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Stable Treemaps via Local Moves

Max Sondag, Bettina Speckmann, and Kevin Verbeek

Fig. 1. A non-sliceable treemap (a treemap that cannot be recursively sliced into two parts) over time. In each image the weights of
the underlying data have changed. To maintain a balance between aspect ratio and stability we modify the treemap via local moves.
Symbols (squares, circles, and triangles) mark the pairs of rectangles to which local moves are applied.

Abstract— Treemaps are a popular tool to visualize hierarchical data: items are represented by nested rectangles and the area of
each rectangle corresponds to the data being visualized for this item. The visual quality of a treemap is commonly measured via the
aspect ratio of the rectangles. If the data changes, then a second important quality criterion is the stability of the treemap: how much
does the treemap change as the data changes. We present a novel stable treemapping algorithm that has high visual quality. Whereas
existing treemapping algorithms generally recompute the treemap every time the input changes, our algorithm changes the layout of
the treemap using only local modifications. This approach not only gives us direct control over stability, but it also allows us to use a
larger set of possible layouts, thus provably resulting in treemaps of higher visual quality compared to existing algorithms. We further
prove that we can reach all possible treemap layouts using only our local modifications. Furthermore, we introduce a new measure for
stability that better captures the relative positions of rectangles. We finally show via experiments on real-world data that our algorithm
outperforms existing treemapping algorithms also in practice on either visual quality and/or stability. Our algorithm scores high on
stability regardless of whether we use an existing stability measure or our new measure.

Index Terms—Treemap, Stability, Local Moves.

1 INTRODUCTION

Treemaps are a well-known and popular tool to visualize hierarchical
data. The input for a treemapping algorithm is a set of n data values
a1, . . . , an a hierarchy upon these values (the tree), and a shape, most
commonly a rectangle R. The data value associated with each interior
node in the tree must correspond exactly to the sum of the data values
of its children (the values a1, . . . , an correspond to the leaves of the
tree). The output of a treemapping algorithm is a recursive partition
of the input shape into disjoint regions such that (a) the size of each
region corresponds to its data value, and (b) the regions of the children
of an interior node in the tree form a partition of the region of their
parent. By definition, treemaps make very efficient use of space.

The vast majority of treemapping algorithms uses rectangles and
also this paper focusses exclusively on rectangular treemaps. The visual
quality of rectangular treemaps is most commonly measured via the
aspect ratio of its rectangles. Shneiderman [13] introduced the first
treemapping algorithm (“Slice-and-Dice”) in 1991. Despite its popu-
larity it quickly became apparent that Slice-and-Dice was producing
rectangles of high aspect ratio and hence poor visual quality. Squarified
treemaps by Bruls, Huizing and Van Wijk [3] aimed to ameliorate this
fact using a heuristic approach. From a theoretical point of view the
aspect ratio of treemaps can become arbitrarily bad: consider a treemap
with only two rectangles, one of which has an extremely large area
while the other has an extremely small area (and hence necessarily
becomes extremely thin). Nevertheless, Nagamochi and Abe [12] de-
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scribe an algorithm which provably approximates the optimal aspect
ratio for a given treemap. Eventually De Berg, Speckmann and Van
Der Weele [5] proved that minimizing the aspect ratio for rectangular
treemaps is strongly NP-complete.1

If the input data change, then a second important quality criterion
is the stability of the treemap: how much does the treemap change
as the data changes. It is clearly desirable that small changes in the
data result only in small changes in the treemap. There are a variety
of stable treemap algorithms which try to maintain an order on the
input data. There are also several related quality metrics which measure
how stable a treemap is. We review both in detail in Section 2. All
these existing treemap algorithms have two things in common: (i) they
recompute the treemap completely when the data changes, and (ii)
they use exclusively sliceable layouts for their treemaps.

Contribution. We present a novel stable treemapping algorithm that
has high visual quality. In contrast to previous treemapping algorithms
we (i) adapt our treemap via local modification, and (ii) explore the
complete space of possible treemap layouts, including non-sliceable
layouts (see Fig. 1 for an example of the resulting treemaps). We
prove that our approach may result in treemaps of higher visual quality
and also show experimentally that our algorithm outperforms existing
treemapping algorithms on either visual quality and/or stability.

Definitions and Notation. To describe our contribution in greater
detail, we introduce some definitions and notation. First of all, we
distinguish single-level treemaps and multi-level treemaps. A single
level treemap has no hierarchy, its tree consist only of a root node with
n leaves. Multi-level treemaps correspond to trees with interior nodes
in addition to the root. A multi-level treemap has a clear recursive
structure: the rectangles which correspond to the children of the root
form a single-level treemap (a partition of the input rectangle) and
each such rectangle in turn serves as the input rectangle for further

1This result was previously claimed in [3] but not in fact proven.



subdivision according to its children. When studying treemaps it is
hence generally sufficient to study single-level treemaps, since all re-
sults directly extend to multi-level treemaps; a multi-level treemap can
be viewed as multiple nested single level treemaps where the input
rectangle of the child is the rectangle determined by the parent. This
has the added advantage of removing unnecessary complexity from
arguments. For all theoretical parts of this paper (Sections 3–5) we
hence mostly consider only single-level treemaps. The experimental
evaluation in Section 7 uses also multi-level treemaps, which are con-
structed recursively according to the algorithm which we describe for
single-level treemaps in Section 5.

Ri

Fig. 2. A non-
sliceable layout.
Rectangle Ri is
the center of a
“windmill”.

A single-level treemap is a partition of the input
rectangle R into a set of n disjoint subrectangles
R = {R1, . . . , Rn}, where each rectangle Ri has
area ai. Such a partition of rectangles into subrect-
angles is known as a rectangular layout L, or layout
for short. Layouts have been studied in a variety
of research areas, including floorplans in architec-
ture and VLSI design and rectangular cartograms
in automated cartography. For a layout L, a maxi-
mal segment is a maximal contiguous horizontal or
vertical line segment contained in the union of the
boundaries of rectangles in R. We distinguish be-
tween two types of layouts: sliceable layouts and non-sliceable layouts.
A layout is sliceable if it can be recursively sliced into two parts along
a maximal segment until the layout consists of only a single rectangle.
Otherwise the layout is non-sliceable (see Fig. 2 for an example).

All treemap algorithms discussed in this paper (with the exception
of our stable treemapping algorithm) produce only sliceable layouts.
This is obvious for Slice-and-Dice, since slicing cuts are an integral
part of the algorithm. Squarified treemaps, all algorithms using strips
and spirals, and the Pivot-by-* family all explicitly construct slicing
cuts. But also the treemaps created using space-filling curves (Hilbert
and Moore) are sliceable: the base of the recursion are four rectangles
and every layout with 4 rectangles is sliceable.
Organization. Section 2 discusses related work. In Section 3 we
first give some additional background on rectangular layouts. We
then prove a lower bound on the maximum aspect ratio of sliceable
layouts and argue that non-sliceable layouts can achieve a lower aspect
ratio. In Section 4 we introduce the local moves which we use to
locally modify our treemaps. We then prove that these local moves
are powerful enough to explore the complete space of treemap layouts
– both sliceable and non-sliceable layouts. In Section 5 we present
our stable treemapping algorithm using local moves. In Section 6
we introduce a new measure for stability which arguably captures the
relative positions of rectangles better than existing stability measures.
Finally in Section 7 we report on extensive experiments comparing our
new treemapping algorithm to existing treemapping algorithms, both on
single and multi-level treemaps using real-world data. The experiments
show that our algorithm outperforms existing algorithms also in practice
on either visual quality and/or stability. Our algorithm scores high on
stability regardless of whether we use an existing stability measure or
our new measure.

2 RELATED WORK

Shneiderman and Wattenberg [14] proposed the first type of treemap
that takes stability into account: the ordered treemap. Here an additional
order on the treemap rectangles is specified and rectangles that are
near each other in this order are attempted to be placed near each
other in the treemap. However, as the input data changes there are no
guarantees on how close any two rectangles will stay even if they are
neighbors in the order. There are several ordered treemap algorithms:
the Pivot-by-(Middle, Size and Split-Size) algorithms by Shneiderman
and Wattenberg [14], the Strip algorithm by Bederson, Shneiderman
and Wattenberg [2], the Split algorithm by Engdahl [6], the Spiral
algorithm by Tu and Shen [16], and the Hilbert and Moore algorithms
by Tak and Cockburn [15].

To measure the success of maintaining the order underlying ordered
treemaps, Bederson et al. [2] introduced the readability metric. The

readability metric measures how often the motion of the reader’s eye
changes direction as the treemap is scanned in order. In addition, Tu
and Shen [16] introduced the continuity metric which measures how
often the next item in the order is not the neighbor of the current item.
Both these metrics attempt to quantify how easy it is to visually scan
an ordered treemap to find a particular item.

To measure the stability of treemaps, Shneiderman and Watten-
berg [14] proposed the layout-distance-change function. There are
three variations of this function. The first is the variance-distance-
change function by Tak and Cockburn [15]. The second variant, also by
Tak and Cockburn [15], is locational-drift, which measures the stability
over a larger period of time. The final variant, proposed by Hahn et
al. [10], measures the stability of non-rectangular treemaps using the
distance between centroids of regions. Very recently Hahn et al. [9]
proposed to use relative-direction-change, which measures the change
in rotation between rectangles. This last measure is related to our pro-
posed stability measure since it incorporates the relative positions of
regions. However, we believe that our measure captures the relative po-
sition of specifically rectangles better. In Section 6 we discuss stability
measures in more detail.

Not all treemaps use rectangles. Alternative models include Voronoi
treemaps by Balzer, Deussen, and Lewerentz [1], orthoconvex and
L-shaped treemaps by De Berg et al. [5], and Jigsaw treemaps by
Wattenberg [18]. Furthermore, Hahn et al. [10] describe an approach
for stable Voronoi treemaps.

As mentioned before, rectangular layouts are studied in a variety
of research areas. Of particular interest here are several results from
VLSI design. In this context two rectangular layouts are considered
equivalent if each rectangle has the same adjacencies in both layouts,
that is, if the two layouts have the same dual graph. The question then
arises how many non-equivalent layouts exist that consist of exactly n
rectangles. Yao et al. [19] showed how to represent rectangular layouts
with so-called twin binary tree sequences. Using these twin binary
tree sequences they proved that the number of non-equivalent sliceable
layouts equals the Baxter number [4] and that the number of non-
equivalent non-sliceable layouts equals the Schröder number [8]. Using
the same representation by twin binary tree sequences, Young, Chu,
and Shen [20] showed how to transform any two rectangular layouts
into each other using local modifications. Our local moves are inspired
by their method. We show in Section 4 how to define simple moves
directly on a treemap (and hence avoiding the somewhat involved twin
binary trees) to achieve the same result, namely a sequence of simple
modifications which transforms any two treemaps into each other.

3 LAYOUTS

For a given set of areas a1, . . . , an there are multiple ways to draw a
treemap, that is, there are multiple layouts that can represent the same
set of areas. We want to find the layout that has the highest visual qual-
ity, that is, the layout that minimizes the aspect ratios of its rectangles.
To do so we need to explore the space of possible layouts. As stated
above, all current rectangular treemapping algorithms produce only
sliceable layouts. In this section we prove that the quality of treemaps
can be improved substantially by considering all possible layouts, slice-
able and non-sliceable. Our algorithm, presented in Section 5, is the
first treemapping algorithm that can produce all possible layouts.

Two layouts representing different areas cannot be the same.
Nonetheless they can have a very similar structure. We therefore con-
sider a combinatorial equivalence between layouts. For a layout L, a
maximal segment is a maximal contiguous horizontal or vertical line
segment contained in the union of the boundaries of rectangles in R.
We denote the set of maximal segments of a layout L by S = S(L).
We define a partial order on maximal segments of the same orientation
as follows. For two horizontal maximal segments s1 and s2 we say
that s1 < s2 if s1 is below s2, and there exists a rectangle in R that
spans from s1 to s2. Vertical maximal segments similarly define a
partial order from left to right. Following Eppstein et al. [7], we say
that two layouts L and L′ are order-equivalent if the partial orders for



R1R2

R3 R4

R1R2

R3 R4

Fig. 3. Two order-equivalent layouts: the blue arrows indicate the partial
order on the vertical maximal segments, the red arrows indicate the
partial order on the horizontal maximal segments.

L and L′ are isomorphic.2 An example of order-equivalent layouts is
given in Figure 3. In [7] it was shown that, for any layout L, there is
always exactly one layout L′ that is order-equivalent to L and correctly
represents a given set of areas. Thus, for any fixed set of areas, the
possible ways to draw a treemap with these areas corresponds to the
set of order-equivalence classes of all possible layouts.
Sliceable and Non-sliceable layouts. If a layout L is sliceable, then
all layouts order-equivalent to L are also sliceable. Existing rectangular
treemapping algorithms hence exclude a large number of options from
consideration, which may result in treemaps of sub-optimal visual
quality. We aim to show this formally. Below we prove that, for certain
sets of areas, the maximum aspect ratio of any sliceable layout is much
larger than the maximum aspect ratio of the optimal layout.

R1

R2

R3

R4

R5

s

Fig. 4. R1 is
grounded at maxi-
mal segment s.

We say that a rectangle Ri ∈ R is grounded if
Ri is bounded by at least one maximal segment
s for which it is the only rectangle on that side of
s (see Fig. 4). We claim that in a sliceable layout
all rectangles are grounded. Indeed, if this is not
the case, then there must be a rectangle Ri such
that all four bounding maximal segments have at
least two rectangles on the side of Ri. This results
in a “windmill pattern” with Ri in the center (see
Fig. 2). It is not hard to see that any layout that
contains a “windmill pattern” is non-sliceable. We
can now prove the following theorem.

Theorem 1. The maximum aspect ratio of a sliceable layout L is at
least

√
a2/a1, where a1 and a2 are the smallest and second-smallest

area in the layout, respectively.

Proof. Let ρ be the maximum aspect ratio of L and let R1 be the
rectangle with the smallest area in L. Let rectangle R2 be adjacent
to R1 such that R1 is grounded in the maximal segment shared with
R2. Without loss of generality we assume that rectangle R2 lies to the
right of rectangle R1. Denote the height and width of Ri by hi and wi,
respectively. From the grounded property we get that h1 ≥ h2. This
also implies that a2/a1 ≤ w2/w1. From the definition of ρ we get that
h1 ≤ ρw1. We further get that

ρ ≥ w2

h2
≥ w2

h1
≥ w2

ρw1
.

As a result, ρ2 ≥ w2/w1 ≥ a2/a1. Thus the maximum aspect ratio of
L is at least

√
a2/a1. This is minimized when R2 is the rectangle with

the second smallest area in L.

Consider the following concrete example with 5 areas: a1 = 1 and
a2, a3, a4, a5 = 16. According to Theorem 1 any sliceable layout
will have a maximum aspect ratio of at least

√
16/1 = 4. On the

other hand, there exists a non-sliceable layout with these areas with
maximum aspect ratio ≈ 1.333, as is shown in Figure 5. In fact, this
difference in maximum aspect ratio between sliceable layouts and non-
sliceable layouts can be made arbitrarily large: As a1 tends to 0, the
maximum aspect ratio of the non-sliceable layout in Figure 5 tends to
1, while the maximum aspect ratio of any sliceable layout tends to∞.

2Note that this equivalence is different from the equivalence considered by
Yao et al. [19] and mentioned in Section 2: order-equivalent layouts generally
do not have the same dual graph.

R2 R3

R4

R1

R5

R1

R2

R4

R5

R3

Fig. 5. Let a1 = 1 and a2 = a3 = a4 = a5 = 16. The maximum aspect
ratio in the non-sliceable layout on the right is ≈ 1.333. For any sliceable
layout the maximum aspect ratio is at least 4.

4 LOCAL MOVES

Our stable treemapping algorithm uses the concept of local moves.
A local move changes the order-equivalence class of the layout L
by changing the layout L locally. Local moves allow us to traverse
between all order-equivalence classes of layouts. Intuitively, we can
keep a treemap stable over time by limiting the number of local moves
between any two time steps. At the same time, the more local moves
we allow, the better the visual quality can be. Local moves hence give
us the power to control the tradeoff between stability and visual quality.
A local move typically changes the areas of the involved rectangles. We
can correct the areas in the resulting layout L′ using the hill-climbing
algorithm by Eppstein et al. [7] (for details see Section 5).

The final layout is order-equivalent to L′. Note that two order-
equivalent layouts may have different adjacencies across maximal seg-
ments (see Fig. 3). IfL′ has long maximal segments with many adjacent
rectangles on both sides, then adjusting the areas may result in non-local
changes of rectangle adjacencies. However, since these changes occur
only along maximal segments, they influence the relative positions of
rectangles only mildly. We hence claim that our treemaps are stable
if we allow only a small number of local moves. The experimental
evaluation in Section 7 supports this claim.

Our local moves are inspired by the work of Young et al. [20].
They use a representation of rectangular layouts with twin binary tree
sequences and show how to use this representation and an additional
labeling to transform any two rectangular layouts into each other using
only local moves. Their particular labeling is not suitable for the context
of treemaps and the representation by twin binary trees is somewhat
cumbersome. Below we hence introduce two new local moves which
operate directly on the treemap: stretch moves and flip moves. We prove
that one can transform any two order-equivalence classes of layouts
into each other using only these two moves.
Stretch move. Let s be a maximal segment and let R1 and R2 be two
rectangles adjacent to one of the endpoints of this segment. Without
loss of generality we assume that s is a vertical maximal segment. If
rectangles R1 and R2 do not have the same height we can apply a
stretch move. Let rectangle R2 denote the rectangle with the smallest
height. Without loss of generality we assume that rectangle R1 is to
the left of s. To apply the stretch move we then stretch rectangle R2 to
the left over rectangle R1 as is shown in Figure 6.

R2 R2

R1

s s

R1

Fig. 6. A stretch move at the upper endpoint of the maximal segment s.

R2

R1

R1 R2

Fig. 7. A flip move on rectangles R1 and R2.



Flip move. Let R1 and R2 be two rectangles that together form a
larger rectangle. The flip move flips the adjacency between R1 and R2

from horizontal to vertical or vice versa inside this larger rectangle. An
example of a flip move is illustrated in Figure 7.

4.1 Transforming rectangular layouts using local moves

We now prove that we can transform any layout L into any other layout
L′ using only local moves. For this transformation we need the notion
of a vertical stack layout. A layout is a vertical stack layout if it has
only horizontal (inner) maximal segments. The transformation from L
to L′ can now be summarized as follows. First we transform L into a
vertical stack layout. Next we transform this vertical stack layout into
another vertical stack layout. Finally we transform the resulting vertical
stack layout into L′. To show the existence of this transformation, we
need the three following components.

Transforming a layout to a vertical stack layout. To transform a
layout L to a vertical stack layout, we need to eliminate all vertical
(inner) maximal segments. Let s be a vertical maximal segment of L.
Furthermore, letR1 be the rectangle adjacent to the left top of s, and let
R2 be the rectangle adjacent to the right top of s. Now first assume that
R1 and R2 do not have the same height, and assume without loss of
generality that the height of R2 is smaller than the height of R1. In this
case we use a stretch move to stretch R2 over R1 (see Fig. 8). If R1

and R2 have the same height, then they form a larger rectangle together.
We use a flip move on R1 and R2 as is shown in Figure 9. Note that,
in both cases, we reduce the number of rectangles adjacent to s by at
least one. When there are no more rectangles adjacent to s, s will cease
to exist. Furthermore, our operations do not introduce new vertical
maximal segments. We can thus repeatedly apply this procedure until
all vertical maximal segments have been eliminated.

R1

R2 R2

R1

s s

Fig. 8. Rectangle R2 is stretched over rectangle R1: s has one less
rectangle adjacent to it.

R2

R1

s

R1 R2

s

Fig. 9. Rectangle R1 and R2 are flipped using a flip move: s has two
less rectangles adjacent to it.

Transforming vertical stack layouts. Consider any two adjacent rect-
angles R1 and R2 in a vertical stack layout. We can swap R1 and R2

in the vertical stack order by applying two flip moves to R1 and R2

(see Fig. 10). Since we can swap any two adjacent rectangles, we can
produce any order of rectangles in the vertical stack layout (this process
is the same as sorting with BubbleSort).

R2 R1

R1

R2

R2

R1

Fig. 10. Rectangles R1 and R2 are swapped using two flip moves.

R2

R1

R1 R2

Fig. 11. Inverting the Flip move.

R1

R2 R2

R1

Fig. 12. Inverting the Stretch move.

Inverting local moves. It is easy to see that all local moves can be
inverted. Trivially, a flip move is its own inverse (see Fig. 11). Further-
more, a stretch move that stretches R2 over R1 can be inverted by a
stretch move that stretches R1 over R2 (see Fig. 12).
We can now prove the following theorem:

Theorem 2. For any two layouts L1 and L2 with the same set of
rectangles, we can transform L1 into L2 using only stretch moves and
flip moves.

Proof. We can transformL1 into a vertical stack layoutL′1 as described
above. Similarly, we can transform L2 into a vertical stack layout L′2.
To transform L1 into L2, we first transform L1 into L′1. Next, we
transform L′1 into L′2 using appropriately chosen swaps of adjacent
rectangles. Finally we transform L′2 into L2 by inverting the local
moves used to transform L2 into L′2.

We can additionally show that, if the number of rectangles in L1 and L2

is n, then we need at most O(n2) local moves to transform L1 into L2.
Please note that the proof above is a so-called “constructive proof of

existence”. Our argument (i) shows that there always is a set of local
moves to transform one layout into the other, and (ii) it describes a
way to find these moves. Clearly the resulting transformation is not
very natural and we do not intend to use this transformation. Now that
we have proven that a transformation always exists, we can find more
suitable transformations in practice.

5 ALGORITHM

We now describe our stable treemapping algorithm Incremental
Treemap for time-varying data. Our algorithm uses the previous
treemap to generate the next one. We therefore need to describe how
to transform a treemap T with areas A = {a1, . . . , an} into a treemap
T ′ with areas A′ = {a′1, . . . , a′n}.

We first consider only a single-level treemap T . We construct the
initial treemap using the approximation algorithm by Nagamochi and
Abe [12]. To transform T into T ′, we use a very simple approach. First
we update the treemap T to have the areas in A′ using the hill-climbing
algorithm by Eppstein et al. [7].

The idea of the algorithm by Eppstein et al. is as follows. As
is shown in [7], there is an induced bijection between the space of
coordinates of the maximal segments (segment space) and the space
of the areas of the rectangles (area space). Hence, given a (tangent)
vector in the area space, in particular A′ − A, we can compute the
corresponding tangent vector x in the segment space by solving the
linear equation Jx = A′ − A, where J is the Jacobian matrix of the
bijection. Thus, we can locally change the areas from A to A′ by
moving the maximal segments in the direction of x. The Jacobian
matrix J is sparse and can easily be computed as, for each rectangle,
the area simply depends on the coordinates of the 4 maximal segments
bounding the rectangle. We can now proceed as in a gradient descent
approach by iteratively changing the maximal segment coordinates by
εx, for ε small enough, until we obtain the areas in A′.



Next, we attempt to improve the visual quality of the layout by
applying up to d local moves, where d is some predefined small constant
(in our experiments d = 4). A naive approach would simply try all
possible sets of at most d local moves. In Section 5.1 we explain how
to choose a suitable subset of possible moves to optimize performance.
The areas of the resulting layouts (after the at most d local moves) are
then again adjusted using the hill-climbing algorithm by Eppstein et
al. [7] to generate an order-equivalent layout with the correct areas. We
use the layout with the best average aspect ratio to construct T ′. Note
that we do not change the layout if doing so would lead only to a minor
improvement in aspect ratios. Therefore, if L is the layout of T with
updated areas A′, then we only change L into L′ if the sum of aspect
ratios in L′ is at least some predefined constant c lower than the sum of
aspect ratios in L (in our experiments we use c = 4).

If T is a multi-level treemap then we use our algorithm recursively
on the rectangles that represent subtrees. That is, we first transform the
single-level treemap which is formed by the root of T and its children
using a set of local moves. Then we recurse into the treemaps inside
each of the resulting rectanglesRi and apply the algorithm on the lower
levels. The choice of moves is restricted to those moves that involve
only subrectangles of Ri which ensures that the hierarchy information
is maintained. Clearly changing the layout on a higher level of T
has more impact than changing it on a lower level, as it affects all
subtreemaps of T . We account for this by adapting the value of c
according to the height of the level. In our implementation we are using
c = 4 ∗

√
height of the level.

Handling additions. When additional data points become available
in a changing data set we need to add a new rectangle to the treemap.
We introduce such new rectangles before performing any local moves.
To add a new rectangle Rk to the treemap, we partition an existing
rectangle Ri into two subrectangles Ri and Rk (see Fig. 13). We pick
Ri in such a way that the aspect ratios are minimized.

Rk

Ri

Ri

Fig. 13. Rectangle Rk is inserted next to Ri by partitioning Ri into two
sub rectangles.

Handling deletions. For similar reasons we may also need to remove
a rectangle from the treemap. Removing rectangles is slightly more
involved than adding rectangles, and happens before any local moves
are performed, but after new rectangles have been added. There are
two cases we need to consider when removing a rectangle Ri:

Ri is grounded: There necessarily exists a maximal segment s for
which Ri is the only rectangle on one side of s. To remove Ri we
stretch all rectangles on the other side of s over Ri using stretch
moves (see Fig. 14).

Ri

s

Rk

Rl Rl

Rk

Fig. 14. We delete the grounded rectangle R1 from the layout by stretch-
ing R2 and R3 over R1.

Ri is not grounded: Ri must be in the center of a windmill pattern.
The goal is now to apply stretch moves to Ri until Ri becomes
grounded and we are in the first case. Let e be the edge of Ri that
is adjacent to the fewest rectangles on the other side. Since Ri is
in the center of a windmill pattern, e must include an endpoint
of a maximal segment s. Without loss of generality e is above
Ri and the endpoint of s is on the left side of e. Then, as long as

Ri

Rj

Ri

Ris s
Rj

Fig. 15. If rectangle R1 is adjacent to multiple rectangles of all sides,
we can make R1 a grounded rectangle by repeatedly applying stretch
moves over an adjacent maximal segment s.

there is more than one rectangle on the top side of e, we stretch
the leftmost of those rectangles Rj over Ri. As soon as there is
only one rectangle Rj on the other side of e, we stretch Ri over
Rj (see Fig. 15). If we are unlucky, then Ri is still not grounded,
but it is now part of a larger windmill pattern. In that case we
repeat the procedure above until Ri finally becomes grounded.

We summarize our algorithm in the following pseudocode, where f(L)
measures the sum of aspect ratios in a layout L.

Algorithm IncrementalTreeMap(T ,A′,d,c)
1. if T is empty
2. Generate T ′ using the approximation algorithm.
3. else
4. L = correctAreas(L,A′)
5. Add rectangles to T that need to be in T ′.
6. Remove rectangles from T that are not in T ′.
7. Q0 = {L}
8. Lbest = L
9. for i = 1 to d
10. for L′ ∈ Qi−1

11. for all possible local moves m on L′

12. L′′ = apply(m, L′)
13. L′′ = correctAreas(L′′, A′)
14. if f(L′′) < f(Lbest)
15. Lbest = L′′

16. Qi = Qi ∪ {L′′}
17. if f(Lbest) < f(L)− c
18. Let the layout of T ′ be Lbest

19. for all children Tc of T
20. IncrementalTreeMap(Tc, A′(Tc), d, c)

Finally we give the pseudocode for an implementation of Eppstein’s et
al. [7] algorithm.

Algorithm correctAreas(L,A′)
1. Let A be the areas in L.
2. while ‖A−A′‖ is not small enough
3. Let J be the Jacobian matrix of mapping segments to areas.
4. Solve Jx = A′ −A for x.
5. Move maximal segments of L by εx.
6. Recompute areas A of L.
7. return L

5.1 Improving performance
The naive algorithm described above is not very efficient. There are two
reasons for that: (i) the number of layouts considered by the algorithm
is exponential in d, and (ii) updating the areas using the hill-climbing
algorithm is not very efficient. We address these two issues below.
Reducing the number of layouts. We first compute all layouts that
are the result of applying one local move. Of these layouts, we only
keep the k layouts with the smallest aspect ratios (in our experiments
we use k = 4). When applying a second local move to one of the k
remaining layouts, we consider only those local moves that involve a
maximal segment for which the adjacencies have been changed by the
first local move. Afterwards, we again keep only the best k layouts
and we repeat this procedure until we have applied d local moves per
layout. Although this approach may not find the best possible layout, it



does perform well in practice and the number of layouts considered is
no longer exponential in d.
Updating areas more efficiently. Computing the correct areas for gen-
eral (possibly non-sliceable) layouts is significantly more difficult than
computing the correct areas for sliceable layouts (areas for sliceable
layouts can simply be computed recursively). However, most layouts
contain large components that are sliceable. We can use this fact to
speed up our algorithm. While we can find a maximal segment s that
slices the layout, we simply place s according to the areas of the rectan-
gles on its two sides, and continue recursively on both sides of s. When
the layout is not sliceable, we try to find maximal segments that have
a single rectangle on both sides. These maximal segments can be re-
moved and reinserted later as a slicing maximal segment. Finally, when
no such maximal segments remain, we use the hill-climbing algorithm
to position the remaining maximal segments. This approach speeds up
our algorithm substantially in practice.

6 MEASURES OF STABILITY

One of the most common measures for stability is the layout-distance-
change function introduced by Shneiderman and Wattenberg [14]. The
layout-distance-change function measures the average change of each
rectangle in position and shape between two layouts. There are three
variants of this function. The first variant is the variance-distance-
change function by Tak and Cockburn [15], which measures the vari-
ance of the layout-distance-change. This allows us to distinguish be-
tween a large number of small changes which might be almost invisible,
and a small number of large changes. The second variant is the centroid-
positioning measure by Hahn et al. [10]. This measure captures the
average change of the centroids of rectangles between two layouts.
This approach can easily be extended to non-rectangular treemaps. The
third and final variant is the locational-drift measure, again by Tak and
Cockburn [15]. This measure captures how much the rectangles move
from their average position over a longer period of time: if rectangles
drift around the same position, it is easy to track the rectangles even
though the exact position changes every iteration.

All of these measures use the change in absolute position of a rect-
angle between layouts as their base. We claim that this is not sufficient
to measure the stability. We believe that the change in relative posi-
tion between rectangles is another important factor to determine the
stability. If the relative position between a pair of rectangles R2 and
R3 is unchanged, then even if the absolute positions of R2 and R3

change drastically, it is not too difficult to keep track of R2 and R3.
For example, in Figure 16 rectangle R1 has changed positions with
rectangles R2, . . . , R5. In absolute distance, the layout has changed
significantly and thus layout-distance-change and its variations give
a high score. However, as all rectangles R2, . . . , R5 have maintained
their relative position with regard to each other, it is actually quite easy
to track the rectangles from one layout to the next. By finding a single
rectangle from R2, . . . , R5 we can easily find all other rectangles from
R2, . . . , R5. Thus, when only small changes in the relative position of
the rectangles occur, the layout seems to be relatively stable even when
the absolute positions change drastically.

R2

R3
R1

R5

R4

R2

R3
R1

R5

R4

Fig. 16. Rectangle R1 has swapped with rectangle R2, . . . , R5. Even
though the absolute positions have significantly changed, it is still easy
to track the changes.

6.1 A new measure of stability
We introduce a new measure for stability that aims to properly capture
the change in relative position between rectangles. The relative position
between two rectangles is often perceived as above or below, and left
or right. To measure the relative position with respect to a rectangle Ri,

we subdivide the space around Ri into 8 sections {S1, S2, ..., S8} =
S(Ri) by extending the sides of Ri (see Fig. 17).

R1 S1

S2S3S4

S5

S6 S7 S8

Fig. 17. The space around
rectangle R1 is subdi-
vided into 8 sections.

Section S1 represents the East, Section S2

the NorthEast, etc. The relative position
of Rj with respect to Ri is now deter-
mined by the percentage of Rj in each of
the sections of S(Ri).

We determine the change of the relative
position between rectangles Ri and Rj in
layouts L and L′ by calculating to what
degree rectangle Rj stays in the same sec-
tions of rectangle Ri. Let pkij(L) be the
percentage of Rj that is in section Sk of
S(Ri) in layout L. We define the relative-
position-change between Ri and Rj as
follows:

Drel
ij (L,L′) =

1

2

8∑
k=1

∣∣∣pkij(L)− pkij(L′)∣∣∣ (1)

For example, in Figure 18 rectangleR2 was for 25% in S1 and for 75%
in S2 of rectangle R1. After the change R2 is for 100% in S1 which
results in a score of 0.25.

R1

R2
R1 R2

Fig. 18. 25% of the area of rectangle R2 was in the NorthEast section of
rectangle R1. In the next layout 100% of the area of R2 is in the East
section of R1.

We then calculate the overall relative-position-change by averaging
the relative-position-change for all pairs of rectangles Ri and Rj that
are in both layouts:

Drel(L,L′) =
1

|R|2
∑
i

∑
j

Drel
ij (L,L′) (2)

By definition, the relative-position-change is a value between 0 and
1, where 0 indicates no relevant change in the relative positions and 1
indicates the highest possible change of relative positions. Figure 19
and Figure 20 show two examples: In Figure 19 the relative positions
between rectangles do not change, and thus the relative-position-change
is 0 (in comparison, the layout-distance-change is 5.325). In Figure 20
the relative positions change significantly and the relative-position-
change is 0.45 (in comparison, the layout-distance-change is nearly the

R2

R3
R1

R5

R4

R2

R3
R1

R5

R4

Fig. 19. A change occurred in the layout, but all relative positions stay
the same. It is easy to track the movement of the rectangles. The
relative-position-change is 0 and the layout-distance-change is 5.325.
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R3

R1
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R4

Fig. 20. A change occurred in the layout which affects the relative
positions. It now becomes more difficult to track the movement of the
rectangles. The relative-position-change is 0.45 and the layout-distance-
change is 5.308.



same as for Fig. 19, namely 5.308). Note that it is much easier to keep
track of the rectangles in Figure 19 than in Figure 20, which is clearly
reflected in our stability measure.

Independently, Hahn et al. [9] very recently proposed relative-
direction-change as a measure for stability. Relative-direction-change
measures the difference in angles between the centroids of two rect-
angles Ri and Rj in layouts L and L′. Both this measure and our
relative-position-change capture the change in relative positions, but
there are two major differences. First, our measure has a cutoff point
for measuring the change in relative position: we do not distinguish
between Rj moving from North to East with respect to Ri or from
North to South. We believe that in the former case it is already very
difficult to recover the position of Rj from Ri, and not significantly
less difficult than in the latter case. The second major difference is that
our measure is focused purely on rectangular treemaps, whereas the
relative direction change measure is defined for general treemaps. As
a result, our measure is more suitable for rectangles. Note that, when
considering rectangles, the exact angle between the centroids of two
rectangles is not that relevant for the perception of relative position.
Instead, it is more readily perceived if one rectangle is above/below or
left/right from another rectangle. This aspect is covered much more
accurately by our measure.

7 EXPERIMENTAL EVALUATION

We evaluate the visual quality and the stability of our incremental
algorithm by comparing it to existing rectangular treemapping algo-
rithms. More specifically, we compare the algorithms in terms of the
average median aspect ratio, the average mean aspect ratio, the aver-
age relative-stability-change and the average layout-distance-change
computed over an entire dataset. For this evaluation we use two dif-
ferent real-world datasets: the Coffee dataset and the Names dataset.
The complete source code of our implementation can be found here
https://gitaga.win.tue.nl/max/IncrementalTreemap.
Coffee dataset. The first dataset consists of the amount of coffee a
country imported in the period 1994-2014 and originates from the UN
comtrade database [17]. It contains all the 86 countries which have
complete data in this period and has a 3-level hierarchy consisting of
the country, the region it belongs to, and the continent it belongs to.

For each algorithm the average relative-position-change and the
average layout-distance-change on the Coffee dataset are shown in
Figure 21. While there are differences between the distribution of
the two stability measures, there are no large discrepancies. It thus
seems that the average relative-position-change captures similar trends
of stability as the layout-distance-change if the scores are high. On low
scores, the differences become more apparent as the relative-position-
change score is indeed far closer to 0 for the slice-and-dice algorithm

Fig. 21. A comparison between the average relative-position-change
and the average layout-distance-change of the different algorithms on
the Coffee dataset. The average relative-position-change is depicted by
the left columns and the average layout-distance-change is depicted by
the right columns. The data is averaged over the treemaps generated for
each year in the Coffee dataset.

Fig. 22. A comparison between the average mean and average me-
dian aspect ratio of the different algorithms on the Coffee dataset. The
average mean aspect ratio is depicted by the left columns and aver-
age median aspect ratio is depicted by the right columns. The data
is averaged over the treemaps generated for each year in the Coffee
dataset.

Fig. 23. A comparison between the average median aspect ratio and
the average relative-position-change on the Coffee dataset. The data
is averaged over the treemaps generated for each year in the Coffee
dataset.

than the layout-distance-change score. This is due to the fact that the
slice-and-dice algorithm does not change order-equivalence classes at
all if there is no hierarchy, and only up to a limited degree if there is
a hierarchy. From Figure 21 it moreover follows that the incremental
algorithm significantly outperforms all other algorithms, except for
slice-and-dice, on both the average relative-position-change and the
average layout-distance-change.

In Figure 22 we show the difference between the average mean
aspect ratio and the average median aspect ratio for different algorithms.
Note that for most algorithms the mean aspect ratio is significantly
larger than the median aspect ratio. This implies that for each of these
algorithms there are a number of rectangles with very large aspect
ratios. Thus, these algorithms do not keep the maximum aspect ratio
low, which results in treemaps with low visual quality. In contrast, the
incremental algorithm and the approximation algorithm both do aim
to minimize the maximum aspect ratio. As a result, all rectangles in
the corresponding treemaps have relatively lower aspect ratios and are
better visible, leading to treemaps with high visual quality.

Finally in Figure 23 the average median aspect ratio is compared to
the average relative-position-change. From this figure we can see that
the incremental algorithm outperforms all other algorithms on either
the average median aspect ratio or average relative-position-change,
and actually outperforms most algorithms on both fronts.

Names dataset. The second dataset consists of the 200 most popular
boys and girls baby names in the Netherlands for each year in the period
1993-2015 and originates from the Nederlandse Voornamenbank [11].



Fig. 24. A comparison between the average relative-position-change
and the average layout-distance-change of the different algorithms on
the Names dataset. The average relative-position-change is depicted by
the left columns and the average layout-distance-change is depicted by
the right columns. The data is averaged over the treemaps generated for
each year in the Names dataset.

The dataset in total contains 372 names and does not have a hierar-
chy. See Figure 27 for some treemaps computed with our incremental
algorithm, and the Hilbert and squarified treemapping algorithms.3

For each algorithm the average relative-position-change and the
average layout-distance-change on the Names dataset are shown in
Figure 24. The discrepancies between the two measures are less pro-
nounced in the Names dataset than in the Coffee dataset. This is caused
by the fact that the Names dataset has many rectangles of similar sizes.
If one large rectangle changes position, then this generally causes
a large layout-distance-change and a relatively low relative-position-
change, whereas with rectangles of similar sizes, this difference is much
smaller. From Figure 24 we moreover see that the incremental and slice
and dice algorithms are almost completely stable. This is because the
Names dataset itself is quite stable. The most frequent changes that
occur are insertions and deletions from names in the dataset. As the
incremental algorithm uses the previous layout as a basis, the layout
stays virtually the same after an insertion or a deletion. For the slice and
dice algorithm the layout also stays roughly the same, as it only uses
a different layout when the dataset has a hierarchy. For all the other
algorithms, however, the layout can change drastically when an element
is inserted or deleted, which is reflected in the stability measures.

In Figure 25 we show the difference between the average mean
aspect ratio and the average median aspect ratio for different algorithms.
The discrepancies between the two are quite low with the notable
exception of the Spiral algorithm. Moreover the values of the mean
and median aspect ratios are very low as well, which indicates that
the resulting rectangles in the treemap for all algorithms except slice
and dice have low aspect ratios. The incremental algorithm performs
slightly worse on the aspect ratio than most other algorithms. This
is mostly due to the fact that we allowed the incremental algorithm
to perform only 4 local moves per timestep, while the number of
rectangles per level (there is only a single level) is far larger. It is thus
not always possible to immediately improve the aspect ratios of all
the bad rectangles. By allowing more moves, the aspect ratio would
decrease, but the stability measure would increase. The algorithm thus
clearly has a tradeoff between the stability and the visual quality. In
contrast, the other algorithms can change the entire layout and thus
insertions and deletions do not have a similar impact on the mean and
median aspect ratios.

Finally in Figure 26 the average median aspect ratio is compared to
the average relative-position-change. From this figure we can see that
the incremental algorithm again outperforms all other algorithms on
either the median aspect ratio or the average relative-position-change.
Moreover, the average relative-position-change is significantly lower

3In Figure 27 the dataset is trimmed to only those names that occur in every
year, such that there are no insertions or deletions that influence the stability.

Fig. 25. A comparison between the average mean and average median
aspect ratio of the different algorithms on the trimmed Names dataset.
The trimmed dataset only contains the names which occur in every
year of the dataset. The average mean aspect ratio is depicted by the
left columns and average median aspect ratio is depicted by the right
columns. The data is averaged over the treemaps generated for each
year in the Names dataset.

than most algorithms while the average median aspect ratio is only
slightly higher than most other algorithms.

The experiments show that our incremental algorithm performs very
well on real-world data with respect to stability and visual quality. The
algorithm obtains an average median aspect ratio below 2 for both
datasets, which indicates that the rectangles have a high visual quality.
Moreover, the incremental algorithm outperforms all algorithms, except
for slice and dice, on both the average layout-distance-change and the
average relative-position-change on both datasets. From Figure 23 and
Figure 26 we can further conclude that the incremental algorithm out-
performs existing treemapping algorithms on either the visual quality
and/or stability in practice. This is also clearly demonstrated in the
supplementary video.

The only main disadvantage of the incremental algorithm is the run-
ning time compared to the existing rectangular treemapping algorithms.
As the incremental algorithm explores various possible layouts, it is
slower than other rectangular treemapping algorithms that directly con-
struct a layout. This difference in running time can become noticeable
once the number of rectangles in a treemap becomes large. When
a treemap contains 200 rectangles, existing treemap algorithms can
generate the layout almost instantaneously, whereas the incremental
algorithm takes about 15 seconds to generate the layout in our imple-
mentation. If the application is very time-sensitive, then this might
become a problem. In that case the incremental algorithm can be sped
up by changing the parameters of the exploration, but the quality of the

Fig. 26. A comparison between the average median aspect ratio and
the average relative-position-change. on the Names dataset. The data
is averaged over the treemaps generated for each year in the Names
dataset.
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Fig. 27. A comparison of the Hilbert treemapping algorithm, our incremental treemapping algorithm, and the squarified treemapping algorithm on the
trimmed Names dataset for the years 1993-1995. The dataset is trimmed to only those names that occur in every year, such that no insertions or
deletions occur. One can observe that our incremental algorithm is significantly more stable than the other algorithms. This difference in stability is
even more apparent in the supplementary video.

resulting treemaps would deteriorate accordingly. However, note that
with a large number of rectangles in a treemap, the treemap becomes
increasingly hard to read. In most reasonable cases, the incremental
treemapping algorithm will generally be sufficiently fast, even for inter-
active treemap generation. For example, for the Coffee dataset it takes
only 62 ms on average to compute the treemap for one time step.

8 CONCLUSION

We presented a new algorithm to compute stable treemaps. Our al-
gorithm is based on the concept of local moves, modifications to the
treemap that influence only a small part of the treemap. These local
moves allow us, in contrast to existing treemapping algorithms, to ex-
plore the full range of options for choosing layouts, which can provably
lead to treemaps with better visual quality. Furthermore, the local
moves allow us to control the tradeoff between stability and visual
quality, simply by limiting the number of local moves between every
two time steps. Our experiments show that our incremental algorithm
does not only perform better with respect to stability and/or visual
quality in theory, but also in practice on real-world data. The only
main disadvantage of our algorithm is its running time, which may be
prohibitive for interactive applications on very large datasets. Nonethe-
less, for most reasonable practical scenarios, where the treemaps still
need to remain readable, our algorithm is sufficiently fast. Beyond
that, it is even possible to control the tradeoff between the running
time of the algorithm and the visual quality of the treemaps, again by
controlling the number of local moves between every two time steps.
A fully controllable tradeoff between the three aspects visual quality,
stability, and running time remains an interesting open problem.
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