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ABSTRACT
Bubbly flows are omnipresent in most industrial processes. Often
the intended use of such processes is to facilitate efficient mass and
heat transfer for reactive flows. Mass and heat transfer coupled with
fluid flow in gas-liquid systems gives rise to multiscale transport
phenomena. Because of large Schmidt and (possibly) Prandtl num-
bers in the liquid phase the concentration and temperature bound-
ary layers are much thinner than the momentum boundary layers.
When using fully resolved CFD modeling on an uniform grid, these
small scales would demand an overall refinement which requires an
immense computational effort. Here, however, a hybrid mesh ap-
proach is used which couples a fixed Cartesian grid for the hydro-
dynamics and a tree structure based mesh, which can be adaptively
refined for heat and mass transfer. Tree based adaptive refinements
commonly suffer from low order accurate numerical schemes. A
higher order finite volume scheme on a parallel tree data structure
for solving the convection-diffusion equation has been implemented
using an implicit formulation. The resulting set of linear algebraic
equation are then solved with AMG class of matrix solvers. This
approach presents a solution to resolve the fine boundary layers of
scalar transport for realistic range of Schmidt and Prandtl numbers.

The present study will demonstrate the robustness of this frame-

work to capture sharp boundary layers in fairly simple analytical

flow fields. A detailed comparison is performed with overall refined

simulations on multi core parallel architectures.

Keywords: adaptive grids, fully resolved simulation, boundary

layer, multiscale transport, heat and mass transfer .

NOMENCLATURE

Greek Symbols
ρ Mass density, [kg/m3]
μ Dynamic viscosity, [kg/ms]
φ General scalar, [−]

Latin Symbols
Sc Schmidt Number, [−]
Pr Prandtl Number, [−]
h Cell size, [−]
L Cell level, [−]
Li Error norms, [−]
p Pressure, [Pa].
u Velocity, [m/s].
V Volume of cell, [m3].
a Area of cell face, [m2].
c Concentration, [mol/L]

T Temperature, [◦C,◦K]
C Cell, [−]

Sub/superscripts
d Direction.
f Face centre.
n Time step.
i Index i.
j Index j.
1,2,∞ Type of error norm.

INTRODUCTION

Bubble columns are one of the widely used and very inter-
esting processing units for contacting gas-liquid flows in the
chemical industry. In these bubble columns the gas phase
is dispersed in the continuous liquid phase. The rising bub-
bles increase the mixing of the liquid phase thus providing
improved mass and heat transfer properties. In spite of the
simple structure of bubble columns, the physical phenomena
occurring at the gas liquid interface is still not completely
understood. Therefore, the design of the columns is mainly
based on experimental data and empirical or semi-empirical
correlations. To improve the design of bubble columns, a
deeper understanding of the physics is necessary.
Due to the increase of computational power, it is possible to
simulate many flow situations using direct numerical simu-
lation (DNS), which simulates the flow based solely on first
principles. Although, the methods to determine the hydro-
dynamics of multiphase flows are well known, adding new
physics i.e. mass transfer, heat effects or chemical reaction
still are faced with a lot of challenges. The challenges occur
due to the multitude of length scales and time scales these
phenomena posses. From the dimensionless numbers which
describe these phenomena, such as Schmidt (Sc) number in
case of mass transfer and Prandtl (Pr) number in case of
heat transfer, it can be determined that the boundary layers
in many industrial cases can vary by several orders of mag-
nitude. For example, in case of mass transfer from a bub-
ble to liquid, the mass diffusivity is generally at least two to
three orders of magnitude smaller than momentum diffusiv-
ity. This condition enforces a constraint on the mesh resolu-
tion and the time step required for sufficiently resolving mass
transfer boundary layer at the bubble interface thus increas-
ing the computational cost.
Several different methods can be used to enable the compu-
tation of all of these different length and time scales. First of
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all the overall mesh can be refined (Darmana et al., 2006;
Roghair et al., 2016). However, the overall mesh refine-
ment leads to billions of cells to solve boundary layer prob-
lems corresponding to realistic Sc (Sc ∼ 103). This requires
a lot of computational effort therefore, leading to limita-
tion of simulating systems which have very modest Sc num-
bers ( 1 � Sc � 10). Secondly the boundary layer can be
approximated by using subgrid scale models (Aboulhasan-
zadeh et al., 2012; Gründing et al., 2016), which are based
on self similar solutions corresponding to the mass boundary
layer. However, in industrial reactors, the flow patterns are
complex due to frequent bubble-bubble interactions, which
significantly affect the bubble hydrodynamics and thereby in-
fluencing the interfacial mass transfer. In such dense bubbly
flow regimes validity of overly simplistic boundary layer as-
sumptions is not well established. Finally, the mesh could
be adapted according to the local gradients in scalar field
(Deising et al., 2016). Adaptive mesh refinement (AMR) has
its own set of computational challenges specific to different
methods of mesh refinement. It’s one of the advanced re-
search areas in CFD as many well formulated methods which
work on simple Cartesian grids cannot be simply extended to
adaptive meshes.

Among many different AMR strategies, notable are block
structured AMR, overset or Chimera grids, tree based AMR
etc. For non deformable interfaces, a Chimera or overset grid
presents a plausible solution to resolve the boundary layer.
For interfaces which are deformable such as those occurring
in bubbly flows and for an optimal mesh count, a tree based
grid adaption is well suited. Tree based AMR also suffers
from some limitations such as efficient data structures, par-
allelization, load balancing using graph partitioning methods
and efficient matrix solvers. It is important to note the third
limitation pertaining to matrix solvers is more stringent, as
the linear system of equations on such adaptive grids leads
to unsymmetric matrices which are computationally expen-
sive to solve. Algebraic multigrid class of matrix solvers are
suited for such systems which, if combined with paralleliza-
tion can give a performance improvement. In any CFD cal-
culations, most of the time is spent on solving the Poisson
problem arising from the incompressibility constraint on the
momentum equation. Solving it becomes even more diffi-
cult for multiphase flows with high density ratios such as air-
water system. AMR grids based on a dynamic data structure
such as quadtree or octree are considerably slower for the
same grid count because of issues related to dynamic mem-
ory layout and reduced vectorization in comparison to array
based data structures which are used for Cartesian grids.

To circumvent this problem, a novel hybrid grid based
method is proposed for fully resolved multiscale transport
on adaptive grids. The essence of the idea is to only solve
the scalar transport equations on the AMR grid while solving
the hydrodynamics on the Cartesian grid. The methodology
and implementation of a general scalar convection diffusion
equation on parallel adaptive mesh refined grids is described
in later sections. The resulting convection diffusion solver is
verified and validated with model test cases. Also, a method-
ology is presented to encode a staggered velocity field onto
an AMR grid, which can then be used to fetch velocity values
from a staggered Cartesian hydrodynamics grid. A diver-
gence free interpolation is also presented, for interpolating
velocity values during mesh refinement on to the finer grid.

MODEL DESCRIPTION

Spatial Discretization

Generally, a flow domain can be represented in the form of
control volumes which are square in 2D (or a cube in 3D).
These square (or cubic) meshes are adapted using a quadtree
(or octtree) data structure which also finds its use in image
processing & computer graphics (Popinet, 2003). Figure 1
depicts a representation of such discretization in case of a
2D tree. Each control volume is called as a cell and can have
4 descendants (8 in case of 3D) called children, in which
case, the cell is called as parent of these children. A cell
which has no parent cell is called as the root cell while cells
which do not have any children are called as leaf cells. The
length of any cell edge is denoted by h. The level of a cell
is defined with the root cell as reference 0 and children be-
ing one level higher than the parents. The spatial discretiza-
tion in the form of quadtree needs to satisfy 2:1 balance con-
straint, which states that adjacent cells’ levels must not differ
by more than one i.e. a maximum one hanging node is pos-
sible at any cell face. This constraint restricts the number
of possible cases which in a way helps in devising efficient
numerical schemes on such spatial discretization.

Figure 1: Schematic diagram of quadtree spacial discretization.

Governing Equations

The generalised scalar convection-diffusion equation along
with the Navier Strokes equation can be written as :

Scalar Convection Diffusion Equation

∂φ
∂t

+u ·∇φ = D∇2φ+Fs (1)

Navier-Stokes Equation

ρ
∂u
∂t

+ρ∇ ·(uu) =−∇p+ρg+∇ ·μ(∇u+(∇u)T )+Fσ (2)

Continuity Equation
∇ ·u = 0 (3)

Although, the Navier-Stokes equations are solved on a regu-
lar Cartesian grid, the scalar transport equations are solved on
a grid that can be adaptively refined as the solution proceeds
in time. Here φ can be any generalized scalar such as the
concentration or the temperature. For the accurate represen-
tation of the velocity field on this grid, a Cartesian grid which
is sufficiently fine to resolve the hydrodynamics of multi-
phase flows is used. Generally the hydrodynamic bound-
ary layer, can be resolved accurately with a coarser grid in
comparison to mass transfer boundary layer. Also, solving a
Poisson problem to meet the incompressibility criterion es-
pecially in case of multiphase flows with high density ratios
is the most time consuming task amongst the whole solu-
tion time. Hence, solving only the scalar transport equations
on an AMR grid leads to a decrease in computational effort
compared to a situation where the hydrodynamics and scalar
transport are both solved on the same grid. Finally, a Carte-
sian grid results in symmetric matrices forming the system
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of linear algebraic equations which can then be solved with
robust matrix solvers with efficient vectorization and paral-
lelization.

Convection

The unsteady convection part of the problem can be written
as follows:

∂φ
∂t

+∇ · (uφ) = 0 (4)

The above equation can be discretized using finite volume
technique, resulting into

φn+1 = φn+
Δt
ΔV

( ∑
f aces

u f
n+1φnf h

2) (5)

The convection of a scalar can be numerically resolved using
upwind class of methods which have good transport proper-
ties. For an adaptive grid based on a 2:1 balanced tree data
structure, in combination with a first order method, two cases
on a cell face can occur either both of the sides are at the same
level or else there is a hanging node at the face resulting from
level difference on either side (see figure 2). For a conven-
tional Cartesian grid the convective flux at face center can be
obtained for an upwind scheme, by the upwinded value of
scalar at the face given as φ f = φ whereas, in case of face
with a hanging node, the upwinded scalar in each subface,
φ f1 and φ f2 is calculated first and is then averaged to obtain
the upwinded scalar viz. φ f = (φ f1 +φ f2)/2. The flux can
then be estimated assuming that the value of velocity at the
face is known apriori.

u > 0

C

φ

Nd

φdφf

u > 0

C

φc1

φc2

φf1

φf2

φf

Nd

φd

(a) (b)

Figure 2: Upwind method on quadtree (a) both cells are at same
level (b) neighbor is not a leaf cell.

Diffusion

The unsteady state diffusion part of the problem can be writ-
ten as:

∂φ
∂t

= ∇ · (D∇φ)+Sφ (6)

When equation 6 is discretized using a semi-implicit scheme,
equation 7 will be obtained.

φn+1−φn

Δt
ΔV = (1−β)∇ · (Dn∇φn)+β∇ · (Dn+1∇φn+1)+Snφ

(7)

To calculate the diffusive flux at each face, a numerical es-
timation of the gradient of the scalar has to be determined
at the cell face. For conventional Cartesian grid, this is nor-
mally done by central differencing, which is second order ac-
curate for cells of same size. However, when this scheme is
applied for cell face with a hanging node , the scheme is first

order accurate instead of second order accurate. This type of
differencing would result in schemes with inconsistent order
of convergence, across the whole domain. To circumvent this
problem, one needs to specifically look for schemes which
are overall second order accurate. In this paper, a scheme is
implemented which is overall second order accurate for the
Laplacian operator in space. To verify the implementation
of the Laplacian operator, the order of convergence is stud-
ied and compared with Gerris flow solver (Popinet, 2003),
which uses the same discretization scheme for the pressure
Poisson equation.
To enable the calculation of the transport via diffusion, the
gradient at the face centers should be discretized. While this
is trivial on a regular Cartesian grid, this is more difficult
within the adaptive framework. In practice, only three cases
are possible for the construction of face centered gradients
for a cell C with a neighbor Nd in the direction d (see fig-
ure 3).

(I) Nd is at the same level and is a leaf cell

(II) Nd is at a lower level than the cell C, or double the size
of cell C

(III) Nd is at a higher level than the cell C, or half the size of
cell C

C C CNd

∇f
dφ

Nd

∇f
dφ

Nd

∇f
dφ

(I) (II) (III)

Figure 3: Different cases while calculating gradient at faces.

In case of (I) the stencil reduces down to a conventional
Cartesian grid and thus one can write the simple centered
difference discretization. In case of (II) a second order poly-
nomial is fitted passing through the cell, C, the neighbor Nd
and the opposite cell φ̂d . Using the slope of the polynomial at
the examined interface, the gradient at the face center can be
calculated. Based on the configuration of the opposite cell,
two subcases can arise due to 2:1 balanced tree: an undivided
leaf cell at the same level of cellC or a parent cell with 4 leaf
cells (8 in 3D). With the definition of φ6 and φ7 from figure 4,
the expression for, respectively, an undivided and divided left
neighbor are:

h∇ f
dφ =−φ

3
− φ̂d

5
+

8

15
φ6 (8)

h∇ f
dφ =−2

9
φ− 8

27
φ7 +

14

27
φ6 (9)

However as shown in figure 4, φ6 should also be interpolated
from the values of scalar in the cells neighboring the neigh-
bor Nd , in the perpendicular direction to d (N̂⊥d and N⊥d)
leading to more cases which needs to be included in an effi-
cient fashion (Popinet, 2003). A sample case is shown in fig-
ure 4. Additional issues arise when extending to 3D because
the two perpendicular that needs to be traversed to obtain the
value of φ6 are non-intersecting unlike the case in 2D. The
details of this have been left out of the scope of this paper.
In case (III), Nd is at the same level but not a leaf cell. In this
case the gradient at the face is constructed as the average of
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C

Nd

N̂⊥d

N⊥d

φ6φφ7

φ4

φ3

Figure 4: Sample stencil for face centered gradient calculation in
case where φ̂d , N̂⊥d and N⊥d is not a leaf cell.

the gradients constructed from the children cells of Nd which
share the face with the cell C. These gradients can then be
computed by following the same scheme as case (II).

The resulting set of simultaneous linear equations resulting
from this discretization of the Laplace operator is solved us-
ing robust matrix solver based on algebraic multigrid (AMG)
method. Specifically, an open source library called HYPRE
(Falgout and Yang, 2002) is used to solve the resultant equa-
tions using the boomerAMG module. The solver scales to
103 number of processors based on the MPI model and uses
parallel graph partitioning methods for load balancing. The
base framework used for implementation of the code is an
open source library which provides efficient parallel tree data
structure, called p4est (Burstedde et al., 2011).

Boundary Conditions

At the domain boundary, both Dirichlet and Neumann
boundary conditions can be applied with second order ac-
curacy. For case (I) a ghost cell based approach is used to
enforce Dirichlet boundary condition for the cell face at the
boundary. For cases (II) and (III) where the value is inter-
polated in case Nd is a boundary cell, a ghost cell across the
boundary face is created. This cell is of the same size of the
neighbor cell Nd leaving only two possibilities in each case
and thus resulting 4 additional stencils in 2D.

Staggered Velocity Field

The velocity needed to calculate the convective fluxes of the
scalar is only known on the hydrodynamics mesh. The ve-
locities are, however, needed on the smaller adaptive grid for
the scalar transport. Hence, to obtain the values of veloc-

ity on the adaptive grid, the velocity should be transferred
to the adaptive grid. Generally in an unstructured grid data
structures, it is a common practice to encode all the possible
state variables at a collocated grid, but the in house hydro-
dynamics code for gas-liquid interfaces has been developed
on a staggered grid framework. The used staggered arrange-
ment is beneficial for the upwind advection scheme used for
the convection. To ensure a divergence free field a piecewise
linear interpolation method is used to interpolate the veloc-
ity field (Roghair et al., 2016). The interpolation can be vi-
sualized in figure 5. For example, the velocity field in the
x-direction is calculated using the following set of equations:

ux
i, j− 1

4

= ux
i, j+ 1

4

=
ux

i− 1
2
, j
+ux

i+ 1
2
, j

2
(10)

ux
i− 1

2
, j− 1

4

= ux
i− 1

2
, j+ 1

4

= ux
i− 1

2
, j

(11)

ux
i+ 1

2
, j− 1

4

= ux
i+ 1

2
, j+ 1

4

= ux
i+ 1

2
, j

(12)

Cell Centered Scalar

Face Centered Velocity

Interpolated Face Centered Velocity

φi,j
ux,i− 1

2 ,j
ux,i+ 1

2 ,j

uy,i,j− 1
2

uy,i,j+ 1
2

Figure 5: Staggered velocity interpolation.

Results

Convection

To test the implementation of the convection of scalar, a blob
of a material is advected through a steady shear-free velocity
field. To ensure the problem is a pure convection problem,
diffusivity is set to zero. Typically the blob is given a con-
ical distribution. The 2D transport equation for a scalar φ
is solved over a unit square centered at the origin, domain
boundaries being x = ±0.5 and y = ±0.5. The initial scalar
distribution is prescribed to be zero except within a region of
conical blob located with center at (0,0) and radius r = 0.1,
where the distribution of φ is given as sin2((π/2)(1− r

0.1 ).
The test was carried out for two values of velocities viz.
u= 1,v= 0 and u= 1,v= 1. Figure 6 shows two snapshots
for an inclined flow profile (a), and a parallel flow field (b).
As with any other first order upwind method, this method
suffers in principle from artificial diffusion, however here,
the numerical diffusion is very small because of adaptive
grids. In the test case with inclined flow field, a 94% reduc-
tion in grid requirements in adaptive framework (limited to
maximum refinement of 10) was observed in comparison to
a Cartesian grid at 10 levels of refinement(22×10 = 1048576
grid cells) for the same numerical diffusion. The time step
for advection is chosen in such a way that the CFL Number
( umaxΔt/Δxmin ) is always less than 0.5, where Δxmin is the
cell size of the smallest quadrant in the domain and umax is
the maximum velocity in the domain.
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Figure 6: Convection of Scalar in (a) inclined flow field (solution),
(b) parallel flow field (grid)

Diffusion

To test the implementation of the transport of scalar diffu-
sion, the heat conduction equation on a rectangular slab of
length, L and width, W is simulated. The slab is exposed
to Dirichlet boundary conditions on all boundaries. In this
test case, the top surface is maintained at 100 ◦C while the
rest of the boundaries are maintained at 0 ◦C. The analytical
solution of this steady state problem in terms of non dimen-
sionalised temperature, θ is given by Equation 13.

θ(x,y) =
2

π

∞

∑
n=1

(−1)n+1 +1

n
sin

nπx
L

sinh(nπy/L)
sinh(nπW/L)

(13)

Figure 7 shows the contour lines of the non-dimensionalised
temperature and a comparison with this analytical solution.
The L1, L2 and L∞ error norms for the test problem were
obtained to be 1.60e-05, 2.60e-4 and 0.022 respectively.

Figure 7: Heat Conduction in a Slab : Contour lines of dimension-
less temperature in adaptive grid with analytical solution.

To ascertain the second order convergence of the Laplace
operator, a convergence test is performed on Cartesian and
adaptive grids. In this test a pressure Poisson equation is
solved on a unit square domain centered around origin. The
divergence of the intermediate velocity field is given by equa-
tion 14. When k = l = 3, the analytical solution is given by
the pressure field of equation 15 using Neumann boundary
conditions on all sides. κ in equation 15, is an arbitrary con-
stant which in this case is the average value of the computed
pressure over the entire domain.

∇ ·U∗∗(x,y) =−π2(k2 + l2)sin(πkx)sin(πly) (14)

φ(x,y) = sin(πkx)sin(πly)+κ (15)

The initial guess for the pressure field is a constant field. The
problem is solved for two different domains: a domain at
the Lth level of refinement (figure 8(a)) and the same domain
with a circular patch of radius, R= 0.25 which is at (L+2)th

level of refinement (figure 8(b)). To estimate the order of
convergence, the problem is solved for different levels of re-
finement, L ranging from 3 to 10. For each simulation case,
the volume (area in 2D) weighted norm of the error, ||ae|| is
shown in figure 9. The figure shows that the order of conver-
gence is indeed two.

Figure 8: Domain for test case of Poisson equation (a) Cartesian
grid (L = 7) (b) Grid used for evaluation of coarse/fine
gradient operator (L = 7).

(a) (b)

Figure 9: Order of convergence test showing error norms for (a)
Cartesian grid (b) Adaptive grid

Staggered Velocity Interpolation

For testing of staggered grid velocity interpolation, the grid
was initiated with a divergence free analytical flow field at
each face center. The velocity profile considered is given by
Equation 16.

uuu(x,y,z) = (0,−2sin2(πy)sin(πz)cos(πz),

2sin2(πz)sin(πy)cos(πy)) (16)

The simulation is started at different level of refinements
(3rd − 11th level). Figure 10 shows the error with respect to
the analytical solution after the interpolation of the velocity
field. Because the initial level of refinement influences the
error in the interpolated solution, the figure shows the error
with respect to the level at which the original solution was
created. Figure 11 shows a velocity vector plot for the re-
fined grid at level 10 obtained from the initiated grid at level
8. The divergence has also been quantified in each of these
refinement operations and was indeed found to be accurate
to machine precision, i.e. 10−15 and 10−16.
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Figure 10: Error norms and divergence for staggered grid interpo-
lation corresponding to different levels of refinement.

Figure 11: Velocity vector plot at 10th level of refinement obtained
from staggered grid interpolation of analytical flow field
at 8th level of refinement.

Concentration boundary layers

This test considers a stationary spherical bubble with radius
R in a quiescent, zero gravity pool of liquid. The concen-
tration within the sphere is initialized with a dimensionless
concentration of 1. As, mass diffuses through the interface,
a concentration boundary layer profile will evolve over time.
The domain is refined at the 7th level, while a zone near the
bubble interface is refined upto the 12th level (see figure 12).
The bubble is simulated to be an infinite source by fixing the
concentration inside the bubble to be 1. The concentration
profiles are shown in figure 13.

For a diffusion equation written in spherical coordinates for
a stationary bubble, an analytical solution can be obtained by
imposing the boundary conditions: c = c0 for r = R, c = 0
for r = ∞ and initial condition c = 0 for r > R. Because the
simulation domain is finite, Neumann conditions are applied
at the domain boundaries with a zero gradient. A diffusion
coefficient D = 10−6 m2/s. was used. Figure 14 shows the

Figure 12: Initial grid for the species diffusion test.

concentration profile around a 4 mm sphere along the x-axis
from the interface of the bubble and is compared with the
exact solution. The interface is resolved with 8th level of
refinement with total cell count during 500th time step to be
440784 which is 2.62 % that of a respective Cartesian mesh
( 16777216 cells ).

c(r)
H · c0

=
R
r

(
1− er f

(
r−R√

4Dt

))
(17)

Figure 13: (a) Initial concentration profile inside stationary sphere.
(b) Concentration profile around the sphere after 500
time steps.

−0.2

 0

 0.2

 0.4
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 1  1.2  1.4  1.6  1.8  2
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x/Rbubble

t = 100Δt
t = 50Δt

t = 200Δt

Figure 14: Dimensionless concentration profile in the vicinity of a
stationary sphere, along the x-axis (lines) compared to
the exact solution (markers).

CONCLUSION

In this paper, a methodology is proposed to solve heat and
mass transfer equations on a different adaptive grid than the
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fixed Cartesian hydrodynamics grid. The details of the veloc-
ity access will be addressed in future work. The current work
presents a robust way to set up a higher order accurate con-
vection diffusion solver. The combined framework is tested
for accuracy and order of convergence and furthermore, the
method is found to be suitable for resolving boundary layers
in bubbly flows. A methodology is also presented to encode
staggered velocities on adaptive grids and to handle the grid
adaptation without violating the divergence free criteria. In
future research this methodology will be applied for the 3D
simulation of bubbly flows with coupled heat and mass trans-
fer.
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