
 

Simulating polaron biophysics with Rydberg atoms

Citation for published version (APA):
Płodzień, M., Sowiński, T., & Kokkelmans, S. (2017). Simulating polaron biophysics with Rydberg atoms. arXiv,
2017, Article 1707.04120.

Document status and date:
Published: 13/07/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://research.tue.nl/en/publications/a7f74646-ab52-48cc-afaa-8da8f077af07


ar
X

iv
:1

70
7.

04
12

0v
1 

 [
ph

ys
ic

s.
at

om
-p

h]
  1

3 
Ju

l 2
01

7

Simulating polaron biophysics with Rydberg atoms

Marcin P lodzień1, Tomasz Sowiński2, Servaas Kokkelmans1
1 Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

2 Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland

Transport of excitations along proteins can be formulated in a quantum physics context, based
on the periodicity and vibrational modes of the structures. Exact solutions are very challenging to
obtain on classical computers, however, approximate solutions based on the Davydov ansatz have
demonstrated the possibility of stabilized solitonic excitations along the protein. We propose an
alternative study based on a chain of ultracold atoms. We investigate the experimental parameters
to control such a quantum simulator based on dressed Rydberg atoms. We show that there is a
feasible range of parameters where a quantum simulator can directly mimic the Davydov equations
and their solutions. Such a quantum simulator opens up new directions for the study of transport
phenomena in a biophysical context.

PACS numbers: 03.75.Hh, 32.80.Ee, 32.80.Qk, 42.50.p, 67.55.Hc, 67.85.d

Introduction.– Due to the remarkable progress in the
understanding of molecular structures, life sciences suc-
ceed now in providing explanations of complex cell-
biology phenomena, like light-harvesting complex [1].
Biological complexity of mesoscopic objects along with
quantum behavior of the basic elements leads already
to many unsolved questions awaiting comprehensive an-
swers. Therefore, the interdisciplinary field of “quantum
biology” is the natural area for combining quantum phys-
ical methods and tools to investigate, model and simulate
biological systems on a mesoscopic level [2–4].

Some of the most fundamental biological processes
such as protein folding, DNA repair, and muscle contrac-
tions, are directly related to the relaxation of the energy
accumulated in chemical bonds into work. For exam-
ple, many biological processes are powered by the energy
obtained from the hydrolysis of adenosine triphosphate
(ATP). On a physical level it can be viewed as a specific
binding of the ATP molecule to a chosen site of the pro-
tein with energy equal to 0.49 eV. Since each site of the
protein has a permanent dipole moment responsible for
the energy excitation, one can treat an excitation as be-
ing well localized in the place where the ATP molecule is
bound. Consequently, quite natural and important ques-
tions arise on the appropriate quantum description of the
energy transport in such biological structures.

In 1970’s Davydov proposed a mechanism for the lo-
calization and transport of vibrational energy in the α-
helix region of proteins [5–8]. The vibrational degrees
of freedom are coupled to excitons forming an exciton-
vibration localized state, called the Davydov’s soliton.
Although this model has been used for a theoretical de-
scription of experimentally observed unconventional ab-
sorption bands in proteins [9, 10], a direct experimental
evidence for forming the soliton is still missing.

The Davydov’s soliton is a subclass of richer phe-
nomena called polarons, i.e., excitations mediated by
phonons which were originally introduced by Landau to
describe deformations of the crystalline lattice caused by
moving electron [11]. Landau’s model of polarons has
been broadly studied theoretically as well as experimen-

tally in a condensed matter context [12] and in the last
two decades it was successfully extended to different ar-
eas of ultra-cold physics: ultra-cold ions [13–19], polar
molecules [20–24], ultra-cold Rydberg gases [25–27], and
strongly-interacting ultracold Bose and Fermi gases [28–
35].

In this letter we show that suitably prepared system
of ultra-cold atoms off-resonantly coupled to Rydberg
state [36–38] can serve as a dedicated quantum simula-
tor of exciton-vibration interacting Hamiltonian and cor-
responding Davydov equations in semi-classical approxi-
mation. Being in an appropriate range of parameters, the
quantum simulator can be used not only to obtain solu-
tions of the Davydov’s equations but also to go beyond the
Davydov model. Therefore, it can bring groundbreaking
results for our understanding of biological phenomena.
The simulator.– To show that the atomic system can

mimic behavior of the relevant biological molecule let
us consider the system of ultra-cold atoms confined in
a very deep one-dimensional optical lattice potential
V (x) = V0 sin2(2πx/R0) where each lattice site is oc-
cupied exactly by a single atom. We assume that the
spatial dynamics of atoms is not completely frozen, i.e.,
atoms may oscillate in vicinities of local minima with
frequency ω0 =

√

2V0π2/mR2
0. This motion is however

quantized and therefore it is driven by a simple harmonic
oscillator-like Hamiltonian:

Ĥvib =
∑

i

(

p̂2i
2m

+
mω2

0

2
û2i

)

=
∑

i

~ω0b̂
†
i b̂i, (1)

where ûi = l0(b̂†i + b̂i)/
√

2 and p̂i = i~(b̂†i − b̂i)/(l0
√

2) are
the position and momenta operators related to i-th atom,

while operator b̂i annihilates vibrational excitation of i-
th atom. Local motion defines a natural scale of length,
l0 =

√

~/mω0.
Besides spatial motion, each atom may exhibit changes

of its internal state due to the long-range interactions
between neighboring atoms. It is possible due to the
off-resonant coupling of two different but degenerated in-
ternal Zeeman ground states |g〉 and |g′〉 to two precisely
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selected, highly excited Rydberg states |nS〉 or |nP 〉 with
principal quantum number equal n and angular momen-
tum equal 0 or ~, respectively [39, 40]. A first order
perturbation analysis shows that this coupling results in
a quite small admixture of a Rydberg state to the atomic
ground states [41]. In consequence an atom can be found
in one of the two dressed states:

|0〉 ≈ |g〉 + αs|nS〉, |1〉 ≈ |g′〉 + αp|nP 〉, (2)

where amplitudes αl = Θl/2∆l (l ∈ {s, p}) are deter-
mined by a total Rabi frequency of a driving field Θl and
a total laser detuning ∆l. In this basis of dressed states
the dipole-dipole interaction between neighboring atoms
Csp

3 /R3 (R is a spatial distance between atoms), besides
additional contribution to the energy gap between local
states |0i〉 and |1i〉, may induce transitions (excitation
hoppings) between internal states of neighboring atoms
|0i〉|1i+1〉 ↔ |1i〉|0i+1〉. In consequence, the excitation
|1〉 can be effectively transported across the lattice. This
effect is driven by the following Hamiltonian of internal
motion of all atoms:

Ĥexc =
∑

i

Wiâ
†
i âi +

∑

i

Ji+1,i(â
†
i+1âi + â†i âi+1), (3)

where an annihilation operator of an excitation âi can
be viewed as a local transition operator |1i〉〈0i| be-
tween dressed Rydberg states. The spatial dependent
parameters Wi and Ji,i+1 are related to the dipole-dipole
forces induced by Rydberg dressing and they have a form
[42, 43]:

Wi =
α4

~∆

2

(

1

1 − κ(R0 + ui+1 − ui)2

+
1

1 − κ(R0 + ui − ui−1)2

)

,

Ji+1,i =
α4Csp

3

|R0 + ui+1 − ui|3
1

1 − κ(R0 + ui+1 − ui)2
, (4)

where κ(R) = (Csp
3 /~∆)/R3 and ∆ = ∆s + ∆p. In

static situation, when all atoms are frozen, the ener-
gies Wi and Ji+1,i are site-independent with values con-
trolled by dipole-dipole interactions between neighbor-
ing atoms at fixed lattice spacing R0. However, due
to the vibrational motion of atoms, these parameters
are position dependent and they couple internal states
of atoms with their motional degrees of freedom. In
the lowest order approximation they can be written as
Wi = W0+gW (ui+1+ui−1), Ji+1,i = −J0+gJ(ui+1−ui),
where gW and gJ are the appropriate Taylor expansion
coefficients of (4) around R0. Moreover, since the vibra-
tional motion is quantized, the parameters have an op-
erator character when acting in the subspace of spatial
motion of atoms. By inserting expanded Wi and Ji+1,i

to the Hamiltonian (3) one obtains so called Holstein-Su-
Schrieer-Heeger Hamiltonian (HSSH) [44, 45]

Ĥ = Ĥexc + Ĥvib, (5)

which is a model Hamiltonian for energy transport in
biological systems. Our implementation can be regarded
as a dedicated quantum simulator for this Hamiltonian
to study such processes related to the α-helix protein.

The Rydberg dressing is responsible for the coupling
between vibrational degrees of freedom of neighboring
atoms. The resulting dressed soft-core interaction ∼
(R6 +R6

b)−1 [38], with Rb the Rydberg blockade radius,
gives also rise to an additional energy shift.However, this
shift is negligible compared to ~ω0, and therefore we omit
it. In the following all energies are expressed in units of
J0, and time is measured in units of ~/J0, i.e. we set
J0 = ~ = m = 1.
Dynamical properties of the system.– A specific ques-

tion related to the dynamics of the HSSH Hamiltonian
is related to the transport of the excitation initially

being localized on a chosen site K |Ψ0〉 = â†K |vac〉,
or slightly delocalized on two neighboring sites |Ψ̃0〉 =
1√
2
(â†K + â†K+1)|vac〉, where |vac〉 is a vacuum state of

the system fulfilling the condition âi|vac〉 = b̂i|vac〉 = 0
for any i. Experiments have shown that for specific
parameters, a system prepared in these initial states
evolves in such a way that the excitation does not spread
across the protein. This is attributed to a specific ra-
tio of the interactions of excitation and vibrational de-
grees of freedom, giving rise to a soliton. This spread-
ing or non-spreading behavior can be extracted from in-
formation encoded in the time-dependent density profile

ρi(t) = 〈Ψ(t)|â†i âi|Ψ(t)〉, where the state of the system
at given time t can be formally written as

|Ψ(t)〉 = exp
(

−iĤt
)

|Ψini〉, (6)

where |Ψini〉 is one of the considered initial states. Tem-
poral spreading of the excitation is simply captured
by the width of the excitation wave packet σ(t) =

N
[
∑

i ρ
2
i (t)

]−1
. This quantity takes the value 1/N for

an excitation localized at exactly one lattice site and 1
for when it is fully delocalized. In principle, by analyz-
ing the time-dependence of σ(t) one can easily determine
whether the excitation remains localized or whether it
spreads across the system. Unfortunately, it is computa-
tionally quite demanding to find a solution of the evolu-
tion problem (6) due to the strong nonlinear quantum-
mechanical coupling between excitation and vibrational
degrees of freedom. Therefore generally the evolution of
the system cannot be found exactly and some approxi-
mation methods have to be adopted.
The Davydov approach.– We discuss here the two-step

Davydov approach [5], which results in a semiclassical
description of the system. In the first step one as-
sumes that the state of the system |Ψ(t)〉 can be well
approximated by the product of two independent states
|ψ(t)〉 and |φ(t)〉 for excitation and vibrational degrees
of freedom, respectively, |Ψ(t)〉 = |ψ(t)〉|φ(t)〉. Since
the system is initially prepared in the state with pre-
cisely one excitation and the number of excitations is con-
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Figure 1. (Color online) Left panel: Maximal value of an
excitation wave packet width max [σ(t)] as a function of ω0

and gW for vanishing coupling gJ = 0. A sharp crossover
between non-spreading excitations (blue) and spreading ex-
citation (dark red) is clearly visible. Different regions of
the phase-diagram (bordered with white lines) correspond to
a distinct nature of the exciton-vibration dynamics. Right
panel: Evolution of the excitation width σ(t) for different
points on the phase diagram (marked as white squares on the
left panel).

served, the state |ψ(t)〉 can be decomposed in the single-

particle subspace, |ψ(t)〉 =
∑

i ψi(t)â
†
i |vac〉, where time-

dependent functions ψi(t) play the role of probability am-
plitudes for finding an excitation at site i. Consequently
ρi(t) = |ψi(t)|2. The second step relays on a semiclas-
sical treatment of the vibrational degrees of the system.
In analogy to other quantum field theories, we assume
that the state |φ(t)〉 has classical features, i.e., it can be
well approximated by the product of independent coher-
ent states: |φ(t)〉 = exp [−i∑i(ui(t)p̂i − pi(t)ûi)] |vac〉,
where amplitudes ui(t) and pi(t) are expectation values
of appropriate operators in the state |φ(t)〉. Within these
approximations it can be shown straightforwardly that
the evolution equation (6) is equivalent to the set of cou-
pled differential equations of the form:

i
dψi(t)

dt
= −(ψi+1 + ψi−1) + gW (ui+1 − ui−1)ψi (7a)

+ gJ [ψi+1(ui+1 − ui) + ψi−1(ui − ui−1)],

dui(t)

dt
= pi(t), (7b)

dpi(t)

dt
= −ω2

0ui(t) + gWω0(|ψi+1|2 − |ψi−1|2) (7c)

+ gJω0[ψ
∗
i (ψi+1 − ψi−1) + ψi(ψ

∗
i+1 − ψ∗

i−1)].

These are the Davydov’s type equations [5–8], which de-
scribe the dynamics of an excitation ψi coupled to a
gradient of a classical field ui forming an effective self-
trapping potential. Phase diagram.– We perform a Semi-
classical evolution of the system governed by Eqns. (7),
which allows to observe spreading or non-spreading evo-
lution of the excitation wave packet as function of the
parameters {ω0, gW , gJ}. The results can be visualized
by the phase diagrams presented in Figs. 1 and 2. These
diagrams are obtained by plotting the maximal value
of the width of the excitation wave packet max [σ(t)]
that is reached during the evolution up to maximal time
Tmax = 10~/J0. All calculations are performed with

Figure 2. (Color scale) Maximal value of the wave packet

width max [σ(t)] for different initial states |Ψ0〉 and |Ψ̃0〉 (top
and bottom row, respectively) and different non-local interac-
tions gJ = {0, 3, 5} (appropriate columns from left to right).
Note that strong enhancement of the non-spreading behavior
takes place for stronger gJ and for a smeared out initial state.

N = 50 lattice sites and periodic boundary conditions.
First, we ocus on the case of a completely localized initial
state |Ψ0〉 for gJ = 0 (Fig. 1).

We qualitatively indicate five different regions on the
phase diagram (left panel): (I) and (II) where the excita-
tion is dressed by a cloud of vibrations and the excitation
does spread; (III) where due to a dramatic reduction of

the hopping amplitude ∼ J0e
−(gW /ω0)

2

the excitation is
localized in its initial position [46]; (IV) where vibration
energy and exciton-vibration coupling are larger than the
hopping energy giving rise to Davydov-like soliton behav-
ior; (V) where gW & ω0 corresponding to the Discrete
Breathers-like behavior [47, 48]. Distinct behavior of the
system is also visible in these selected areas in the time
evolution of σ(t) (right panel of Fig. 1).

This picture can be generalized to non-vanishing cou-
pling gJ , which we investigate for the the second initial
state |Ψ̃0〉 (Fig. 2). As can be seen, a slight delocal-
ization of the initial together with non-local coupling gJ
dramatically enhance the non-spreading behavior of the
wave packet. It is a direct consequence of the non-local
terms in (7).
Numerically exact approach.– The results obtained

in the framework of the semi-classical Davydov ap-
proach can be supported by numerically exact dynam-
ics governed by the many-body Hamiltonian (5). In

this approach we represent he Hamiltonian Ĥ as a ma-
trix in the Fock basis spanned by many-body states

|i〉|m1, . . . ,mN〉 = â†i (b̂
†
1)m1 · · · (b̂†N)mN |vac〉, i.e., states

with an excitation located exactly at site i and with se-
lected vibrational states mi for all sites. An arbitrary
state of the system can be expressed as an appropriate
superposition of the basis states. Since the operator of a

total number of vibrations in the system N̂vib =
∑

i b̂
†
i b̂i

does not commute with the Hamiltonian (5), therefore
an exact evolution is obtained only in the limit where all
Fock states are taken into account. In practice, for nu-
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merical purposes, we assume that the total number of ex-
citations cannot be larger than some well defined cut-off
M . Then the results are treated as exact if increasing M
does not change the outcome noticeably [49, 50]. There-
fore, for given M , one can perform calculations only for
a small range of parameters for which creations of vi-
brations is limited. It is worth noticing that numerical
complexity groves exponentially with the cut-off M . For
our parameters, N = 50 and M = 3 the size of the cor-
responding Hilbert space exceeds 1.1 million.

In Fig. 3 we show the time evolution of an initially lo-
calized excitation for ω0 = 3 and for three different val-
ues of the local coupling parameter gW = {0.1, 0.75, 1.5}
(gJ = 0). It is clearly visible that for larger gW the wave
packet of the excitation becomes more stable and spreads
less. This effect is directly reflected in the number of vi-
brational modes created, which can be seen in the right
column of Fig. 3. One can observe that increasing fluc-
tuations of the total vibrations in the system stabilize
excitation.

Since we reached the limits of our computational
method with this size of the Hilbert space, we cannot
increase the coupling parameter further. From Fig. 3
it can be seen that the total number of vibrations for
gW = 2 is close to the limiting cut-off. At the same time,
however, this is a strong argument for employing a quan-
tum simulator, such as proposed in this letter, tovalidate
the predictions of the semi-classical.

Experimental parameters.– The numerical predictions
for the model described by the Hamiltonian (5) are quite
general. For a quantum simulator we consider 87Rb
atoms confined in an optical lattice determined by lattice
spacing R0 = 1µm and V0 = 100ER (recoil energy ER =
2π2

~
2/mR2

0) [39], i.e., the local trap frequency is equal to
6.2 kHz. We assume Rydberg states with principal quan-
tum number n = 50 for which Csp

3 = 3.224 GHzµm3

[51]. We choose the dressing parameters as α = 0.015
and ∆/2 = ∆s = ∆p = 2.5 GHz. With these values, the
system mimics the Hamiltonian (5) with dimensionless
parameters ω0 = 4.7, gW = 5.6, and gJ = 5.6. These pa-
rameters can be easily tuned since they strongly depend
on the lattice spacing R0 and on the set of laser detun-
ings. In this way a large and interesting area of the phase
diagrams presented in Fig. 2 can be covered. The esti-
mated lifetime of Rydberg atoms excited to states with
n = 50 is τS = 65µs and τP = 86µs [52]. The effective
of a dressed state is scaled by a factor α−2 and as a con-
sequence a sufficiently long time is obtained to form and
observe non-spreading excitation behavior.

It is worth noting that also other experimental real-
izations, based for example on Rydberg microtrap arrays
[53] instead of an optical lattice, can be considered as
proper candidates for simulating this system.
Conclusions.– We show that a system of ultracold Ry-

dberg atoms confined in a one-dimensional optical lattice
may serve as a dedicated quantum simulator for exciton-
vibration dynamics, which is a subclass of polaron dy-
namics. Since effective parameters of the resulting model

Figure 3. Exact evolution of the excitation wave packet gov-
erned by the Hamiltonian (5) for the initial state |Ψ0〉 (left

column) and |Ψ̃0〉 (middle column). The right column shows

the total number of vibrations N̂vib created in the system
during the evolution (thick blue and thin red line for left
and middle column, respectively). Consecutive rows corre-
sponds to different local couplings gW = {0.1, 0.75, 1.5}. All
calculations performed for gJ = 0 and ω0 = 3. Note that
for stronger interactions evident stabilization of the excita-
tion density profile, along with increasing number of created
vibrations, is observed.

can be easily tuned, the system can be used to mimic
transport of excitation in biologically active proteins and
to perform full quantum mechanical tests of the semi-
classical predictions.
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[18] V. M. Stojanović, T. Shi, C. Bruder, and J. I. Cirac Phys.
Rev. Lett., vol. 109, p. 250501, 2012.

[19] L. Lamata, A. Mezzacapo, J. Casanova, and E. Solano
EPJ Quantum Technology, vol. 1, p. 9, 2014.

[20] J. Prez-Ros, F. Herrera, and R. V. Krems New Journal
of Physics, vol. 12, no. 10, p. 103007, 2010.

[21] F. Herrera, M. Litinskaya, and R. V. Krems Phys. Rev.
A, vol. 82, p. 033428, 2010.

[22] F. Herrera and R. V. Krems Phys. Rev. A, vol. 84,
p. 051401, 2011.

[23] W. Li and I. Lesanovsky Phys. Rev. Lett., vol. 108,
p. 023003, 2012.

[24] F. Herrera, K. W. Madison, R. V. Krems, and M. Berciu
Phys. Rev. Lett., vol. 110, p. 223002, 2013.

[25] J. P. Hague and C. MacCormick Phys. Rev. Lett.,
vol. 109, p. 223001, 2012.

[26] J. P. Hague, S. Downes, and P. E. MacCormick,
C.and Kornilovitch Journal of Superconductivity and
Novel Magnetism, vol. 27, p. 937, 2014.

[27] D. Schönleber, A. Eisfeld, M. Genkin, S. Whitlock, and
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