
 

Sub-riemannian mean curvature flow for image processing

Citation for published version (APA):
Citti, G., Franceschiello, B., Sanguinetti, G., & Sarti, A. (2016). Sub-riemannian mean curvature flow for image
processing. SIAM Journal on Imaging Sciences, 9(1), 212-237. https://doi.org/10.1137/15M1013572

DOI:
10.1137/15M1013572

Document status and date:
Published: 23/02/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1137/15M1013572
https://doi.org/10.1137/15M1013572
https://research.tue.nl/en/publications/194323dc-ed6d-47a9-b3cd-a6167c0f9a3d


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. IMAGING SCIENCES c© 2016 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 212–237

Sub-Riemannian Mean Curvature Flow for Image Processing∗

G. Citti†, B. Franceschiello‡, G. Sanguinetti§, and A. Sarti‡

Abstract. In this paper we reconsider the sub-Riemannian cortical model of image completion introduced in
[G. Citti and A. Sarti, J. Math. Imaging Vision, 24 (2006), pp. 307–326]. This model combines two
mechanisms, the sub-Riemannian diffusion and the concentration, giving rise to a diffusion driven
motion by curvature. In this paper we give a formal proof of the existence of viscosity solutions
of the sub-Riemannian motion by curvature. Furthermore we illustrate the sub-Riemannian finite
difference scheme used to implement the model and we discuss some properties of the algorithm. Fi-
nally results of completion and enhancement on a number of natural images are shown and compared
with other models.
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1. Introduction. In this work we address the problem of completion (also known as in-
painting) and contours enhancement: both require an analysis of elongated structures, such
as level lines or contours. The word inpainting, coined by Bertalmio et al. in [3], refers to a
technique whose purpose is to restore damaged portions of an image. In terms of psychology
of vision inpainting corresponds to amodal completion, a phenomenon described by Kanizsa in
[46], which consists in the completion of the occluded part of an image. This problem can be
faced with many techniques such as geometric and variational instruments which start from
the selection of existing boundaries or algorithms acting directly on the image space, based on
the Gestalt law of good continuation and the classical findings of psychology of vision. This
last class of algorithms goes back to the works of Kanizsa [46], Ullman [69], and Horn [41]
and we find the prototype of models for curve completion into Mumford’s Elastica functional
(see [52]): ∫

γ
(1 + k2) ds.

This expression minimizes a functional defined on the curve itself, where k is the curvature
along the curve γ, parametrized by arc length s. The models proposed by Mumford, Nitzberg,
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and Shiota (see [52] and [54]) and by Masnou and Morel (see [50]) generalize this principle to
the level sets of a gray-valued image. In fact, if D is a squared defined in R

2 and I : D → R

is an image, the considered functionals are second order functionals defined on I:∫
D
|∇I|

(
1 +

∣∣∣∣div
( ∇I

|∇I|
)∣∣∣∣

2)
dxdy.

A model expressed by a system of two equations, one responsible for boundary extraction
and one for figure completion, was proposed by Bertalmio et al. in [3]. In Sarti, Malladi,
and Sethian [67] the role of the observer was considered, letting evolve by curvature in the
Riemannian metric associated to the image a fixed surface called point of view surface.

Close to the completion problem there is the one of enhancement, allowing one to make
the structures of images more visible while reducing the noise. For contours enhancement,
models expressed as nonlinear PDEs dependent on the gradient were proposed by Nitzberg and
Shiota [55] and Cottet and Germain [19]. Later on, Weickert [72, 73] proposed a coherence-
enhancing diffusion method, called CED. Let us also mention the models of Tschumperlé [68],
who included curvature in the diffusion process in order to improve enhancement.

A different class of algorithms for performing both completion and enhancement is di-
rectly inspired by the functionality of the visual cortex, which is expressed in terms of contact
structures and Lie groups with a sub-Riemannian metric. We refer to section 2 for a pre-
cise definition of this metric and for references of the mathematical aspects of the problem.
We only recall here that PDEs in this setting are totally degenerate at every point, so that
classical results on PDE cannot be applied to study their solutions. Then we will follow the
approach provided by Evans and Spruck in [29]. The first geometric models of the func-
tionality of the visual cortex date back to the papers of Hoffmann [38], Koenderink and van
Doorn [48], and Zucker [74]. Petitot and Tondut in [59] proposed a model of single bound-
aries completion through constraint minimization in a contact structure, obtaining a neural
counterpart of the models of Mumford; see [52]. Sarti and Citti in [65] and [18] proposed to
model the cortical structure as Lie group SE(2) of rigid transformations of the plane with a
sub-Riemannian metric. Each two-dimensional (2D) retinotopic image is lifted to a surface
in this higher dimensional structure and processed by the long range via a diffusion driven
motion by curvature. This model performs amodal completion on the whole image and can
be considered the cortical counterpart of the models of Nitzberg, Mumford, and Shiota [54].
A large class of algorithms of image processing in Lie groups were developed by Duits et al.
in [26]. The main instrument they developed is an invertible map from the 2D retinal image
to the feature space expressed in terms of Fourier instruments. Duits et al. faced both the
problem of contour completion and enhancement in the presence of crossing and bifurcating
lines (see [26, 27]). We will always use the word “enhancement” with the same meaning as
in their works. Let us also recall the results of Boscain et al. [9], who studied properties of
the diffusion using a semidiscrete implementation and instruments of group Fourier transform
similar to the ones proposed by Duits and Franken in [27] and obtained numerical results to
the completion problem with heuristic complements.

In this paper we reconsider the sub-Riemannian cortical model of image completion in-
troduced in [18, 65]. This model combines two mechanisms, the sub-Riemannian diffusion
and the concentration, giving rise to a diffusion driven motion by curvature. In the originalD
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214 CITTI, FRANCESCHIELLO, SANGUINETTI, AND SARTI

paper [65, 18] the authors proved the convergence of the diffusion-concentration algorithm to
the mean curvature flow, in the sense that each point of the surface moves in the direction
of the normal, with speed equal to the curvature. This can be considered a local definition
of mean curvature flow. If the surface is represented as a level set, the fact that each point
moves as expressed before is formally expressed through a degenerate PDE, which can be
considered an alternative definition of mean curvature flow. In this paper we give a formal
proof of the existence of viscosity solutions of this PDE, proving that the two definitions
lead to the same flow, i.e., a sub-Riemannian motion by curvature. Existence results for this
type of equation in the Euclidean setting are well known (see, for example, [29]) but in the
sub-Riemannian setting the existence of a solution was known only for the Heisenberg group
(see [10, 30]). Here we start filling the gap, extending the existence results of [29] in the
present setting. In particular we look for a sub-Riemannian viscosity solution as a limit of the
analogous problem in an approximating Riemannian setting. The main difficulty we have to
face is the fact that in the sub-Riemannian setting the derivatives are replaced by directional
derivatives, which in general do not commute. The model had been initially developed to
solve the completion problem. Here we propose to use the sub-Riemannian Laplacian also to
perform enhancement of boundaries, and directional denoising. Indeed we will see that the
action of the sub-Riemannian diffusion is strongly directional, and it reduces noise only in
the direction of contours. Conversely, it performs no diffusion in the orthogonal direction,
preserving the structures of the images.

The paper is organized as follows. In section 2 we reconsider the completion model of Sarti
and Citti (see [65]) and propose to extend its application to perform contours enhancement.
Since the model is formally expressed as a diffusion driven motion by curvature, in section
3 we consider the mean curvature equation in the SE(2) group and prove the existence of
viscosity solutions. In section 4 we discuss the numerical scheme used to implement the mean
curvature flow. Finally in section 5 we conclude the paper by showing some numerical results
of completion and enhancement and comparing different methods.

2. Sub-Riemannian operators in image processing. In this section we first recall the
cortical model of image completion proposed by Citti and Sarti in [65] and [18]. For simplicity
we will focus only on the image processing aspects of the problem, neglecting all the cortical
ones. Then we show that this mechanism can be adapted to perform contours enhancement.

2.1. Processing of an image in a sub-Riemannian structure.

2.1.1. Lifting of the level lines of an image. The cortical based model of completion,
proposed by Citti and Sarti in [65] and [18], lifts each level line of a 2D image I(x, y) in the
retinal plane to a new curve in the group SE(2) = R

2 × S 1 of rigid motions of the Euclidean
plane, used to model the functional architecture of the primary visual cortex (V1). Precisely,
up to a convolution with a Gaussian bell, we can assume that at almost for every point (x, y)
in the domain of I the unitary tangent to the level lines of I is well defined:

�X1 = (cos(θ̄(x, y)), sin(θ̄(x, y)))

(see also [8]). Since the normal vector field is defined a.e., the lifting in the SE(2) = R
2 × S 1

is well defined a.e. and represents the action of simple cells. While looking at the complexD
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SUB-RIEMANNIAN IMAGE PROCESSING 215

Figure 1. A contour represented by the curve γ2D(t) is lifted into the roto-translation group obtaining the
red curve γ3D(t). The tangent space of the roto-translation group is spanned by the vectors X0

1 and X0
2 .

ones, two opposite directions are identified, and the lifting is performed in R
2 × P1. Then

the choice of this orientation lifts the level line {I(x, y) = cost} to a new curve in R
2 × S 1 as

shown in Figure 1. By construction a tangent vector to any lifted curve γ3D in SE(2) can be
represented as a linear combination of the vector fields:

X0
1 = cos(θ)∂x + sin(θ)∂y, X0

2 = ∂θ.

In other words we have associated to every point of R2 × S 1 the vector space spanned by
vectors X0

1 and X0
2 .

2.1.2. The sub-Riemannian structure. We will call the horizontal plane and denote it as
HM the tangent plane generated by X0

1 and X0
2 at every point. Let us also note that there

are no lifted curves with a nonvanishing component in the orthogonal direction

X3 = − sin(θ)∂x + cos(θ)∂y.

In order to clarify notation, we use X0
1 ,X

0
2 for the horizontal vector fields and X3 for the

nonhorizontal one. However, derivations in the direction X3 can be recovered by means of the
commutator:

X3 = X0
1X

0
2 −X0

2X
0
1 = [X0

1 ,X
0
2 ] = − sin(θ)∂x + cos(θ)∂y.

This condition ensures thatX0
1 , X

0
2 and their commutators of any order span the tangent space

of SE(2) at every given point, i.e., they satisfy the Hörmander condition; see [40]. Then the
structure obtained with this lifting process is sub-Riemannian. On the planeHM we define the
metric g0 which makes X0

1 and X0
2 orthonormal. Hence, if a vector a = a1X

0
1 + a2X

0
2 ∈ HM ,

its horizontal norm is

|a|0 =
√

(a1)2 + (a2)2.(1)D
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The first classical properties of the distance in these spaces have been established by Nagel,
Stein, and Wainger (see [53]) and Gromov (see [35]). We refer to Hladky (see [36]) and the
references therein for recent contributions.

In this setting the vector fields play the same role as derivatives in the standard setting.
Hence we will say that a function u : R2 × S 1 → R is of class C1 in the sub-Riemannian sense
(we will denote it as u ∈ C1

SR) if there exists X0
1u and X0

2u and they are continuous. In this
case we will call horizontal gradient ∇0

∇0u = (X0
1u)X

0
1 + (X0

2u)X
0
2 .

From the definition stated before it follows that the norm of the horizontal gradient is

|∇0u| =
√

(X0
1u)

2 + (X0
2u)

2.(2)

In other words the horizontal gradient is the projection of the standard gradient of u on the
horizontal plane HM .

2.1.3. Lifting of the image to a regular surface. Since each level line of the image I is
lifted to a curve in the 3D cortical space, the whole image is lifted to a graph

(x, y) → (x, y, θ̄(x, y)).

Clearly the graph of θ can be interpreted as the zero level set of the function u

u(x, y, θ) = θ − θ̄(x, y),

and it can be identified as a regular surface in the sub-Riemannian structure. The notion of
regular surface S was first introduced by Franchi, Serapioni, and Serra Cassano in [32]:

S = {(x, y, θ) : u(x, y, θ) = 0 and ∇0u(x, y, θ) �= 0}.(3)

The horizontal normal of S is defined as

ν0 =
∇0u

|∇0u| .

Note that in a smooth surface there can be points where the Riemannian gradient is not 0,
but its projection on the HM plane vanishes:

∇0u = 0.

Points which have this property are called characteristics and the normal is not defined at
them. However, these points are not present in lifted surfaces. At every point of the surface
there is a unique unitary tangent vector, which is horizontal:

T0 =
(X0

2u,−X0
1u)

|∇0u| .(4)

The integral curves of this vector field define a foliation of the surface in horizontal curves (also
called Legendrian foliation—see [57], [16], [12], and [34] for the properties of these curves).D
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2.1.4. Diffusion and concentration algorithm. We have seen in subsection 2.1.3 how to
lift an image I(x, y) to a surface S. After that let us lift the level lines of the image I(x, y) to
the function

v(x, y, θ̄(x, y)) = I(x, y)

defined on the surface. The surface S and the function v defined on S will be processed
through differential operators defined on SE(2), which model the propagation of information
in the cortex. More precisely two mechanisms operate on the lifted surface S:

(a) A sub-Riemannian diffusion along the vector fields X0
1 and X0

2 which model the prop-
agation of information through the cortical lateral connectivity. This operator can be
expressed as

∂t −X0
11 −X0

22,

where X0
11 and X0

22 are the second derivative in the direction X0
1 and X0

2 , respectively.
The operator is formally degenerated, in the sense that its second fundamental form has
0 determinant at every point. It has been deeply studied starting from the classical
works of Hörmander in [39], Rothshild and Stein in [62], and Jerison [45] and it is
known that it is hypoelliptic. After that a large literature has been produced on these
types of operators, and we refer to [13] for a recent presentation of the state of the art.

(b) A concentration on the surface of maxima to model the nonmaximal suppression mech-
anism and the orientation tuning.

In the Euclidean setting Merrimann, Bence, and Osher proved in [51] the convergence of a
similar two-step algorithm to the motion by curvature. In [65] and [18] Citti and Sarti studied
the motion when (a) and (b) are applied iteratively and proved that at each step the surface
performs an increment in the normal direction with speed equal to the sub-Riemannian mean
curvature.

2.1.5. Mean curvature flow. The notion of curvature of a C 2 surface at noncharacteristic
points is already well understood (see [22, 37, 15, 61, 13]). It can be defined as the first variation
of the area functional, as a limit of the mean curvature of the Riemannian approximation, or
as horizontal divergence of the horizontal normal:

K0 = div0(ν0) = div0

( ∇0u

|∇0u|
)
.

We refer to the appendix for the definition of the horizontal divergence. If each point of the
surface evolves in the direction of the normal vector with speed equal to the mean curvature,
we say that the surface is evolving by mean curvature. From the previous expression of the
curvature we formally get the following equation for the flow, which we can call the horizontal
(or sub-Riemannian) mean curvature flow:

⎧⎨
⎩ ut =

2∑
i,j=1

(
δi,j − X0

i uX
0
j u

|∇0u|2
)
X0

i X
0
j u in Ω ⊂ R

2 × S1,

u(·, 0) = u0,

(5)
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where δij is the Kronecker function. An existence result for this equation was not known, and
we will provide in the next section an existence theorem. In order to simplify notation we will
denote

A0
ij(∇0u) = δi,j −

X0
i uX

0
j u

|∇0u|2 , i, j = 1, 2.(6)

2.1.6. Laplace–Beltrami flow. Citti and Sarti also conjectured that as a result of the
previous mechanisms the function v(x, y, θ̄(x, y)), which contains the gray level values, evolves
through the flow described by the Laplace–Beltrami operator ΔLB:{

vt = ΔLBv,
v(·, 0) = v0.

(7)

This operator expresses a diffusion of the variable v on the surface level set of the variable
u. The definition of the Laplace–Beltrami operator is recalled in the appendix. Let us note
that the described equations become degenerate and the solutions are regular only along the
directions of the foliation defined in (4)

2.2. Enhancement and inpainting in sub-Riemannian geometry.

2.2.1. Inpainting of missing parts of the image. In the previous section we described
the main instruments necessary for describing the completion model of [65]. Let us recall here
the proposed algorithm. As usual while restoring damaged portions of an image we assume
that the corrupted set ω is known a priori.

1. An image I(x, y) is lifted to a surface S = {(x, y, θ̄(x, y)} in the Lie group SE(2)
of rotations and translations and the gray levels of the image I(x, y) to a function
v(x, y, θ̄(x, y)) defined on S. In the lifting the corrupted part of the image becomes
Ω = ω × S1, where no surface is defined.

2. The surface S and v(x, y, θ̄(x, y)) are processed via the algorithm of diffusion and con-
centration in the corrupted region Ω, where we impose Dirichlet boundary conditions.
This leads to the motion by mean curvature of the surface S and to a Laplace–Beltrami
flow for v(x, y, θ̄(x, y)).

3. The final result is obtained by reprojecting onto the plane of the image the values of
the intensity v(x, y, θ̄(x, y)).

The algorithm has been implemented in [64] via a diffusion and concentration method, while
it has been implemented via the curvature equation in [65].

2.2.2. Enhancement of boundaries. Part of the scope of this paper is to extend the
previous completion algorithm to solve the problem of contours enhancement. The aim of this
technique is to provide a regularization in the direction of the boundaries, making them clearer
and brighter and eliminating noise. We refer to the papers of Franken and Duits [28, 33] for
some results of image enhancement in this space. Precisely, they lift the image I in the 3D
features space, using an invertible map defined through Fourier analysis. The lifted version
of the image I is processed in the 3D space and then reprojected on the 2D plane to recover
an enhanced version of the image I. In particular they also provide results of enhancement in
the presence of bifurcation or crossing. In this paper we face the same problem adapting the
algorithm recalled in the previous section.D
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1. First we lift the level lines of an image I(x, y) to a surface S = {(x, y, θ̄(x, y))} and we
lift the gray levels of I(x, y) to a function v(x, y, θ̄(x, y)) always defined on S.

2. Then we process the surface S via a mean curvature flow and v via a Laplace–Beltrami
flow. In order to perform enhancement we propose here to let (5) and (7) evolve in
the full domain R

2 × S1. Let us remark that lifting the image in the 3D group allows
us to solve the problem of crossing elongated structures. Indeed if two lines cross in
the 2D space and have different orientations, they are lifted to the 3D space to two
different planes, allowing completion and enhancement. The directional diffusion will
regularize only in the direction of contours.

3. Finally we project into the plane of the image the values of the gray intensity
v(x, y, θ(x, y)).

3. Existence of vanishing viscosity solutions. In this section we provide the main result of
this paper, which is the proof of existence of solutions for the mean curvature flow in SE(2).
We explicitly note that we do not need to develop new results for the Laplace–Beltrami
operator, which is linear.

As we can immediately observe the PDE becomes degenerate in the singularities of the
horizontal gradient of the solution u(·, t). The notions of viscosity and vanishing viscosity
solutions have been introduced in order to overcome this problem. The method of generalized
(viscosity) solutions independently developed by Chen, Giga, and Goto [17], by Evans and
Spruck [29], and by Crandall, Ishii, and Lions [20] is now applied to large classes of degenerate
equations [44]. Recently it has been extended also in the sub-Riemannian setting; see [71, 10,
30]. Finally let us recall that Dirr, Dragoni, and von Renesse. [25] have recently studied a
probabilistic approach to the mean curvature flow in the context of the Heisenberg group.

Here we follow the presentation of Evans and Spruck [29], who used the notion of vanishing
viscosity to establish existence of a solution. Since the curvature equation is degenerate, the
idea is to approximate the given equation with a uniformly elliptic one, establish results for
the approximating problem, and prove that in the limit this leads an existence result for the
given equation. In the last section we introduce other notions of viscosity solutions and we
clarify the relation between the different definitions of solutions we have introduced.

3.1. The notion of vanishing viscosity solution. A vanishing viscosity solution is the
limit of the solutions of approximating regular problems.

Let us first explicitly note that the coefficients A0
ij are degenerate: when the gradient

vanishes, they are not defined. Hence we will apply the regularization procedure proposed by
Evans and Spruck in [29] to face singularities, which consists in replacing the coefficients with
the following ones:

Aτ
ij(p) =

(
δij − pipj

|p|2 + τ

)
.

This approximation has a clear geometric interpretation, already provided by Evans and
Spruck. In (5) each level set of u evolves by mean curvature. What we obtain adding a new
parameter is the evolution of the graph of u

Γτ
t = {(ξ, ξn+1) ∈ R

n+1|ξn+1 = u(ξ, t)}D
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and the introduction in the space of a metric depending on τ . In this approximation equation
(5) reads as ⎧⎨

⎩ ut =
2∑

i,j=1
Aτ

ij(∇0u)X
0
i X

0
j u in Ω ⊂ R

2 × S1,

u(·, 0) = u0.

(8)

We will now introduce a Riemannian approximation of the mean curvature flow in the
graph approximation we made before. We extend g0 to a metric gε defined on the whole
tangent space of SE(2) which makes the vectors X0

1 , X
0
2 , εX3 orthonormal. Let us note that

gε is the Riemannian completion of the horizontal metric. We will always denote

Xε
1 = X0

1 , Xε
2 = X0

2 , Xε
3 = εX3.(9)

This notation justifies the choice of calling X0
i the sub-Riemannian vector fields: indeed they

can be obtained for ε = 0. The Riemannian gradient associated to the metric gε will be
represented as

∇εu = Xε
1uX

ε
1 +Xε

2uX
ε
2 +Xε

3uX
ε
3

and, using the fact that Xε
i are orthonormal, we get

|∇εu| =
√

(Xε
1u)

2 + (Xε
2u)

2 + (Xε
3u)

2.(10)

In the Riemannian setting (8) reads as⎧⎨
⎩ ut =

3∑
i,j=1

Aε,τ
ij (∇εu)X

ε
iX

ε
ju in Ω ⊂ R

2 × S1,

u(·, 0) = u0,

(11)

where

Aε,τ
ij (∇εu) =

(
δi,j −

Xε
i uX

ε
ju

|∇εu|2 + τ

)
.

In order to prove the existence of a solution we apply another regularization, always
introduced by Evans and Spruck. It consists in adding a Laplacian, ensuring that the matrix
of the coefficients has strictly positive smallest eigenvalue. Then the approximated coefficients
will be

Aε,τ,σ
ij (p) = Aε,τ

ij (p) + σδij

and the associated equation becomes⎧⎨
⎩ ut =

3∑
i,j=1

Aε,τ,σ
ij (∇εu)Xε

iX
ε
ju in Ω ⊂ R

2 × S1,

u(·, 0) = u0.

(12)

This condition makes the coefficients satisfy the coercivity condition and allows us to apply
the standard theory of uniformly parabolic equations.

We are now in a condition to give the definition of vanishing viscosity solution.
Definition 3.1. A function u is a vanishing viscosity solution of (5) if it is a limit of a

sequence of solutions uεk,τk,σk of (12).D
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3.2. Solution of the approximating equations. The aim of this subsection is to study the
approximating equation (12). Since it is uniformly parabolic we will recognize that standard
PDE results provide existence of the solution. We are here interested in establishing estimates
independent of all parameters for the solution and its gradient.

Theorem 3.2. Assume that u0 ∈ C∞(R2 × S 1) and that it is constant on the exterior of a
cylinder, i.e., there exists S > 0 such that

u0 is constant on R
2 × S 1 ∩ {x2 + y2 ≥ S}.(13)

Then there exists a unique solution uε,τ,σ ∈ C 2,α(R2×S 1× [0,∞)) of the initial value problem
(12). Moreover, for all t > 0 one has

‖uε,τ,σ(·, t)‖L∞(R2×S1) ≤ ‖u0‖L∞(R2×S1),(14)

‖∇Eu
ε,τ,σ(·, t)‖L∞(R2×S1) ≤ ‖∇Eu0‖L∞(R2×S1),(15)

where ∇E(·) denotes the Euclidean gradient.
This result generalizes to SE(2) the previous results of [29] and [10].
The first step of the proof of Theorem 3.2 is the existence of the function u and its L∞

bound.
Theorem 3.3. Under the assumption of Theorem 3.2 on the initial datum, the initial value

problem (12) has a unique solution uε,τ,σ ∈ C 2,α(R2 × S 1 × [0,∞)) such that

‖uε,τ,σ(·, t)‖L∞(R2×S1) ≤ ‖u0‖L∞(R2×S1).(16)

Proof. For σ > 0, consider the problem associated to (12) on a cylinder B(0, r) × [0, T ],
with initial data

uε,τ,σr (·, 0) = u0(17)

and constant value on the lateral boundary of the cylinder. Note that coefficients Aε,τσ
ij satisfy

the uniform parabolic condition

σ|p|2 ≤ Aε,τ,σ
ij (p̃)pipj(18)

for each p̃, p ∈ R
3. Hence the theory of parabolic equations on bounded cylinders ensures that

for every fixed value of the parameters there exists a unique smooth solution uε,τ,σr (see, for
example, Ladyzenskaja, Solonnikow, and Ural’ceva [49]). By the maximum principle we have

‖uε,τ,σr (·, t)‖L∞(R2×S1) ≤ ‖u0‖L∞(R2×S1).(19)

Letting r tend to ∞, we obtain a solution uε,τ,σ defined on the whole R
n × [0, T ] such that

‖uε,τ,σ‖∞ ≤ ‖u0‖L∞(R2×S1).

The second step of the proof is the estimate of the gradient. In order to obtain this
estimate we differentiate (12), obtaining the equation satisfied by the gradient, and we applyD
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the maximum principle. The main difficulty to face is the fact that the vector fields Xε
i do

not commute, hence it is not easy to find a nice equation satisfied by the gradient. We will
take the derivatives along the direction of a family of vector fields

Y1 = ∂x,
Y2 = ∂θ − y∂x + x∂y,
Y3 = ∂y,

which are right invariant with respect to the group law. These vector fields are widely used:
Mumford in [52] used them for a different purpose. In particular it is well known that these
vector fields commute with the left invariant ones Xε

i .
Let us start directly verifying that the vector fields (Xε

i ) and (Yi) commute.
Lemma 3.4. The vector fields {Xε

i }i=1,2,3 defined in (9) commute with {Yi}i=1,2,3, just
defined.

Proof. We calculate their Lie bracket:

[X0
1 , Y1] = (cos θ∂x + sin θ∂y)∂x − ∂x(cos θ∂x + sin θ∂y)

= cos θ∂xx + sin θ∂yx − cos θ∂xx − sin θ∂xy = 0.

Since the coefficients of Y2 do not depend on θ it is clear that

[X0
2 , Y2] = 0.

Finally

[X3, Y3] = (sin θ∂x − cos θ∂y)∂y − ∂y(sin θ∂x − cos θ∂y)

= sin θ∂xy − cos θ∂yy − sin θ∂xy + cos θ∂yy = 0.

The other combinations can be analogously computed.
We can now obtain the estimate of the gradient.
Theorem 3.5. Under the assumption of Theorems 3.2 and 3.3, the solution of the initial

value problem (12) satisfies

‖∇Eu
ε,τ,σ(·, t)‖L∞(R2×S1) ≤ ‖∇Eu0‖L∞(R2×S1).(20)

Proof. From Theorem 3.3 we know that there exists a unique smooth solution uε,τ,σ of
(12) and we only have to estimate its gradient. To this end, we can differentiate (12) along
the directions {Yi}i=1,2,3, and using Lemma 3.4, we obtain the following equation for wi =
Yiu

ε,τ,σ, for all i = 1, 2, 3, and for ω4 = Y2u
ε,τ,σ − (y0∂x − x0∂y)u

ε,τ,σ (for every fixed value
(x0, y0)):

∂

∂t
wi =

3∑
i,j,k=1

(
Aε,τ,σ

i,j (∇εu
ε,τ,σ)Xε

iX
ε
jwi + (∂ξkA

ε,τ,σ
i,j )(∇εu

ε,τ,σ)Xε
iX

ε
ju

ε,τ,σXε
kwi

)
.(21)

The parabolic maximum principle applied to the previous equation yields

‖Yiu
ε,τ,σ(·, t)‖L∞(R2×S1) ≤ ‖Yiu0‖L∞(R2×S1).(22)D
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This implies that

‖∂xuε,τ,σ(·, t)‖L∞(R2×S1) + ‖∂yuε,τ,σ(·, t)‖L∞(R2×S1) ≤ C‖∇Eu0‖L∞(R2×S1).

Now we have to establish the estimate of the derivative ∂θ. For every fixed value of (x0, y0)
we have

|∂θuε,τ,σ
(x0, y0, θ)| ≤ max

|y−y0|2+|x0−x|2≤1
|Y2u

ε,τ,σ − (y0∂x − x0∂y)u
ε,τ,σ |

≤ max
|y−y0|2+|x0−x|2≤1

|Y2u0 − (y0∂x − x0∂y)u0|

≤ max
|y−y0|2+|x0−x|2≤1

|∂θu0|+ max
|y−y0|2+|x0−x|2≤1

|y0 − y||∂xu0|+ max
|y−y0|2+|x0−x|2≤1

|x0 − x||∂yu0|

≤ ‖∇Eu0‖L∞(R2×S1).

Let us conclude this section by remarking that the proof of Theorem 3.2 is a direct
consequence of Theorems 3.3 and 3.5.

3.3. Existence for the sub-Riemannian mean curvature equation. In order to extend
to our setting Evans and Spruck’s argument in the proof of [29], as well as the proof of [10],
we need to let the three approximating parameters σ → 0, τ → 0, and ε → 0 go to 0. Since
the estimates we have established are uniform in all parameters, we immediately have the
existence of a vanishing viscosity solution.

Theorem 3.6. Assume that u0 ∈ C (R2 × S 1) is Lipschitz continuous and satisfies (13).
Then there exists a vanishing viscosity solution u ∈ C 1,0 of (5), which satisfies the following
properties:

‖u(·, t)‖L∞(R2×S1) ≤ C‖u0‖L∞(R2×S1),(23)

‖∇Eu(·, t)‖L∞(R2×S1) ≤ C‖∇Eu0‖L∞(R2×S1).(24)

Proof. Since u0 is constant at infinity, we immediately deduce from the Weierstrass theo-
rem that the Euclidean gradient ∇Eu0 is bounded. Employing estimates (14), (15) and the
Ascoli–Arzelà theorem we can extract two sequences {σk}, {εk}, {τk} → 0 of positive numbers
such that εk

τk
→ 0 and such that the corresponding solutions {uk = uεk,τk,σk}k∈N are conver-

gent in the space of Lipshitz functions. Then by definition the limit is a Lipshitz continuous
vanishing viscosity solution.

Remark 1. Here we prove that solutions are uniformly Lipschitz continuous. Even in the
Euclidean setting this is the best regularity result for solutions of equations expressed as
level sets, due to the degeneracy of the equation. Only in the special case of motion by
curvature of graphs can higher regularity be obtained (see, for example, Capogna, Citti, and
Manfredini [11]).D
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3.4. Other notions of viscosity solution.

3.4.1. Viscosity solutions in the sense of jet spaces. The cortical model previously
discussed associates to each planar curve γ2D its orientation. This procedure can be considered
as a lifting of the initial image I(x, y) to a new function u defined in the space R

2 × S 1 of
positions and orientations. We refer to Petitot and Tondut, who first described the analogous
cortical process as a lifting in a jet space [59]. Another lifting process can be obtained if we
associate to each function u : R2 × S 1 → R its derivatives. In this way a function u is lifted
into a jet space which contains the formal analogous of its sub-Riemannian gradient ∇0u and
the formal analogue of the elements of its horizontal Hessian matrix X0

i X
0
j (please refer to the

appendix for the definition of the horizontal Hessian). The definition of viscosity solution in jet
spaces has been introduced in [20] and is now widely used in the sub-Riemannian setting (see,
for example, [6]). It is based on the Taylor expansion, expressed in terms of these differential
objects. The analogous of the increment in the direction of the gradient p is expressed through
the notion of an exponential map (see the appendix for its precise definition), and then the
increment from a point ξ in the direction

∑2
i=1 ηiX

0
i is expressed as

u

(
exp

(
2∑

i=1

ηiX
0
i

)
(ξ), t+ s

)
− u(ξ, t).

At nonregular points, such as kinks, there is neither a unique vector p which identifies the
horizontal gradient nor a unique matrix rij which identifies the horizontal Hessian. Hence we
need to give a more general notion. If pi, i = 1, 2 denotes a horizontal vector, (rij) a 2 × 2
matrix, and q a real number, the triplet (p, r, q) is an element of the superjet J + for u if it
satisfies the following formal analogue of the Taylor development:

u

(
exp

(
2∑

i=1

ηiX
0
i

)
(ξ), t+ s

)
− u(ξ, t) ≤

2∑
i=1

piηi +
1

2

2∑
i,j=1

rijηiηj + qs+ o(|η|2 + s2).(25)

Let us note that if the super jet exists it can be used in place of the derivatives; furthermore
a function u is a jet space viscosity solution if the differential equation in which the deriva-
tives are replaced with the elements of the superjet is satisfied. More precisely, we have the
following.

Definition 3.7. A function u ∈ C (R2 × S 1 × [0,∞)) ∩L∞(R2 × S 1 × [0,∞)) is a jet space-
viscosity subsolution of (5) if for every (p, r, q) in the super jet we have

q ≤
{ ∑2

i,j=1A
0
ij(p)rij if |p| �= 0,∑2

i,j=1A
0
ij(p̃)rij for some |p̃| ≤ 1, if |p| = 0.

(26)

An analogous definition is provided for a viscosity supersolution. Then a viscosity solution
is a function which is both a subsolution and a supersolution.

3.4.2. Viscosity solutions via test functions. The definition of viscosity solution in a jet
space of a second order equation can be identified as the approximation of the solution u
via a second order polynomial, whose coefficients are exactly the elements (p, r, q) of the jetD
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space. The definition of viscosity solution via test functions is similar, but it estimates the
given solution using smooth functions instead of polynomials alone. This definition imposes
the behavior of the function u at points where u − φ attains a maximum. At such points u
and φ will have the same first derivatives, so that ∇0φ results to be an exact evaluation of
the approximation of ∇0u. Looking at second derivatives, it follows that for every i we have

X0
i X

0
i (u− φ) ≤ 0,

so that the curvature of φ is an upper bound for the curvature of u. Due to this observation
we can give the following definition.

Definition 3.8. A function u ∈ C (R2 × S 1 × [0,∞)) is a viscosity subsolution of (5) in
R
2×S 1× [0,∞) if for any (ξ, t) in R

2×S 1× [0,∞) and any function φ ∈ C (R2×S 1× [0,∞))
such that u− φ has a local maximum at (ξ, t) it satisfies

∂tφ ≤
{ ∑2

i,j=1A
0
ij(∇0φ)X

0
i X

0
j φ if |∇0φ| �= 0,∑2

i,j=1A
0
ij(p̃)X

0
i X

0
j φ for some p̃ ∈ R

2, |p̃| �= 1, if |∇0φ| = 0.
(27)

A function u ∈ C (R2 × S 1 × [0,∞)) is a viscosity supersolution of (5) if

∂tφ ≥
{ ∑2

i,j=1A
0
ij(∇0φ)X

0
i X

0
j φ if |∇0φ| �= 0,∑2

i,j=1A
0
ij(p̃)X

0
i X

0
j φ for some p̃ ∈ R

2, |p̃| �= 1, if |∇0φ| = 0.
(28)

Definition 3.9. A viscosity solution of (5) is a function u which is both a viscosity subso-
lution and a viscosity supersolution.

3.4.3. Relation between the different notions of solutions.
Theorem 3.10. The two definitions of jet spaces viscosity solution and viscosity solution

are equivalent.

We refer to [6], where the analogous result has been proved in the Heisenberg setting.
Since the result is local, it carries out also in the present setting. We will now prove that a
vanishing viscosity solution is indeed a viscosity solution.

Theorem 3.11. Assume that u0 ∈ C (R2 × S 1) is continuous and satisfies (13). Then the
vanishing viscosity solution detected in Theorem 3.6 is a viscosity solution u ∈ C 1,0 of (5).

Proof. In order to prove that u is a viscosity solution we consider a function φ ∈ C∞(R2×
S 1 × [0,∞)) and we suppose that u − φ has a strict local maximum at a point (ξ0, t0) ∈
R
2 × S 1 × [0,∞). Since u is a Lipschitz continuous vanishing viscosity solution, it can be

uniformly approximated by solutions (uk) of the approximating Riemannian problem (see
also Theorem 3.11). As uk → u uniformly near (ξ0, t0), u

k − φ has a local maximum at a
point (ξk, tk), with

(ξk, tk) → (ξ0, t0) as k → ∞.(29)

Since uk and φ are smooth, we have

∇Eu
k = ∇Eφ , ∂tu

k = ∂tφ and D2
E(u

k − φ) ≤ 0 at (ξk, tk),D
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where D2
E is the Euclidean Hessian. Thus

∂tφ−
(
δij −

Xεk
i φXεk

j φ

|∇εkφ|2 + τ2k

)
Xεk

i Xεk
j φ ≤ 0 at (ξk, tk).(30)

This inequality can be equivalently expressed in terms of the coefficients Aε,τ
i,j as follows. At

the point (ξk, tk)

∂tφ − Aεk,τk
i,j (∇εkφ)X

εk
i Xεk

j φ(31)

≤ ∂tu
k −Aεk,τk

i,j (∇εku
k)Xεk

i Xεk
j (uk + φ− uk) ≤ 0.(32)

If ∇0φ(ξ0, t0) �= 0, also ∇0φ(ξk, tk) �= 0 for sufficiently large k. Then letting k → ∞ we obtain
from (32)

∂tφ ≤
2∑

i,j=1

(
δij −

X0
i φX

0
j φ

|∇0φ|2
)
X0

i X
0
j φ at (ξ0, t0),(33)

which implies that u is a viscosity subsolution.
If ∇0φ(ξ0, t0) = 0, then we set

ηk =
∇εkφ(ξk, tk)√

|∇εkφ(ξk, tk)|2 + τ2k

.

There exists η ∈ R
3 such that ηk → η. Note that

|(ηk)3| = εk|X3φ(ξk, tk)|√
|∇εkφ(ξk, tk)|2 + τ2k

≤ (εk/τk)|X3φ(ξk, tk)|√
(εk/τk)2

∑2
i=1(X

0
i φ(ξk, tk))

2 + 1
.

Since the expression vanishes as k → ∞ we have η3 = 0. The PDE (32) now reads as

∂tφ(ξk, tk)−
3∑

i,j=1

(δij − ηki η
k
j )X

εk
i Xεk

j φ(ξk, tk) ≤ 0

so as k → ∞ we obtain

∂tφ(ξ0, t0) ≤
2∑

i,j=1

(δij − ηiηj)X
0
i X

0
j φ(ξ0, t0),(34)

concluding the proof for the case in which u− φ has a local strict maximum at point (ξ0, t0).
If u− φ has a local maximum, but not necessarily a strict local maximum at (ξ0, t0), we can
repeat the argument above replacing φ(x, t) with

φ̃(ξ, t) = φ(ξ, t) + |ξ − ξ0|4 + (t− t0)
4

again to obtain (33), (34). Consequently u is a weak subsolution. That u is a weak superso-
lution follows analogously.
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From the above result we can only say that there is a subsequence of uε,τ,σ which is
convergent to the vanishing viscosity solution u. In order to prove the uniqueness of the
vanishing viscosity solution, we would need the sub-Riemannian analogue of the estimate
established by Deckelnick and Dziuk in [24].

Proposition 3.12. There exists a constant C > 0 independent of σ, τ , and ε such that

‖uε,τ,σ − u‖∞ ≤ Cτα.(35)

Letting ε and σ go to 0 we also get

‖uτ − u‖∞ ≤ Cτα,(36)

where uτ is a solution of (8).

4. Numerical scheme. In this part we provide the numerical approximation we used to
implement the sub-Riemannian motion by curvature which performs inpainting and enhance-
ment. Since our scheme is directly inspired by the classical one of Osher and Sethian (see
[56]), we will explain how to adapt the discretization to the sub-Riemannian setting. The
mean curvature flow (8) can be explicitly written as

(37)

ut =
(X0

2 (u))
2·X0

11(u)+(X0
1 (u))

2·X0
22(u)−X0

1 (u)X
0
2 (u)·2X0

12(u)

(X0
1 (u))

2 + (X0
2 (u))

2 + τ
+

X0
1 (u)X

0
2 (u) · [X0

1 ,X
0
2 ](u)

(X0
1 (u))

2 + (X0
2 (u))

2 + τ
.

This equation presents two distinct terms: the first part of the flow presents second order
derivatives and corresponds to the curvature term, and the second has only first order deriva-
tives and corresponds to the metric connection. The solution u(x, y, θ, t) is discretized on a
regular grid with points xi = iΔx, yj = jΔy, θk = kΔθ, with time discretization ts = sΔt.
We will denote D+xU(i, j, k, s), D−xU(i, j, k, s), D0xU(i, j, k, s) the forward, backward, and
central difference of a discrete function U at point (i, j, k, s) with respect to x and use analo-
gous notation for the other variables y an θ. In terms of these derivatives we will define the
analogous differences in the direction of the vector fields X0

1 and X0
2 . Precisely if we have

discretized the direction θ with K points, we will denote θk = kπ/K for k = 1, . . . K, and we
will call

D+X1U(i, j, k, s) = cos θkD
+xU(i, j, k, s) + sin θkD

+yU(i, j, k, s)

and analogously define backward and central difference D−X1 , D0X1 for the vector X0
1 and for

the vector X0
2 . Let us adapt the scheme proposed by Osher and Sethian in [56] to our case:

(i) The first order term X0
1 (u)X

0
2 (u) · [X0

1 ,X
0
2 ](u) is discretized using the upwind scheme

for [X0
1 ,X

0
2 ] = X3. Taking into account the upwind scheme for the vector field X3,

the first order term is given by

(38)

W 1(U) = −max(− sin θkD
0X1UD0X2U, 0)D−xU+min(− sin θkD

0X1UD0X2U, 0)D+xU

|D0X1U |2+|D0X1U |2 + τ

−max(cos θkD
0X1UD0X2U, 0)D−yU +min(cos θkD

0X1UD0X2U, 0)D+yU

|D0X1U |2 + |D0X1U |2 + τ
.
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(ii) Second order derivatives are implemented as usual as D−X1D+X1 , D−X2D+X2 ,
D0X1D0X2 , which lead to the second order central finite difference. We will imple-
ment as central differences the first derivative coefficients of D−X1D+X1 , D−X2D+X2 .
The first derivative with respect to X0

1 , coefficient of the second mixed derivative, will
be upwinded as before. Generalizing an idea of [14], the denominator will be a mean
of central derivatives:

|DintU |2(i, j, k, s)+τ

=
1

3

∑
k1∈{k−1,k,k+1}

|D0X1U |2(i, j, k1, s)+1

5

∑
i1∈I

|D0X2U |2(i1, j1, k, s)+τ,

where I is the family of indices I = {(i− 1, j), (i, j), (i + 1, j), (i, j − 1), (i, j + 1)}.
The second order discretized operator will be denoted W 2(U)(i, j, k, s).

The difference equation associated to the continuous equation (37) will be expressed as

U(i, j, k, s + 1) = U(i, j, k, s) + Δt(W 2U)(i, j, k, s) + Δt(W 1U)(i, j, k, s)

with initial condition U(., 0) = U0. We recall that convergence of difference schemes for the
mean curvature flow inspired by the scheme of Osher and Sethian has been object of a large
number of papers in the Euclidean setting. The stability of one of them was proved in [14].
Another monotone scheme was proposed by Crandall and Lions (see [21]) and its convergence
was proved by Deckelnick in [23] and Deckelnick and Dziuk in [24].

The ideas at the basis of the stability proof of [14] can be extended to the present version
of the Osher and Sethian scheme, leading to the following result.

Theorem 4.1. The difference scheme presented above is stable in the sense that if Δt ≤ h2

10 ,
then

||U ||∞ ≤ ||U0||∞.

Proof. If U is a solution of the discrete equation, also V = U − ||U0||∞ is a solution of the
same equation:

V (i, j, k, s + 1) = V (i, j, k, s) + Δt(W 2V )(i, j, k, s) + Δt(W 1V )(i, j, k, s).

Hence V (0) ≤ 0, and we have to prove V ≤ 0, for all time. In order to study the term W 1(V )
we have to discuss the sign of a1 = − sin θkD

0X1VD0X2V and a2 = cos θkD
0X1VD0X2V : we

will assume that they are both positive since the proof is similar in all the other cases. In this
case

(W 1V )(i, j, k, s) = −a1(V (i, j, k, s) − V (i− 1, j, k, s)) + a2(V (i, j, k, s) − V (i, j − 1, k, s)

|D0X1V |2 + |D0X2V |2 + τ

≤ −(cos(θk)− sin(θk))D
0X1V (i, j, k, s)D0X2V (i, j, k, s)

(|D0X1V |2 + |D0X2V |2 + τ)h2
V (i, j, k, s) ≤ −V (i, j, k, s)

2h2
.

Analogously, having upwinded the coefficient of (W 2V )(i, j, k, s), we get a similar behavior.
The mixed derivatives term can be estimated as

−2 cos θkD
0X1(D0X2)V D0X2V

|DintV |2 + τ
V (i, j, k, s) ≤ −10V (i, j, k, s)

h2
.
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In conclusion

V (i, j, k, s + 1) ≤ V (i, j, k, s)

(
1− 10Δt

h2

)
≤ 0.

The assertion then follows by induction.
Now we recall that the equation is uniformly parabolic in the subelliptic sense. Arguing

as in [24] the estimates of fourth order derivatives can be reduced to the estimates of graphs
over the considered group. Hence estimates can be obtained by a recent result of Capogna,
Citti, and Manfredini (see [11]). Since for τ fixed the equation is uniformly parabolic in the
subelliptic sense, these estimates allow us to prove the following.

Theorem 4.2. If uτ is the solution of (8) with initial condition u0 and U is the solution of
the discrete scheme considered here and α is fixed, there exist a constant C = C(τ, h, α) such
that if Δt ≤ C(τ, h), then

|uτ (iΔx, jΔy, kΔθ, sΔt)− U(i, j, k, s)| ≤ τα.

As a consequence, applying the uniqueness Theorem 3.12, we deduce the following con-
vergence result for the solution of the mean curvature equation (5) with initial condition u0:

|u(iΔx, jΔy, kΔθ, sΔt)− U(i, j, k, s)| ≤ τα

as Δt ≤ C(τ, h).

5. Results. In this section we present and discuss our results. We first compare the results
obtained with the original algorithm [18] with some results recently appearing in the literature.
Results of our new model for enhancement are proposed and compared with previous results
of Duits and Franken [28].

Finally we show examples of inpainting and enhancement of images.

5.1. Inpainting results. In all the upcoming numerical experiments we have discretized
the angular coordinate θ in 32 different orientations (see section 4). The evolution time (or
equivalently the number of iterations of the discrete versions) for both the mean curvature
flow (5) and the Laplace–Beltrami flow (7) have been set long enough so that a steady solution
is ensured.

Our algorithm performs particularly well for completing gray level images which have
nonvanishing gradient at every point. We start with a couple of images already contained in
[64]: an artificial one (see Figure 2) and a natural one (see Figure 3). In both images a very big
black hole is present, and the algorithm correctly reconstructs the missing part of the image.

Recently Boscain et al. in [9] tried to replace this nonlinear equation by a diffusion followed
by a “heuristic complement.” In Figure 4, left, we consider an image courtesy of Boscain et
al. [9] partially occluded by a grid: first we show the results of completion performed in [9]
(second image from left), then the results obtained through the heat equation in the 2D space
(third image from left), and finally the ones obtained with, Citti and Sarti model (right). A
detail is shown in Figure 5. Since the considered image is a painting, extremely smooth, with
low contrast, the 2D heat equation is able to perform a simple version of completion (see for
example, [4]). The curvature model reconstructs correctly the missed contours and level lines
and presents a strong completion capability, absent in the other two methods.
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Figure 2. An example of completion performed by the algorithm. In this artificial image the image gradient
is lifted in the R

2 × S1 space and the black hole is completed by mean curvature flow. Since the level lines of
the image are approximately circular, the algorithm performs very well.

Figure 3. Completion result on a real image through sub-Riemannian mean curvature flow in R
2 × S1, as

described in the paper.

In Figure 6 (and in the detail taken from it in Figure 7) we consider another example
taken from the same paper. In this image the grid of points which are missing is larger, and
the previous effect is even more evident.

In a more recent paper Prandi et al. (see [60]) introduced a linear diffusion with coefficients
depending on the gradient of the initial image, which they call “heuristic.” In Figure 8 we
compare the results obtained with this model, with the heat equation on the image plane, and
with the strongly geometric model of Citti and Sarti.

Then we test our implementation on piecewise constant images. Since the gradient is 0 in
a large part of the image, the lifted gradient is not defined in the largest part of the image.
On the other side, since the lifting mimics the behavior of the simple cells of the V1 cortical
layer, the Citti and Sarti algorithm is always applied on a smoothed version of the image. We
have applied it on a classical toy problem proposed, for example, in [3] by Bertalmio, et al.
Results are shown in Figure 9.

In Figure 10 we test our method on an image taken from the survey [4]. The present
reconstruction is correct in the part of the image characterized by strong boundaries, but the
results of [4] obtained with the model of Masnou and Morel (see [50]) seem to be better. TheD
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Figure 4. Left: an occluded image (courtesy of Boscain et al. [9]). Second image from left: the image
processed in [9]. Third image from left: the same image processed through the heat equation. Right: the image
inpainted using the Citti and Sarti algorithm.

Figure 5. A detail of the previous image. Left: the original image (courtesy of Boscain [9]). Second image
from left: the image processed in [9]. Third image from left: the image processed through the heat equation;
Right: the image inpainted using the proposed algorithm.

Figure 6. From left to right: the original image (courtesy of Boscain [9]); the image processed in [9]; the
image processed through the heat equation; and the image inpainted using the proposed algorithm.

Figure 7. A detail of the previous image. Left: the original image (courtesy of Boscain [9]). Second image
from left: the image processed in [9]. Third image from left: the image processed through the heat equation.
Right: image inpainted using the original algorithm of Citti and Sarti.

D
ow

nl
oa

de
d 

09
/2

0/
17

 to
 1

31
.1

55
.1

51
.8

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

232 CITTI, FRANCESCHIELLO, SANGUINETTI, AND SARTI

Figure 8. On the left, the occluded image. From left to right: results from [60], with 2D heat equation and
our model.

Figure 9. Inpainting a constant coefficient image with the Sarti and Citti algorithm.

main point is the boundary detection, which is very accurate in the model of Masnou and
Morel, while here the boundaries are detected with a gradient, after smoothing the image.

5.2. Enhancement results. We will show in this section results of the application of the
enhancement method we have introduced in section 2.2.2. Let us recall that enhancement
consists in an image filtering that underlines directional coherent structures. With respect to
the completion problem there is no part of the image to be disoccluded and all the parts of
the initial data are evolved.

Figure 11 shows a microscopy image of bone tissue to be filtered to reconstruct the cross-
ing fibers (courtesy of Duits and Franken [28]). The second image from the left shows the
enhancement computed by using CED-OS (see [28, 33]), while the third image shows the
result obtained using the proposed method.

Finally, we show in Figure 12 (zoomed in Figure 13) an example combining the techniques
of completion and enhancement. We see in this case that enhancement homogenizes the
original nonoccluded part with the reconstructed one.

Here we propose a detail of the previous image in order to underline the effects of the
discussed techniques.

6. Conclusions. In this paper we have proved existence of viscosity solutions of the mean
curvature flow PDE in R

2 × S 1 equipped with a sub-Riemannian metric. The flow has beenD
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Figure 10. Left: the occluded image. Center: image from [4] processed with the model of [50]. Right: image
processed with our model.

Figure 11. From left to right: the original image, courtesy of Duits and Franken [28, Figure 7]; the enhanced
image using CED-OS, (see [28]); the enhanced image obtained using the proposed method.

implemented with a suitable adaptation of the Osher and Sethian technique [56], and a sketch
of the proof of convergence of the numerical scheme is provided. Results of completion and
enhancement are obtained on both artificial and natural images. We also provide comparisons
with other existing algorithms. The algorithm leads to results comparable with the classical
ones of Bertalmio et al. in [3] or of Masnou and Morel in [50], but it performs much better
than the results shown by Boscain et al. in [9] or by Prandi et al. [60]. The method can be
applied in the presence of crossing edges and to perform enhancement: our results have been
compared with the previous results of Duits et al. [26].

Appendix. Here we recall the definition of the sub-Riemannian differential operators used
in our paper. In the simplified setting of this group each vector field is formally self-adjoint
and the vector fields are orthonormal. This allows us to give very simple definitions where
the vector fields take the place of the derivatives in the standard setting.

Definition A.1 (horizontal Hessian). The horizontal Hessian of a function f is defined as

Hf = (X0
i X

0
j (f) +X0

jX
0
i (f))i,j=1,2,

i.e., is the matrix which contains the second order derivatives of the horizontal vector fields.D
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Figure 12. Left: the original image (courtesy of Boscain et al. [9]). Center: image inpainted using the
proposed algorithm. Right: image inpainted and enhanced with this algorithm.

Figure 13. From left to right: a detail of the original image (courtesy of Boscain et al. [9]); a detail of the
image inpainted using the proposed algorithm; the same detail of the image inpainted and enhanced with this
algorithm.

Definition A.2 (horizontal divergence). The horizontal divergence of a horizontal vector w =
w1X

0
1 + w2X

0
2 is defined as follows:

div0(w) = X0
1 (w1) +X0

2 (w2).

Definition A.3 (Laplace–Beltrami operator). The Laplace–Beltrami is a second order oper-
ator on the horizontal tangent space to the surface (i.e., the subset of the horizontal bundle
which is tangent to the manifold). In the present setting we consider the surface

S = {(x, y, θ) : u(x, y, θ) = 0},
which has a unique tangent vector field (see (4)):

T0 =
X0

2uX
0
1 −X0

1uX
0
2

|∇0u| .

If v : S → R we will call the Laplace–Beltrami operator the second derivative in the direction
of the vector T0:

ΔLBv = T 2
0 v.D
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Finally we recall that the notion of increment on a manifold is replaced by the notion of
exponential map.

Definition A.4 (exponential map). Let v be a vector field tangent to a differentiable manifold
M , and let p ∈ M . Then there is a unique solution of the Cauchy problem γ′ = v with initial
condition γv(0) = p. If the norm of v is sufficiently small, the solution can be extended up to
the time t = 1 and the exponential map is defined

expp(v) = γv(1).
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