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Abstract We determine the chemical changes associated

with viscosity reduction when heavy oil is cracked in

subcritical water. The viscosity reduction has a temperature

threshold for onset of 290 �C—this suggests an enhanced

acid cracking regime associated with the maximisation of

water dissociation at these conditions aided by the already

increased solubility. The mean molecular weight is reduced

by nearly 50%. Oxygen and sulphur are reduced by about

half of this—either by expelled gas effluent (H2S) or by

conversion into mono-aromatic base sulphur-containing

structures. The amount of lower branched paraffins is

increased.

Keywords Oil recovery � Subcritical water � Viscosity �
Sulphur

List of symbols

C2-P Ethyl/dimethyl paraffins

KW Dissociation constant

MW Molecular weight

� Dielectric constant

l Viscosity

Abbreviations

DiBT (di) benzothiophene

EOR Enhanced oil recovery

FID Flame ionisation detector

hbrP Higher branched paraffins

MeP Methyl paraffins

P Paraffins

SCD Sulphur chemiluminescence detector

SCW Subcritical water

SimDis Simulated distillation

STP Standard temperature and pressure

TBP True boiling point

Introduction

Classical viscosity breaking of vacuum distillate residue or

bitumens requires temperatures well in excess of 400 �C
and up to 500 �C. This involves direct heating with coils or

in soak drums as the pressure has to stay low to encourage

cracking. Another method used to heat heavy feeds is hot

water. Low pressure steam aids thermal cracking to make

the smallest chemical building blocks such as ethylene and

propylene—although this requires even higher tempera-

tures. By contrast, lower temperature steam mobilises

heavy hydrocarbons in enhanced oil recovery (EOR)

(in situ) as well as post-processing such as bituminous oil

(‘‘tar sands’’). The viscosity is reduced as long as heat is

applied enabling improved mobility. Simultaneously, the

steam selectively removes (‘‘strips’’) lighter components

from the crude, but no cracking takes place as the tem-

perature is well below the 340 �C threshold. Once the

heating conditions are removed (i.e. after the heating zone),

cooling results in a viscosity increase again.

Permanent reduction in viscosity would require crack-

ing. The application of hot water for doing this is called

aquathermolysis. This breaks carbon sulphur bonds in

aromatic structures (Kamimura et al. 1998), causing a

reduction in sulphur and viscosity (Park and Son 2011).
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Part of these studies involve the enhanced cracking and

dissolving properties of sub- and supercritical water. This

technique is particularly prevalent in the green chemistry

area (Yang et al. 1998; Ramos et al. 2002; Bicker et al.

2005; Oliveira et al. 2011; Isa et al. 2015). By contrast with

steam and supercritical processes, subcritical processes

maintain water in the liquid state. (Note that many studies

use the term ‘‘subcritical’’ to cover conditions where one of

pressure and temperature is supercritical and the other

subcritical (Isa et al. 2015; Tumanyan et al. 2015).) In the

current study, subcritical water is defined as liquid water in

the temperature range between the boiling point and the

critical point (374 �C) (Alenezi et al. 2009) with appro-

priate pressures between 1 and 220 bar to maintain the

liquid phase.

A permanent decrease in viscosity is obtained due to two

characteristics of subcritical water. Firstly, when water

approaches its critical point, it is able to dissolve large

organic structures (Miller et al. 1998). The dielectric con-

stant (e) of water decreases from 80 to around 6 as it

approaches the critical point (Goto et al. 2004; Alenezi

et al. 2009). Secondly, the ionic properties of water peak

about 10% below the critical point (Hageman et al. 1996;

Peterson et al. 2008). At this point, the dissociation con-

stant (Kw) increases by a factor of 100–1000 compared to

its STP value of ca. 10-14. The resulting higher H?/OH-

concentration enhances cracking potential (Ryan et al.

1997; Patrick et al. 2001; Akiya and Savage 2002;

Golombok and Ineke 2013). By contrast, supercritical

water relies solely on its increased thermal cracking

potential (Ogunsola and Berkowitz 1995; Kamimura et al.

1998; Deng et al. 2011; Park and Son 2011; Deng et al.

2012; Golombok and Ineke 2013).

SCW has several potential applications, including

extracting oil from oil shale lumps (Deng et al. 2011),

sulphur removal (Kamimura et al. 1998; Park and Son

2011), tar sands (Park and Son 2011) and the cracking of

heavy hydrocarbons into lighter fractions (Duan et al.

2013; Golombok and Ineke 2013), thereby reducing the

viscosity. The use of catalysts to enhance near critical

effects has recently been extensively reviewed (Tumanyan

et al. 2015).

Since we are seeking to exploit the enhanced cracking

and dissolution properties of subcritical water, we prefer

conditions below, but close to the critical point. Accord-

ingly, we work in this study within ca. 20% of the critical

temperature (in K) (i.e. [250 �C) but below the thermal

cracking threshold of 340 �C. The objective of this study is

to show that cracking can occur in subcritical water sig-

nificantly below this thermal cracking threshold and to

identify the chemical changes associated with the induced

heavy oil viscosity reduction. By understanding the

mechanism, one can improve or address conditions for

each reservoir specifically, generating a more beneficial

and cost-effective recovery process. Section 2 describes

our experimental methodology. Next, the main results are

presented and discussed to identify the main chemical

changes leading to reduced viscosity.

Experimental

Set-up

A mixture of heavy oil and water is placed in a 200-mL

Hastelloy C Premex autoclave. An electric heating mantle

heats the reactor. A silver gasket ensures sealing at high

temperatures. The pressure inside the autoclave is con-

trolled with an Isco pump 500d and a back pressure reg-

ulator set to the desired pressure. A magnetically coupled

fluid suction stirrer mixes the heavy hydrocarbons and

water and later during reaction circulates the mixture.

Controllers are provided to set all variables. Bursting discs

are added as safety features after the Isco pump and the

autoclave. These bursting discs are designed for a rupture

pressure of 250 bar at 330 �C. A schematic view of the set-

up is shown in Fig. 1.

Feedstock

Traditionally, heavy crude has been defined as any liquid

petroleum with a viscosity ranging between 0.01 and

10 Pa.S at 25 �C. The medium heavy crude used in this

study originates from Marmul, a site in Oman [API ca. 25�
(Gao 2011)], and belongs to the light end of heavy crudes.

The specific gravity is 0.9, and the viscosity at room

temperature is 570 mPa s (Golombok and Ineke 2013).

Table 1 shows the composition of the C30 fraction corre-

sponding to 35% of the total.

Fig. 1 Schematic of subcritical water processing set-up for cracking

heavy hydrocarbons. A Isco 500D syringe pump; B Premex electric

heating mantle; C Hastelloy C Premex autoclave; D Premex magnetic

stirrer; E back pressure regulator; F Premex lift; G Premex controller;

H Isco D-series pump controller; I all control temperature controller;

J computer
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Experimental procedure

We loaded equal volumes of both water and crude oil in the

reactor and pressurised using the pump. Excess air is

expelled by flushing the system with water. The pressure is

maintained in the range of 150–200 bar by means of a back

pressure regulator. After reaching the desired pressure, the

reactor is heated. Sudden pressure eruptions arising from

impurities or volatile components vent to external exhaust.

The independent operating parameters of the study are thus

(1) the water-to-oil ratio; (2) the set temperature T and (3)

pressure p sufficient to maintain the liquid phase; and

finally (4) the duration of the reaction s.

After the desired process time, the reactor is cooled and

the sample is extracted from the reactor. The content is a

two-phase medium containing heavy hydrocarbons and

water. The sample is centrifuged for 30 min at 6500 rpm to

isolate the hydrocarbons from water. In summary, the

independent operating parameters in this study are: the

water-to-oil ratio, the set pressure and temperature and the

time duration of operation at these conditions.

Analyses

Viscosity measurements were conducted using a Physica

MCR 302 Anton Paar rheometer at two temperatures, 25

and 50 �C, respectively. Mean molecular weight analysis

was carried out by gel permeation chromatography (GPC),

using a Shimadzu Prominence-I LC-2030C 3D apparatus at

25 �C with tetrahydrofuran (THF) as eluent. The molecules

are thus separated based on their thermodynamic volumes

with the biggest eluted first. The molecular weight was

then determined based on polystyrene which was used as a

calibration standard.

Elemental analyses were carried out on a Thermo Sci-

entific Flash 2000 combustion analyser with GC and

thermal conductivity detector. Simulated distillation

(SimDis) was carried out (ASTM D2887), with a maxi-

mum temperature for the boiling curve of approximately

720 �C corresponding to C120. Detection was by flame

ionisation detector and a sulphur chemiluminescence

detector. The relative error on the reported results is\5%,

a figure obtained from reproducibility tests, comprising a

number of repeated runs (minimum of three runs).

Results

Figure 2a shows that below a temperature threshold of

around 280 �C there is no significant viscosity reduction.

This shows the effect of subcritical water. We referenced

above that traditional (i.e. using purely thermal effects)

viscosity breaking requires temperatures above 400 �C:

aquathermolysis with steam requires [30 days of ‘‘soak-

ing’’ for a viscosity reduction effect (Clark et al. 1986). We

have shown that by carrying out the effect in subcritical

liquid water, the threshold temperature is reduced by ca.

120 �C. Moreover, the time for the viscosity reduction is

reduced from days to a matter of hours as we have previ-

ously shown (Golombok and Ineke 2013). We can combine

the effect in a severity given by

S ¼ Tsa ð1Þ

with temperature T (�C) and reaction time s (hours). a is a

constant and typically around 0.05 (Golombok et al. 2001).

A comparison of our temperature threshold knowledge

from Fig. 2a with the severity data (Fig. 2b) shows that

most of the viscosity (l) reduction takes place in the first

24 h at process temperatures above 330 �C. We can sepa-

rate the two effects of lower temperature requirement and

much shorter times in this process. The lower temperature

requirements derive directly from the fact that we maintain

water in the liquid state as opposed to the gaseous state

traditionally associated with these studies. The result is the

increased solubility of the oil in water. Oil molecules are

more easily separated from one another so are more sus-

ceptible to cracking rather than any polymerisation effects

if they were not separated by water. The shorter times

derive from the 10009 higher water dissociation and may

be attributed to the simultaneous acid/base catalytic

cracking effects.

Figure 3 shows the mean molecular weight (from gel

permeation chromatography) as a function of severity. The

original crude has a mean molecular weight of 737 g/mol

Table 1 Distribution of paraffins, naphthenes and aromatics, and the last two columns are the selected distillation points

Severity (�C�Hr0:05) Paraffins (%) Naphthenes (%) Aromatics (%) T(R50%) (�C) R(T300 �C) (%)

Marmul std 37.7 20.7 33.5 532 13

386.8 39.8 20.9 32.2 481 16

419.2 38.3 21.2 34.8 464 21

420.5 38.3 21.6 35.0 450 21
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which is reduced by typically ca. 50%. Of course, molec-

ular weight is not in and of itself, directly correlated with

viscosity. Branched species typically have higher viscosi-

ties because of the restriction on the slippage associated

with linear species which enables layers to flow over one

another more easily. Nonetheless, as described above, gel

permeation chromatography is a form of size exclusion

chromatography so it is not surprising that the form in

Fig. 3 somewhat matches with that in Fig. 2b despite more

scatter in the molecular weight curve compared to the

smoother trend for the viscosity as a function of severity.

A more detailed breakdown of molecular changes is

obtained from a ‘‘simulated’’ distillation (ASTM D2887)

analysis. Figure 4a shows the boiling point (TBP) curves

for two different samples, the original crude and a typical

processed sample. There is a significant difference in

distillation curves. Two factors here are E(720)—the

fraction recovered at maximum temperature 720 �C, and

T(50)—the temperature at which 50% is recovered. T(50)

improves from 534 to 463 �C, and E(720) improves from

80 to 92%. This is of course substantially due to the low-

ered molecular weight. As mentioned above, one needs to

take aromaticity and branching into account. Our analysis

suggests that the aromaticity has remained constant

(Table 1). Figure 4b shows the distribution of carbon

number for the original crude feed as well as a typical

processed feed. We calculate a light-to-heavy ratio from

the mass associated with any carbon number n by:

LHR ¼
P30

1 m nð Þ
P1

31 m nð Þ : ð2Þ

The original crude has LHR = 0.67 compared to a value

of 1 for the processed sample.

Generally, higher branched paraffins are easier to crack

(Golombok and Ineke 2013). An analysis of the carbon groups

up to C30 is made using GC 9 GC FID into linear paraffins

(P) (mass ml), methyl paraffins (Me-P), ethyl or dimethyl

paraffins (C2-P) and higher branched paraffins (hbr-P) as

shown in Fig. 5. We define a branching-to-linear ratio by

BLR ¼
P30

1 mhbrðnÞ
P30

1 mlðnÞ
: ð3Þ

In the original Marmul, the ratio is 0.75 while when

processed this ratio decreases to 0.31. This suggests a

conversion of highly branched paraffins into paraffins

during the water-induced viscosity reduction, reflecting the

dependency of viscosity on carbon chain length and

branching.

We have thus determined that there are no changes in

aromaticity, but that there is a reduction in molecular
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weight as well as a reduction in branching. There remains

the role of heteroatoms (i.e. sulphur and oxygen) which we

now evaluate. Figure 6a shows the oxygen content as

function of severity. The most important observation is the

decrease in oxygen content over the whole severity range

(ca. 65%). This is a constant decrease independent of

severity. In Fig. 6b a similar effect is shown for the sulphur

content (albeit with greater variability). The average

reduction in sulphur is approximately 60%—we shall show

below that this is due to cracking of aliphatic sulphur bonds

between organic groups. The remaining elements (C, H and

N) remain constant (within 4%) over the severity range.

Heteroatom removal is supported by similar findings in the

literature (Caniaz and Erkey 2014). This suggests that the

dominant source of lowered viscosity is reduced molecular

weight due to breaking of C–O and C–S as shown in

Fig. 6a, b (Kamimura et al. 1998). A part of the sulphur is

converted into H2S, while a small amount of sulphur-

containing aromatics is expelled during pressure excursions

above the setting of the backpressure regulator.
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Finally, the organic sulphur compounds were investigated

using GC 9 GC and sulphur chemiluminescence detection.

Figure 7 shows a significant increase in benzothiophene

(BT) and dibenzothiophene (DiBT) compounds arising from

the break down of heavier components. During the subcrit-

ical water treatment, the high molecular weight aromatic

sulphur polymers are cracked, which may be the source of

these one- and two-ring species in the product. BT and DiBT

appear to no longer be susceptible to further cracking. This

means the principal cracking mechanism involves C–S bond

cleavage in addition to the aforementioned breaking of ali-

phatic C–C bonds. This confirms similar findings by Kami-

mura et al. (1998).

Conclusion

1. A reduction of up to 80% in viscosity is obtained

during a relatively short dissolution/cracking process

in subcritical water.

2. The chemical source behind the reduction in viscosity

is the breakage of aliphatic C–C, C–O and C–S bonds.

The aromatic monomer compounds increase in con-

centration in tandem with an increase in light-to-heavy

ratio.

3. The mass fraction boiling below 300 �C increases by

8%. This corresponds to molecules cracked to lower

molecular weights.
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4. The decrease in sulphur content is due to breakage of

C–S bonds linking aromatic components—mainly

benzothiophenes and dibenzothiophenes.
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