectures for predefined
mechanical performance.
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