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Clustering-structure Representative Sampling
from Graph Streams

Jianpeng Zhang, Kaijie Zhu, Yulong Pei, George Fletcher, and Mykola Pechenizkiy

Abstract Most existing sampling algorithms on graphs (i.e., network-structured da-
ta) focus on sampling from memory-resident static graphs and assume the entire
graphs are always available. However, the graphs encountered in modern applica-
tions are often too large and/or too dynamic to be processed with limited mem-
ory. Furthermore, existing sampling techniques are inadequate for preserving the
inherent clustering structure, which is an essential property of complex networks.
To tackle these problems, we propose a new sampling algorithm that dynamically
maintains a representative sample and is capable of retaining clustering structure
in graph streams at any time. Performance of the proposed algorithm is evaluated
through empirical experiments using real-world networks. The experimental result-
s have shown that our proposed CPIES algorithm can produce clustering-structure
representative samples and outperforms current online sampling algorithms.

1 Introduction
An increasing number of networks are large-scale and continuously growing in na-
ture. Hence, modeling and analyzing such data in their entirety is becoming infea-
sible and impractical. One approach to overcome these features of contemporary
graph-structured data collections is to sample a representative subgraph and exploit
its characteristics. In the existing literature, many sampling methods [3][6][7] fo-
cus on sampling from memory-resident static graphs and assume that the sampling
algorithms can access the entire graph by multiple passes. However, many contem-
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porary networks can naturally be represented as fully-dynamic graph streams, i.e.,
nodes or edges are added or removed arbitrarily at any time [10]. To keep pace
with such kinds of graphs, we need an incremental sampling method to analyze the
interactions within graphs when new entities arrive in a streaming fashion.

Thus there are two research questions which should be addressed. The first chal-
lenge is to design an effective and efficient sampling algorithm on fully-dynamic
graph streams where edge insertions/deletions are processed in an incremental man-
ner with limited memory. The second challenge is to generate small, yet represen-
tative samples of open-ended graph streams. A sampled graph is representative if
it preserves selected properties of the original graph. In general, topological prop-
erties, such as degree distribution, clustering coefficient distribution and maximum
cluster size, are of interest to data scientists. However, existing sampling techniques
are inadequate for preserving the inherent clustering structure. To overcome these
challenges, we make the following contributions in this paper:

• We propose a Clustering-preserving Partially Induced Edge Sampling (CPIES)
algorithm to process the fully-dynamic graph streams. CPIES employs: (i) a
clustering-preserving node replacement, (ii) isolated nodes elimination, and (i-
ii) edge-deletion operation. It can retain the inherent clustering structure well,
and eliminate the isolated nodes in the sampled counterpart. Moreover, it can
handle the edge-deletion requests which is crucial in fully-dynamic setting.

• The empirical experiments on real-world networks show that CPIES is capable
of keeping representative/hub nodes rather than peripheral nodes from differen-
t clusters in graph streams. It outperforms the state-of-the-art online sampling
algorithms in terms of preserving clustering structure.

The remainder of the paper is organized as follows. In Section 2 we provide a
brief review of existing work in the areas of graph stream sampling and then give
the problem definition in Section 3. In Section 4 the detailed description of the
proposed streaming sampling algorithm is given. Experimental evaluation is given
in Section 5. The paper is concluded and future work is presented in Section 6.

2 Related Work

2.1 Sampling from Graph Streams

Graph streams differ from static graphs in three main aspects: (i) the massive volume
of edges is far too large to fit into the limited memory; (ii) the topology structure is
not fully observable at any point of time (i.e., only sequential access is feasible, not
random access); and (iii) efficient, real-time processing is crucial [3]. Motivated by
real-world applications, there are some related research on sampling from massive
graph streams. Ahmed et al. [1] proposed a generic stream sampling framework
for big-graph analytics, called Graph Sample and Hold (gSH). It samples from
massive graphs sequentially in a single pass, one edge at a time, while maintaining
a small memory footprint. Ahmed et al. [3] extended node sampling, edge sampling
and breadth first sampling into streaming setting, and presented a partially-induced
edge sampling (PIES) algorithm to sample from graph streams, which maintains
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a sample reservoir of fixed size. A graph priority sampling (GPS) was proposed
in [2] for order-based reservoir sampling from massive graph streams. It provides
a general way to sample weighted edges according to auxiliary variables so as to
accomplish various estimation goals of graph properties. However, it is difficult to
use it to sample the inherent clustering structure from fully-dynamic graph streams.

2.2 Clustering Structure in Graphs

A cluster in a graph is defined as a set of densely connected nodes that are sparsely
connected to nodes outside of the cluster [4]. The discovery of clustering structure
in graphs is important as they often correspond to common/latent properties (e.g.,
interest, role and affiliation) [5]. Although sampling provides a potential solution for
inferring and approximating global, latent properties in original graphs, most sam-
pling techniques are not particularly designed to retain the essential property: the
inherent clustering structure [12]. To our knowledge, sampling has not previously
been applied to the problem of preserving the clustering structure in graph streams.

The work in [6][7] only assessed the degree to which samples are representative
of explicit or simple graph properties (e.g., the degree distribution), which can not
fully reflect the topology structure. Maiya et al. [8] proposed two sampling algorith-
m based on the notion that samples with good expansion properties tend to be more
representative of the clustering structure. Newly sampled nodes are chosen either
deterministically or probabilistically and the process is continued until we reach the
desired subgraph size. However, these approaches are all designed for static graphs
to preserve the clustering structure.

3 Problem Statement
We focus on the problem of sampling from a fully-dynamic graph stream where
edge insertions and deletions are allowed. Formally, for any discrete time-stamp
t ≥ 0, the input is assumed to be a graph G(t) = [V (t),E(t)], presented as a stream
of edges E(t) in arbitrary order, where V (t) is a finite set of nodes and E(t) ⊆
V (t)×V (t) is a set of edges by time t. Each edge e(t) is in the form of ⟨u,v, t⟩,
where u and v are the two incident nodes of the edge and t is the associated time-
stamp. Initially at time-stamp t = 0 we have V (t) = E(t) = /0, and for any t > 0, at
each discrete time-stamp t we receive a new update et = (•,⟨u,v, t⟩) from the edge
streams, where • ∈ {+,−}. The graph G(t) = [V (t),E(t)] at time-stamp t can be
updated as follows:

E(t) =

{
E(t−1)∪⟨u,v, t⟩ if • = “+”
E(t−1)\ ⟨u,v, t⟩ if • = “-”

(1)

The aim of graph stream sampling is to generate representative samples, which
should obtain a good sample quality, through a single pass on original graph stream-
s. Formally, We denote η(·) as any topological graph property, and our objective is
to ensure that Gs(t) is representative, in which it matches many of the topologi-
cal properties of G, i.e., η(G(t)) ≈ η(Gs(t)). Specifically, in this paper we mainly
consider the property of inherent clustering structure. In addition to the sample rep-
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resentativeness requirement, a graph stream sampling algorithm is also required to
be computationally efficient (preferably, single-pass) under the limited memory size
χ . Formally, we give the problem statement of graph stream sampling. Note that in
most cases the sample size of a graph can be defined as the number of nodes in the
sample, but it is also feasible to define it as the number of edges in the sample. Here
we only consider the former case.

Definition 1. Graph stream sampling: given a graph stream G(t), the sampling algorithm S aims
to produce a sampled graph Gs(t) by sampling edges of the graph stream G(t) such that:

• the edges are processed in a sequential order (i.e., not random access) through single pass;
• the memory should satisfy the restriction, i.e., |Vs(t)| ≤ χ .
• the topological properties, especially the clustering structure, should be representative and pre-

served well, i.e., η(G(t))≈ η(Gs(t));

4 Proposed Sampling Method
Firstly, we will introduce the state-of-the-art PIES (Partially Induced Edge Sam-
pling) algorithm. Secondly, we will describe our new CPIES algorithm which em-
ploys: (i) a clustering-preserving node replacement, (ii) isolated nodes elimination,
and (iii) edge-deletion operation to process the fully-dynamic graph streams.

4.1 The Basic PIES Algorithm
Basically, PIES [3] is a two-phase sampling algorithm using a single pass for the
graph stream: Initially, initial edges in the stream are added to reservoir determin-
istically in order to accumulate the node reservoir Vs. After |Vs| reaches the desired
sample size n, we denote the number of edges in edge reservoir Es by m. Then it
consists of two phases to process the new edge et at time t:

• Selection phase: the new edge is added with probability p = m
t , where t is the current time-

stamp. If the probability is not satisfied, the new edge does not sample into the reservoir Vs.
Otherwise, the process goes directly to replacement phase. The rationale is inherited from
reservoir sampling and each edge in E(t) has equal probability (i.e., m

t ) of being chosen for
the edge reservoir Es.

• Replacement phase: If the new edge is selected and at least one incident node has not been
sampled into Vs, the previously sampled nodes in the reservoir Vs are replaced based on a
certain strategy (namely, Select Replaced Node(·)) in order to maintain the desired size of Vs.

After these two phases, it adds the new edge to the edge reservoir Es if it-
s two incident nodes have already been in the node reservoir Vs (i.e., partial
induction). After careful analysis, we found that the node replacement strategy
Select Replaced Node(·) is an alterable module since it allows adopting various
strategies to select node that needs to be replaced (i.e., replaceable node). Nesreen
proposes two different replacement strategies in [3]. The first strategy selects the
replaceable node uniformly at random from the reservoir Vs, while the second one
requires to replace the node kept in Vs for the longest amount of time without ac-
quiring more edges, named PIES (Min). However, the current replacement strate-
gies do not consider the clustering structure into account. Thus, we propose a new
clustering-preserving replacement strategy to retain the hub nodes in clusters and
replace the peripheral nodes to preserve the inherent structure.
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4.2 Clustering-preserving Node Replacement

The basic rationale is that the centrality of the nodes in a cluster depends on their
degree, and the hub node tend to have higher degree than that of its neighbors. Thus
if a node to be replaced is of high degree, we consider that it has higher probability
to be the hub node of its cluster such that the sampling process should take further
consideration whether it should be selected as the replaceable node.

Algorithm 1 Proposed Select Replaced Node(Vs)
Input: Set of sampled nodes: Vs;
Output: Selected node to be replaced: u′′.
1: i← discreteUni f orm[1, |Vs|]
2: u′←Vs[i]
3: f lag← 1,u′′← u′,min← |Ns(u′)|
4: for all ne ∈ Ns(u′) do
5: if |Ns(ne)|> |Ns(u′)| then
6: f lag← 0
7: break
8: else
9: if |Ns(ne)|< min then

10: min← |Ns(ne)|
11: u′′← ne
12: end if
13: end if
14: end for
15: if f lag = 0 then
16: u′′← u′

17: end if
18: Return: u′′

As shown in Algorithm 1, u′ is the selected node uniformly at random, f lag is a
boolean variable used to record if the selected node u′ has higher degree than that
of all its neighbors, and Ns(u′) is a set of neighbor nodes of u′ in Vs. min is used
to record the smallest degree of neighbour Ns(u′) of node u′. First, we uniformly
select the node u′ that could be replaced at random. Second, we need to decide
whether to replace this node or its neighbour. We compare its degree with that of all
its neighbors. If the node’s degree is higher than all its neighbors’, which indicates
the node is probably still a hub node in the cluster, we should not replace the current
selected node u′ but one of its neighbor with the lowest degree as replaceable node
instead. In this manner, hub nodes in the sample are kept on the fly, preserving the
inherent clustering structure of original graph stream.

4.3 Isolated Nodes Elimination

We define sampled nodes in the sample as the node reservoir Vs, and denote isolated
nodes by those nodes kept in Vs with no edges attached. The first reason is that in
replacement phase of PIES, random selection of the replaceable node may cause the
newly added node becomes isolated. Here is a concrete example to illustrate how
such kind of isolated nodes are produced.

Example 1: Assuming the new edge et = (u,v, t) arrives at timestamp t and is going to be
inserted into Es, when Vs = [a1,a2, ...an,u] (i.e., u belongs to Vs but v does not). Since node v does
not belong to Vs, PIES should randomly select a replaceable node for it. However, node u has a
probability p = 1/|Vs| to be selected to be the replaceable one so that it will be removed from Vs

after v is added. Since u does not belong to Vs any more after the node replacement, et will not be
inserted such that v becomes an isolated node.
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Obviously, this situation happens from time to time that an incident node of new
edge is selected as the one to be replaced. To get rid of this problem, we design
a stack structure, named ForbiddenStack and stipulate that nodes existing in this
stack should not be selected as replaceable nodes. For each new edge, its associated
nodes will be added into ForbiddenStack such that they are forbidden to be chosen as
replaceable nodes. When the next edge arrives, nodes in the forbidden stack should
be popped up such that it would not influence further node replacement.

The second reason is that after the replaceable node is chosen and needs to be
replaced, the neighbours that only connect to the replaceable node become isolated.
It is because PIES removes all incident edges of the replaceable node such that the
neighbours which only connect with it will have no edge attached. The solution is to
check the degrees of neighbours of the replaceable node. If the degrees of neighbors
are reduced to zero, those isolated nodes should be removed.

4.4 Edge-deletion Operation

Incorporating the ability to delete edges is of crucial importance in a fully-dynamic
streaming setting. For example, if the sampling is performed over a sliding window,
outdated edges need to be removed from the tail end of the sliding window timely.
However, PIES does not take the edge-deletion request into consideration. Thus we
propose an efficient deletion method to fully support edge-deletion requests. The
pseudocode description is shown in Algorithm 2. Once an edge-deletion is required,
if the corresponding edge exists in the sample, it should be directly eliminated from
the sample. Otherwise it means the edge was not sampled into the reservoir be-
fore and we just ignore it. Note that the edge-deletion request deems to be always
satisfied since the deletion of an edge means that the influence of the edge and its
incidental nodes on the structure of graph should be eliminated as soon as possible.
Moreover, we check the degree of incidental nodes of the deleted edge and remove
them if their degree equals to zero after the deletion operation. It guarantees this ex-
tension would not introduce extra isolated nodes into the sample. Note that because
of the edge deletion operation, the node reservoir may not meet the target size and
it will be afterwards compensated again by adding new edges.

Algorithm 2 Edge-deletion(et , Gs)
Input:

Edge to be deleted: et = (−,⟨u,v, t⟩);
Sampled subgraph: Gs = (Vs,Es).

Output:
Updated sampled subgraph: Gs.

1: if et ∈ Es then
2: Es← Es−{et}
3: if |Ns(u)|= 0 then

4: Vs←Vs−{u}
5: end if
6: if |Ns(v)|= 0 then
7: Vs←Vs−{v}
8: end if
9: end if

10: Return: Gs
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4.5 Clustering-structure Representative PIES

Based on these improvements above, we propose the clustering-preserving partially-
induced-edge-sampling algorithm, namely CPIES, to handle the fully-dynamic
graph streams. The algorithmic description is shown in Algorithm 3.

Compared with the basic PIES algorithm, the proposed CPIES is more likely to
keep hub nodes from different clusters and avoid isolated nodes such that CPIES
should maintain the clustering structure in the samples well.

Algorithm 3 Clustering-structure Representative PIES
Input:

Graph stream by time-stamp t: G(t) = (V,E);
Sample size: n.

Output:
Sampled subgraph by time-stamp t: Gs(t) = (Vs,Es).

1: Vs← /0,Es← /0, t← 0
2: while the edge stream (symbol,et ) arrives at t do
3: et = (u,v, t)
4: ###{Edge addition}
5: if symbol = ’+’ then
6: if |Vs|< n then
7: if u /∈Vs then
8: Vs←Vs ∪{u}
9: end if
10: if v /∈Vs then
11: Vs←Vs ∪{v}
12: end if
13: Es← Es ∪{et}
14: m← |Es|
15: else
16: pe← m

t
17: r← Random(0,1)
18: if r < pe then
19: ForbiddenStack← ForbiddenStack∪

{u,v}
20: if u /∈Vs then
21: u′← Select Replaced Node(Vs)
22: Vs←Vs ∪{u}−u′

23: for each edge e′ incident to u′ in Es
do

24: Es← Es−{e′}
25: end for
26: end if
27: if v /∈Vs then
28: u′← Select Replaced Node(Vs)
29: Vs←Vs ∪{v}− v′

30: for each edge e′ incident to v′ in Es
do

31: Es← Es−{e′}
32: end for
33: end if
34: ForbiddenStack←ForbiddenStack−

{u,v}
35: end if
36: ###{Partial edge induction}
37: Es← Es ∪{et}
38: end if
39: end if
40: ###{Edge deletion}
41: if symbol = ’-’ then
42: Gs← Edge-deletion(et ,Gs)
43: end if
44: t++
45: end while

5 Experimental Evaluation
This section presents a series of experiments to evaluate the qualities of various
sample strategies on their abilities of preserving structural properties. First of all,
we will briefly describe the graphs we used and the methodology for the evalua-
tion. Then we discuss the obtained results. We implement streaming edge sampling
(StreamES), streaming node sampling (StreamNS), PIES, PIES (min) and proposed
CPIES using C++ language. For each sample rate p, we experiment with five d-
ifferent runs and calculate various metrics for designated snapshots of real-world
networks.

5.1 Real-world graph streams

To validate the effectiveness of our proposed method, the real-world graphs are cho-
sen from different domains and they are obtained from the Stanford Large Network
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Dataset Collection [9]. A brief summary of these real networks is shown in Table 1.

Table 1: Summary of real-world graphs used in the experiments. We accumulate
graph streams based on specific time interval in order to obtain corresponding snap-
shots and the statistics of the end streams are given. Abbreviations are described as
follows: # simple edges: number of non-loop and non-duplicate edges; # snapshots:
number of snapshots; # comps: number of components; CC: the average clustering-
coefficient for all nodes in the graph.

|G| |V | |E| #simple edges Time span
(days)

Interval
(months) #snapshots Statistics of the end streams

#comps diameter radius density CC
Enron 151 50,572 1611 1138 6 7 2 4 3 0.14400 0.5210
Email-Eu 986 332,334 16,064 803 2 14 1 7 4 0.03308 0.4070
Col Msg 1,899 59,835 13,835 193 1 7 4 8 4 0.00772 0.1097
Reality 6,809 52,050 7697 106 0.5 8 1 8 4 0.00033 0.0178
Slashdot 51,068 280,443 117,340 371 2 7 1 17 9 0.00009 0.0201
Fackbook 46,952 876,933 182,384 1560 4 14 842 18 9 0.00019 0.1149

5.2 Evaluation methodology & measurements

Current measures of representativeness are inadequate for our target: how well the
clustering structure is represented by the counterpart of samples. Hence, we describe
our methodology on how to evaluate the clustering structure quantitatively.
Methodology: Firstly, we generate the clusters of each snapshot in original graph
streams using any credible clustering algorithm to serve as ground-truth, and then
run the same algorithm on the samples generated by these sampling techniques.
Note that in order to obtain method-independent results, we utilize two credible and
scalable clustering algorithms including: Blondel [4] and BigClam [11] to generate
the ground-truth clusters. Secondly, we evaluate the clustering quality of the sub-
graph generated by each sampling technique using multiple metrics to validate the
effectiveness of the methods.
Measurements: We now briefly describe several clustering quality metrics to as-
sess how representative samples are in terms of the inherent clustering structure in
the larger network. We consider precision and recall as two main aspects of clus-
tering quality, and each aspect needs to be handled separately without losing the
significance of both. Thus, first of all, we utilize δ -precison and δ -recall proposed
in [12] to capture the differences of clustering structure between the original graph
and the sampled counterpart. δ is a predefined purity threshold and which measures
the correctness of the relation between clusters of original graph and those of sam-
pled counterpart. Two clusters are considered a match if the degree of match is not
less than δ . Higher value of δ -precision means that the obtained clusters of Gs are
more precisely representative of the ground-truth clusters of G while higher value
of δ -recall indicates the ground-truth clusters of G are more successfully covered
by the obtained clusters of Gs.

Secondly, we also employ several representative metrics widely used for eval-
uating clusters in the graph including: adjusted Rand index (ARI) [5], normalized
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mutual information (NMI) [5] and accuracy for number of clusters (ANC) [11] to
evaluate the clustering results of the sampled graphs. Note that those metrics are
designed solely to assess the clustering quality on the entire graph, not particularly
on the sample. To make a fair comparison, we utilize them on the subgraph G(Vs)
(i.e., the same set of nodes in the sample).

5.3 Experimental Results

Overall performance: In the first experiment, we sample 20% of the total number of
nodes that appear in the stream as it is progressing. In order to evaluate the sample
quality in a streaming setting, we take snapshots at different time points in graph
streams based on their lifetime (i.e., the number of edges ordered by time-stamps)
and compute multiple quality metrics for each snapshot, and then we calculate the
“average” scores over all the snapshots to assess the overall performances. We report
the performances of these sampling methods for each network in Table 2. Here we
only present the results using Blondel clustering, and other results using BigClam
algorithms exhibit similar behaviors. Some remarkable conclusions can be drawn as
follows:

Table 2: The qualities of various sampling strategies on real graphs (p = 20%). Be-
sides, all the metrics are calculated by using Blondel clustering algorithms on both
original graph and the sampled counterpart. Bold values indicate the best results for
corresponding metrics. Please note that the maximum value of δ -recall is equal to
the sample rate p.

(a) Enron Metrics CPIES PIES StreamNS StreamES PIES (Min) (b) Email-Eu Metrics CPIES PIES StreamNS StreamES PIES (Min)

Measures

1.0-precision 0.683 0.662 0.547 0.704 0.684

Measures

1.0-precision 0.242 0.347 0.326 0.589 0.383
1.0-recall 0.114 0.110 0.085 0.103 0.118 1.0-recall 0.041 0.025 0.021 0.028 0.027
0.5-precision 0.868 0.840 0.807 0.764 0.862 0.5-precision 0.729 0.736 0.716 0.690 0.729
0.5-recall 0.155 0.144 0.115 0.106 0.150 0.5-recall 0.117 0.098 0.098 0.031 0.099
0.0-precision 0.883 0.852 0.832 0.764 0.879 0.0-precision 0.785 0.774 0.770 0.708 0.773
0.0-recall 0.164 0.151 0.139 0.106 0.154 0.0-recall 0.131 0.116 0.117 0.031 0.111
ANC 0.861 0.857 0.821 0.548 0.825 ANC 0.845 0.549 0.543 0.106 0.540
NMI 0.784 0.766 0.751 0.736 0.770 NMI 0.611 0.546 0.555 0.504 0.545
ARS 0.646 0.606 0.561 0.343 0.595 ARS 0.439 0.364 0.362 0.043 0.365

(c) Col Msg Metrics CPIES PIES StreamNS StreamES PIES (Min) (d) facebook Metrics CPIES PIES StreamNS StreamES PIES (Min)

Measures

1.0-precision 0.397 0.149 0.120 0.307 0.192

Measures

1.0-precision 0.961 0.940 0.955 0.903 0.941
1.0-recall 0.054 0.002 0.002 0.012 0.011 1.0-recall 0.170 0.158 0.169 0.145 0.158
0.5-precision 0.455 0.222 0.210 0.478 0.281 0.5-precision 0.975 0.958 0.973 0.935 0.959
0.5-recall 0.060 0.008 0.009 0.018 0.019 0.5-recall 0.172 0.159 0.171 0.146 0.160
0.0-precision 0.571 0.417 0.452 0.515 0.480 0.0-precision 0.980 0.963 0.978 0.940 0.963
0.0-recall 0.093 0.046 0.048 0.023 0.054 0.0-recall 0.172 0.160 0.172 0.146 0.161
ANC 0.437 0.789 0.913 0.128 0.809 ANC 0.951 0.928 0.856 0.795 0.931
NMI 0.235 0.172 0.205 0.391 0.171 NMI 0.781 0.759 0.779 0.742 0.763
ARS 0.043 0.043 0.055 0.017 0.049 ARS 0.699 0.666 0.686 0.597 0.669

(e) Slashdot Metrics CPIES PIES StreamNS StreamES PIES (Min) (f) Reality Metrics CPIES PIES StreamNS StreamES PIES (Min)

Measures

1.0-precision 0.877 0.867 0.851 0.834 0.811

Measures

1.0-precision 0.514 0.498 0.549 0.485 0.471
1.0-recall 0.022 0.021 0.021 0.020 0.020 1.0-recall 0.083 0.077 0.073 0.075 0.080
0.5-precision 0.892 0.882 0.866 0.875 0.842 0.5-precision 0.925 0.835 0.832 0.852 0.797
0.5-recall 0.027 0.027 0.028 0.024 0.030 0.5-recall 0.147 0.144 0.134 0.140 0.140
0.0-precision 0.911 0.903 0.895 0.888 0.873 0.0-precision 0.861 0.868 0.892 0.880 0.842
0.0-recall 0.058 0.059 0.062 0.041 0.066 0.0-recall 0.184 0.180 0.140 0.164 0.184
ANC 0.205 0.220 0.244 0.140 0.322 ANC 0.886 0.897 0.652 0.869 0.792
NMI 0.381 0.362 0.419 0.419 0.345 NMI 0.885 0.879 0.892 0.860 0.876
ARS 0.158 0.147 0.154 0.120 0.157 ARS 0.728 0.714 0.748 0.620 0.705

• The total charts of these results are conclusive. CPIES algorithm outperforms
other algorithms in most metrics. This is because that CPIES is biased towards



10 Jianpeng Zhang, Kaijie Zhu, Yulong Pei, George Fletcher, and Mykola Pechenizkiy

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Sampling rates

A
R

S

CPIES

PIES

StreamES

StreamNS

PIES(Min)

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Sampling rates

N
M

I

CPIES

PIES

StreamES

StreamNS

PIES(Min)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Sampling rates

0
.5

-r
e

c
a

ll

CPIES

PIES

StreamES

StreamNS

PIES(Min)

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

Sampling rates

0
.5

-p
re

c
is

io
n

CPIES

PIES

StreamES

StreamNS

PIES(Min)

(a) Enron network

0 0.5 1
0.75

0.8

0.85

0.9

0.95

1

Sampling rates

0
.5

-p
re

c
is

io
n

CPIES

PIES

StreamES

StreamNS

PIES(Min)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Sampling rates

0
.5

-r
e

c
a

ll

CPIES

PIES

StreamES

StreamNS

PIES(Min)

0 0.5 1
0.85

0.9

0.95

1

Sampling rates

N
M

I

CPIES

PIES

StreamES

StreamNS

PIES(Min)

0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

Sampling rates

A
R

S

CPIES

PIES

StreamES

StreamNS

PIES(Min)

(b) Reality network

Fig. 1: The impact of varying sample rate p on quality metrics on Enron and Reality
networks using Blondel clustering.

the central nodes with high degree, and they are good representatives of the un-
derlying clustering structure. For PIES algorithm, the replaced nodes may be the
hub nodes of clusters. It will destroy the topology structure and make the clus-
ters in the sample loss of hub nodes and critical connection. Since StreamES and
StreamNS sampling uniformly sample the edges/nodes without considering the
inherent structure of network, their performances highly depend on the structures
of graphs.

• Besides, we found that sampling algorithms that include an induced graph step
(i.e., CPIES, PIES and StreamNS) in their process perform better than StreamES
(under-sample of edges) in most case because they contain more edges incident
to the sampled nodes.

Note that the number of isolated nodes is also analyzed for both CPIES and
PIES. Because PIES replace nodes at random, it is inevitable that its sampled coun-
terpart contains some nodes with zero degree (i.e., isolated nodes). Each time a new
edge is sampled from the stream, its incident nodes replace randomly selected n-
odes from the reservoir. This random replacement policy could replace high-degree
nodes while isolated nodes remain in the reservoir. However, the proposed CPIES
completely avoid isolated nodes and achieves better sample quality.
The impact of sampling rates: In the second experiment, we analyze the impact of
the sample rate p. The sample rate p controls the ratio of the number of nodes be-
tween the original graph and the sampled counterpart. The sample rate p increases
gradually from 0.20 to 0.80 with the interval of 0.20. We run each sampling algo-
rithm 3 trials and take the average of each metrics.

Fig. 1 shows the the average results of various metrics on Enron and Reality
networks using Blondel clustering, and we can observe that CPIES performs con-
sistently well with different sampling rates. Note that StreamES does not include an
induced graph step so it underestimates the number of edges of the samples such
that it fails to preserving the clustering structure well.
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6 Conclusion
In this work, we present a new clustering-structure representative sampling method
to produce samples from fully-dynamic graph streams. It is capable to retain the in-
fluential nodes of clusters and discard isolated nodes such that the clustering struc-
ture of original graph is preserved. We empirically demonstrate that CPIES can
represent inherent clustering structure of graph streams in an online fashion, and
it outperforms current online sampling algorithms in most properties, especially in
terms of clustering performance.

In future work, one interesting direction is to explore more general ways to sam-
ple the fully-dynamic graph while preserving the clustering structure. Another di-
rection is to design credible measurements to quantitatively evaluate the quality of
sample processes. Such quality measures will guide our understanding and study of
improved sampling methods.
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