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Abstract 
Commonly used building structures often show a hierarchic layout of structural elements. It can be 
questioned whether such a layout originates from practical considerations, e.g. related to its 
construction, or that it is (relatively) optimal from a structural point of view. This paper investigates 
this question by using topology optimisation in an attempt to generate hierarchical structures. As an 
arbitrarily standard design case, the principle of a traditional timber floor that spans in one direction is 
used. The optimisation problem is first solved using classical sensitivity and density filtering. This 
leads indeed to solutions with a hierarchic layout, but they are practically unusable as the floor 
boarding is absent. A Heaviside projection is therefore considered next, but this does not solve the 
problem. Finally, a robust approach is followed, and this does result in a design similar to floor 
boarding supported by timber joists. The robust approach is then followed to study a floor with an 
opening, two floors that span in two directions, and an eight-level concrete building. It can be 
concluded that a hierarchic layout of structural elements likely originates from being optimal from a 
structural point of view. Also clear is that this conclusion cannot be obtained by means of standard 
topology optimisation based on sensitivity or density filtering (as often found in commercial finite 
element codes); robust 3D optimisation is required to obtain a usable, constructible (or in the future: 
3D printable) structural design, with a crisp black-and-white density distribution. 
 
1 Introduction 
Hierarchic layouts of structural elements are commonly found in building structures such as floors, 
walls and roofs. A hierarchic structure consists of sets of structural elements and arranges a flow of 
forces hierarchically from the last set on which an external load acts via intermediate sets to the 
primary set which is connected to a supporting structure. The flow of forces is stepwise being 
concentrated by each set with the aim to transfer a distributed load to a few specific locations. For 
example, a floor can be spanned by primary bridging joists, secondary beams, and floor boarding, or a 
cladding system via primary to tertiary elements, see figure 1. Using hierarchic layouts of structural 
elements could very well originate from practical considerations, e.g. in terms of construction speed 
and preventing errors. Namely, its aspects of repetition allow for standardized building methods, and 
errors are spotted more easily in a repetitive system. However, a hierarchic layout of structural 
elements could also be explained if it would be (relatively) optimal from a structural point of view. 
The goal of the research presented here is to investigate whether hierarchic structures can be found 
using topology optimisation, and as such to demonstrate that structural optimality is one of the 
contributing factors in their design. A second goal of this paper is to demonstrate the applicability of 
several approaches to topology optimisation in the context of a real structural design problem.   

 
The aim of topology optimisation is to find the optimal distribution of material in a certain design 
domain. In the context of structural design, minimum compliance problems are often considered. In 
this case, next to the design domain, the loads and boundary conditions are given, as well as the 
amount of available material, and the aim is to find the distribution that minimizes the compliance of 
the structure. In the density-based approach to topology optimisation [1–2], which is one of the most 
widely used approaches, the design domain is subdivided into a large number of finite elements. A so-
called density is assigned to each element. The element densities control the distribution of material: 



an element with zero density is void, an element with unit density is solid. Intermediate densities (grey 
elements) are also allowed in order to obtain a continuous optimisation problem, but they are penalised 
by a penalisation factor, see equation 1 in section 2. This penalisation factor leaves densities with 
values 0 and 1 unmodified, however intermediate densities are reduced. This operation is carried out to 
approach a "black-and-white design", containing only densities with values 0 (white) and 1 (black) at 
the end of the optimisation. An iterative procedure is followed to find the optimal material 
distribution: for each iteration, a finite element analysis is performed, the deformation energy per 
element is determined, and the material is redistributed by moving material from locations where the 
material is less efficient to locations where the material is more efficient. In order to ensure the 
existence of solutions and to suppress the occurrence of checkerboard patterns in the optimised design 
[3-5], filtering techniques are commonly used.  An overview paper has been published that first 
summarizes existing filters and then introduces new morphology based filters, e.g. eroding, dilating, 
opening, and closing morphology filters, and compares these with existing filters like density filtering, 
sensitivity filtering, and filters based on a Heaviside projection [6]. Finally, topology optimisation has 
been used to optimise all sorts of artefacts, e.g. bridges, aircraft wings, chairs and tables, statues, etc. 
[7]. Other research applies topology optimisation in design process simulation e.g. for automated 
building spatial and structural design [8]. More specifically related to this paper, plate optimisation via 
topology optimisation has been studied [9–10], but they used finite elements based on plate theory. 
These plate elements are 2D, and consequently do not allow for differentiation of the material 
distribution over the height of the design domain. The influence of different types of plate formulation 
has been studied as well [11]. In order to reduce computational time, symmetry can be used [12], and 
useful analytical benchmarks can be found as well [13]. Related to this a derivation of an analytical 
solution is found in [14]. It can be concluded that a number of techniques exist for topology 
optimisation, which have been used for a variety of design problems. However, a study on the 
optimality of hierarchic 3D structures has not yet been published. This will be the contribution of this 
paper, focussing on a standard (hierarchic) design problem: a commonly used timber floor. 

 

   
 
Figure 1. On the left three levels of hierarchy: bridging joists on corbels, secondary beams, and floor 
boarding (hidden by plaster), Old Town Hall, Beek, The Netherlands. On the right a schematic view of 
a cladding system with four levels of hierarchy. 
 
This paper is organised as follows. Sections 2 and 3 address the optimisation of a timber floor 
structure using standard sensitivity and density filtering, respectively.  It is shown that these filters do 
not lead to a crisp black-and-white solution. In section 4, a Heaviside projection is added in order to 
solve this problem, but to no avail. In section 5, a robust filter is therefore used. This filter has 
originally been proposed to improve the robustness of the optimised design with respect to geometric 
imperfections [15], but it has been shown to lead to very crisp black-and-white designs in situations 
where all other filters fail [16]. Also for the standard problem considered in the present paper (a timber 
floor), the robust filter performs very well. In section 6, the optimised floor designs are discussed, and 
in section 7, three additional applications are considered: a floor with an opening, two floors that span 
in two directions, and an eight-level concrete building. Finally, section 8 and 9 present a discussion,  
and conclusions and recommendations respectively. 
 
2 Sensitivity filtering 
The focus of this paper is on a standard (hierarchic) design problem: a commonly used timber floor 
that consists of bridging joists with a cross-section of 38×235 mm and a centre to centre distance of 



300 mm [17]. The span length equals 5.0 m and the floor boarding has a thickness equal to 18 mm. 
The design modulus of elasticity is 6000 N/mm² and the Poisson’s ratio is assumed to be 0.3. The 
floor is loaded with a uniformly distributed load pd equal to 3.0 kN/m² and is simply supported; see 
figure 2. 
 

 
 
Figure 2. On the left a cross-section of the floor structure. On the right a mechanical scheme for 
which the joists and floor boarding are presented as a line. 
  
The design domain used to formulate the optimisation problem is defined based on the geometry of the 
timber floor described above. Symmetry is used to reduce computational costs by modelling half the 
floor joists’ span length. An intermediate part of a wider floor is modelled: symmetry conditions are 
applied at the left and right side, resulting in a model of an infinitely wide floor.  
 

 
 
Figure 3. Design domain and boundary conditions for an intermediate part of an infinitely wide floor. 
 
In this section, the optimisation problem is solved by means of a sensitivity filtering based approach as 
described by [1]. The problem is formulated as follows: 
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where the displacements u are found by solving the system of equilibrium equations: 

 
  Ku = f  (4)

 



In equations (1) to (4), the objective is the minimisation of compliance c, which is related to the total 
strain energy over all elements, the latter expressed as a function of the global displacement vector u 
and global stiffness matrix K. In the objective function, e is a finite element identifier, n the total 
number of elements, and xe is the density of element e, where all densities are combined in a vector x. 
The variable p is a penalisation factor, ue is the displacement vector of an element and Ke is an 
element's stiffness matrix (without Young's modulus E0, which is separately added in the equations, 
for consequent definitions in subsequent sections). The constraint in equation (2) keeps the ratio 
between the structural volume (being a function of the densities) V(x) and the initial volume V0 
constant to a user selected value f. The finite element formulation is expressed in equation (4), where f 
is the force vector, and finally equation (3) ensures that the densities are kept between a maximum of 1 
and a minimum xmin, which is slightly larger than zero to avoid singularities of the stiffness matrix. 
The algorithm starts by computing the modified stiffness matrices of the elements using an initial 
column vector x as shown in equation 5. 
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The global stiffness matrix is then assembled and Ku=f is solved for u. Accordingly, the compliance 
c(x) can be calculated via equation (1). The sensitivity of the compliance to the variation of an 
element´s density can now be calculated by means of the adjoint method according to equation (6). 
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A sensitivity filter modifies the sensitivity of the compliance to the density of an element on the basis 
of the compliance sensitivities for the surrounding elements, taking into account the density and 
distance of these surrounding elements, as such effectively averaging the sensitivities over a specified 
domain, as shown in equation (7) to (8). 
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In equation (7), the sensitivity for element ݁ is considered and the sensitivities for all other elements Ne 
within a radius rmin are weighted on the basis of their density xi and their distance to the considered 
element Hei as given in equation (8). 
 
Finally, the elements are assigned a new density ݔ௘௡௘௪ by means of an optimality criteria method as 
shown below in equations (9) and (10). The change in density is limited to a value ݉ to ensure smooth 
changes in the topology, which is usually set to 0.2. The total sum of all densities is scaled to equal the 
design volume fraction f in equation (2) by a bi-sectioning algorithm that finds the value of the 
Lagrangian multiplier ߣ. Note that the new density xe

new is a function of the sensitivity of the volume to 
the density as well. However, as design problems in [1] are modelled by a finite element model with 
all finite elements having the same volume, this volume sensitivity always equals 1 and is thus not 
explicitly implemented in the code listed in [1], and in the code used here. 
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The new densities from equation (9) are evaluated in a finite element calculation again, starting with 
equation (5), until the maximum norm of the difference between the previous and new density vector 
is lower than a predefined threshold. The algorithm is graphically shown in figure 4 on the left. 
 

 
 
Figure 4. Schematic overviews of sensitivity filtering on the left; density filtering on the right. 
 
To analyse the design problem, the above presented algorithm is followed exactly as presented in [1]; 
however, the convergence criterion of the optimality criteria update has been modified from "(l2-l1) > 
1e-4" to "(l2-l1)/(l2+l1) > 1e-4" to ensure even accuracy over the bandwidth of the Lagrange 
multiplier boundaries l1 and l2. A penalisation factor of p=3, a Young’s modulus of E=6000 N/mm², 
and a Poisson’s ratio of ν=0.3 are used. The volume fraction equals f=0.2, which resembles the 
practical volume fraction of the timber floor, and rmin=55 mm. For the filter radius rmin this value is 
chosen such that one layer of surrounding elements is taken into account for each element, just enough 
to avoid checkerboard-patterns and not larger to be able to generate small structural elements, e.g. 
slender beams. Finally, the optimisation algorithm will be successfully finished if the maximum found 
in |x-xnew| is smaller than a tolerance, here set to 0.02. C++ code has been used as presented in [8], 
although it should be noted that for this paper the "SimplicialLDLT" instead of the "BiCGSTAB" 
solver has been used. Furthermore, an orthogonal eight-node volume finite element has been used 
[18], for which its displacement functions as given by equation 11 to 13. 
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Using the derivatives of these displacement functions, matrix B can be determined, which relates the 
internal strains and the nodal displacements. Additionally using the elasticity matrix E, relating 
stresses and strains, the element stiffness matrix can analytically be determined by equation 14.  
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The implementation and results have been verified successfully with 3D MATLAB code published by 
[19], which has been modified such that its operation conforms exactly to the 99 line 2D MATLAB 
code published in [1]. 
 
Results are shown in figure 5. Bridging joists with cigar shaped flanges appear, but no webs are 
present at the middle of a joist's span. Besides the primary joists also secondary and tertiary 
beams/arches appear, which clearly indicate a hierarchical structure. These results are promising with 
respect to the generation of a hierarchic structure, however not regarding the practicality of the floor 
design: low density elements appear at the floor boarding location, which suggest voids or holes where 
loads are acting. Structurally this may be correct, as stacked low density elements can still bear 
relatively large loads, but from a practical point of view, it is not constructible. To prevent these low 
density elements from appearing, two solutions can be imagined. The first solution is the introduction 
of passive elements that enforce the elements subjected to external loads to remain solid. However, 
this is similar to steering the algorithm directly to generate a desired solution. The second solution—
selected here—is to only allow a discrete density distribution. Such a crisp black-and-white solution 
can be obtained by means of a Heaviside projection [6,20]. As this technique is based on the 
application of a density filter instead of a sensitivity filter, in the next section the focus will be put on 
density filtering first. 
 

 
 
Figure 5. On the left a bottom view of a half floor intermediate section for the last iteration (106), 
f=0.2, rmin=55 mm, penalisation factor p=3. On the right the compliance vs. the iteration number, the 
final compliance equal to about 160000 Nmm. 
 
3 Density filtering 
In the original density-based approach to topology optimisation, a lower bound different from zero is 
used for the density in order to prevent the stiffness matrix from becoming singular.  This is referred to 
as the classical SIMP approach. However, for the implementation of more advanced filters, it is 
beneficial to allow the density to vary between 0 and 1 and to ensure a minimum stiffness by 
modifying the relation between the density and the Young’s modulus, which is referred to as the 
modified SIMP approach [6].  In the modified SIMP approach, equations (1), (5), and (6) are replaced 
by equations (15) to (17): 
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For sensitivity filtering the sensitivities are filtered as given by equation (7) and (8). However, for 
density filtering, the densities are filtered instead, as given by equation (18) and (8): 
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Since these filtered densities will be used in the finite element model (to predict the compliance and 
sensitivities), the original densities will merely represent design variables, and do not have a physical 
meaning anymore. This is the reason the filtered densities are defined as "physical densities", and the 
original densities as "design variables". If the design variables are updated during the search for the 
minimal compliance, the sensitivity of the compliance to these design variables is needed, and not the 
sensitivity to the physical densities (the latter found via the adjoint method). The former can be found 
via the chain rule: 
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Here Nj is equal to set Ne. Density filtering is schematically shown in figure 4 on the right, and can be 
compared with sensitivity filtering on the left. The C++ code of the first design problem, as presented 
in the previous section, has been modified to implement equations (15) to (19), using E0=6000 N/mm² 
and Emin=6000*1E-9 N/mm². The latter value selected experimentally as being as small as possible 
without causing numerical problems, which depend on the variable type, matrix structure, solving 
procedures, etc. Results are shown in figure 6. It can be seen that sensitivity filtering shows results 
similar to density filtering, however, for density filtering three (of which two half) instead of two 
branches (both half), similar to bridging joists, occur. The minimal compliance given by density 
filtering is slightly lower, as can be seen in the graph on the right. The secondary and tertiary 
beams/arches that appear clearly for sensitivity filtering are less clearly visible for density filtering, 
possibly because less material is available for them due to the existence of three instead of two joists. 
The two simulations as shown in figure 6, using a filter radius equal to 1.1 times the element size, have 
also been carried out with filter radii equal to 0.1, 2.1, 3.1, and 5.1 times the element size. These 
results are not shown here, but except for 0.1 (no filtering, but a classical vs. modified SIMP 
comparison) and 1.1 (as shown in figure 6), results are very similar for sensitivity and density filtering. 
 
4 Heaviside projection 
For both sensitivity and density filtering, low density elements appear at the location of the floor 
boarding, suggesting voids or holes where actually loads are acting. Structurally this may be possible, 
as stacked low density elements can still bear relatively large loads, however, this type of structure is 
not constructible. To prevent these low density elements to occur, a Heaviside projection can be 
applied, which is based on the Heaviside step function [6,20]. In order to assess the degree to which a 
design is black-and-white, [6] introduced the so-called measure of non-discreteness, given by equation 
(20). Here, 0% means a fully discrete density distribution (only densities 0 and 1 exist) and 100% 
means a fully homogeneous density distribution (all filtered densities equal to 0.5). As equation (20) 
only functions correctly for f=0.5 (e.g. for f=0.2 it will yield 64 % instead of 100% if all densities are 
0.2), here a modification for an arbitrary fraction is proposed in equation (21). 
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In the equations above Mnd is the measure of non-discreteness, ݔ෤௘	equals the physical density of a 
finite element, and f equals the design volume fraction. 
 

 
 
Figure 6. Sensitivity filtering shows two half bridging joists, whereas density filtering results in two 
half joists and one joist in the middle. Final compliance equals about 149000 Nmm for density 
filtering (vs. 160000 for sensitivity filtering), f=0.2, rmin=55 mm, penalisation factor p=3. 
 
A ready-to-use implementation of the Heaviside projection is available [2] and will be used and 
presented here. The filter is based on a Heaviside step function, as shown in equation (22). In this 
equation, the previously used physical densities ݔ෤௘ (from now on redefined as "intermediate 
densities") are determined and then projected to either 0 or 1. The resulting values (̅ݔ௘) are used for the 
finite element simulation, compliance, and visualisation, and as such now take over the definition of 
"physical densities". 
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Implementation of this Heaviside step function would lead to abrupt changes in the topology design, 
which is not desirable when using a gradient-based optimization method. Therefore a modified 
Heaviside projection is introduced as based on [20] and slightly modified by [6] and [2]. 
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The modified Heaviside projection in equation (23) is a continuous function that converges to equation 
(22) when the factor β increases.  In order for the projection to be effective, the value of the factor β 
must be sufficiently high. However, if β is high, small changes of the design variables may lead to 
strong changes in the projected densities, leading to strong oscillations in compliance and volume.  
This results in a high risk for the optimization algorithm to get stuck in a local optimum very quickly.  
As suggested by Guest et al [20], a continuation scheme is therefore adopted: a value of β=1 is started 
with, and this value is doubled after a certain number of iterations (or if the change becomes smaller 
than the criterion) until a value of β=512 is reached. Likewise as for the modification from sensitivity 
to density filtering, if the design variables are updated during the search for the minimal compliance, 
the sensitivity of the compliance to the design variables is needed, and not the sensitivity to the 
physical densities (the latter found via the intermediate densities). In equation (24), the chain rule is 
used twice to find the relationship between the derivatives with respect to the physical densities and 
the derivatives to the design variables, and equations (19) and (25), the latter via equation (23), can be 
used to find the related terms.  

( ) ( ) ( ) ( )
,  e e e e

e e e e e e e e

x x x xc c v v

x x x x x x x x

      
 

       
x x x x 

 
 (24)

   

exe

e

x
e e

x
    

 





 (25)

   
Figure 7 gives a schematic overview of the density filtering and the Heaviside projection algorithms. 
Where the Heaviside projection (or its derivative) is applied, text is underlined. In figure 8, results of 
both algorithms are shown for the standard design problem as defined in section 2. The same settings 
are used as for density filtering in the previous section: The threshold for successfully ending the 
optimisation equals 0.02, and the settings for the optimality criteria method are l1=0, l2=1e9, and (l2-
l1)/(l1+l2)<1e-3. The factor  starts at 1 and is doubled every 50 iterations or if the threshold is reached. 
In both cases the difference between xnew and x is set to 1 (larger than the threshold) to initiate a new 
loop. Whereas density filtering successfully finished after 78 iterations, the Heaviside projection 
showed instable convergence behaviour: A while after was set to =512, and starting from iteration 
434, first the compliance fluctuated (0.06%), hereafter it slowly increased with about 0.001% each 
iteration. It was then decided to terminate the optimisation. As can be seen in figure 8, the Heaviside 
projection leads to a slight decrease of the measure of non-discreteness compared to density filtering; 
however, it only does this after many more iterations. Minimum compliance and visual appearance of 
both approaches are qualitatively comparable, and thus it can be concluded that a Heaviside 
projection, at least for this design problem, does not provide the expected solution. This is explained 
by the fact that the Heaviside step function is replaced with a smoothed version: for very large values 
of the smoothness factor  the range where densities are projected to non-discrete values becomes 
very narrow, but it still exists.  If the optimisation problem benefits from the occurrence of elements 
with low densities, the optimiser will find this range, still resulting in a design with a high level of 
non-discreteness. Note that a discontinuity in the convergence plot is caused by the continuation 
scheme: each time the factor β is doubled, gray elements suddenly become darker. This leads to a 
sudden change in compliance and volume. 

 
 



 
 
Figure 7. Compared to density filtering, a Heaviside projection involves modification or addition of 
the underlined procedures. 

 
5 Robust topology optimisation 
As explained in [15-16], a projection similar to the Heaviside projection in equation (23) can be 
defined as: 
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The newly introduced factor  can be given any value between 0 and 1 to let equation (26) for an 
infinite value of  define physical densities equal to 0 for intermediate densities smaller than the 
value of , and equal to 1 for intermediate densities larger than the value of . As such, instead of the 
single physical density vector in equation (26), now 3 different density vectors will be established. By 
using a relatively low setting for factor  (defined as d) a dilated design with wider, larger parts is 
obtained; an intermediate design is found if 0.5 for factor  is used; and finally if a relatively large 
setting for would be used (defined as e), an eroded design occurs with worn away parts. The idea of 
robust topology optimisation is to evaluate all three designs via a finite element simulation, and to 
minimize the maximal objective found among these three solutions. As such, an optimal (minimal 
objective) solution is found that takes into account that in practice dimensions may vary, for instance 



due to manufacturing processes. For minimal compliance problems (as in this paper), the eroded 
design (with the least material) will always yield the largest compliance (objective) value among the 3 
designs, and is therefore here the only design that needs to be taken into account. As a consequence, 
the optimality criteria method can still be used and therefore the Heaviside projection can easily be 
modified to obtain a robust approach, as shown in figure 9. 
 

 
 
Figure 8. Density filtering and the Heaviside projection result in qualitatively the same optimal 
topologies. The measure of non-discreteness is only slightly lower for the Heaviside projection. f=0.2, 
rmin=55 mm, penalisation factor p=3. 
 
Using this robust approach, the standard design problem has been optimised as shown in figure 10. 
Settings are equal to the optimisation using the Heaviside projection in section 4, but the tolerance for 
successfully ending the optimisation equals 0.01 instead of 0.02. Secondly, for the optimality criteria 
update, the maximum change of each individual design variable—m in equation (10)—has been made 
a function of : 
 

0.2 / ( / tanh( / 2) / 2)m    (27)
  
Finally, for the factor d a value equal to 0.2 is chosen and, following the normal symmetrical 
approach e =1-d, consequently e equals 0.8. This results in an eroded design where all densities 
below 0.8 turn zero, and all values above turn 1. 



 

 
 
 
Figure 9. Compared to the Heaviside projection on the left, for minimal compliance a robust 
approach involves determination of the objective for an eroded design, and keeping the volume 
fraction of the nominal design, as shown on the right. 
 
It can be seen from the visualisation in figure 10 that two bridging joist-like structures occur at the left 
and right end of the design domain, combined with a floor boarding-like structure at the top. Some 
small secondary beams have occurred running from the support line (at the top of the figure), 
diagonally towards the joists. On the bottom right, the measure of non-discreteness has been plotted 
for both the robust approach and the Heaviside projection as presented in the previous section. 
Although the modified Heaviside projection lowered the measure slightly compared to density 
filtering (see figure 8), it is the robust approach that brings down the measure to almost zero. This is 
explained as follows: in the robust approach, the compliance is computed for the eroded situation, 
while the volume constraint is evaluated for the nominal design. Using grey elements (elements with 
intermediate densities) in the nominal design to reduce the amount of material in areas of low strain 
(as observed in the case of the sensitivity filtering, density filtering, and the Heaviside projection) does 
not work anymore for the robust approach, as these grey elements are removed from the eroded 
design. As such, grey elements would lead to an increased use of material (checked by the volume 
constraint for the nominal case), but not to a reduction of the compliance (checked for the eroded 



design). They are therefore completely eliminated from the optimised design, which becomes perfectly 
black-and-white. The elements directly beneath the distributed load are always strained, necessitating 
the presence of some material.  The robust approach ensures that these elements become completely 
solid, resulting in the presence of a well-defined floor boarding-like structure. The C++ code used in 
this section 5 and its results in figure 10 have been successfully verified with the 3D MATLAB code 
by [19], which has been modified using [16] and [2] such that its operation conforms exactly to the 
robust approach presented here.  
 

 
 
Figure 10. The robust approach results in two half bridging joists supporting a floor boarding 
surface. On the bottom right it is shown that a robust algorithm brings down the non-discreteness 
much better than a Heaviside algorithm. f=0.2, rmin=55 mm, penalisation factor p=3, 0.2. 
 
6 Discussion standard hierarchic design problem 
In the previous section, it became clear that half joists occurred adjacent to the left and right symmetry 
lines and that additionally a Y-shaped set of beams occurred in between the joists. To investigate this 
further, it should first be noted that, as was explained, an intermediate part of the floor is modelled, 
having symmetry conditions on the left and right side to simulate an infinitely wide floor, as shown in 
figure 11.  
 
Because the intermediate part is symmetric with regards to all aspects (geometry, load, and boundary 
conditions), it is assumed here (although it is not necessarily the case for sensitive problems due to 
numerical imperfections) that a symmetric topology will be generated. Assuming that a given number 
of joists occurs, two different solution types are thus possible, as shown in figure 11: Type A 
distributes the joists over the width of the intermediate part with the outer joists having a distance to 
the symmetry line equal to half the distance from centre to centre. This was observed for sensitivity 
and density filtering using a volume fraction f=0.5 and a filter size 1.5 × the element size, rmin=75 mm 
(both not presented in this paper). Type B will show only joists with a full centre to centre distance, 
but half joists will occur adjacent to the symmetry lines. This was the case for all other simulations, 



probably due to half the minimal length scale enforced along the edges [20–21]. For both types, the 
centre to centre distance between the joists can easily be calculated by dividing the intermediate part 
width by the number of joists (and counting the half beams for type B as 1/2). This implies that for a 
given intermediate part width, only certain centre to centre distances w/n can occur, as shown in figure 
11, and topology optimisation may thus not find the optimal centre to centre distance.  
 

 
 
Figure 11. Assuming a symmetric outcome of the topology optimisation, any suggested number of 
joists n can theoretically occur as type A or type B. In both cases the centre to centre distance can be 
calculated as w/n. f=0.2, rmin=55 mm, penalisation factor p=3, 0.2. 
 
For the robust optimisation, at the horizontal symmetry line at the top 2 joists are suggested (w/n=2500 
mm), whereas near the support line it may be argued that 4 joists (w/n=625 mm) are suggested, due to 
the Y-shaped set of additional beams. The average (about w/n=1500 mm) cannot be found for the 
current intermediate part width (only 2500, 1250, 833, 625, 500 mm, etc.) and therefore exactly the 
same simulation has been carried out again, now for an intermediate part width equal to 2×1500=3000 
mm, shown in figure 12. Now indeed three joists are suggested, without the Y-shaped set of beams of 
the previous simulation. Also parts of secondary beams can be distinguished, as well as the flat floor 
boarding. However, the topology of the joist in the middle is different from the joists at the 
boundaries. In other words, if an intermediate part width equal to 1500 mm would have been used, the 
same joist topology would have been suggested for all joists. In addition to the discussion on the 
centre to centre distances, this is again an indication that for topology optimisation, an intermediate 
part, although with the correct symmetry conditions, can only provide an indication of the optimal 
topology. Although an extensive parameter study could be carried out on the effect of a varying 
intermediate floor part width, in the next section for demonstration purposes three other case studies 
will be presented. 
 
7 Applications 
In this section, three examples will be presented where hierarchic structures are generated via the 
robust 3D topology optimisation presented in section 5. The first example is based on the standard 
design problem where the floor is modified to introduce an opening, and the second example will 
study two timber floors supported along all edges. The last example concerns a multi-level concrete 



building, for which a similar design has been studied with sensitivity filtering in the past, and which 
will now be rerun using the robust approach. 
 

 
 
Figure 12. Robust topology optimisation of the standard design problem, intermediate part width 3000 
mm. Three joists are suggested, parts of secondary beams in between, and floor boarding on top. 
f=0.2, rmin=55 mm, penalisation factor p=3, 0.2. 
 
7.1. Opening 
In section 6, for the standard design problem an optimal topology was found that mainly consisted of 
two bridging (normal) joists (type B in figure 11) and flat floor boarding, similar to practice, see also 
figure 13 on the left. If in practice an opening in this floor has to be realised, a trimmer joist is 
introduced to enable trimming of the middle joist, shown in figure 13 on the right. Furthermore, added 
trimmed joists are designed to support the floor boarding along the edges of the opening. Note that in 
practice it would make sense to slightly enlarge the opening to hand over this function to the trimming 
joists, but here, for topology optimisation of an intermediate part with symmetry conditions, especially 
the opening size in figure 13 makes for an interesting case. For example, it could be possible that the 
trimming joists and added trimmed joists will merge into a single freeform joist. 
 
The opening problem has been implemented using the C++ code described in section 5. The equally 
distributed load (equal to 3.0 kN/m2, and applied as nodal loads each equal to 7.5 N on the top surface) 
has been removed from the location of the opening. Consequently, the nodes along the opening have 
been given half the normal load (3.75 N), the nodes of the two outer corners (near the support) are 
loaded by a quarter load (1.875 N), and at the two interior corners 3/4 of the nodal load has been 
applied. The resulting topology after successful convergence at =512 is shown in figure 14. 
 

 
 
Figure 13. On the left type B with n=2 for the standard design problem (3000 mm wide). If an opening 
is to be planned, a practical solution involves the introduction of a trimming joist—which trims the 
joist in the middle—and two added trimmed joists supporting the floor adjacent to the edges of the 
opening. 



  

 
 
Figure 14. Standard design problem with opening via load removal. f=0.2, rmin=55 mm, penalisation 
factor p=3, 0.2. 
 
Neither a trimmer joist nor a trimmed joist is suggested. Instead, two primary joists bridge the 
complete span, due to their wide structure at the same time carrying the loads on the floor parts 
adjacent to the opening. For the other floor part (adjacent to the opening in span direction) the primary 
joists support small secondary beams. This suggested topology seems to make sense intuitively, but it 
does not take into account the practical argument that joists are preferably prismatic and of smaller 
cross-sectional size (e.g. for transport, sawing, etc.). Nevertheless, it would be interesting to evaluate 
in practice an approach, as suggested by the robust optimisation, where instead of a trimmer joist to 
support the trimmed joist in a system with regular centre to centre distances, these distances are 
variable instead, to adjust for the specific openings required. In other words, it would not be logic to 
add the 'added trimmed joist', but to extend these joists from south to north, as indeed is suggested in 
figure 14. Note that for this simulation, so-called passive elements, which enforce a very low density 
of the elements at the opening, have not been used. Nevertheless, in the simulation elements at the 
opening have naturally obtained this very low density. It would be tempting to explain this by 
reversing the reasoning in section 5, which stated that robust topology optimisation will ensure high 
densities at locations of load application. However, it cannot be stated that locations without direct 
load application will have a low density. For instance, these locations could still be needed for load 
distribution. Nevertheless, the specific standard design problem with opening seems to not need 
density at the opening location to distribute loads, for all loads are distributed either directly via the 
trimmer joist (secondary beams in figure 14) or to the two added trimmed joists (primary bridging 
joists in figure 14). And thus, although the suggested practical and calculated model differ in their 
actual layout, this indicates that the principle of bridging joists and floor boarding in general can also 
be used around openings, and is as such a widely applicable concept. 
 
7.2 Two floors supported along all edges 
For the second application, first the implementation of section 5 has been modified by replacing the 
symmetry conditions on the left and right side surfaces by a support line equal to the existing support 
line, so in z-direction. As such, a floor is optimised that is positioned with its edges on a 2500 × 5000 
mm opening. All other settings are equal to the simulation of section 5, but to avoid rigid body 
movements, the node in the middle at the bottom of the modelled part (x=y=1250, z=0 mm) has been 
restrained in x-direction. Topology optimisation results are shown in figure 15, for only half the 
problem. As would be expected intuitively, the optimised topology suggests bridging joists over the 
shortest span length (2500 mm), their centre to centre distances equal to about 1 m. At the front 
secondary beams have been formed that span from the side walls to the first bridging joist. On top of 
the primary bridging joists and secondary joists, an almost flat floor boarding can be observed. 
Secondly, a square opening equal to 2500×2500 mm has been investigated by replacing the symmetry 
line at y=2500 mm with a line support (uz=0) as well. Again, to avoid a singular stiffness matrix, the 



node at location (x=0, y=1250, z=0 mm) has been fixed in y-direction, and the node at location 
(x=1250, y=1250, z=0 mm) for movements in x- and y-direction.  
 

   
 
Figure 15. Standard design problem modified to rectangular plate on the left and square plate on the 
right, both supported along all edges. f=0.2, rmin=55 mm, penalisation factor p=3, 0.2. 
 
For the square plate a ring shaped joist occurs, connected to the support lines with equally sized 
beams. In the ring a completely flat floor boarding can be seen. Outside the ring secondary beams 
show up, which span diagonally the support lines at each side of the corner. Both the primary structure 
(ring plus short beams) and the secondary beams end at the support lines, with no material in between. 
In other words, the floor boarding is not supported by the support lines directly. As such, also here a 
clear hierarchical structure occurs. 
 
7.3 Multi-level concrete building 
As mentioned in the introduction in section 1, topology optimisation has been a part in the simulation 
of co-evolutionary building design processes, both to (a) refine grammar defined flat-shell building 
structures and (b) to find building structures from scratch by using a grammar that transforms the 
building spatial design completely in structural mass [8]. All simulations carried out in that work have 
been based on sensitivity filtering as presented in section 2. For (b) finding building structures from 
scratch this resulted in voluminous "grey" areas, which made the determination of the overall 
structural topology difficult. The robust approach as presented in section 5 could possibly improve the 
simulations in this respect, and for a further demonstration of robust optimisation both approaches will 
be compared for a somewhat similar problem as presented in [8]. 

The building spatial design used here has the same height as in [8] and equals 24000 mm exactly to let 
an automatic loading algorithm work correctly. A trade-off between mesh accuracy and computational 
costs resulted in 72 elements over the height (element height 333.33 mm). Preferring cubic elements, 
but avoiding asymmetrical results due to the specific rounding of numbers in the implementation, 
element width and depth were selected to equal 333 mm. Finally, to obtain a comparable building 
width and depth as used in [8], 27 elements were used in each of these directions. Nodal displacements 
at the bottom of the FE-model are fixed in x, y and z-direction. Although possible, principles of 
symmetry have not been used and the building has been modelled completely. Six structural load cases 
are distinguished in the model. The first is a live load case, where live loads are applied at nodes 
located at a height most near to z=3000, 6000, 9000, 12000, 15000, 18000, 21000, and 24000 mm, and 
being equal to -332.667 N, equivalent to an equally distributed load of 3.0 kN/m2. The loads are 
reduced to a half along the floor edges and to a quarter value at the floor corner points. Four wind load 
cases each model a wind blowing in a specific direction (൅x, ൅y, െx, and െy), by each acting on each 



outer surface except the bottom (constrained) surface as wind pressure 0.951 kN/m², (nodal: 105.568 
N) wind suction 0.761 kN/m² (nodal: 84.4556 N), or wind shear 0.372 kN/m² (nodal: 41.2439 N). 
Wind loads along surface edges and on surface corners are not reduced (in contrast to the live load). 
Wind pressure and suction forces act on the surfaces with a normal parallel to the respective wind 
direction, shear forces act on the remaining surfaces. Pressure forces are computed on the nodes with 
the lowest coordinate value of the respective wind direction and suction forces are computed on the 
nodes with the highest coordinate value when the direction is positive, and vice versa when it is 
negative. The sixth load case is a wind load case as above, but now with only wind pressure on one 
surface, thus omitting wind suction and shear. Young's modulus is taken as 30000 N/mm2, a ballpark 
estimate for concrete, and Poisson's ratio equals 0.3. Finally, for the robust simulation Emin, 30000 
N/mm2*1E-5 was taken instead of a multiplication by 1E-9, as these smaller values proved to be 
numerically instable for this specific problem and solver. First the classical SIMP and the robust 
approaches are compared in figure 16, and accordingly different load case combinations are shown in 
figure 17.  

 

 
Figure 16. Sensitivity filtering (f=0.5, rmin=500 mm, penalisation factor p=3) produces a non-discrete 
topology (iteration 50 shown). The robust approach (f=0.2, rmin=366.3 mm, penalisation factor p=3, 



0.2) yields a discrete topology that suggests floors and columns, however the compliance is 
significantly higher than for sensitivity filtering (last iteration shown). 
 
On the left of figure 16, the sensitivity filtering approach is used with f=0.5 (as used in [8]), 
rmin=1.5×333ൎ	500 mm, and penalty p=3. The optimality criteria update uses "(l2-l1)/(l2+l1) > 1e-3" 
and m=0.2. Finally, the optimisation algorithm will be successfully finished if the maximum found in 
|x-xnew| is smaller than 0.01. On the right the robust algorithm is shown with f=0.2 and 
rmin=1.1×333=366.3 mm, and other settings equal to these of the sensitivity filtering approach. 
Nevertheless, for m, the maximum change of each individual design variable, equation (27) is used, 

and e equals 0.8. For both models only the live load case has been used.  

Likewise for the timber floor, the robust algorithm brings down the non-discreteness completely, and 
in combination with the low volume fraction, now building floors and columns can easily be 
recognised. It is clear that the columns interfere with the interior space. This can be avoided either by 
the use of passive elements in the rooms, or by a more intelligent definition of the search domain (i.e. 
the locations where structural mass is allowed to form). The last option has been used (a) in previous 
research by using a grammar that provides the room walls and ceilings with flat-shell elements, instead 
of the complete building with volume elements [8] and (b) in recent work where a grammar iteratively 
provides elements based on the actual load distribution [22]. In this respect, also the interesting work 
of Steiner et al (2016) should be mentioned [24].  

Using a HP Z440 workstation (Intel Xeon E5-2690, 16 GB), processing time for each robust 
simulation (171.696 DOF's × 304 iterations) was about 74 hours, with the complete system in main 
memory and the solver responsible for almost all time spent. As the SimplicialLDLT solver, which 
was selected for best performance in a benchmark study, was a direct solver, load case combinations 
did not increase solving time noticeable. 

Figure 17 shows the robust optimization above for several load case combinations, from left to right:  
only the sixth load case (only the wind pressure component of a single wind load); all four normal 
wind load cases; only the live load case; and finally all four normal wind load cases plus the live load 
case. The sixth wind load case shows, comparable to the timber floor, a loaded surface fully occupied 
with elements. The overall structure is specific and cannot be used in practice, as then wind may come 
from all directions. The simulation with all four normal wind load cases results in a rectangular hollow 
tube, stiffened with higher thickness at the bottom and with ribs at the top. When only the live load 
case is used, free-form columns and shear walls appear, which can be conceived as a traditional 
structural design. For a combination of all relevant load cases (wind from all directions and live load), 
the façade is used for structural purposes and the floors span freely between the facades, with 
exception of some abutments and corbels. This is possible as a fully occupied outer surface needs in 
this case a volume fraction f=0.148, whereas f=0.2 is available. The top floor appears chaotic and 
consists of a 3D-truss network that makes the space on this floor unusable. Note that the compliance in 
topology optimisation is computed as the sum of the compliances of each load case. Therefore, 
without any weighting in compliances, a single load case may become dominant in the optimisation 
process. Future work may study the influence of load case weighting on the results, and the addition of 
conflicting load cases.  Related and fruitful work can also be found in [25-26]. 

8 Conclusions 
Potentially hierarchical structures (more specifically: plates) have been researched and shape 
optimised for both in-plane and out-of-plane loading, but a “from the ground up” generation of a 
hierarchic structure, to distribute a specified load, has not yet been carried out.  

 



The principle of a commonly used timber floor has been used as a standard design problem. It should 
be realised that not all the peculiarities of a timber structure have been modelled, i.e. an-isotropic 
behaviour, creep, etc., but that in this research the focus was placed on its hierarchical principle of 
joists and boarding. Then, sensitivity filtering using common settings and threshold [23] shows indeed 
a hierarchical structure (bridging joists and perpendicular secondary beams), but no floor boarding.  
 
A Heaviside projection, although developed to avoid intermediate densities, is hardly able to 
significantly bring down the so-called measure of non-discreteness, and thus does not help in finding 
e.g. floor boarding. 
 

 
Figure 17. From left to right: single wind load case with only wind pressure, all four normal wind 
load cases, live load only, all four wind load cases and live load. 
 
A simplified form of robust topology optimisation, where the compliance is evaluated for an eroded 
design and the volume fraction for the nominal design, can be used with the straightforward optimality 
criteria method. The robust algorithm is successful in setting the measure of non-discreteness to zero. 
As a result e.g. floor boarding occurs, because the elements directly beneath the distributed load are 
always strained, regardless of the topology. Because the elements have to be there and in the eroded 
design only high density elements can be taken into account, inevitably solid elements occur at the 
floor boarding location. 
 
If an intermediate part with symmetry conditions is used to model an infinitely wide floor, the part 
width only allows for certain bridging joist centre to centre distances. At least for one case where the 
part width did not match the optimal centre to centre distance, adjusting the part width showed a more 
structured topology. Assuming a symmetric topology as outcome, for a certain number of joists in the 
part, two different but equivalent topology types may show up. 
 
For proposed openings in a structure, removing the loads at a proposed opening is enough to cause the 
opening to actually occur, and consequently so-called passive elements are not needed. This is only 



true if the opening is not needed to distribute loads applied at another location in the structure. The 
suggested topology does not take into account the practical argument that joists are preferably 
prismatic and of smaller cross-sectional size (e.g. for transport, sawing, etc.). However, all loads are 
distributed either directly or via secondary beams to the two bridging joists. This indicates that the 
principle of bridging joists and floor boarding is a widely applicable concept. 
 
Also for buildings, the robust algorithm brings down the non-discreteness completely, and in 
combination with a low volume fraction, compared to sensitivity filtering, for live load building floors 
and columns can easily be recognised. Different load case combinations with possibly different load 
case weighting yield different results. 
 
A hierarchic layout of structural elements likely originates from being optimal from a structural point 
of view. Also clear is that this conclusion cannot be obtained by means of standard topology 
optimisation based on sensitivity or density filtering (as often found in commercial finite element 
codes); robust 3D optimisation is required to obtain a usable, constructible (or in future: 3D printable) 
structural design, with a crisp black-and-white density distribution. 
  
9 Recommendations and future work 
Joists' centre-to-centre distances are a function of the intermediate floor part width and if it is desired 
to know the optimal distance exactly, a parameter study should be carried out where the part width is 
varied systematically and the resulting compliances are monitored. 
 
It would be interesting to evaluate in practice an approach where instead of the application of a 
trimmer joist to support the trimmed joist in a system with regular centre to centre distances, these 
distances are variable in order to adjust for the specific openings required, the latter suggested by 
robust topology optimisation. 
 
Many papers are focussed on the technical issues of topology optimisation, which is—as also shown in 
this paper—very important. On the other hand, topology optimisation is applied in design and 
engineering practice to develop specific artefacts. This paper presents research in-between, applying 
different topology optimisation algorithms with the aim to better understand structural design 
principles. It is believed that other structural design principles can be studied in a similar fashion. 
 
In the past, floor boarding consisted of solid wood planks, spanning in one direction. Newer types 
such as plates, or to a lesser extent planks with tongue-and-groove, have more unidirectional span 
capabilities. Although the simulations here implicitly modelled the bi-directional type, simulations 
could be carried out that result in floor boarding spanning in one direction, for instance by introducing 
narrow slits in the upper part of the design domain and in the desired span direction.  
 
In this study, all suggested floor boarding is 1 finite element thick, clearly caused by the filter radius 
and mesh size. A parameter study should be carried out to investigate the optimal boarding thickness. 
 
Current CAD/CAM manufacturing techniques and future 3D printing enable more customised designs, 
also for timber and concrete structures [27]. In a context where material efficiency or structure based 
design is appreciated, interesting options become available via robust 3D topology optimisation. 
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