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ABSTRACT
Bubble formation due to supersaturation or superheating plays an
important role in many different areas from boiling flows to reac-
tions producing gases, such as in electrolytic processes or fermen-
tation. The predominant mechanism for bubble formation is het-
erogeneous nucleation and, while it has been studied on the micro-
scale, the effect of bubble nucleation on the large-scale performance
of bubble column reactors is still scarcely investigated.

This work presents a modelling and simulation study on phase tran-
sition in bubble column reactors on the meso-scale using a discrete
bubble model (DBM). The Discrete Bubble Model is an Euler-
Lagrange model which tracks each bubble individually. The model
has been extended to include the formation of bubbles due to the
presence of supersaturation.

With this model, phase transition from liquid to gas in a supersatu-
rated liquid has been studied for two cases: bubble formation on a
solid surface and in a liquid bulk. The second case shows a larger
number of bubbles formed, with a bigger size. The concentration
front presents differences, as in the first case it shifts from a lower
concentration at the bottom to the opposite.

To conclude, a starting point for simulations of phase transition due
to supersaturation has been given in this work, showing that the
choice of the mechanisms of bubble formation highly influence bub-
ble densities, sizes and movements in the considered liquid.

Keywords: CFD, Bubble and droplet dynamics, Lagrangian

methods, Multiphase heat and mass transfer. .

NOMENCLATURE

Greek Symbols
α Volume fraction, [−]
Γ Transport coefficient, [ms−1]
ζ Supersaturation ratio, [−]
θ Film thickness, [m]
μ Dynamic viscosity, [Pas]

ρ Mass density, [kilog/m3]
σ Surface tension, [Nm−1]
τττ Stress tensor, [N2m−1]
Φ Interphase momentum transfer, [Nm−1]

Latin Symbols
A Surface area, [m].
C Model coefficients, [−].
c Concentration, [kmolm−1].

deq Equivalent diameter deq =
(

1
di
+ 1

d j

)−1
, [m].

Db Bubble diameter, [m].
D Diffusion coefficient, [ms−1].
Eö Eötvös number Eö=

gD2
bρ

σ , [−].
Eb Bubble aspect ratio, [−].
F Force, [N].
g Gravitational acceleration, [m2 s−1].
kl Mass transfer coefficient, [ms−1].
H Henry constant, [−].
Ṁ Volume averaged interfacial mass transfer,

[kgs−1m−1].
ṁ Individual bubble mass transfer, [kgs−1].
p Pressure, [Pa].

Re Reynolds number Re= ρuDb
μ , [−].

Rb Radius, [m].
S Source term (reaction), [kgs−1m−1].
Sc Schmidt number Sc= μ

ρD , [−].
Sh Sherwood number Sh= klDb

D , [−].
t Time, [s].
u Liquid velocity, [ms−1].
v Gas velocity, [ms−1].
V Volume, [m].

We Weber number We=
ρl(vn,i−vn, j)2Db

σ , [−].
Y j Mass fraction of component j, [−].

Sub/superscripts
b Bubble.
c Critical.
d Distorted.
i, j Indexes.
e f f Effective.
l Liquid.
n Normal.
rel Relative.
s Saturation.
T Turbulent.

INTRODUCTION

Bubble columns, and in general bubbly flows, are widely
used in industrial applications due to contact a gas and liq-
uid in processes where reaction or heat/mass transport takes
place between the phases. Despite the widespread applica-
tions of these systems, detailed knowledge on the complex
interactions between hydrodynamics and mass/heat transport
is still lacking, especially in the region of dense flows and
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their effect on the large-scale performance of bubble column
reactors. The use of Computational Fluid Dynamics (CFD)
to model and study these systems is becoming more and
more widespread resulting from large improvements in com-
putational power. Different levels of detail (length scales)
can be identified ranging from large Euler-Euler simulations
to detailed DNS. At an intermediate level, Euler-Lagrange
models, where each bubble is tracked individually in a La-
grangian manner, play an important role in gaining details
on swarms with a large number of bubbles (van Sint Anna-
land et al., 2003).
Phase transition as a consequence of supersaturation occurs
in a variety of natural and industrial processes. For instance,
a well known example is opening a bottle of soda: the sudden
change in pressure creates a local supersaturation and bub-
bles form on the surface of the bottle. Another mechanism
to obtain local supersaturation is when a reaction produces
gas in excess. Relevant industrial applications are in the field
of bio-reactors, such as fermenters for the production of bio-
ethanol, where gaseous CO2 is produced, or in electrolytic
processes where gas (such as H2 in the electrolysis of brine)
bubbles are formed on the electrodes (Volanschi et al., 1996).
Models describing phase transition are very relevant for in-
dustry, but still lacking in practice.
The aim of this work is to give a starting point for Eularian-
Lagrangian simulations of large scale bubbly flows where
phase transition occurs. In the following sections, the used
model and the numerical setup will be described and verified.
Then, an outline of bubble formation due to supersaturation
by heterogeneous nucleation will be given.

MODEL DESCRIPTION

The Discrete Bubble Model (DBM) is an Euler-Lagrange
CFD model which is based on the work of Delnoij et al.
(1999) subsequently expanded and improved by Darmana
et al. (2005) and Lau et al. (2014). The model tracks
each bubble separately using Newton’s laws of motion and
accounts for bubble-bubble interactions (collisions, coales-
cences and breakups), mass transport and it has been ex-
panded in this work to account for phase transition. A de-
tailed description of the model will be given in the following
sections. For more details the reader can refer to the afore-
mentioned works.

Hydrodynamics modeling

The fluid flow is described by the volume-averaged Navier-
Stokes equations:

∂
∂t

(ρlαlu)+∇ · (ρlαluu) =−αl∇p+αlρg

+∇ ·αlτττl +Φ
(1a)

∂
∂t

(ρlαl)+∇ ·ρlαlu = Ṁ (1b)

where u is the fluid velocity, αl denotes the liquid fraction
and Φ represents the momentum coupling between the liquid
and the discrete gas phase. In this equation τττ represents the
stress tensor, which is the described with the very well known
Equation 2 for Newtonian fluids.

τττl =−μe f f
[

∇u+(∇u)T − 2

3
III(∇ ·u)

]
(2)

The effective viscosity considers the contribution of the LES
sub-grid scale turbulent viscosity, which is calculated using
the model developed by Vreman (2004).

Bubble dynamics

Each individual bubble is tracked using Newton’s law of mo-
tion accounting for the forces that the bubble experiences.
For a spherical incompressible bubble, its motion is de-
scribed as:

ρbVb
dv
dt

= ∑F−
(

ρb
dVb
dt

)
v (3)

where v represents the bubble velocity. The sum of the
forces on bubbles is composed of drag (Roghair et al., 2011),
lift (Tomiyama et al., 2002), buoyancy, virtual mass (Au-
ton, 1987) and wall-interactions (Tomiyama et al., 1995), as
given by Equation 4:

∑F = FG+FP+FD+FL+FVM +FW (4)

The description of the forces considered is given in Table 1.
The interphase coupling is performed through polynomial
mapping, to transfer information from the discrete phase to
the Eulerian grid and vice versa. The choosen technique is a
clipped fourth-order polynomial following the work of Deen
et al. (2004).
An important aspect is the volume change due to the inter-
phase mass transfer. This is accounted for as:

ρb
dVb
dt

= ṁ (5)

More details on the mass transfer will be given in the follow-
ing sections.

Bubble interactions

Bubble collisions, coalescence and breakup have been taken
into account in the model. Since each bubble position, ve-
locity and size are readily available as part of the solution,
bubble encounters (with other bubbles or with a wall) are rel-
atively easy to track. The collision model used in this work is
based on the hard-sphere approach of Hoomans et al. (1996).
The (binary) encounters are event-based and are treated as
perfectly elastic collisions, unless coalescence takes place.
To speed up the collision routines, a neighbour list concept
as described by Darmana et al. (2005) is used. Since colli-
sions are perfectly elastic, the tangential velocity component
is not altered by the encounter while the normal component
(assuming bubbles i and j collide) is calculated as:

vnewn,i = 2
mivn,i+mjvn, j

mi+mj
− vn,i (6)

In performing the collision, the shrinkage or growth of bub-
bles as a consequence of mass transfer needs to be consid-
ered; in some specific cases the two elements are slowly di-
verging from each other but a collision can still take place if
the radius is growing. In this case, the velocity sign should
not be changed as the two bubbles are already diverging.
In addition to elastic collisions, bubbles can coalesce when
sufficiently long in contact. Many theories and models exist
on bubble coalescence (see Lau et al. (2014)). In this work
the film drainage model as implemented by Darmana et al.
(2005) is used. When two bubbles are colliding, they will co-
alesce if the contact time is larger than the time that it takes
for the thin film of liquid trapped between them to drain (see
Equation 7 and 8).

tcontact ≥ tdrainage (7)
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Table 1: Forces acting on a bubble

Force Closure relation

FG = ρbVbg -

FP =−Vb∇P -

FD =− 1
2CDρlπR2

b |v−u|(v−u)

CD
CD,∞

=
(
1+ 18

Eöαb
)

αl

CD,∞ =
√
CD,∞(Re)2+CD,∞(Eö)2

CD,∞(Re) =
16
Re

(
1+ 1

1+ 16
Re+

3.315√
Re

)
CD,∞(Eö) =

4Eö
Eö+9.5

FL =−CLρlVb (v−u)× (∇×u)
CL =

⎧⎪⎨
⎪⎩
min[0.288tanh(0.121Re), f (Eöd)] Eö< 4

f (Eöd) 4≤ Eö ≤ 10

−0.29 Eö> 10

f (Eöd) = 0.00105Eö3d−0.0159Eö2d−0.0204Eöd +0.474
Eöd =

Eö
Eb
, Eb =

1

1+0.163Eö0.757

FVM =−CVMρlVb
(Dv
Dt − Du

Dt

)
CVM = 0.5

FW =−CWRb

(
1
y2 − 1

(L−y)2
)

ρl |(v−u) ·nz|2 nw CW =

{
e(−0.933Eö+0.179) 1≤ Eö≤ 5

0.007Eö+0.04 5≤ Eö≤ 33

Prince and Blanch (1990) calculated the drainage time as:

tdrainage =

√
d3eqρl

128σ
ln

θ0
θ f

(8)

where θ0 and θ f represents respectively the initial and final
film thickness during the drainage process, which are equal
to 1 × 10−4 m and 1 × 10−8 m respectively (Darmana et al.,
2005). Since the velocities and the sizes of each colliding
couple are available, it is possible to calculate the contact
time as proposed by Sommerfeld et al. (2003), assuming that
it is proportional to a deformation distance divided by the
normal component of the two bubbles’ velocities:

tcontact =
Ccodeq

2
∣∣vn,i− vn, j

∣∣ (9)

The coalescence constant (Cco) represents the deformation
distance normalized by the effective bubble diameter. To
conclude, for each pair of colliding bubbles it is possible to
calculate both of the times and check whether a collision or
a coalescence takes place. In the latter event, the resulting
bubble will have a volume equal to the sum of the two par-
ents.
Together with binary interactions between bubbles, a break-
up model (described by Lau et al. (2014)) is implemented in
the DBM. This model assumes that break-up occurs when the
inertial forces acting on the bubble (which deform the bub-
ble) are higher than the surface tension force. The break-up
criterion is described in the form of a critical Weber number
as (for spherical bubbles):

We=
ρl (vn,i− vn, j)

2 deq
σ

≥ 12 (10)

The daughter bubbles sizes are described by a U shaped
daughter size distribution; since the location of the bubble
is necessary for the DBM, it is assumed that it coincides with
the parent for the largest bubble while the smaller is located
randomly in the proximity of the other, avoiding immediate
subsequent coalescence (see Lau et al. (2014).

Species transport and mass transfer

The DBM includes species transport, mass transfer and re-
action (Darmana et al., 2005). A transport equation for each
species is implemented as:

∂
∂t

(
αlρlY

j
l

)
+∇

(
αl

(
ρluY

j
l −Γ j

e f f ∇Y
j
l

))
= Ṁ+αlS j

(11)

where S j represents the source/sink term accounting for
chemical reactions and Γe f f is calculated as:

Γ j
e f f = ρlD j

l +
μT
Sc jT

(12)

where the turbulent Schmidt number is approximated to

Sc jT = 1 (Jain et al., 2015). The transport equations are
solved for N-1 components, while the last component is
solved enforcing the summation equation:

NS

∑
j=1

Y j
l = 1 (13)

The physical properties of the mixture are calculated as the
weighted average of each specie. The interphase mass trans-
fer is a function of the concentration difference between the
bubble (assumed to be composed entirely of one gas, namely
CO2) and the liquid. This has been expressed by (Darmana
et al., 2005) as:

ṁ j
b = k jl Abρl

(
Y j∗
l −Y j

l

)
(14)

The mass transfer coefficient is determined by a Sherwood
relation (Bird et al., 2007):

Sh= 2+0.6415(ReSc j)1/2 (15)

The gas side mass fraction is calculated from the Henry con-
stant:

Y j∗
l = H jY j

b
ρb

ρl
(16)

The transport equation is discretized implicitly (with a semi-
implicit source term for the reaction) on the Eulerian grid
and the resulting linear system is solved using a biconjugate
gradient method implemented in the scientific library PETSc
(Balay et al., 2016, 1997).
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Verification

The hydrodynamics of the DBM has been verified in the past
by Lau et al. (2014), with the use of experimental data from a
square bubble column, performed by Deen et al. (2001). On
the other hand, the species solver has been modified since
Darmana et al. (2005) and a verification is requried to assess
the numerical validity of the results. A few unidirectional
validation cases have been performed, as will be detailed in
the following sections.

Figure 1: Comparison of the DBM species solver with the ana-
lytical solution for a unidirectional convection-diffusion
flow, for different grid resolutions. The analytical solu-
tion is represented by the black line.

1D convection-diffusion

In this case, a unidirectional flow in the domain is considered
where the concentration of the component of interest is ini-
tially zero. The density is assumed constant. A flow from
one side (where the mass fraction is Yl = 1) is started and
diffusion takes place. Equation 11 simplifies to:

∂c
∂t

+u
∂c
∂x

= D
∂2c
∂x2

(17)

The analytical solution for this system has been derived by
Ogata and Banks (1961) as:

c
c0

=
1

2

[
erfc

(
x−ut

2
√

Dt

)
+ exp

(ux
D

)
erfc

(
x+ut

2
√

Dt

)]
(18)

It is visible that the grid resolution plays an important role
(due to the well known numerical diffusion) but the solver
apporaches very well the analytical solution at high enough
(100 in this case) number of grid elements.

Batch reaction

It is very important to verify the correct implementation of
the semi-implicit discretization for the source/sink term and
mass transfer. A simple reaction A → B is implemented
with a first and a second order kinetics, asssuming an ide-
ally mixed batch reactor. In this case, Equation 11 simplifies
to:

dc
dt

= R=

{
−kRc 1st order reaction

−kRc2 2nd order reaction
(19)

Figure 2: First (top line) and second (bottom line) order reactions
in a batch reactor: comparison with the analytical solu-
tions.

where kR represents the reaction rate. Integration of Equa-
tion 19 yields to the analytical solutions:

c=

{
c0exp(−kRt) 1st order reaction

1
1/c0+kRt

2nd order reaction
(20)

As shown in Figure 2, the DBM results match very well with
the analytical solutions.

Phase transition

Theoretical overview

An important concept is supersaturation: a liquid is (lo-
cally) supersaturated when the concentration is higher than
the equilibrium concentration, which can be expressed, for
instance, by Henry’s law as done in Equation 16. A relevant
parameter, called the supersaturation ratio, is introduced as
(Enríquez et al., 2013):

ζ =
c
cs
−1 (21)

It is visible that, for phase transition to occur, ζ > 0. The
equilibrium condition is when this ratio is equal to 0.
The mechanism of a gas bubble formation is not new in lit-
erature (Jones et al., 1999). Several possible ways are ac-
counted for, where two different classes are distinguished:
homogeneous and heterogeneous nucleation. The first occurs
when a bubble is formed, together with a completely new in-
terface, anywhere in the liquid bulk where supersaturation
exists. However, the energy barrier required for this mecha-
nism to occur is high, so that homogeneous nucleation hap-
pens only when the supersaturation ratio is extremely large,
as for ζ > 1000 (Wilt, 1986). On the other hand, the su-
persaturation of common drinks like soda and champagne
reaches much lower levels of ζ, which is in the order of ~2
to 5 (Enríquez et al., 2013; Liger-Belair et al., 2002). For
this case, bubbles are forming in large numbers via heteroge-
neous nucleation. This mechanism describes the formation
of gas bubbles on so-called nucleation sites, such as impu-
rities in the liquid bulk, small cavities on the container or
other gas bubbles. In those sites, a gas-pocket can be easily
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formed and grow. The size of the nucleation site is crucial in
describing the formation and growth of a bubble, as it deter-
mines whether a bubble will grow or be dissolved back into
the liquid. Only nucleation sites with a radius larger than
a critical value (related to the Laplace pressure) can host a
growing bubble:

Rc =
2σ
psζ

(22)

Implementation in the DBM

The DBM has been extended to account for local supersat-
uration. For every Eulerian grid cell, the local supersatura-
tion ratio is calculated, as described by Equation 21. It is
then possible to calculate the local critical radius (see Equa-
tion 22), which represents the minimal size a bubble should
have in order to grow and not dissolve again. Since the vol-
ume of the Eulerian cell is known as well as ζ, it is possi-
ble to calculate the excess mass (or volume) of gas which
is present in each cell. From this, the volume of a possi-
ble nucleated bubble it is easily derived and compared to the
critical radius. If the candidate bubble is large enough, it is
generated (and the transferred mass is accounted for as de-
scribed in the previous sections) with the critical radius and
randomly placed in the cell, avoiding possible overlaps with
neighbouring bubbles. An important limitation to this is that
a single bubble is created for every cell (since the preferred
way to reduce the supersaturation is mass transfer to neigh-
bouring bubbles) which makes it depending on the grid size.
Research is currently ongoing to study, with the help of ex-
periments, bubble formation rates and how to link them to
the DBM in a Lagrangian manner (such as discrete nucle-
ation sites with their own properties as size or contact angle).

RESULTS

Numerical setup

The considered domain is a square box of 15cm described
by an Eulerian grid of 30× 30× 30 grid nodes. The liq-
uid is water and its properties are at standard conditions
(ρl = 1000kgm−3, σ = 0.073Nm−1 and μl = 10−3 Pas).
The dissolved gas is CO2, which is perfectly mixed in the liq-
uid bulk with a mass fraction ofYCO2

= 0.003, corresponding
to an initial supersaturation ratio ζ = 0.783. This has been
arbitrarily chosen to avoid forming very small or very large
bubbles. The typical time step is 1ms for both the species
and the flow solvers while bubbles moves at a pace 20 times
smaller. Two different mechanisms have been implemented,
heterogeneous nucleation on the bottom surface and nucle-
ation in the liquid bulk. Even though it has been already
explained that the predominant mechanism for bubble nucle-
ation is the first, it is still worth to do a comparison between
the two as, in principle, a bubble can use a nucleation site
which is suspended in the liquid such as solid impurities.

Bubble formation

Heterogeneous nucleation on a surface

In this implementation, bubbles are forced to form only in
the lower plane of the box, which represents a solid surface.
In the bottom plane (represented in this case by all the grid
cells in the x and y directions with z between 0 and Δz), each
bubble is generated with a random position in all directions
in order to avoid overlap with walls and/or other neighbour-
ing bubbles. As shown in Figure 3, small bubbles are formed
at the bottom plane, which immediately start rising and in-
crease their size due to mass transfer and coalescence. A

(a) t = 0.65s

(b) t = 1.15s

(c) t = 7.5s

Figure 3: Snapshots of the concentration profiles around bubbles
for the surface nucleation case. The color range from
higher dissolved gas concentration (red) to lower (blue).

bubble front is formed in the first time steps, due to the ini-
tialization technique. After the startup of the phase transi-
tion, bubbles induce mixing with strong circulation patterns
(see Figure 3c) and the lower concentration area shifts to the
top, as expected since bubbles are rising upwards and the dis-
solved gas is transfered to them. In Figure 3c a large vortex
is visible, induced by the bubble movement.

Heterogeneous nucleation in the liquid bulk

In this case bubbles are free to nucleate in the whole domain,
mimicking a liquid which contains enough solid impurities
that act as nucleation sites. As a consequence, at the first time
step a large (equal to the number of grid elements) number
of bubbles are formed (see Figure 4). It is noticeable how, at
first, smaller bubbles are formed all over the bulk but later, as
a consequence of mass transfer, the average size is consider-
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(a) t = 0.25s

(b) t = 1s

(c) t = 2s

Figure 4: Snapshots of the concentration profiles around bubbles
for the bulk nucleation case. The color range from higher
dissolved gas concentration (red) to lower (blue).

ably higher at the top of the domain, similarly to the previous
case. Also in this case, a concentration front which goes from
the bottom to the top can be clearly discerned, following the
direction of the rising bubbles. In this situation, it appears
that the bubbles create less vortices, probably because they
are distributed more uniformily throughout the domain.

Comparison

A comparison of the bubble diameter is shown in Figure 5.
It is immediately clear that the average diameter is at first the
same, because the supersaturation ratio ζ is the same and thus
bubbles are formed with an equal size. Despite the bubble
numbers are clearly not the same (see Figure 6 for a compar-
ison) and a large number of small bubbles is formed for the
nucleation in the liquid bulk, the two profiles for the average
bubble diameter follow the same trends. At the startup, the

Figure 5: Comparison of the average bubble diameter in the col-
umn for the two cases: Case 1 nucleation on a surface
and Case 2 in the liquid bulk.

Figure 6: Comparison of the bubble density in the column for the
two cases: Case 1 nucleation on a surface and Case 2 in
the liquid bulk.

bubble size is small and immediately starts to increase as a
consequence of mass transfer but even more importantly of
coalescence. Since more bubbles are present in the second
case, they have a higher probability to coalesce, leading to a
slightly larger average bubble size.

A comparison of the bubble numbers is provided in Figure 6.
It is particularly interesting to notice the opposite behaviour
of the two cases. While for the second case the, at first large,
number of bubbles is reduced, the other case sees an increase.
This can be explained by the effect of coalescence for the
second case, which also explains the larger average bubble
diameter. In addition, a second effect contributes to the dif-
ference: in the second case bubbles are not free anymore to
nucleate, because most of the cells already contain a bub-
ble. In the second case, on the other hand, the domain is
almost empty and, as soon as the first bubbles leave the bot-
tom plane, new bubbles will form while the others are still in
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the domain.

CONCLUDING REMARKS

This work represents a starting point to model bubble forma-
tion in a liquid. A first algorithm has been set up to study the
formation of bubbles both on a solid surface and in the liq-
uid bulk. The choice of the bubble formation mechanism has
a large influence in determining the bubble numbers, which
are consistently larger for the bulk nucleation case. More-
over, the concentration front shows a different behaviour for
the first case, where it shifts from a lower concentration at the
bottom to the opposite situation. In addition, bubble sizes are
also changed, as a consequence of coalescence.
However, this model is not yet complete. Currently, we are
working on expanding the model to account for Lagrangian
nucleation sites, where with mass transfer a bubble can grow
and detach, avoiding the influence of the grid size. Moreover,
an experimental setup is under construction to first study nu-
cleation rates, bubble numbers and sizes at an intermediate
scale and eventually validate the results of the DBM. To con-
clude, the inclusion of phase transition as a consequence of
superheating (boiling case) will also be considered.
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