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The growth of tungsten oxide (WO3) thin films by atomic layer deposition (ALD) offers numerous

merits including atomic-scale thickness control at low deposition temperatures. In this work, the

authors have developed and characterized a new plasma-enhanced ALD process for WO3 thin films

using the metalorganic precursor bis(tertbutylimido)-bis(dimethylamido)-tungsten and O2 plasma

as coreactant over a wide table temperature range of 100–400 �C. The influence of deposition tem-

perature on the growth behavior and film properties is investigated comprehensively. The WO3

ALD process developed in this work yields relatively high growth per cycle values which vary

from �0.7 Å at 100 �C to �0.45 Å at 400 �C, as-determined by in situ spectroscopic ellipsometry.

Rutherford backscattering spectrometry (RBS) measurements revealed a mass density of 5.9 g/cm3

and near stoichiometric film composition (O/W¼ 2.9). Both RBS and x-ray photoelectron spectros-

copy measurements confirmed no detectable C as well as N impurity incorporation. Grazing inci-

dence x-ray diffraction measurements indicated that the films deposited at 400 �C were

polycrystalline in nature. VC 2017 American Vacuum Society. [http://dx.doi.org/10.1116/1.4986202]

I. INTRODUCTION

Transition metal oxides exhibit interesting electrical, opti-

cal, and mechanical properties which classifies them as mul-

tifunctional for several applications. Among them, tungsten

oxide (WO3) has been of particular interest for electrochro-

mic,1–4 gas-sensing,5,6 and catalytic7,8 applications. In par-

ticular, WO3 is extensively studied for electrochromic

applications such as smart windows for automobiles and

buildings.9,10 Electrochromic WO3 based auto-dimming rear

view mirrors for automobiles are commercially available.11

Recently, WO3 thin films (i.e., having 5–10 nm thickness)

have attracted interest as a highly transparent hole-selective

contact for c-Si solar cells.12–14 Furthermore, WO3 is being

utilized in the synthesis of two-dimensional transition metal

dichalcogenide (2D-TMD) such as tungsten disulfide (WS2)

through sulfurization of the oxide.15,16 The application of

WO3 thin films for solar cells and 2D-TMD synthesis are

particularly gaining a lot of interest lately.

WO3 has been previously deposited using a wide range of

deposition techniques including evaporation,17,18 sputter-

ing,19,20 sol-gel deposition,21,22 chemical vapor deposition

(CVD),23,24 and atomic layer deposition (ALD).8,16,25–35

Growth of thin films via ALD has gained increasing popular-

ity over the last few decades because of its ability to deposit

ultrathin uniform films with precise thickness control and its

low temperature growth possibility. These merits of ALD

are particularly valuable for the application of WO3 thin

films for solar cells and 2D-TMD synthesis. However, there

are only a few reports on ALD of WO3 in the literature.

T€agtstr€om et al. have reported a WO3 ALD process using in
situ generated oxyfluorides as precursor and H2O as coreac-

tant.25 However, controlling the in situ generated oxyfluoride

species was difficult. Dezelah et al. utilized a metalorganic

precursor W2(NMe2)6 and H2O in an ALD process which

resulted in W2O3 films with trivalent tungsten, instead of

WO3.26 Malm et al.27 and Nandi et al.28 investigated the

ALD growth of WO3 using the hexacarbonyl precursor

W(CO)6 and O3. This process was characterized by rela-

tively low growth per cycle (GPC) values of �0.2 Å for tem-

peratures below 250 �C, and for temperatures above 250 �C,

the precursor decomposes thermally which leads to carbon

impurity incorporation in the films.27 Furthermore, an initial

incubation delay of around 200 ALD cycles was reported.27

Mamun et al.30 and Zhang et al.31 have also reported a GPC

of 0.2 Å using the same hexacarbonyl precursor W(CO)6 and

H2O. Recently, Song et al. utilized a plasma-based ALD pro-

cess for WO3 using WH2(iPrCp)2 and O2 plasma, in their

attempt to synthesize 2D-WS2 nanosheets by sulfurizing

WO3 layers.16 Their WO3 ALD process yielded a high GPC

of �0.9 Å at 300 �C with the formation of substoichiometric

tungsten oxide (O/W¼ 2.4). Bergum et al. investigated the

application of WOCl4 precursor and H2O to deposit WO3 by

ALD. They observed that WO3 grew on the surfaces of

select substrates but the film growth was limited as WO3 did

not appear to grow on itself.29 The metalorganic precursor

bis(tertbutylimido)-bis(dimethylamido)tungsten, (tBuN)2

(Me2N)2W, used in this work has been previously used toa)Electronic mail: s.balasubramanyam@tue.nl
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deposit WO3 by ALD using H2O as coreactant.8,29,32 This

process offers a high GPC of �1 Å at 350 �C, but relatively

small GPC values (<0.2 Å) were observed for temperatures

below 300 �C.8,32 Further, Bergum et al. have reported a

CVD-type of growth for substrate temperatures above

350 �C for this process.29 From these literature reports, it is

evident that there is interest to develop a WO3 ALD process

with all of the following attributes: (1) high GPC (>0.2 Å),

(2) low impurity incorporation, (3) wide temperature win-

dow, and (4) stoichiometric film composition (WO3).

In this study, we report a plasma-enhanced ALD process

for tungsten oxide thin films using (tBuN)2(Me2N)2W and O2

plasma over a wide table temperature range of 100–400 �C.

The application of plasma can provide the advantage of

acceptable growth rates and improved material properties such

as high film density as well as low impurity content at lower

deposition temperatures. Also, previously, it has been demon-

strated that usage of the metalorganic precursor (tBuN)2

(Me2N)2W along with N2, H2/N2, and NH3 plasmas for a WNx

ALD process have resulted in very low levels of carbon impu-

rities (<2 at. %).36 Here, we provide a detailed study on the

tungsten oxide ALD process and the material properties of the

as-deposited material. The influence of deposition temperature

on GPC, chemical composition, stoichiometry, and optical

properties of the resulting WO3 films is investigated.

II. EXPERIMENT

In this section, the process conditions for film deposition

are discussed and followed by a description of the techniques

used to characterize the deposited film and related equipment

used.

A. Film deposition

WO3 thin films were deposited in a FlexAL ALD reactor

from Oxford Instruments, equipped with an inductively cou-

pled plasma (ICP) source. The reaction chamber is equipped

with a turbomolecular pump which enables to reach a base

pressure of �10�6 Torr. A detailed description of the ALD

reactor can be found in an earlier work of the group.37 Prior

to deposition, the reactor walls were preconditioned with

300 ALD cycles of Al2O3 and 300 ALD cycles of WO3

itself. All depositions were performed on c-Si substrates

(2� 2 cm) with a thin native oxide layer (�1.5 nm) unless

mentioned otherwise. The starting substrates were subjected

to an O2 plasma pretreatment (10 s) in the ALD reactor in

order to remove any surface contamination using the same

plasma conditions as during deposition.

Table I summarizes the utilized processing conditions.

Depositions were performed at different temperatures by

varying the temperature of the table from 100 to 400 �C. The

actual substrate temperatures [as-determined by in situ spec-

troscopic ellipsometry (SE) and thermocouple measurements]

were lower than the deposition temperatures (commonly

referred to as table temperature) due to poor thermal contact

in vacuum. Table S1 in the supplementary material52 com-

pares the actual substrate temperature and the deposition tem-

perature (table temperature). Throughout this work, the

deposition temperatures are used for discussion unless men-

tioned otherwise. The reaction chamber wall temperature was

set to 120 �C for all deposition temperatures except for depo-

sitions at 100 �C for which the wall temperature was set to

100 �C as well. The liquid precursor (tBuN)2(Me2N)2W (99%

purity, Sigma Aldrich) was stored in a bubbler maintained at

50 �C and was bubbled into the reaction chamber using Ar

(100 sccm) as a carrier gas to enhance precursor delivery. The

precursor delivery line to the reaction chamber was heated to

70 �C to prevent any possible precursor condensation.

A standard ALD recipe (Table I) was utilized to perform

depositions in this work unless mentioned otherwise. The sat-

urated precursor dosing was fixed at 3 s, and a chamber pres-

sure of 30 mTorr was maintained during the precursor dosing

step. A preplasma time of 2 s was used to stabilize the O2 gas

flow into the ICP source. The saturated coreactant O2 plasma

exposure was fixed at 3 s. The plasma power was fixed at

250 W, and a chamber pressure of 15 mTorr was maintained

during the plasma exposure step. After the respective ALD

half cycle, Ar gas (100 sccm) was used to purge the reaction

chamber for 5 s, resulting in a chamber pressure of 30 mTorr.

B. Film analysis

In situ SE was used to monitor the growth of ALD WO3

films using a rotating compensator ellipsometer (RCE) of

type M2000U from J.A. Woollam, Inc. Ellipsometric spectra

were recorded after every ten ALD cycles in the high accu-

racy mode over a wavelength range of 245–1000 nm. An

optical stack model was used to translate the raw ellipsomet-

ric spectra into film thickness and optical parameters (n, k)

by utilizing the COMPLETEEASE software. The optical stack

model (from bottom to top) consisted of a (1) Si substrate

modeled by Si Temp JAW (Temp Library) material model,

(2) �1.5 nm native oxide modeled by NTVE_JAW material

model, and (3) a WO3 layer whose dielectric functions were

parameterized by using the Tauc-Lorentz oscillator. The

thickness and optical constants of the WO3 layer were

obtained using the following fitting methodology: In the

recorded SE spectral range (245–1000 nm), tungsten oxide

films are transparent for wavelengths from 400 to 1000 nm

and thus, a Cauchy dispersion equation was used to extract

TABLE I. Overview of process parameters for the plasma-enhanced ALD of

WO3 from (tBuN)2(Me2N)2W and O2 plasma.

Deposition temperature 100–400 �C

Chamber wall temperature 100–120 �C

Bubbler temperature 50 �C

Precursor line temperature 70 �C

Chamber base pressure 10�6 Torr

Pressure during precursor dosing 30 mTorr

Pressure during coreactant exposure 15 mTorr

Precursor dosing 3 s

Precursor purge time 5 s

Preplasma time 2 s

Coreactant O2 plasma exposure 3 s

Coreactant purge time 5 s

O2 plasma power 250 W
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the thicknesses of the respective films in this range. Using

these thickness values, the optical constants were then deter-

mined by using the B-spline material model over the entire

recorded SE spectra (245–1000 nm). For this fitting, a

bandgap of �3.1 eV (Refs. 38 and 39) was assumed, and an

initial value of 2.1 was chosen for refractive index which

was obtained from the Cauchy dispersion model at the

largest wavelength (1000 nm). Subsequently, the optical

constants were parameterized using the Tauc-Lorentz

oscillator.

To investigate the chemical composition of the as-deposited

films, x-ray photoelectron spectroscopy (XPS) was performed

using a Thermo Scientific KA1066 spectrometer with mono-

chromatic Al Ka x-rays having an energy of 1486.6 eV. Also,

Rutherford backscattering spectrometry (RBS) and elastic

recoil detection (ERD) measurements were done to determine

the composition, stoichiometry, and mass density. The RBS and

ERD measurements were done by Detect 99 B.V Eindhoven,

The Netherlands, using a 1.9 MeV Heþ beam. The respective

areal densities of the constituent elements were determined by

simulations. To investigate the crystallinity and crystal struc-

ture, grazing incidence x-ray diffraction (GI-XRD) measure-

ments were performed using a PANalytical X’Pert Pro MRD

system which utilized a Cu Ka x-ray source (k¼ 1.54 Å). The

surface roughness was investigated using a NT-MDT Solver

P47 atomic force microscope (AFM).

III. RESULTS AND DISCUSSION

A. Film growth and uniformity

Figure 1 shows the WO3 film thickness as a function of

number of ALD cycles for the investigated deposition tem-

peratures as-determined by in situ SE. For all temperatures,

500 ALD cycles were performed on the starting substrates.

As seen from Fig. 1, the thickness incremented linearly with

number of ALD cycles for all temperatures without any

nucleation delay. This thickness increment decreased with

increasing temperature in the investigated temperature range

(100–400 �C).

Figures 2(a) and 2(b) show the saturation curves for the

precursor dosing and plasma exposure steps, respectively, for

various temperatures (100, 300, and 400 �C). For the precur-

sor saturation curves [Fig. 2(a)], the O2 plasma exposure time

was fixed at 4 s while varying the precursor dosing and for

the O2 plasma saturation curves [Fig. 2(b)], the precursor dos-

ing time was fixed at 4 s while varying the O2 plasma expo-

sure. ALD saturating behavior was observed over the entire

temperature range for both precursor and plasma half-cycles.

Also, a decrease in GPC with increasing temperature was

observed for both the half-reaction steps. In Fig. 2(a), the

GPC was already in the region of saturation for a correspond-

ing precursor dosing time of 3 s independent of temperature.

For the O2 plasma saturation in Fig. 2(b), the GPC also exhib-

ited a saturating behavior starting from 3 s for all investigated

temperatures. A small nonideal component might be present

at 100 �C for longer (�5 s) precursor doses [Fig. 2(a)] and O2

plasma exposure times [Fig. 2(b)]. Note: The saturation

curves were repeated three times to calculate the average

GPC value, the standard deviation, and thereby the respective

error bars.

FIG. 1. (Color online) WO3 film thickness in progression of number of

ALD cycles for deposition temperatures ranging from 100 to 400 �C, as-

determined by in situ SE.

FIG. 2. Saturation curves: GPC as a function of (a) precursor dosing and

(b) O2 plasma exposure, for deposition temperatures of 100, 300, and

400 �C. The dotted lines indicate the respective chosen precursor/O2 plasma

saturation times (3 s) for the WO3 ALD process. The solid lines serve as

guide to the eye.
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Figure 3 compares the GPC in terms of (1) thickness: as-

determined by in situ SE (GPCSE—left axis) and (2) number

of W atoms/nm2: as-determined by RBS (GPCRBS—right

axis), for the investigated deposition temperatures. The

GPCSE (squares) was calculated by taking the average of the

respective slopes for the last 100 out of 500 ALD cycles in

Fig. 1. As seen in Fig. 3, GPC decreased significantly from

�0.7 Å at 100 �C to �0.45 Å at 300 �C and then stabilized at

�0.45 Å for higher temperatures. Increasing the purge time

to 10 s from the standard purge time of 5 s had no effect on

the GPC. This was verified at 200 �C.

Samples with thickness of �20 nm were utilized for RBS

measurements. GPCRBS (triangles) was calculated by divid-

ing the total number of deposited W atoms/nm2 by the total

number of ALD cycles. As seen from Fig. 3, GPCRBS

decreased from �1 W at/nm2 at 100 �C to �0.6 W at/nm2 at

300 �C and then stabilized at �0.6 W at/nm2 for higher tem-

peratures, which is analogous to the trend exhibited by

GPCSE. Similar results have been reported for O2 plasma-

enhanced ALD processes for Al2O3 (Refs. 40–42) as well as

SiO2 (Refs. 43 and 44) (utilizing metalorganic precursors)

where, the decrease in GPC with temperature have been

attributed to a reduction of –OH surface reactive groups due

to thermally activated dehydroxylation reactions. These pro-

cesses reported in literature are similar to our WO3 ALD

process and the GPC decrement with temperature from 100

to 300 �C in our case can also be due to surface dehydroxyla-

tion. The fact that the GPC does not decrease further and

stabilizes at temperatures above 300 �C suggests that the

observed GPC values can result from a combined effect of

reduced –OH surface reactive group density44 and a transi-

tion toward polycrystalline growth which is shown later in

the GI-XRD diffractogram (Fig. 7).

For low deposition temperatures (�200 �C), the observed

GPC values are higher than the GPC values reported in litera-

ture. For instance, Malm et al. and Nandi et al. have reported

a GPC of �0.2 Å at around 200 �C using the hexacarbonyl

W(CO)6 precursor, which is lower than the observed GPC

value of �0.55 Å in our case.27,28 The observed GPC values

are also higher compared to the process developed by Liu

et al. who have reported GPC values of <0.2 Å using the

same precursor (tBuN)2(Me2N)2W and H2O for temperatures

below 300 �C.8 The utilization of O2 plasma as coreactant

could be the primary reason for the reasonably higher GPC in

our process.

Figure 4 shows the WO3 thickness uniformity on an 8 in.

(200 mm) Si wafer evaluated by mapping the thickness over

the whole wafer area, as-determined by SE at room tempera-

ture. For this experiment, 350 WO3 ALD cycles were per-

formed on the 8 in. Si wafer at 200 �C with a corresponding

GPC of �0.55 Å. The thickness nonuniformity determined by

dividing the standard deviation (r) by the average mean WO3

thickness, was less than 2.5%. This indicates very good thick-

ness uniformity and the developed WO3 plasma-enhanced

ALD process can potentially be a viable technique for the

growth of WO3 films on large area substrates.

B. Film characterization

The WO3 films of �20 nm in thickness which were

deposited at various temperatures (100–400 �C) were used to

study the film properties including chemical composition,

optical properties, and crystallinity. Table II lists the O/W

ratio and H content in the as-deposited WO3 films, deduced

from RBS and ERD measurements, respectively, for various

deposition temperatures. Typically, tungsten oxide thin films

tend to grow substoichiometrically, and the level of oxygen

deficiency depends on the type of preparation as well as

process conditions.45 In our case, the O/W ratio was found to

be constant at 2.9 for all investigated temperatures. With

respect to previous WO3 ALD reports, the O/W ratio of 2.9

is comparable to values (i.e., �3) reported by Marim et al.27

and is relatively higher than the value (i.e., 2.4) reported by

Song et al.16 The effect of the ambient on the film stoichiom-

etry cannot be ruled out as the samples were stored in air

FIG. 3. (Color online) GPC in terms of (1) thickness: as-determined by in
situ SE (GPCSE—left axis) and (2) deposited W atoms/nm2: as determined

by ex situ RBS (GPCRBS—right axis), for the investigated deposition tem-

peratures. GPCSE (squares) was calculated by averaging the respective

slopes in Fig. 1, for the last 100 out of 500 ALD cycles. GPCRBS (triangles)

was calculated by dividing the total number of deposited W atoms/nm2 by

the total number of ALD cycles.

FIG. 4. (Color online) Thickness uniformity of the WO3 film on an 8 in.

(200 mm) Si wafer as-determined by room temperature SE mapping. The

WO3 film was deposited at 200 �C.
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prior to RBS/ERD measurements. The H content in as-

deposited films decreased from �11 at. % at 100 �C to �2.5

at. % at 300 �C and then increased to �6 at. % at 400 �C.

This H content in the films can originate from the ligands of

the precursor (a single precursor molecule has 30 H atoms)

and/or from the residual water in the ALD reactor and/or

from exposure to the ambient.

The mass density of the WO3 films were deduced from

RBS/ERD measurements in conjunction with the WO3 layer

thickness determined from in situ SE measurements. The mass

density was found to be �5.9 g/cm3 throughout the deposition

range (100–400 �C), which is lower than the bulk density of

WO3 (7.16 g/cm3). The C and N impurity concentration in the

bulk of the films was lower than the RBS detection limit of 3

and 2 at. %, respectively, suggesting a relatively high purity of

the as-deposited films.

Figure 5(a) shows the W4f core level spectra of as-

deposited WO3 films (at 100 and 400 �C) acquired by XPS

measurements. The measured spectrum was deconvoluted

into a doublet and a loss feature. The doublet comprised of a

W4f7/2 peak at �36.1 eV and a W4f5/2 peak at �38.28 eV,

with the peaks having an intensity ratio of 0.75 as well as a

difference of �2.17 eV in their binding energies, which cor-

responds to the W6þ oxidation state.45,46 The O1s XPS spec-

tra [Fig. 5(b)] comprised of 2 peaks: one at �531.1 eV,

which can be assigned to O bound to W atoms, and a smaller

peak at �532.4 eV, which might originate from O–H bonds

or residual water adsorbed on the sample surface.18

C as well as N were present on the surface, and their con-

centration was reduced to negligible amounts upon depth

profiling, which involves sputtering of the sample with Arþ

ions. Depth profile measurements for W as well as O spectra

resulted in reduction of W6þ to lower oxidation states due to

preferential sputtering of O atoms. Therefore, the spectra in

Fig. 5 were acquired prior to sputtering to assess the chemi-

cal state correctly.

Figure 6 compares the (a) dispersion of the refractive index

n and (b) extinction coefficient k, of the WO3 films for various

deposition temperatures (100–400 �C). The respective n and k
values were determined through SE measurements using the

optical model described in Sec. II. As seen in Fig. 6(a), the

refractive index varied between 2.05 and 2.95 over the spec-

tral range of 1.2–5 eV. For illustration, the refractive indices

at a photon energy of 1.96 eV are listed in Table III for vari-

ous deposition temperatures. As seen from Table III, the

refractive index increased from �2.1 at 100 �C to �2.28 for

�300 �C. These values are in good agreement with refractive

index values reported for WO3 in literature.47,48

The extinction coefficient [Fig. 6(b)] was zero up to

�3.0 eV and then increased toward the absorption edge. This

increase in absorption can be attributed to the electronic tran-

sitions between the valence and conduction band, related to

the bandgap. The absorption can be mathematically expressed

by the Tauc relation:

ah� � ðh�–EgÞn; (1)

where a is the absorption coefficient, h� is the incident energy

of photons, Eg is the optical bandgap, and the exponent n
which is related to the type of band-gap transition. Typically,

n¼ 1/2, 3/2, 2, and 3 for transitions corresponding to direct

allowed, direct forbidden, indirect allowed, and indirect for-

bidden, respectively.2,49 Assuming an indirect transition,45,47,50

the band gap for WO3 can be evaluated by extrapolating the

FIG. 5. (Color online) XPS spectra of WO3 films deposited at 100 and

400 �C. (a) W4f peaks—fitted W4f core level spectra involving a doublet

and a loss feature. A W4f7/2 peak at �36.1 eV and a Wf5/2 peak at �38.3 eV

constituted the doublet. (b) O1s peaks—fitted O1s core level spectra which

includes a peak at �531 eV corresponding to the valency of W6þ and

another peak at �532.5 eV which might correspond to residual water

adsorbed on the surface.

TABLE II. Important film properties of WO3 including (1) GPC determined

by in situ SE, (2) number of deposited W at nm�2 cycle�1, (3) O/W ratio as

well as (4) mass density determined by RBS, and (5) H content determined

by ERD measurements, for various deposition temperatures. C and N impu-

rity content in the as-deposited films (bulk) were below the RBS detection

limit of 3 and 2 at. %, respectively. The error margins for the respective

parameter are indicated along with the first value in each column. No RBS/

ERD measurements were performed on the samples deposited at 350 �C.

Deposition

temperature

(�C)

GPC

(Å)

W

(at nm�2 cycle�1) O/W

[H]

(at. %)

Mass density

(g cm�3)

100 0.68 6 0.03 1.06 6 0.08 2.9 6 0.1 11.3 6 0.8 5.8 6 0.1

200 0.53 0.85 2.9 2.5 5.9

300 0.44 0.62 2.9 2.5 5.9

350 0.43 — — — —

400 0.43 0.62 2.9 6.2 5.9
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linear part of the Tauc plot [(ah�)1/2 vs h�] as shown in Fig.

6(b) inset. The band gap determined using this procedure are

listed in Table III for various deposition temperatures. (Note:

The absorption coefficient “a” was determined from SE meas-

urements.) The observed bandgap values (3.12–3.23 eV) are in

agreement with literature values for WO3 films.45,47,49 With

respect to deposition temperature, the bandgap decreased mar-

ginally from �3.23 eV at 100 �C to �3.12 eV for �350 �C.

Figure 7 shows the GI-XRD spectra of the as-deposited

films at 100, 300, 350, and 400 �C. The GI-XRD diffracto-

gram of the films deposited at 100 and 300 �C was featureless.

The AFM images [Fig. S1(a)] also exhibhit a featureless and

relatively smooth surface at these temperatures. This suggested

that the respective films were amorphous. Even though no

XRD peaks were observed for the films deposited at 350 �C,

small crystallite like features were observed in the AFM image

[Fig. S1(b)]. This suggested the growth of a partially crystal-

line film. The presence of multiple peaks at 400 �C suggested

the growth of a polycrystalline film and the respective peaks

could be indexed according to monoclinic WO3.
8,51 The AFM

image [Fig. S1(c)] showcased a higher density of the crystallite

like features at 400 �C in comparison with films deposited at

350 �C. This transition from amorphous growth at tempera-

tures below 300 �C to polycrystalline film growth at tempera-

tures above 300 �C could also explain the GPC stabilization at

temperatures above 300 �C (Fig. 3).

IV. SUMMARY AND CONCLUSIONS

A new ALD process for WO3 has been developed using

(tBuN)2(Me2N)2W and O2 plasma over a wide table temper-

ature range of 100–400 �C. The influence of deposition tem-

perature on the film growth as well as film properties has

been studied comprehensively. The application of oxygen

plasma, judicious optimization of process conditions, and

the right choice of precursor enabled us to develop a new

WO3 ALD process characterized by (1) a relatively high

GPC with very good uniformity, (2) low impurity incorpora-

tion, (3) wide temperature window, and (4) near stoichiomet-

ric film composition. Due to the relatively high purity of the

films and the capability to deposit at low temperatures, the

presented process is likely to be suitable for many applica-

tions including electrochromic displays, solar cells, and syn-

thesis of 2D-WS2.
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