

Full linear multistep methods as root-finders

Citation for published version (APA):
van Lith, B. S., ten Thije Boonkkamp, J. H. M., & IJzerman, W. L. (2017). Full linear multistep methods as root-
finders. (CASA-report; Vol. 1705). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/02/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://research.tue.nl/en/publications/aa066297-8a86-4c34-a810-1030e0433721

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computer Science

CASA-Report 17-05
February 2017

Full linear multistep methods as root-finders

by

B.S. van Lith, J.H.M. ten Thije Boonkkamp, W.L. IJzerman

Centre for Analysis, Scientific computing and Applications
Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven, The Netherlands
ISSN: 0926-4507

Full linear multistep methods as root-finders

Bart S. van Litha,1, Jan H.M. ten Thije Boonkkampa, Wilbert L. IJzermana,b

aDepartment of Mathematics and Computer Science, Eindhoven University of Technology -
P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands.

bPhilips Lighting - High Tech Campus 44, 5656 AE, Eindhoven, The Netherlands.

Abstract

Root-finders based on full linear multistep methods (LMMs) use previous func-
tion values, derivatives and root estimates to iteratively find a root of a nonlinear
function. As ODE solvers, full LMMs are typically not zero-stable. However,
used as root-finders, the interpolation points are convergent so that stability
issues are circumvented. A general analysis is provided based on inverse poly-
nomial interpolation, which is used to prove a fundamental barrier on the con-
vergence rate of any LMM-based method. We show, using numerical examples,
that full LMM-based methods perform excellently. Finally, we also provide a
robust implementation based on Brent’s method that is guaranteed to converge.

Keywords: Root-finder, nonlinear equation, linear multistep methods,
iterative methods, convergence rate.

1. Introduction

Suppose we are given a sufficiently smooth nonlinear function f : R → R
and we are asked to solve the equation

f(x) = 0. (1)

This archetypical problem is ubiquitous in all fields of mathematics, science
and engineering. For example, ray tracing techniques in optics and computer
graphics need to accurately calculate intersection points between straight lines,
rays, and objects of varying shapes and sizes [1, 2]. Implicit ODE solvers are
often formulated like (1), after which a root-finder of some kind is applied [3].

Depending on the properties of the function f , there are several methods that
present themselves. Sometimes the derivative is not available for various reasons,
in which case the secant method will prove useful. If higher-order convergence
is desired, inverse quadratic interpolation may be used [4]. If the derivative of f
exists and is available, Newton’s method is a solid choice, especially if f is also
convex.

Email address: b.s.v.lith@tue.nl (Bart S. van Lith)
1Corresponding author

Preprint submitted to Elsevier February 10, 2017

Recently, a new interpretation of root-finding methods in terms of ODEs
has been introduce by Grau-Sánchez et al. [5, 6, 7]. Their idea is to consider
the inverse function derivative rule as an ODE, so that any explicit ODE solver
may be converted to a root-finding method. Indeed, Grau-Sánchez et al. have
successfully introduced root-finders based on Adams-type multistep and Runge-
Kutta integrators. It goes without saying that only explicit ODE solvers can be
usefully converted to root-finding methods. However, predictor-corrector pairs
are possible, as those methods are indeed explicit.

We argue that the ODE approach can be interpreted as inverse interpola-
tion with (higher) derivatives. Indeed, any linear integration method is based
on polynomial interpolation. Thus, the ODE approach can be seen as a gener-
alisation of inverse interpolation methods such as the secant method or inverse
quadratic interpolation. The analysis can thus be combined into a single ap-
proach based on inverse polynomial interpolation.

Our main theoretical result is a theorem on the convergence rate of root-
finders based on explicit linear multistep methods. We furthermore prove a
barrier on the convergence rate of LMM-based root-finders. It turns out that
adding a few history points quickly boosts the convergence rate close to the
theoretical bound. However, adding many history points ultimately proves an
exercise in futility due to diminishing returns in the convergence rate. Two
LMM-based methods are constructed explicitly, one using two history points
with a convergence rate of 1 +

√
3 ≈ 2.73 and another with three history points

that converges with rate 2.91.
Using several numerical examples, we show that the LMM-based methods

indeed achieve this higher convergence rate. Furthermore, pathological examples
where Newton’s method fails to converge are used to show increased stability.
We also construct a robust LMM-based method combined with bisection to
produce a method that can been seen as an extension of Brent’s [8]. Similar to
Brent’s method, whenever an enclosing starting bracket is provided, an interval
[a, b] with f(a)f(b) < 0, our method is guaranteed to converge.

This article is organised in the following way. First, we find the convergence
rate of a wide class of root-finders in Section 2 and prove a barrier on the
convergence rates. Next, in Section 3 we derive new root-finders based on full
linear multistep methods and show that such methods are stable when the initial
guess is sufficiently close to the root. After this, some results are presented in
Section 4 that verify our earlier theoretical treatment. Finally, we present our
robust implementation in Section 5, after which we give our conclusions in
Section 6.

2. Barriers on LMM root-finders

Root-finding methods based on the ODE approach of Grau-Sánchez et al.
can be derived by assuming that the function f is sufficiently smooth and in-
vertible in the vicinity of the root. Under these assumptions, the chain rule

2

gives
dx

dy
= [f−1]′(y) =

1

f ′
(
x
) = F (x), (2)

which we may interpret as an autonomous ODE for the inverse. Integrating (2)
from an initial guess y0 = f(x0) to y = 0 yields

f−1(0) = x0 +

∫ 0

y0

F
(
x(y)

)
dy. (3)

Immediately, we see that applying the forward Euler method to (2) gives New-
ton’s method. From (3), we see that the step size of the integrator should be
taken as 0− y0 = −f(x0). However, Newton’s method may also be interpreted
as an inverse linear Taylor method, i.e., a method where the inverse function is
approximated by a first-order Taylor polynomial. Indeed, any linear numerical
integration method applied to (2) can be interpreted as an inverse polynomial
interpolation.

As such, explicit linear multistep methods applied to (2) will also produce a
polynomial approximation to the inverse function. Such a method has the form

xn+s +

s−1∑
k=0

a
(n)
k xn+k = hn+s

s−1∑
k=0

b
(n)
k F (xn+k), (4)

where indeed b
(n)
s = 0, otherwise we end up with an implicit root-finder, which

would not be very useful. The coefficients of the method, {a(n)k }
s−1
k=0 and {b(n)k }

s−1
k=0,

will depend on the previous step sizes and will therefore be different each
step. The step sizes are given by hn+k = yn+k − yn+k−1, the differences
in y-values. Since we wish to find the root, we set yn+s = 0, leading to
hn+s = yn+s − yn+s−1 = −yn+s−1. Furthermore, the y-values are of course
given by the function values of the root estimates, i.e.,

hn+k = f(xn+k)− f(xn+k−1) for k = 1, . . . , s− 1. (5)

Like an ODE solver, we may use an implicit LMM in tandem with an explicit
LMM to form a predictor-corrector pair, the whole forming an explicit method.
Unlike an ODE solver, we may construct derivative-free root-finders based on

the LMM approach by setting all b
(n)
k = 0 for k = 0, . . . s− 1 and for all n > 0,

e.g., the secant method. For an ODE solver this would obviously not make
sense. Similar to ODE solvers, we may introduce higher derivatives by using

xn+s +

s−1∑
k=0

a
(n)
k xn+k = hn+s

s−1∑
k=0

b
(n)
k F (xn+k) + h2n+s

s−1∑
k=0

c
(n)
k F ′(xn+k) + . . . (6)

The following theorem provides the maximal convergence rate for any method of
the form (6). Furthermore, it provides a fundamental barrier on the convergence
rate of LMM-based root-finders.

3

Theorem 1. For simple roots, the maximal convergence rate p for any method
of the form (6), where the coefficients are chosen so as to give the highest order
of convergence, is given by the largest real root of

ps =

s−1∑
k=0

pk(d+ σk), (7)

where d is the number of derivatives of f−1 used in the method. Thus, d = 1
for methods defined by (4). The coefficients σk indicate whether the coefficients

a
(n)
k are arbitrarily fixed from the outset or left free to maximise the order of

convergence, i.e., σk = 1 if a
(n)
k is free and σk = 0 otherwise. Moreover, the

limiting convergence rate for any method using d derivatives is d+ 2.

Proof. 1. Any method of the form (6) implicitly uses inverse polynomial (Her-
mite) interpolation applied to the inverse function f−1, let us call the resulting
interpolation H. Let yn+k, k = 0, . . . , s−1 be the interpolation points. At each
point yn+k, there are d+ σk values are interpolated, the inverse function value
xk if σk = 1 and d derivative values. Thus, the polynomial interpolation error
formula gives

f−1(y)−H(y) =
[f−1](N+1)(υ)

(N + 1)!

s−1∏
k=0

(y − yn+k)d+σk ,

where υ is in the interval spanned by the interpolation points and N = sd +∑s−1
k=0 σk. The approximation to the root is then computed as xn+s = H(0).

Let us denote the exact value of the root as α, then

|xn+s − α| =
|[f−1](N+1)(υ)|

(N + 1)!

s−1∏
k=0

|yn+k|d+σk .

Define εn+k = xn+k−α and recognise that f(xn+k) = f(α+εn+k) = f ′(α)εn+k+
O(ε2n+k), where f ′(α) 6= 0. Thus, we find

|εn+s| ≈ A0|εn+s−1|d+σs−1 · · · |εn|d+σ0 ,

where A0 > 0 is a constant depending on [f−1](N+1)(υ), s and f ′(α). The error
behaviour is of the form

|εl+1| = C|εl|p, (∗)

asymptotically as p → ∞. Here, C > 0 is an arbitrary constant. Applying (∗)
s times on the left and s− 1 times on the right-hand side leads to

|εn|p
s

≈ A1|εn|
∑s−1

k=0 p
k(d+σk),

where all the constants have been absorbed into A1. Thus, (7) is established.

4

2. Finally, the highest convergence rate can be achieved by leaving all a
(n)
k

free. This way, we obtain

ps = (d+ 1)

s−1∑
k=0

pk = (d+ 1)
ps − 1

p− 1
.

Simplifying, we obtain

ps+1 − (d+ 2)ps + d+ 1 = 0.

Note that p = 1 is always a solution of this equation. However, the maximal
convergence rate is given by the largest real root, so that we look for solutions
p > 1. Dividing by ps yields

p− (d+ 2) +
d+ 1

ps
= 0,

hence if s→∞, we obtain p = d+ 2.

From Theorem 1, we find several special cases, such as the derivative-free
interpolation root-finders. Using d = 0, we find the following result.

Corollary 1. Inverse polynomial interpolation root-finders, i.e., d = 0 resulting

in all b
(n)
k = 0 in (4), can attain at most a convergence rate that is quadratic.

Their convergence rates are given by the largest real root of

ps+1 − 2ps + 1 = 0. (8)

Proof. The coefficients {a(n)k }
s−1
k=0 are chosen to maximise the order of conver-

gence, so that σk = 1 for all k = 0, . . . , s− 1, while d = 0, leading to

ps =

s−1∑
k=0

pk =
ps − 1

p− 1
.

Simplifying yields (8). Furthermore, the convergence rate is bounded by d+2 =
2, since d = 0.

Inverse polynomial root-finders such as the secant method (s = 2) or inverse
quadratic interpolation (s = 3) are derivative-free, so that their highest con-
vergence rate is 2 according to Theorem 1. The first few convergence rates for
derivative-free inverse polynomial interpolation methods are presented in Ta-
ble 1. The well-known convergence rates for the secant method and the inverse
quadratic interpolation method are indeed reproduced. As becomes clear from
the table, the rates quickly approach 2 but never quite get there. The increase
in convergence rate becomes smaller and smaller as we increase the number of
interpolation points.

Next, we cover the Adams-Bashforth methods also discussed in [5]. As ODE
solvers, Adams-Bashforth methods are explicit integration methods that have

5

Table 1: The first few convergence rates for s points using only function values.

s p
2 1.62
3 1.84
4 1.92
5 1.97

order of accuracy s [9]. However, as Theorem 1 suggests, as root-finders they
will have a convergence rate that is smaller than cubic, since d = 1. In fact, the

convergence rate of Adams-Bashforth root-finders is bounded by 3+
√
5

2 = 2.62 as
was proven by Grau-Sánchez et al. [5]. The following corollary is a generalisation
of their result.

Corollary 2. The Adams-Bashforth root-finder methods with s ≥ 2 have max-
imal convergence rates given by the largest real root of

ps+1 − 3ps + ps−1 + 1 = 0. (9)

Moreover, the convergence rate for any root-finder based on Adams-Bashforth

methods is bounded by 3+
√
5

2 ≈ 2.62.

Proof. Adams-Bashforth methods have a
(n)
k = 0 for k = 0, . . . , s − 2, resulting

in σk = 0 for k = 0, . . . , s − 2 and σs−1 = 1. Furthermore, the methods use a
single derivative of f−1 so that d = 1. The s = 1 method is equal to Newton’s
method, which has a quadratic convergence rate. For s ≥ 2, we find from (7)
that

ps = ps−1 +

s−1∑
k=0

pk = ps−1 +
ps − 1

p− 1
.

Simplifying yields (9). Again, we assume that p > 1 and we divide by ps−1, so
that

p2 − 3p+ 1 +
1

ps−1
= 0,

where we again let s→∞, yielding

p2 − 3p+ 1 = 0,

which has as the largest real root 3+
√
5

2 ≈ 2.62.

The first few convergence rates for the Adams-Bashforth root-finder methods
are given in Table 2 and agree with the rates found by Grau-Sánchez et al. As
becomes clear from the table, the convergence rates quickly draw near the bound
of 2.62. Yet again we are met with steeply diminishing returns as we increase
the number of history points s.

The Adams-Bashforth root-finder methods cannot attain a convergence rate
higher than 2.62, which is still some way off the cubic bound given by Theorem 1.

6

Table 2: The first few convergence rates for Adams-Bashforth root-finder method using s
points.

s p
1 2
2 2.41
3 2.55
4 2.59
5 2.61

Using another linear multistep method may therefore result in convergence rates
closer to cubic. For ODE solvers, trying to obtain a higher convergence rate
by increasing the number of points often leads to instabilities. In fact, poly-
nomial interpolation on equispaced points can even lead to diverging results,
e.g., Runge’s phenomenon [10]. However, root-finders generate a convergent set
of interpolation points, therefore a higher convergence rate can be achieved by
adding more history points.

Let us inspect the convergence rates of different LMM-based root-finders
using Theorem 1, see Table 3. These convergence rates are computed under
the assumption that all derivatives and point values are used, i.e., σk = 1 for
k = 0, . . . , s − 1 in Theorem 1. The convergence rate of a d-derivative method
can be boosted by at most 1, and the table shows that this mark is attained
very quickly indeed. Adding a few history points raises the convergence rate
significantly, but finding schemes with s > 3 is likely to be a waste of time.

Table 3: The first few convergence rates for s points (vertical) using function values and the
first d derivatives (horizontal).

s\d 1 2 3 4
1 2 3 4 5
2 2.73 3.79 4.82 5.85
3 2.91 3.95 4.97 5.98
4 2.97 3.99 4.99 5.996

Thus, provided that the root-finders are stable, a higher convergence rate
can be achieved by adding history points, as well as their derivative information.
However, we note that the stability issues in ODE solvers arises from the fact
that polynomial interpolation is applied on an equispaced grid. Root-finders are
designed to home in on a root, and when convergent, the step sizes will decrease
rapidly. Just as Runge’s phenomenon can be countered by switching to, e.g.,
Gauß nodes, polynomial interpolation is stable on the set of points generated
by the root-finder itself, provided the starting guess is sufficiently close.

3. Full LMM-based root-finders

Let us investigate full LMM-based root-finders that use a single derivative,
thus methods of the form (4). The current step size is then given by hn+s =

7

−f(xn+s−1). Let us define q
(n)
k as

q
(n)
k =

f(xn+k)

f(xn+s−1)
, k = 0, . . . , s− 2, (10)

so that hn+sq
(n)
k = −f(xn+k) is the total step between yn+k and yn+s = 0. The

Taylor expansions of x(yn+k) and x′(yn+k) about yn+s are then given by

x(yn+k) = x(yn+s) +

∞∑
m=1

1

m!
(−hn+sqk)mx(m)(yn+s), (11a)

x′(yn+k) = x′(yn+s) +

∞∑
m=1

1

m!
(−hn+sqk)mx(m+1)(yn+s), (11b)

where we have dropped the superscript (n) for brevity. Substituting these into
(4), we obtain

x(yn+s)

[
1 +

s−1∑
k=0

ak

]
− hn+sx′(yn+s)

[
s−1∑
k=0

akqk + bk

]

+

∞∑
m=2

1

(m− 1)!
(−hn+s)mx(m)(yn+s)

s−1∑
k=0

[
1
mq

m
k ak + qm−1k bk

]
= 0.

(12)

The consistency conditions then are given by

s−1∑
k=0

ak = −1, (13a)

s−1∑
k=0

akqk + bk = 0. (13b)

This gives us two equations for 2s coefficients, so that we can eliminate another
2s− 2 leading order terms, resulting in the conditions

s−1∑
k=0

qmk
m
ak + qm−1k bk = 0, (14)

where m = 2, . . . , 2s− 1.

3.1. The s = 2 method

The s = 2 LMM-based method is given by

xn+2 + a1xn+1 + a0xn = hn+2

(
b1F (xn+1) + b0F (xn)

)
, (15)

where we have again suppressed the superscript (n) on the coefficients. Here,
hn+2 = −f(xn+1) so that we may write q = q0, i.e.

q =
f(xn)

f(xn+1)
. (16)

8

Applying (13) and (14), we find a set of linear equations, i.e.,

a1 + a0 = −1, (17a)

a1 + qa0 + b1 + b0 = 0, (17b)
1
2a1 + 1

2q
2a0 + b1 + qb0 = 0, (17c)

1
3a1 + 1

3q
3a0 + b1 + q2b0 = 0. (17d)

These equations may be solved, provided q 6= 1, to yield

a0 =
1− 3q

(q − 1)3
a1 = −1− a0, (18a)

b0 =
q

(q − 1)2
b1 = qb0. (18b)

The condition q 6= 1 is equivalent to f(xn+1) 6= f(xn). This condition is not
very restrictive, as stronger conditions are needed to ensure convergence.

The above method may also be derived from the inverse polynomial inter-
polation perspective, using the ansatz

H(y) = h3
(
y − f(xn+1)

)3
+ h2

(
y − f(xn+1)

)2
+ h1

(
y − f(xn+1)

)
+ h0, (19)

where hi, i = 0, 1, 2, 3 are undetermined coefficients. The coefficients are fixed
by demanding that H interpolates f−1 and its derivative at y = f(xn+1) and
y = f(xn), i.e.,

H
(
f(xn)

)
= xn, (20a)

H
(
f(xn+1)

)
= xn+1, (20b)

H ′
(
f(xn)

)
=

1

f ′(xn)
, (20c)

H ′
(
f(xn+1)

)
=

1

f ′(xn+1)
. (20d)

Solving for hi, i = 0, 1, 2, 3 and setting y = 0, we find the same update xn+2 as
(15).

The stability of the s = 2 LMM method depends on the coefficients of the
LMM in much the same way as an ODE solver. Indeed, we can set the sequence
x̃n = xn + zn where xn is the sequence generated by exact arithmetic we wish
to find while zn is a parasitic mode. It can be shown that the parasitic mode
satisfies

zn+2 + a1zn+1 + a0zn = 0, (21)

so that it may grow unbounded if the roots are greater than 1 in modulus.
Using the ansatz zn = Bλn, we find the characteristic polynomial of the s = 2
method, i.e.,

ρ(λ) = λ2 − λ (1 + a0) + a0 = (λ− 1) (λ− a0) , (22)

9

where the roots cans simply be read off. Stability of the root-finder is ensured
if the stability polynomial of the method has a single root with λ = 1, while
the other roots satisfy |λ| < 1. This property is called zero-stability for linear
multistep ODE solvers. Thus, to suppress parasitic modes we need

|a0| =
∣∣∣∣ 1− 3q

(q − 1)3

∣∣∣∣ < 1. (23)

This reduces to q being either q < 0, or q > 3, so that |q| > 3 is a sufficient
condition. Thus, if the sequence {|f(xn)|}∞n=1 is decreasing fast enough, any
parasitic mode is suppressed. We may estimate q as a ratio of errors, since
f(xn) = f ′(α)εn +O(ε2n), so that

q ≈ εn
εn+1

. (24)

Using εn+1 = Cεpn with p = 1 +
√

3, we find that

εn < C1, (25)

with C1 =
(

1
3C

) 1√
3 . We conclude that the method will be stable if the initial

errors are smaller than the constant C1, which depends on the details of the
function f in the vicinity of the root. This condition translates to having the
starting values sufficiently close to the root. This is a rather typical stability
condition for root-finders.

3.2. s = 3 method

We may again apply (13) - (14) to find a method with s = 3, this time we
have 6 coefficients, given by

a0 =
q21(q0(3 + 3q1 − 5q0)− q1)

(q0 − 1)3(q0 − q1)3
, b0 =

q0q
2
1

(q0 − 1)2(q0 − q1)2
, (26a)

a1 =
q20(q1(5q1 − 3q0 − 3) + q0)

(q1 − 1)3(q0 − q1)3
, b1 =

q20q1
(q0 − q1)2(q1 − 1)2

, (26b)

a2 =
q20q

2
1(3q1 − q0(q1 − 3)− 5)

(q0 − 1)3(q1 − 13)
, b2 =

q20q
2
1

(q0 − 1)2(q1 − 1)2
, (26c)

where q0 = f(xn)
f(xn+2)

and q1 = f(xn+1)
f(xn+2)

. Here, we have the conditions q0 6= 1 and

q1 6= 1, reducing to the condition that all y-values must be unique. Again, this
condition is not very restrictive for reasons detailed above.

Methods with a greater number of history points are possible, however, the
gain in convergence rate from s = 3 to s = 4 is rather slim, as indicated
by Table 3. If such methods are desirable, they can be derived by selecting
coefficients that satisfy (13) - (14).

10

4. Results

Like the secant method, the s = 2 full LMM root-finding method needs
two starting points for the iteration. However, as the analytical derivative is
available, we choose to simply start Newton’s method with one point, say x0,
giving x1. The s = 3 method needs three starting values, therefore the next
value x2 is obtained from the s = 2 LMM method. The LMM-based methods
can be efficiently implemented by storing the function value and derivative value
of the previous step, thus resulting in a need for only one function and one
derivative evaluation per iteration.

The efficiency measure is defined as p
1
w with p the order of convergence

and w the number of evaluations per iteration [4]. Assuming the function itself
and the derivative cost the same to evaluate, the s = 3 LMM-based method
has an efficiency measure of

√
2.91 ≈ 1.71. Compared to Newton’s method,

with an efficiency measure of
√

2 ≈ 1.41, this is certainly an improvement.
Even compared to more recent root-finders, such as the fourth-order method of
Shengguo et al.[11] with 3

√
4 ≈ 1.59, our method holds up.

4.1. Numerical examples

Here, we provide a number of test cases and show how many iterations
LMM-based root-finders take versus the number needed by Newton’s method,
see Table 4. We have used a selection of different test cases with polynomials,
exponentials, trigonometric functions, square roots and combinations thereof.
For each of the test problems shown, the methods converged within a few iter-
ations. Some problems were deliberately started near a maximum or minimum
to see the behaviour when the derivatives are small.

The test computations were performed using the variable-precision arith-
metic of MATLAB’s Symbolic Math Toolbox. The number of digits was set to
300 while the convergence criterion used was

|xl+1 − xl| ≤ 10−η, (27)

with η = 250. The numerical convergence rates were computed with the error
behaviour

|εl+1| = C|εl|p, (28)

asymptotically as p→∞. The limiting value of the estimates for p is displayed
in Table 4.

Overall, Newton’s method consistently displayed a quadratic convergence
rate, which is the reason we did not display it in the table. The LMM-based
methods, on the other hand, generally have a higher convergence rate that may
vary somewhat from problem to problem. This is due to the fact that the step
sizes may vary slightly while the convergence rates of the LMM-based methods
only holds asymptotically, even with so many digits.

11

Table 4: Test cases with iterations taken for Newton’s method (subscript N) and the LMM-
based method with s = 2 (subscript 2) and s = 3 method (subscript 3).

function root x0 #itsN #its2 #its3 p2 p3
x+ ex −0.57 1.50 11 8 8 2.73 2.93√
x− cos(x) 0.64 0.50 9 7 8 2.74 2.91

ex − x2 + 3x− 2 0.26 0.00 10 8 7 2.72 2.94
x4 − 3x2 − 3 1.95 1.30 17 14 14 2.73 2.92
x3 − x− 1 1.32 1.00 12 9 9 2.73 2.64
e−x − x3 0.77 2.00 13 10 10 2.73 2.92
5
(

sin(x) + cos(x)
)
− x 2.06 1.50 11 9 9 2.73 2.92

x− cos(x) 0.74 1.00 9 7 7 2.72 2.93
log(x− 1) + cos(x− 1) 1.40 1.60 12 9 9 2.73 2.92√

1 + x− x 1.62 1.00 9 7 7 2.73 2.92√
ex − x− 2x 0.54 1.00 11 8 7 2.73 2.92

Total number of iterations 124 96 95

Table 5: Convergence history for tanh(x) of the three methods: Newton (subscript N) and
the LMM-based methods with s = 2 and s = 3. Note that the root of tanh(x) is at x = 0.

xN x(s=2) x(s=3)

1.239 1.239 1.239
−1.719 −1.719 −1.719

6.059 0.8045 0.8045
−4.583 · 104 0.7925 −0.6806

Inf −0.7386 1.377
-6.783 · 10−3 −0.7730
9.323 · 10−6 3.466 · 10−2

|x(s=2)| < ε −3.032 · 10−4

1.831 · 10−11

|x(s=3)| < ε

4.2. Pathological functions

A classical example of a pathological function for Newton’s method is the
hyperbolic tangent tanh(x). Students often believe that Newton’s method con-
verges for any monotone function until they are asked to find the root of tanh(x).
Hence, we have used this function as a test case using standard double precision
floating point arithmetic and a convergence criterion reading

|xl+1 − xl| ≤ 2ε, (29)

with ε the machine precision. Newton’s method fails to converge for starting
values with approximately |x0| ≥ 1.089, see Table 5. Our s = 2 LMM-based
method extends this range somewhat more and converges for any starting value
with roughly |x0| ≤ 1.239. The behaviour of the s = 3 LMM-based method is
similar, though it does take two more iterations to converge.

12

Starting at x0 = 1.239, Newton’s method diverges quickly, returned as −inf
after only 4 iterations. The LMM-based method, on the other hand, bounces
around positive and negative values for about 5 iterations until it is close enough
to the root. After that, the asymptotic convergence rate sets in and the root is
quickly found, reaching the root within machine precision at 7 iterations.

Donovan et al.[12] developed another test function for which Newton’s method
fails, it gives a false convergence result to be precise. The test function is given
by

h(x) = 3
√
xe−x

2

, (30)

which is, in fact, infinitely steep near the root x = 0, yet smooth, see Figure 1.
Again, we used double precision arithmetic and (29) as a stopping criterion.
Newton’s method diverges for any starting value except the exact root itself.
However, Newton’s method eventually gives a false convergence result as the
increment |xl+1 − xl| falls below the tolerance. The s = 2 and s = 3 LMM-
based methods converge when starting with |x0| ≤ 0.1147 for this problem, see
Table 6.

Figure 1: Pathological test function h(x) from (30).

Starting at the maximal x0 = 0.1147 for instance, the LMM-based methods
bounce several times between positive and negative x-values without making
much headway. After that, the root is close enough and the asymptotic con-
vergence rate sets in, reaching the root to within machine precision in a few
steps.

We believe the reason that the LMM-based method has increased stability is
due to the fact that it uses two points to evaluate the function and its derivative.

13

Table 6: Convergence history for h(x) from (30) of the three methods: Newton (subscript N)
and the LMM-based methods with s = 2 and s = 3. Note that the root is at x = 0.

xN x(s=2) x(s=3)

0.1147 0.1147 0.1147
0.2589 −0.2589 −0.2589
1.0402 0.1016 0.1016
1.6084 9.993 · 10−2 −5.648 · 10−2

1.9407 −0.2581 0.1959
2.2102 9.840 · 10−2 −0.1611
2.4445 9.810 · 10−2 5.021 · 10−2

2.6549 −0.2344 −7.190 · 10−2

2.8478 6.602 · 10−2 4.947 · 10−2

3.0270 6.021 · 10−2 −3.777 · 10−3

3.1953 −4.939 · 10−2 3.027 · 10−4

3.3543 −4.019 · 10−4 −6.875 · 10−6

3.5056 1.288 · 10−4 1.216 · 10−9

3.6502 2.028 · 10−10 −4.652 · 10−15

3.7889 −5.308 · 10−15 |x(s=2)| < ε
3.9225 |x(s=2)| < ε

In both cases, the iterations jump between positive and negative values, enclos-
ing the root. In this fashion, the LMM-based method acts much like the regula
falsi method. Once the iterates are close enough to the root, the asymptotic
convergence rate sets in and the iterates converge in but a few steps.

5. A robust implementation

As with most open root-finding algorithms, the conditions under which the
method is guaranteed to converge are rather restrictive. Therefore, we have
designed a bracketing version of the LMM-based method that is guaranteed to
converge. The algorithm is based on Brent’s method, using similar conditions
to catch either slow convergence or runaway divergence. This version of the
LMM-based method does, however, require an enclosing bracket [a, b] on which
the function changes sign, i.e., f(a)f(b) < 0. Alternatively, such a method can
start out as an open method, switching to the bracketing method when a sign
change is detected.

The algorithm consists of a cascade of methods increasing in accuracy but
decreasing in robustness, similar to Brent’s method. At the lowest level stands
the most robust method, bisection, guarding against steps outside the current
search bracket. Bisection is guaranteed to converge, but does so rather slowly.
On the highest level we use the full s = 3 LMM-based method discussed in the
previous section. Thus, in the best possible case, the method will converge with
a rate of 2.91. The method is, by virtue of the bisection method, guaranteed to
converge to a root.

14

Like Brent’s method and Dekker’s method, the LMM-based method keeps
track of three points a, b and c. Here, b is the best estimate of the root so far,
c is the previous value for b while a is the contrapoint so that int[a, b] encloses
the root. Ideally, all three values are used to compute the next value for b.
However, extra conditions are added to ensure the inverse actually makes sense
on the interval int[a, c].

Consider the case where the sign of f ′(c) is not equal to the sign of f(b)−f(a)b−a ,
but the sign of f ′(b) is. It follows that there is an extremum between b and c,
and the inverse function does not exist in the interval int[a, c], leading to an
error if we were to compute the inverse interpolation.

Thus, the following condition should be applied to each derivative value: the
sign of the derivative needs to be the same as the sign of the secant slope on
int[a, b], i.e.,

sgn (f ′(z)) = sgn

(
f(b)− f(a)

b− a

)
, (31)

where z = a, b, c. Only when the derivative at a point satisfies (31) can the
derivative sensibly contribute to the inverse. Otherwise the derivative infor-
mation should be discarded, leading to lower-order interpolation. If all deriva-
tives are discarded, the resulting interpolation is inverse quadratic or the secant
method.

Ultimately, the method provides an interval on which the function f changes
sign with a relative size of some given tolerance δ, i.e.,

|a− b| ≤ δ|b|. (32)

We shall use δ = 2ε in all our examples, with ε the machine precision. As an
input, the algorithm has f , f ′, a and b such that f(a)f(b) < 0. The algorithm
can be described in the following way:

1. If all three function values are different, use s = 3, otherwise use s = 2.

2. Check the sign of the derivatives at points a, b and c, include the deriva-
tives that have the proper sign.

3. If the interpolation step is worse than a bisection step, or outside the
interval [a, b], use bisection.

4. If the step is smaller than the tolerance, use the tolerance as step size.

5. If the convergence criterion is met, exit, otherwise go to 1.

The first step determines the number of history points that can be used. The
second step determines which derivative values should be taken into account. In
effect, only the second step is essentially different from Brent’s method, with all
the following steps exactly the same [8]. The extra conditions on the derivatives
gives rise to a selection of 12 possible root-finders, including inverse quadratic
interpolation and the secant method. Our method can therefore be seen as
building another 10 options on top of Brent’s method. Naturally, sufficiently
close to the root, the derivative conditions will be satisfied at all three points
and the method will use the full LMM method with s = 3.

15

5.1. Comparison with Brent’s method

Here we give a few examples of the robust LMM-based root-finding algorithm
discussed above compared to Brent’s method. As a performance measure, we use
the number of iterations. Standard double precision arithmetic is employed, as
that provides sufficient material for comparison. For both methods, the stopping
criterion is given by (32), the relative size of the interval must be sufficiently
small.

Table 7: Test cases with iterations taken for Brent’s method and the LMM-based method.
Subscript B represents Brent while subscript LMM represents the LMM-based method.

function root [a, b] #itsB #itsLMM

x+ ex −0.57 [−1, 1] 6 4√
x− cos(x) 0.64 [0, 2] 8 4

ex − x2 + 3x− 2 0.26 [−1, 1] 5 3
x4 − 3x2 − 3 1.95 [1, 3] 10 8
x3 − x− 1 1.32 [0, 2] 29 6
e−x − x3 0.77 [0, 2] 9 4
5
(

sin(x) + cos(x)
)
− x 2.06 [0, 4] 45 6

x− cos(x) 0.74 [0, 1] 7 3
log(x− 1) + cos(x− 1) 1.39 [1.2, 1.6] 31 4√

1 + x− x 1.62 [0, 2] 5 3√
ex − x− 2x 0.54 [−1, 2] 9 4

Total number of iterations 164 49
Total number of function evaluations 164 98

Table 7 shows that for most functions, both Brent’s method and the LMM-
based method take a comparable number of iterations. However, in some cases,
the difference is considerable. In the worst case considered here, Brent’s method
takes 7.5 times as many iterations to converge. In terms of efficiency index,
Brent’s method should be superior with an efficiency index of 1.84 against 1.71
of the LMM-based method. Taken over the whole set of test functions, however,
Brent’s method takes more than three times as many iterations in total, leading
to a significant increase in function evaluations. We conclude therefore that
practically, the LMM-based root-finder is a better choice.

6. Conclusions

We have discussed root-finders based on full linear multistep methods. Such
LMM-based methods may be interpreted as inverse polynomial (Hermite) inter-
polation methods, resulting in a simple and general convergence analysis. Fur-
thermore, we have proven a fundamental barrier for LMM-based root-finders:
their convergence rate cannot exceed d+2, where d is the number of derivatives
used in the method.

The results indicate that compared to the Adams-Bashforth root-finder
methods of Grau-Sánchez et al. [5], any full LMM-based method with s ≥ 2

16

has a higher convergence rate. As ODE solvers, full LMMs are typically not
zero-stable and special choices of the coefficients have to be made. Employed
as root-finders on the other hand, it turns out that LMMs are stable, due to
the rapid decrease of the step size. This allows the usage of full LMMs that are
otherwise not zero-stable.

Contrary to the Adams-type methods, the full LMM-based root-finders can
achieve the convergence rate of 3 in the limit that all history points are used.
The s = 2 and s = 3 methods, s being the number of history points, were explic-
itly constructed and provide a convergence rate of 2.73 and 2.91, respectively.
Numerical experiments confirm these predicted convergence rates. Furthermore,
application to pathological functions where Newton’s method diverges show that
the LMM-based methods also have enhanced stability properties.

Finally, we have implemented a robust LMM-based method that is guar-
anteed to converge when provided with an enclosing bracket of the root. The
resulting robust LMM root-finder algorithm is a cascade of twelve root-finders
increasing in convergence rate but decreasing in reliability. At the base sits bi-
section, so that the method is indeed guaranteed to converge to the root. At the
top resides the s = 3 LMM-based root-finder, providing a maximal convergence
rate of 2.91.

In terms of efficiency index, Brent’s method is theoretically the preferred
choice with 1.84 compared to 1.71 for the LMM-based method. However, nu-
merical examples show that the increased convergence rate leads to a significant
decrease in the total number of function evaluations over a range of test func-
tions. Therefore, in practical situations, provided the derivative is available, the
LMM-based method performs better.

Acknowledgements

This work was generously supported by Philips Lighting and the Intelligent
Lighting Institute.

[1] A. S. Glassner, An Introduction to Ray Tracing. London: Academic Press,
1991.

[2] J. Chaves, Introduction to Non-Imaging Optics. CRC Press, 2008.

[3] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations.
Wiley, 1987.

[4] W. Gautschi, Numerical Analysis. Birkhäuser, Boston, 2012.

[5] M. Grau-Sánchez, M. Noguera, and J. L. Dı́az-Barrero, “Adams-like tech-
niques for zero-finder methods,” Applied Mathematics and Computation,
vol. 211, pp. 130–136, 2009.

[6] M. Grau-Sánchez and J. L. Dı́az-Barrero, “Zero-finder methods derived
using Runge-Kutta techniques,” Applied Mathematics and Computation,
vol. 217, pp. 5366–5376, 2011.

17

[7] M. Grau-Sánchez and J. M. Gutirrez, “Zero-finder methods derived from
Obreshkovs techniques,” Applied Mathematics and Computation, vol. 215,
no. 8, pp. 2992 – 3001, 2009.

[8] R. P. Brent, Algorithms for minimization without derivatives. Prentice-
Hall, 1973.

[9] E. Hairer, G. Wanner, and S. P. Nørsett, Solving Ordinary Differential
Equations I: nonstiff problems. Springer-Verlag, 1987.

[10] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics. Springer,
2007.

[11] L. Shengguo, L. Xiangke, and C. Lizhi, “A new fourth-order iterative
method for finding multiple roots of nonlinear equations,” Applied Mathe-
matics and Computation, vol. 215, no. 3, pp. 1288 – 1292, 2009.

[12] G. C. Donovan, A. R. Miller, and T. J. Moreland, “Pathological functions
for Newton’s method,” The American Mathematical Monthly, vol. 100,
no. 1, pp. 53–58, 1993.

18

PREVIOUS PUBLICATIONS IN THIS SERIES:

Number Author(s) Title Month
17-01

17-02

17-03

17-04

17-05

N. Kumar
J.H.M. ten Thije
Boonkkamp
B. Koren
A. Linke

T.G.J. Beelen

A.J. Vromans
A.A.F. van de Ven
A. Muntean

S. Vovchak
T.G.J. Beelen

B.S. van Lith
J.H.M. ten Thije
Boonkkamp
W.L. IJzerman

A Nonlinear Flux
Approximation Scheme for
the Viscous Burgers
Equation

Finding all convex tangrams

Existence of weak solutions
for a pseudo-parabolic
system coupling chemical
reactions, diffusion and
momentum equations

Interference in wireless
networks
A game theory approach

Full linear multistep methods
as root-finders

January ‘17

January ‘17

February ‘17

February ‘17

February ‘17

Ontwerp: de Tantes,
Tobias Baanders, CWI

	EINDHOVEN UNIVERSITY OF TECHNOLOGY
	Department of Mathematics and Computer Science
	CASA-Report 17-05
	February 2017
	Eindhoven University of Technology
	5600 MB Eindhoven, The Netherlands
	CASA achterblad.pdf
	PREVIOUS PUBLICATIONS IN THIS SERIES:

