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Abstract

Implementation and maintenance of interface wrapper code are relatively mechanical tasks.
These tasks are repetitive, laborious, and error prone including numerous copy-paste actions
and manual modifications from previous implementation samples. This report describes design,
implementation, and deployment of an extensible framework for automatic generation of wrapper
code. The framework, which is based on the Model-Driven Architecture, consists of parser, model-
to-model transformer, and model-to-code transformer. The code generation framework described
in this report is more suitable for using in a C# .NET environment than other existing technologies
like Eclipse xtext/xtend. It is extensible for multiple domain specific languages and code artifacts,
as well as simple to use with Visual Studio tool.
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Foreword

Over the last couple of years, a trend was forming in the software department of Thermo Fisher
Scientific (formerly FEI). Several teams have investigated the use of code generation to reduce
repetitive error-prone manual work. A number of approaches and different tools were applied
with various degrees of success. The time was ripe to consolidate the past efforts and invest
in a department global code generation framework. Sodkhuu has spent his time at Thermo
Fisher to design and implement a code generation framework based on the requirements that
we gathered from previous projects. From the start, he kept focus on delivering a framework
that fits in our development process and can be used with minimal effort. Thanks to this focus,
Sodkhuu managed to deliver a framework that is now part of our software code base and build
infrastructure and is being used to generate files that were written manually before. Whereas
other efforts mostly remained at a prototype level, Sodkhuu’s framework is now operational in
our build infrastructure. Currently the framework is only applied to one pilot project and only
a few files are generated. However, the framework provides the flexibility to quickly extend the
capabilities onto other projects. Now that the framework has proven itself to work, I have no
doubt that several teams will eagerly start using it within their own projects. Eventually the
amount of (manually written) code will be significantly reduced, which will lead to more stable
releases, less maintenance effort and faster feature development. I would like to thank Sodkhuu
for his valuable contribution and wish him all the best with his future endeavors.

Dr. ir. E.P.H. de Groot
Project Mentor
9 September 2017
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Preface

This document summarizes the ”Model-Based Interface Code Generation: An extensible
framework for automatic generation of wrapper code” project. The project addresses the
challenge of generating wrapper code using model-based technology and applying into a high-
complex software system.

The project was executed by Sodkhuu Dalaikhuu from the Stan Ackerman’s Institute, PDEng
Software Technology program of the Eindhoven University of Technology. This project is the nine-
month final assignment for the aforementioned two-year Professional Doctorate in Engineering
(PDEng) program, known by its Dutch name as Ontwerpers Opleiding Technische Informatica
(OOTI). This project was implemented within Thermo Fisher Scientific company in Eindhoven.

This document is primarily intended for readers with a technical background in disciplines,
such as automation, model-based technologies, wrapper code, domain specific languages,
derivative text based languages, and general software engineering. However, no specialized
knowledge in these disciplines is needed.

Readers with a non-technical background or who are interested in knowing the basis and
results of this project should read chapters 1 - 3 and 8 - 10. These chapters introduce and explain
the essential points in which the framework is aimed and the results that we have obtained with
this project.

Readers who are interested in the detailed technical solution of the project should read
chapters 4 - 7. These chapters cover design, implementation, deployment, as well as verification
and validation phases of the project.

Sodkhuu Dalaikhuu
9 September 2017
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Executive Summary

Currently, the Thermo Fisher Scientific company develop their Transmission Electron Microscope
software system, which is based on a component-based architecture, using the Microsoft
Component Object Model (COM) technology. However, mastering COM is more time-consuming
task than mastering generic programming language for developers due to the complexity
of the technology. Thus, the company is moving towards separating software component
implementations into layers such as COM and C++. This layered structure demands interface
wrapper code which has been developed manually. The manual development of such code is
inadequate in three respects:

• It is a time-consuming task which adds not as huge business value as the effort

• It is an error-prone task which includes numerous copy-paste actions from previous
implementation samples

• It is an individualized task which may have different implementations depending on the
developer or department

The goal of this project is to design, implement, and deploy an extensible and easy-to-use
framework that generates interface wrapper code based on the information of a domain specific
language. In the scope of this project, COM-to-C++ wrapper code generation based on COM
Interface Definition Language (IDL) is considered as initial use-case of the framework. In order
to achieve this goal, we have designed the framework architecture using the Model-Driven
Architecture (MDA) which is proposed by the Object Management Group (OMG).

The framework consists of three main components such as parser, model-to-model
transformer, and model-to-code transformer. The parser component parses the input IDL
model to an abstract syntax tree (AST). The model-to-model transformer transforms the AST to an
object-oriented interface model. The model-to-code transformer transforms the interface model
to code artifacts.

We have developed a prototype, CodeGenerationFramework, using the architecture design and
deployed it on the company built environment as a component. The component is available for
all developers who wants to generate wrapper code. Also, the component is compliant with the
current code structure of the company. Thus, it is easy to get and use for the developers.

The initial iterations of the prototype is verified in test components that mimics the existing
code. The Acquisition Server has been the sample source for creating the mimicked components.
The component is deployed on the company built environment as well. Therefore, it proves the
framework is usable and suitable for the client company.

We have verified and validated the framework with an end-user using the existing codes for
Optics. Several IDL files are used as input of the framework and couple of existing code artifacts
are generated. However, due to time limitations and on-going code base modifications inside
the company, we have barely generated actual production code artifacts and tested using the
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existing unit and smoke tests for the code. We recommend that Thermo Fisher Scientific to use
the framework starting from the Energy Service Filter interfaces. The initial concepts of the COM-
to-C++ wrapper code has been generated and is ready for further modifications.
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Chapter 1

Introduction

The Model-Based Interface Code Generation project was conducted by Sodkhuu Dalaikhuu as
his Professional Doctorate in Engineering (PDEng) thesis. This chapter gives an introduction
to the project by briefly revealing its context, preliminaries for background information, and
architectural reasoning approach.

1.1 Context

The PDEng degree program in Software Technology is provided by the Department of
Mathematics and Computer Science of Eindhoven University of Technology in the context
of the 4TU.School for Technological Design, Stan Ackerman’s Institute. It is a two-year, third-cycle
(doctorate-level), engineering degree program designed to prepare a trainee for an industrial
career as technological designer, and later on as software or system architect. The focus of the
program is on strengthening technical and non-technical competencies of the trainees related to
effective, elegant, and efficient design, as well as development of software in the field of Computer
Science or a related field such as (but not limited to) Business Information Systems, Embedded
Systems, Data Science, or Information Security. The first 15 months of the program consists of
advanced training and education, including four small, industry driven training projects. During
the last nine months, a major design project (PDEng thesis) in a company takes place.

Thermo Fisher Scientific (formerly known as FEI) is a world leading company that helps its
customers to accelerate life science research, solve complex analytical challenges, improve patient
diagnostics, and increase laboratory productivity. Its Analytical Instruments Group – Materials
and Structural Analysis Division is responsible for designing, manufacturing, and supporting
Transmission Electron Microscope, which provides ultra-high resolution at the sub-Ångström
level (0.1 nanometer).

This thesis aims at applying the model-driven architecture concept in interface wrapper code
generation for component-based software systems. The Transmission Electron Microscope is used
as the implementation environment of the framework.

1.2 Preliminaries

In this section, first, the concept of Model-Driven Architecture (MDA) is explained as the main
approach for realizing model-based code generation. Furthermore, the Transmission Electron
Microscope is described since it is the environment of the project. Also, the Microsoft Component
Object Model (COM) and its wrapper code is expounded as the use-case setup of the code
generation.
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1.2.1 Model-Driven Architecture

Model-Driven Architecture (MDA) is an approach, introduced by Object Management Group
(OMG), for using models in software development [1]. Its main purpose is to support long-term
flexibility of software in terms of implementation of new technologies, integration of new
infrastructures, maintenance of the system, as well as testing and simulation. The MDA starts
with the idea of separating the specification of system operation from its platform capability
details. The three primary goals of MDA are portability, interoperability, and re-usability through
architectural separation of concerns.

Figure 1.1: Bézivin’s view of a model-driven engineering implementation architectural style

The basic model driven engineering principles are proposed by Bézivin in [2] and [3]. As
shown in Figure 1.1, at the bottom, the level M0 is a real system. A model represents this system
at level M1. This model conforms to its metamodel defined at level M2 and the metamodel itself
conforms to a meta-metamodel at level M3. The meta-metamodel conforms to itself. This is very
similar to the organization of programming languages like a self-representation of the Extended
Backus-Naur Form (EBNF) notation, which allows defining infinity of well-formed grammars.

A particular view of a system can be captured by a model and that each model is written in the
language of its metamodel. The two basic relations are called representedBy and conformsTo. The
notion of a metamodel is strongly related to the notion of ontology [2]. A metamodel is a formal
specification of an abstraction, usually consensual and normative. From a given system, we can
extract a particular model with the help of a specific metamodel. A metamodel acts as a precisely
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defined filter expressed in a given formalism.

In MDA, the meta-metamodel is called Meta Object Facility or MOF. It was developed to
provide a type system, which is a set of rules that assigns a property called type to the various
constructs of a computer program. The MOF is a closed and strict metamodeling architecture,
which conforms to itself. Every model element on every layer is strictly in correspondence with
a model element of the layer above. For defining metamodels, MOF plays exactly the role that
EBNF plays for defining programming language grammars. In other words, MOF is a DSL used
to define metamodels, just as EBNF is a DSL for defining grammars.

horizontal vertical
endogenous Refactoring Formal refinement
exogenous Language migration Code generation

Table 1.1: Orthogonal dimensions of model transformations with examples

The MDA relies on models as first class entities and it aims to develop, maintain, and evolve
software by performing model transformations. Mens et al. have proposed a taxonomy of model
transformation [4] to help software developers to choose a particular model transformation
approach. One of the important questions that they have investigated is What needs to be
transformed into what?. This question concerns the source and target artifacts of the model
transformation, which is directly related to another important point technical space that needs to
be addressed. A technical space, which is determined by a meta-metamodel (Level M3), is a model
management framework containing concepts, tools, mechanisms, techniques, languages, and
formalism associated to a particular technology [3]. Apart from the MDA technical space, which
uses the MOF as meta-metamodel, many other technical spaces are available, including those
relying on abstract syntax trees and grammars such as the EBNF. Given a model transformation,
its source and target models may belong to the same or different technical spaces. In the latter
case, tools and techniques to define transformations that bridge technical spaces are needed.

Figure 1.2: MDA’s suggestive metamodel transformation

Additionally, Mens et al. have proposed to name the exogenous horizontal transformation as
language migration, and the exogenous vertical transformation as code generation, as shown in
Table 1.1. Language migration and code generation are the main approaches that we have used in
this project. Endogenous transformations are transformations between models expressed in the
same language. Exogenous transformations are transformation between models expressed using
different language. A horizontal transformation is a transformation where the source and target
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models reside at the same abstraction level. A vertical transformation is a transformation where
the source and target models reside at different abstraction levels.

The important MDA basic concepts relevant to this project are system, model, platform
independent model (PIM), platform specific model (PSM), and model transformation. Figure
3.2 shows MDA’s suggestive metamodel transformation pattern. The PIM describes the system
but does not show details of its use of its platform. On the other hand, the PSM combines the
specifications in the PIM with the details that specify how the system uses a particular type of
platform. The model transformation is the process of converting one model (e.g. PIM) to another
(e.g. PSM) based on the transformation specification (or rule).

1.2.2 Transmission Electron Microscope

The Transmission Electron Microscope (TEM) is a type of microscope that shoots electrons through
a specimen and then projects a magnified image onto a detector [5]. The specimen usually has
to be specially prepared and held inside a vacuum chamber. TEM produces a high-resolution,
gray-scale image from the interaction between the prepared specimens and electrons in the
vacuum chamber. Figure 1.3 shows the Tecnai model Transmission Electron Microscope of the
Thermo Fisher Scientific company.

Figure 1.3: Transmission Electron Microscope

In a complex software system like the TEM, with the advancement of hardware features, the
server software that connects a user application to the actual hardware component is becoming
progressively intricate. As mentioned in [6], a system becomes complex in several common ways
such as by definition, legacy, hardware, development location, and interdependency. They affect
every phase of the software development life-cycle. The complexity of having parts that depend
on inputs from other components, hardware, or systems is called complexity by interdependency.
One of the well-known approaches to address this issue is the component-based architecture.
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The component-based architecture’s focal point is decomposition of a complex software
system into particular functional or logical components that are separated using explicit interfaces
containing methods and properties. One of the main benefits of this kind of architecture is
increased reliability and maintainability with the reuse of existing components [7].

The software system of TEM is decomposed into components using the component-based
architecture. The components use stable interfaces among themselves which makes them possible
to be developed and maintained independently. Each component encapsulates a software element
behavior into a reusable and self-deployable binary unit. In order to implement that, the Thermo
Fisher Scientific company has used the Microsoft Component Object Model, one of the commonly
used technologies.

1.2.3 Microsoft Component Object Model

Component Object Model (COM) is a Microsoft standard for creating so-called binary object
that can interact in platform-independent, distributed, and object-oriented systems [8]. COM
defines interfaces, which includes methods, for a software component. The implementation
details, such as structure and language, of the component are left to the developer because COM
is referred as a binary standard, which applies after a program has been translated to a binary
machine code. In other words, the components can be implemented in different languages, and
the implementations may be structurally dissimilar.

COM components are implemented in a language that can create structures of pointers and
call functions through pointers. Object-oriented languages such as C++ provide programming
mechanisms that can simplify the implementation of COM component. Further, COM requires
that the only way to gain access to the methods of an interface is through a pointer to the interface.

The COM interaction is based on a client-server model [9]. The client application instantiates
COM objects and a server produces COM services. A language independent and binary interface
creation is as follows:

1. Client application instantiates a COM object using a globally unique identifier (GUID)

2. COM layer uses the registry to localize the server that can produce particular COM object

3. Server returns a pointer to the corresponding interface of a COM component to the COM
layer which passes the pointer to the client application

4. Pointer returned by the COM layer to the client application points to an interface structure
wherefore the COM object delivers an implementation

5. Public member functions of the interface structure are always accessible in the same manner
using this interface pointer

The interfaces of a COM component is defined using the Interface Definition Language (IDL)
in a ”.idl” file, which contains one or more interface definitions [10]. Each interface definition
is composed of an interface header and an interface body. The interface header is demarcated
by square brackets. The interface body is contained in curly brackets. This is illustrated in the
following example:

[
/* I n t e r f a c e a t t r i b u t e s go here . */

]
i n t e r f a c e INTERFACENAME
{

/*The i n t e r f a c e body goes here . */
}
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The IDL interface header specifies platform-independent attributes like globally unique
identifier and version. These attributes are global to the entire interface. In other words, they
apply to the interface and all of its parts.

The IDL interface body contains data types and function prototypes. The interface body can
also contain attributes but they are not applicable to the entire interface. Furthermore, the interface
body can contain imports, pragmas, constant declarations, and type declarations.

1.2.4 Use of COM in TEM software system

Software has an essential role in controlling and ensuring the safe operation of TEM, as well as
creating a range of work-flows and applications. The TEM software system has a server software
between user applications and microscope hardware. Interfaces are an important part of the
software by providing access to user applications for controlling the microscope and acquiring
images.

Figure 1.4: TEM Software System Overview

Figure 1.4 shows overview of TEM software system using component-based architecture
and COM technology. The software of the microscope is decomposed into server and client
applications. The server (Windows Service), which consists of numerous COM components,
provides software interfaces to client applications for controlling the microscope hardware.
The goal of the server is to abstract hardware and software differences of various microscope
configurations, while maintaining relevant capabilities of subsystems. The client applications
(Windows Applications) provide user-interfaces for operating the microscope. They are targeted
at specific use-cases and abstracts the capabilities of the system to a convenient work-flow for
the end-user. The COM API (Application Programming Interface) works between the client and
server applications as a binary interface technology.
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1.2.5 Wrapper code

In software engineering, wrapper code is mainly used for connecting current code to another
library that has a different interface. By using wrapper code, the developer can hide low-level API
code complexities and provide an equivalent interface to the high-level implementation. Usually,
the wrapper class contains the same number of methods as defined in the low-level API and calls
a higher level second method with no additional computation.

In the context of this project, wrapper code is considered as an adapter that allows a COM
interface to be used as another interface in a generic programming language such as C++. In
software engineering, the adapter pattern allows two incompatible interfaces to work together
[11]. In order to do that, the adapter class contains an instance of the class it wraps and makes a
call to the member method of the instance.

Figure 1.5: Overview of simple COM type library and its wrapper code in client-server software
system

Figure 1.5 shows general structure of COM based client-server software system that we use
in the scope of this project. An IDL (Interface Definition Language) file contains COM interface
definitions. The file is used for creating a COM type library using the Microsoft IDL (MIDL)
compiler. The COM interface is realized in the server-side wrapper code, which imports the type
library and implements the interface methods. The implementation calls a higher level method of
the server component.

Figure 1.6 shows simple UML diagram of the COM-to-C++ server-side wrapper in more
detailed view using the object adapter pattern. The COM interface has a method. The interface is
implemented by a COM class, which also has an instance of the wrapper C++ abstract class. The
COM method calls the C++ abstract class method in its body. The C++ abstract class is inherited
by another class, which implements the actual behavior of the method.
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Figure 1.6: UML class diagram of server side COM-to-C++ wrapper code

1.3 Architectural reasoning approach

A system architecture is a set of decisions that gives direction to the design, implementation, and
deployment phase of the system development in its environment. Its main purpose is to have
design decisions consistent with the requirements of stakeholders.

Figure 1.7: Overview of CAFCR model

The CAFCR [12] model is used for this project as an architectural reasoning approach.
Comparing to the 4+1 view model, which is suitable for describing the architecture of software-
intensive systems, the CAFCR is broader, more structured, and iterative approach focused on
multidisciplinary embedded systems.

In CAFCR, the problem is decomposed into five views: Customer objectives, Application,
Functional, Conceptual, and Realization (CAFCR). Figure 1.7 shows an overview of this approach.
Per view, a collection of sub-methods is given that is filled by borrowing relevant methods from
various disciplines. The customer objectives and application views compose the problem that
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needs to be solved. In these views, the problem is formulated in terms of customer needs that
lead to justification for the specification and design. The functional view is the junction between
problem and solution. It describes preconditions for system architecture based on customer
demands. The conceptual and realization view compose the technical solution that support
achieving the customer objectives and application. The whole process is realized by a continuous
iteration over all views.

1.4 Outline

The next chapter, Chapter 2, describes the problem that we want to solve with this project, as
well as lists the non-functional and functional requirements and use-cases of the project. The
requirements together with the problem analysis gives an input for the framework architecture
that is elaborated in Chapter 3. The following chapters are focused on the design, implementation,
and deployment phase of the project. The design of the framework is presented in Chapter 4.
Chapter 5 and Chapter 6 describes the implementation and deployment phase of the project. The
process of validation and verification of the framework is discussed in Chapter 7. Finally, the
results and future work are addressed in Chapter 8.

The project management process during the lifetime of the project is described in Chapter 9.
The last chapter of this report (Chapter 10) gives the retrospective and reflection on the project
from the author’s perspective.

Model-Based Interface Code Generation 9





Chapter 2

Problem Analysis

This chapter provides problem analysis by presenting essential aspects needed for the formal
definition of problem statement. The first section of this chapter includes the problem statement
and project goal. The last three sections address customer objectives view, application view, and
functional view of the CAFCR model.

2.1 Problem statement

The software of the Transmission Electron Microscope (TEM) has numerous interfaces, reflecting
the complexity of the system. As microscopes evolve, interfaces are extended and sometimes
changed. Apart from the code needed to provide the actual functionality of a component, there
is a significant amount of code needed for interface wrappers or technology bridges. The task to
create such a wrapper code is tedious, and relatively mechanical. Also, the added business value
of such task, which could be automated, is not huge as the effort.

The developers of the client company are implementing the TEM server software using the
COM as the main technology for interfaces among all components. However, mastering COM is
a time-consuming task, comparing to a generic programming language, due to the complexity of
the technology. In order for developers to implement the behavior of a component in a generic
programming language, the company uses a wrapper code such as COM-to-C++ wrapper code.

In the company, an ideal work-flow of component development would start with defining
an interface with methods in the Interface Definition Language (IDL) file. Then, the developer
compiles the IDL file to generate a type library (TLB) using the Microsoft IDL compiler. This
TLB binary file stores information about COM object properties and methods in a form that is
accessible to other applications at run-time [13]. After that, the developer implements COM-to-
C++ wrapper code manually. Finally, the developer implements the component behavior in the
C++ language.

Implementing a wrapper code is a repetitive, laborious, and error prone task, including
numerous copy-paste actions from previous implementation samples. Normally, the wrapper
code helps the developers to realize the behavioral design of the software in a generic
programming language, such as C++, without concerning the COM details. However, with
missing standardization and strict requirements for writing the wrapper code, the developers
may be tempted to implement simple behavioral functionalities directly in the wrapper code
rather than in a generic programming language. This makes the component more complex to
maintain and update in the future.

The current software development paradigm, rely on the craftsmanship of skilled individuals
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engaged in labor intensive manual tasks, is shifting to a new paradigm [2]. The growing pressure
to reduce cost and time-to-market, as well as to improve software quality is pushing a transition
to more automated approaches. The idea of software systems being composed of interconnected
objects is not in opposition with the idea of the software life-cycle being viewed as a chain of
model transformations. The basic principle of object technology, ”Everything is an object”, is
moving towards the new principle, ”Everything is a model”.

Figure 2.1: Model-Based Interface Code Generation

The goal of this project is to ease implementation and maintainability of the COM wrapper
code by designing, implementing, and deploying a generic framework that generates code
artifacts from domain specific models. The company’s objective is to have a standard approach for
COM wrapper code creation by introducing automated code generation. The research question
of the project is how to apply the model-driven architecture concept for interface wrapper code
generation in the context of the component-based software systems of Transmission Electron
Microscope. The generation of COM-to-C++ wrapper code based on the IDL file is considered
as a specific case. However, the framework should be extensible to support other domain
specific languages and code artifact generations in the future. Also, the implementation has to
be executed in the company development environment and has to be deployed on the company
built environment.

2.2 Customer objectives view

The customer objectives view, Figure 2.2, describes what the customers want to gain from this
project. This view is covered by a key-driver analysis that relates sharp key-drivers to a list of
requirements. A key-driver can be seen as the primary goal of the customer. These goals are
refined by application-drivers into more elaborate definitions. Finally, a set of requirements is
derived from the application-drivers. These requirements express what are the achievements and
limitations of the product. The detailed stakeholder analysis is included in Appendix A.
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Figure 2.2: Customer objectives view

A good understanding of the customer and the product requirements can be obtained from the
key-driver’s diagram, shown in Figure 2.3. The customers of this project are primarily concerned
with minimizing the effort of creating wrapper code by automatically generating the code using
a framework. This main key-driver is decomposed into concrete ones by classifying in terms of
ease-of-use, extensibility, and reliability. These three concrete key-drivers are refined by detailed
application-drivers that finally lead to requirements. As same as the other views of the CAFCR
model, the key-driver’s diagram is improved iteratively, based on the other views, results, and
achievements, during the entire project duration.

The first concrete key-driver is the ease-of-use of the framework. The framework should be
easy to use for interface developers without requiring a steep learning curve. After discussing
with the company stakeholders, we have evaluated that deploying the framework on the company
built environment using their current technologies and tools would be suitable for this purpose.
Therefore, this concrete key-driver is refined by an application-driver that deploy the product on
the company built environment. This application-driver has derived four requirements such as
to use client company’s current tools and environment for the framework development, to use a
DSL file as the input of the framework, to generate wrapper code as the output of the framework,
and to create a custom build tool for the DSL file. The custom build tool would combine the client
company’s current compiler with our code generator framework.

The second concrete key-driver is the extensibility of the framework. The framework should
be easy to extend for future code generation projects such as test generation and document
generation. This concrete key-driver is refined by two application-drivers: support other domain
specific languages as well as generate other types of text artifacts. The first application-driver
has derived two requirements such as to use an extensible and replaceable tool for DSL parser as
well as to implement the parser as a component of the framework, which could be updated or
replaced easily in the future. The second application-driver has derived one requirement that is
to use an extensible and replaceable tool/technology for text artifact generation.

The third concrete key-driver is the reliability of the framework. The framework should be
validated and verified. This concrete key-driver is refined by two application-drivers that are to
verify the generated code artifacts, and to validate the framework with company stakeholders.
The first application-driver has derived one requirements that is to use existing test environment
for verifying the generated wrapper code artifacts. The second application-driver has derived one
requirement that is to perform a trial run with an end-user.
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2.3 Application view

The application view, Figure 2.4, describes how the product is placed in its environment. This view
is covered by context analysis that includes related work, relevant technologies, and deployment
environment.

Figure 2.4: Application view

The context analysis includes technologies and projects that are relevant to the framework. It
has three main items: company built environment, Auto Component Interface project, and Model-
Based Interface Framework project. The company built environment includes technologies, tools,
and code bases relevant to the current project. The two projects are previously developed
in-house prototypes of the client company. They provide proof-of-concept for the framework
design decisions and technology choices. The context diagram is included in Appendix B.

The first item of the context analysis is the company built environment. The TEM software
code base is based on a component-based architecture, which enables the developers to implement
and integrate components independently. Furthermore, the code base includes all wrapper codes
for components. COM IDL is the main technology that the company use for realizing the
component-based architecture. Visual Studio is the primary tool that they use for software
development. The company built environment is elaborated in Chapter 6.

Another important item of the context analysis is the Auto Component Interface project.
The Thermo Fisher Scientific company has been introducing automatic code generation in the
microscope software development for the past few years. In particular, there are two previous
works that are relevant to this thesis and the Auto Component Interface project is one of them.
It is aimed at generating C++ interface components based on a domain specific language called
FIDL (FEI Interface Definition Language). This project is a proof-of-concept for generating
components using the combination of Irony .NET Language Implementation Kit and Microsoft T4
technologies. The Irony is used for implementing the parser of the framework. The Microsoft T4
(Text Template Transformation Toolkit) is used for generating the output code artifacts based on
the outcome of the parser. However, the project does not support the company’s current standard
interface technology, Microsoft COM, as well as the project is a prototype, which does not fulfill
the production-quality.

The second project, Model-Based Interface Framework (MBIF) [6], is another in-house
project of the company, which is a previous PDEng thesis. The project is aimed at improving
interface quality by creating a generic framework for test, wrapper code, and document
generation. The project was developed in the Eclipse xtext/xtend framework. This technology
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decision was made with analysis of existing approaches in seven criteria: customization of
language/model definition, customization of artifact generation, simplicity for model definition,
maturity, extensibility, licensing cost, and cost of usage/integration. Based on these criteria,
they have decided to go with a domain specific language (DSL) based approach by defining
their own language. The project is a proof-of-concept for generating test, simple wrappers, and
documents using a DSL. However, the framework is not directly deployable on the company built
environment due to technology differences. In particular, the company uses Visual Studio tool for
platform development, which means the interface developers would need to learn the new tool in
Eclipse environment. Also, updating the tool when new functionalities or features are introduced
is a complicated task, especially, when the tool is not stable. Furthermore, this project was mainly
focused on the test code generation so that, apart from sample case of a simple wrapper code
generation based on its own DSL, the production-quality COM-to-C++ wrapper code generation
has been left for future work.

The company stakeholders have three ideas, based on the aforementioned pilot project
experiences, for the future of automated code generation in the software development of the
company. First, extend the Auto Component Interface project by developing additional features,
and improve the project to production-quality considering the suitability with the company built
environment. Second, extend the MBIF project to generate mature and verified wrapper code
artifacts but this project would not be directly suitable with the company built environment due to
the technology differences. Hence, it would require a steep-learning curve for interface developers
to use it in the production. Third, create a generic framework that supports both concepts in the
company built environment. The latter is more attractive to the clients because it allows future
code generation projects as an extension and it would be usable for the interface developers. We
have decided to choose the last option for the scope of this project.

2.4 Functional view

The functional view describes the what of the system. This view is covered with requirements
analysis and use-case analysis. The following subsections describe non-functional requirements
and use-cases of the framework. The list of functional requirement is included in Appendix C.

Figure 2.5: Functional view

2.4.1 Requirements gathering process

The requirements gathering process is occurred in parallel with the development activities. There
are two phases of requirement definition in the process, high-level and detailed. The high-level
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phase starts at the beginning of the project and lasts no longer than the third month. This stage
focuses on defining goals and general requirements without detailed specifications. Decisions
according to technologies and expected artifacts are the main outcome. The detailed phase is
centered on clear and specific definitions of the previously established high-level requirements.
The requirements are defined in an agile style which results in the creation of options and
recommendations.

Two sets of requirements are identified, non-functional and functional. Each functional
requirement has a priority selected from three levels, which are must, should, and optional. The
must level is an absolute requirement that has to be fulfilled. The should level is a requirement
that could have valid reasons in particular circumstances to ignore. However, the full implications
must be understood and carefully weighed before choosing a different course. The optional level
is a truly extra requirement that is not mandatory but would be preferable if it fits in the project
time-frame.

2.4.2 Non-functional requirements

Extensibility

The non-functional requirement of extensibility is described in two subsections: coupling and
inserting/replacing. The coupling is about how easy to separate parts of the framework. The
inserting/replacing is about how much effort is required to insert/replace/modify an existing
component/part of the framework.

The measurement of coupling is distinguished in three metrics: easy, reasonable, and difficult.
The framework is easy in terms of coupling if parts are separate in packages and components
that allow a visual and logical separation. The coupling is reasonable if some sections are still
coupled because of implementation reasons. The coupling is difficult if many dependencies and
cross-referenced elements.

The measurement of inserting/replacing is distinguished in three metrics: easy, reasonable,
and difficult. The framework is easy if modifications involve a small number of changes in the
full structure. The framework is reasonable if modifying involves changing structures, classes, in
other components. The framework is difficult if changes in all the structure are required to support
modifications.

Ease of use

The non-functional requirement of ease-of-use is described in three subsections: time required for
learning the tool, time required for creating a wrapper code, and intuitiveness. The time required
for learning the tool is about how long does it take to get used to the tool. The time required
for creating a wrapper code is about how long does it take to learn the process of generating a
wrapper code. The intuitiveness is about how easy is it to use the tool and associate the tool
concepts with the domain concepts.

Each subsections have metrics. The measurement of the first two subsections are in time
metric, which is defined based on intuition and experiences. The measurement of the intuitiveness
is distinguished in three metrics: high, medium, and low. The intuitiveness is high if the
framework is easy to associate concepts and to use them directly. The intuitiveness is medium
if the framework is easy to associate the concepts, but usage of them is not completely clear. The
intuitiveness is low if the concepts are not clear enough to associate and use them.
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Reliability

The non-functional requirement of reliability is considered as verification activity in our project.
The measurement of the verification is defined as the existing unit and smoke test environment of
the client company. The generated code artifacts should be reliable in terms of functionality. The
code should have the same functionality as the manually developed code. Hence, the code should
be verified by the existing tests.

2.4.3 Use-cases

Figure 2.6: Use case diagram of the framework

The main use-case of the framework is generate wrapper code. This use-case is included
in two other use-cases such as compile IDL file, and run test. As mentioned in the key-drivers
diagram (see 2.3), the framework should be easy to use for interface developers. In order to fulfill
this application-driver, we have decided to integrate the wrapper code generation action with
the action of compiling an IDL file. Another use-case that includes wrapper code generation
is the run test use-case. The framework would need to generate wrapper code, when interface
developer runs a test, if the IDL file is modified after the last run of the test.

The other important use-case is extend the code generation framework. This use-case includes
four other use-cases such as add new DSL, add new template, create new model transformer,
and create new code generator. As mentioned in the key-drivers diagram as well, the framework
should be easy to extend for other DSL’s and other code artifact generations. Therefore, it should
be easy to add new DSL’s and code templates. There might be new model transformer and code
generator in the framework depending on the new DSL. Hence, the framework should be easy to
add them as well.
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Framework Architecture

Architecture designing is a matter of defining a structured solution, which meets the project
preconditions, for the problem. This chapter covers from relevant decisions and reasoning to
high-level structure of the framework.

3.1 Design decisions

The design decisions of the framework architecture has started with defining the input and
output artifacts because these artifacts are the definite use-case of the project. Based on the project
requirements, the input of the framework is a domain specific language (DSL) model (e.g. IDL
model), which is considered as a platfrom independent model (PIM), and the output is a code
artifact (e.g. COM-to-C++ wrapper code), which is considered as a platform specific model (PSM).

Figure 3.1: Input and output artifacts of the framework in the four-layered view

The input and output of the framework are in two different technical spaces, which is shown
in Figure 3.1 using the four-layered view. The first technical space is the Extended Backus-Naur
Form (EBNF), which rely on abstract syntax trees (AST) and grammars. As same as we have
mentioned in the introduction chapter, the input DSL file contains model definitions. These
models are represented by DSL models, which conform to the corresponding grammar in the
metamodel layer. In the scope of our project, we consider all DSL grammars conform to the EBNF
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because most programming language standards use some variant of EBNF to define the grammar
of the language [14]. The second technical space is the Meta Object Facility (MOF). The output
code artifacts are represented by interface models, which conforms to an interface metamodel.
We consider the output code artifacts are structured in an object-oriented programming language.
Therefore, the interface metamodels conform to the MOF.

Figure 3.2 shows a transformation from DSL model to interface model in the form of
Object Management Group (OMG)’s suggestive metamodel transformation pattern [3]. The
transformation rule defines a meta-level direct mapping between metamodels, which is used for
the concrete transformation between the DSL and interface models.

Figure 3.2: Metamodel Transformation from DSL to interface model

As shown in Figure 3.2, a model transformation is the corner stone of this project. Model
transformation approaches can be classified in two major categories as proposed in [15]: model-
to-model and model-to-code. A model-to-model transformation translates between source and
target models whereas a model-to-code transformation translates between source model and
target programming language.

The model-to-model transformations are useful when intermediate models are needed
for connecting a large abstraction gap between PIM and PSM [15]. In our case, code artifact
generation from DSL file is considered as a large abstraction gap because they are represented in
different technical spaces. Hence, the model-to-model transformation (or language migration) is
used as a preprocessing step for the model-to-code transformation (or code generation) in our
framework.

In order to transform a DSL model to an interface model, a concrete data structure technique
is needed. Here, an abstract syntax tree (AST) is used as an intermediate model, which represents
the DSL model information in a tree-like structure. For transformation between the intermediate
model and the interface model, structure-driven approach is considered as pragmatic during
literature review and practical implementation. This kind of approach has two distinct phases
[15]: creating the hierarchical structure of the target model, and setting attributes and references
in the target. In other words, the main idea is mapping source model informations to target model
elements. The mapping is performed between AST models and interface models conforming to a
transformation rule between the respective metamodels.
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3.2 Conceptual view

The conceptual view describes how the product is depicted at a high-level. This view is covered
by conceptual diagram based on the design decisions.

Figure 3.3: Conceptual view

Three main steps have arised during the design decision process for generating code artifact
from DSL file. The first step is to parse an input model to an AST. The second step is to transform
the AST to an interface model. The third and final step is to transform the interface model to a
code artifacts.

Figure 3.4 shows the conceptual diagram of our code generation framework. The
aforementioned three steps are represented by three components in the framework: Parser,
Model-to-Model Transformer, and Model-to-Code Transformer. The parser reads a DSL file and
parses its definitions, using the corresponding DSL grammar, to an AST. The model-to-model
transformer gets an AST as input and uses a transformation rule, which uses corresponding DSL
grammar and interface metamodel, to transform the tree-like information structure to an interface
model. The model-to-code transformer gets the interface model from the model-to-model
transformer and uses templates to generate code artifacts.
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Figure 3.4: Conceptual diagram of the Model-Based Interface Code Generation framework

3.3 Technology choices

3.3.1 Domain specific language

In the scope of this project, the Interface Definition Language (IDL) is used as DSL. The IDL is
a specification language for COM interface modeling in a simple textual notation. It describes
structural part of the COM interface model. The syntax of the IDL is defined in the IDL grammar
which conforms to the Extended Backus-Naur Form (EBNF). The design of the IDL grammar is
introduced in Chapter 4.2.1.

3.3.2 Parser

The Irony .Net Language Implementation Kit [16] is used as the parsing technology of the
framework by following the proof-of-concept of the Auto Component Interface project mentioned
in Chapter 2.3. It is an open source, C# and .NET based technology for constructing a parser or
compiler. Furthermore, comparing to similar technologies like Eclipse xtext/xtend, it is directly
suitable for the software development environment of the client company. Hence, this technology
fulfills the necessity of having an usable tool for interface developers.

Parsing technology is used in many modern applications such as compiler development,
script engines and expression evaluators, source code analysis and refactoring tools, template
based code generators, formatters and colorers, data import and conversion tools, and more
[17]. Reliable and straightforward method of implementing a parser is important for developers.
Therefore, the Irony .NET Language Implementation Kit is developed by Roman Ivantsov [16].
Irony is an attempt to fix the situation that parser construction technology did not change much
since mid-seventies. It aims to bring the power of a modern language environment like C# and
.NET into the parser and compiler construction field.

The process of the Irony parser is shown in Figure 3.5. In Irony, the standard processing
pipeline of a parser is extended by adding optional processing modules called Token Filters
between the scanner and the parser. The scanner module eliminates whitespace and comments,
and groups input characters into meaningful words represented by objects called tokens such as
numbers, string literals, keywords, variables, and special symbols. The token filters are special
processors that intercept the token stream between the scanner and the parser. They remove from
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Figure 3.5: Schematic process of the Irony parsing pipeline

or add tokens to the original stream. The parser module is based on the so-called LALR parser. It
is an abstract machine with a finite number of internal state (or Deterministic Finite Automation)
which starts in initial state and moves from one state to another while consuming input tokens and
executing predefined actions until it arrives at final state. The final result of the parsing process is
an abstract syntax tree.

3.3.3 Model-to-Model Transformer

There are various model transformation tools and technologies such as ATL, JTL, ETL, Kermeta,
QVT, Atom, Acceleo, xtext/xtend, xpand, JET, and MOFScript. However, most of them are
implemented in Eclipse or Epsilon platform and none of them supports .NET framework [18].
Therefore, in order to fulfill the ease-of-use and extensibility requirements, we have decided to
implement the model-to-model transformer component in C# by using direct mapping approach
from source to target model. The design and implementation of this component is introduced in
the following chapters.

3.3.4 Model-to-Code Transformer

One of the important requirement of the framework is to use an extensible and replaceable
tool/technology for text artifact generation. Furthermore, in order to fulfill the non-functional
requirement of ease-of-use, the choice of having a human-readable definition of the output artifact
is needed. Hence, template-based approach is used for generating code artifacts from interface
model. This type of approaches are available in the majority of MDA tools. A template usually
includes a target text that access the source model information and perform code selection and
iterative expansion.

The Microsoft Text Template Transformation Tool (or Microsoft T4), one of the mature tools
for the template-besed approach, is used as the code generation technology in our framework.
Microsoft T4 has two type of templates [19]: run-time and design-time. The run-time text
templates are suitable for our framework because this type of templates are executed in the
application to produce text strings, typically as part of its output, whereas, the design-time
templates does not work with the application execution, only generate code artifacts in design-
time. Furthermore, the developer can define as many templates as needed using the input
interface model information, which enables multiple target model generation from single source
model.
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Framework Design

The previous chapter introduces the framework architecture based on design decisions. In this
chapter, we introduce the design of each elements of the architecture in more details. The first part
of this chapter introduces general design of the framework. The second part explains each design
elements in more details, yet the implementation level details are not included.

4.1 Realization view

The realization view describes how the product is designed in low-level. This view is covered
by class and sequence diagrams of the framework design. As illustrated in previous chapter, see
Figure 3.4, the framework consists of three main modules: Parser, Model-to-Model Transformer,
and Model-to-Code Transformer. This section expounds the generic design of the three main
modules.

Figure 4.1: Realization view

The framework design, which is shown in Figure 4.2, is the direct realization of the conceptual
diagram that we have introduced in the previous chapter. The abstract factory design pattern is
used in the framework to encapsulate grammar, model-to-model transformer, and model-to-code
transformer factories without specifying their concrete classes. This pattern separates the details
of implementation of a set of objects from their general usage and relies on object composition,
as object creation is implemented in methods exposed in the factory interface. The parser of the
framework is an extension of the Irony parser.

The client ModelBasedInterfaceCodeGenerator class creates a concrete implementation of the
abstract CodeGeneratorFactory and uses the generic interface of the factory to create the concrete
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Figure 4.2: Framework design

objects of each components of the architecture. The client doesn’t know which concrete objects
it gets from each of these internal factories, since it uses only the generic interfaces of their
components.

Figure 4.3 shows sequence diagram of code generator initialization using the factory
method pattern. The ModelBasedInterfaceCodeGenerator class calls three object creator methods
from CodeGeneratorFactory such as CreateModel2ModelTransformer, CreateCodeGenerator, and
GetGrammar. Each methods, implemented in concrete class ComWrapperCodeGeneratorFactory,
create new objects of concrete model transformer, code generator, and grammar respectively
using Ast2InterfaceModelTransformer, Com2CppWrapperCodeGenerator, and IdlGrammar concrete
classes.

Figure 4.4 shows generic sequence diagram of the model-based interface code generation
framework. The three main steps that we have introduced in the architecture is represented here
as method calls from the corresponding classes. First, ModelBasedInterfaceCodeGenerator class calls
Parse method from IronyParserExtension using input file path and grammar as parameters. The call
returns a parse tree (AST) which represents models in the file conforming to the grammar. Second,
the class calls Transform method from Model2ModelTransformer using the parse tree as parameter.
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Figure 4.3: Sequence diagram of code generator initialization

The call returns a namespace that contains interface models in object-oriented structure. Third,
the class initializes output code artifact templates by calling InitializeTemplates method from
Model2CodeTransformer using the namespace and input file path. Finally, the class calls Generate
method from Model2CodeTransformer to generate code artifacts.
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Figure 4.4: Sequence diagram of model-based interface code generation

4.2 Design details

4.2.1 IDL grammar

A grammar describes the actual structure of language that is defined as a set of rules. These
rules are based on the formal language theory, in which a grammar is a set of production rules
for strings in a formal language. These rules declare how to form strings from the language’s
alphabet that are valid according to the language’s syntax. A grammar does not describe the
meaning of the strings or what can be done with them in whatever context, only their own.

Our IDL grammar design was inspired by OMG’s IDL grammar [20]. OMG IDL is a
language that allows unambiguously specifying interfaces that client objects may use and object
implementations provide, as well as all needed related constructs such as exceptions or data types.
Data types are needed to specify parameters and return value of interface methods. They can
be used also as first class constructs. Sample interface building block of the IDL grammar is as
follows:

< s p e c i f i c a t i o n > : : = < d e f i n i t i o n >+
< d e f i n i t i o n > : : + < i n t e r f a c e _ d c l > ’ ’ ; ’ ’
< i n t e r f a c e _ d c l > : : = < i n t e r f a c e _ d e f >
< i n t e r f a c e _ d e f > : : = < i n t e r f a c e _ h e a d e r > [ < i n t e r f a c e _ i n h e r i t a n c e _ s p e c > ] " { " <

inter face_body> " } "
< i n t e r f a c e _ h e a d e r > : : = " i n t e r f a c e " < i d e n t i f i e r >
< i n t e r f a c e _ i n h e r i t a n c e _ s p e c > : : = " : " <interface_name> { " , " <interface_name> } *
<interface_name> : : = <scoped_name>
<inter face_body> : : = <member>*
<member> : : = <method_dcl> " ; "
. . .
. . .
. . .

The building block gathers all the rules needed to define basic interfaces. Several symbols are
used above as EBNF notation. The explanation of each symbols are as follows:

• ::= -> left part of the rule is defined to be right part of the rule

• | -> alternatively
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• ::+ -> left part of the rule is completed with right part of the rule as a new alternative

• <text> -> nonterminal

• ”text” -> literal

• * -> the preceding syntactic unit can be repeated zero or more times

• + -> the preceding syntactic unit must be repeated at least once

• [] -> the enclosed syntactic units are grouped as a single syntactic unit

• {} -> the enclosed syntactic unit is optional – may occur zero or more time

IDL is a purely descriptive language. This means that invoking methods, implementing them
or creating and accessing data cannot be written in IDL, but in a programming language, for
which mappings from IDL constructs have been defined. A source file containing specifications
written in IDL must have ”.idl” extension.

Figure 4.5: Sample abstract syntax tree of IDL grammar

Figure 4.5 shows sample AST of interface definition using IDL grammar. The root of the
grammar is called specification. The specification contains definitions. Each definitions has
multiple variations and interface is one of them. An interface contains interface header, interface
body, and inheritance specifications. The interface header has the identifier of the interface. The
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interface body has members which could be either property or method. A method contains
attribute, return value, identifier, and parameters. The detailed implementation of the grammar
is explained in Chapter 5.1.4.

4.2.2 Interface metamodel

The interface metamodel is intended to provide a type system for creating an interface model
that are used for the code generation. A common metamodel for code generation was proposed
by Michael Piefel in [21]. While the metamodel presented there is far from finished, it provides
general idea to create a metamodel for our framework because they have chosen to use MOF as
the meta-metamodel as well. Figure 4.6 shows generic class diagram of our interface matemodel.
The metamodel is designed considering the COM technology.

Figure 4.6: Interface metamodel design

At the root of the inheritance tree, there is the abstract class NamedElement, and each element
in any model will be an instance of a subclass of it. The NamedElement adds the ability for a model
element to hold a name.

There are three kind of enumerations in the metamodel: MethodKind, ParameterDirection, and
TypeKind. The MethodKind enumeration defines whether a method is getter, putter, or any other
type. The ParameterDirection enumeration defines whether a parameter is in, out, inout, or retval
type. The TypeKind enumeration defines whether a type is bool, double, int, long, or string.

The Namespace is an important structural concept of the metamodel. It forms a space where
elements like interfaces can reside in without colliding with elements of the same name in other
namespaces. The Namespace is a specialization of the NamedElement. It has a list of classifiers and
sub-namespaces, as well as a property for defining super-namespace.

The Classifier is another important element of the metamodel. It has two lists for containing
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super-classifiers and sub-classifiers. Three elements are specialized from the Classifier abstract
class such as Interface, CoClass, and Enumeration.

In COM, a class definition consists of interface specifications. This quality of the coclass (COM
Class) is reflected in the metamodel with a list of interfaces. Each interfaces has a list of methods
and fields. Each methods has a list of parameters that has a type either primitive or classifier. If a
method has classifier type parameters, each classifier type parameter informations are mapped to
a new field instance and added to the fields list.

There are two main group of types specialized from the ElementType: primitive types and
classifier types. Primitive types are the predefined type of object oriented languages. As a start,
bool, double, int, long, and string are used as included in the TypeKind enumeration. Another
variety of type is classifier type. Each specialized classifier elements such as interface, coclass, or
enumeration are also used as a type.

4.2.3 Parser

The parser component parses input IDL models to an AST. As mentioned in the previous chapter,
the Irony .Net Language Implementation Kit, which is available as an open source library, is used
for this component.

Figure 4.7 shows the class diagram of the parser design. The Irony library has an abstract class
Grammar for generic grammar definition. We have inherited the IdlGrammar from the abstract class
and implemented the IDL grammar. The implementation details of the grammar is discussed in
the Chapter 5.1.4. Furthermore, we have implemented a static extension class IronyParserExtention,
which includes additional functionalities for parsing the input IDL models. The implementation
details of the static extension class is discussed in Chapter 5.1.1.

Figure 4.7: Parser design

4.2.4 Model-to-Model Transformer

The model-to-model transformer component is the corner stone of the framework. It connects the
gap between two different technology spaces, such as EBNF and MOF, by mapping the relevant
informations using a transformation rule. This section introduces the structural design of the
model-to-model transformer and its transformation rule.
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Figure 4.8: Model-to-Model transformer design

Figure 4.8 shows detailed design of the model-to-model transformer. The builder (or mapper)
design pattern is used for separating the transformation of a complex interface model object from
its representation so that the same transformation process can create different representations. The
classes and objects participating in this pattern are:

• Mapper: specifies an abstract interface for mapping parts of an interface model

• IdlMapper: maps parts of the interface model by implementing the Mapper interface, defines
and keeps track of the representation it creates, provides an interface for retrieving the
interface model

• Ast2InterfaceModelTransformer: constructs an object using the Mapper interface

• InterfaceMetamodel: represents the complex interface model object under transformation

• IdlUtility: helps the Mapper class to get AST nodes according to the IDL grammar

The generic structure of the InterfaceMetamodel type interface contains name, methods, and
fields. Hence, template method design pattern is used in the MapInterface method. This pattern
defines the skeleton of an algorithm in a method, deferring some steps to subclasses. Template
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method lets subclasses redefine certain steps of an algorithm without changing the algorithm’s
structure. The classes and objects participating in this pattern are:

• Mapper: defines abstract primitive method that concrete subclasses define to implement
steps of an algorithm, implements a template method defining the skeleton of an algorithm.
The template method calls primitive methods as well as methods defined in Mapper or those
of other objects.

• IdlMapper: implements the primitive methods to carry out subclass-specific steps of the
algorithm

Transformation rule

Figure 4.9: Sample AST to interface model transformation

In order to transform the AST of an IDL model to interface model (like shown in Figure 4.9),
a set of transformation rule is needed. This sub-section explains the transformation rules for
interface, method, and parameter transformation. The two model types are compared in tables to
show the rules in an understandable fashion.

Abstract syntax tree Interface model
Interface Interface
+ Interface header
—> Attributes
—> Keyword
—> Identifier + Name
+ Interface body
—> Members + Methods
——> Member
———> Method —> Method
+ Inheritance + Super Classifiers

Table 4.1: Interface transformation rule

Table 4.1 shows interface transformation rule. An AST of interface contains three main nodes:
interface header, interface body, and inheritance. This information is mapped to an interface
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model by creating new object of interface type and assign values to its properties.

The IDL interface header node has three sub-nodes: attributes, keyword, and identifier. First
sub-node IDL attributes are keywords that specify the characteristics of an interface and of the
data and methods within that interface [22]. The interface header attributes represent information
about the entire interface for directing the MIDL compiler what to generate from IDL file. We
did not use these attributes in the scope of this project because our output interface models do
not have properties or members that are directly related to the interface header attributes. The
second sub-node keyword represents the type of the node. Since it is an interface node, the
keyword would be interface in this case. We identify the node by its keyword and create new
instance of interface model. The third sub-node identifier represents the name of the interface.
This information is directly mapped to the Name property of the interface model.

The IDL interface body has a list of members where each members are method specifications.
The members list matches with the methods list of the interface model. Therefore, each
member/method information is mapped to the interface model’s methods. The mapping of
methods is presented in Table 4.2.

The inheritance specifies base class of the interface. It is mapped to the SuperClassifier property
of the interface model.

Abstract syntax tree Interface model
Method Method
+ Attributes
—> Attribute
——> Keyword + Kind
+ Return value
—> Keyword
+ Identifier + Name
+ Parameters + Parameters

Table 4.2: Method transformation rule

Table 4.2 shows method transformation rule. An AST of method contains four main nodes:
attributes, return value, identifier, and parameters. Same as before, this information is mapped
to a method of the interface model by creating new instance of method and assign values to its
properties.

The IDL method attribute contains keyword for defining the method kind such as propget
and propput. This information is mapped to method kind property of the interface model. If the
attribute value is propget the interface model type method becomes ”get” and if the attribute
value is propput the interface model type method becomes ”put”.

The return value of all IDL methods are HRESULT. Hence, this information is not used in
interface model. The identifier of the IDL method is mapped to the Name property of the interface
model method.

In IDL each method has a list of parameters. These parameters are mapped directly to the
parameters list property of the interface model type method. The mapping details are presented
in Table 4.3.
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Abstract syntax tree Interface model
Parameter Parameter
+ Attributes
—> Attribute
——> Keyword + Direction
+ Type
—> Keyword + Element type
+ Pointer
—> Key symbol + Pointer
+ Identifier + Name

Table 4.3: Parameter transformation rule

Table 4.3 shows parameter transformation rule. An IDL parameter contains four main
nodes: attributes, type, pointer, and identifier. The information is mapped to an interface model
parameter by creating new instance of parameter and assigning values to its properties.

The IDL parameter attribute contains an information about the direction of the method such
as in, out, inout, or retval. This information is directly mapped to the Direction property of the
interface model type parameter because the interface model has also the same direction types.

The IDL parameter has two types: primitive and classifier. The primitive types are generic
types like bool, double, float, int, and string. The classifier type is one of the other interfaces
declared in the same IDL file or imported IDL file. The information is mapped to the type
property of the interface model type parameter. The type property is a type of Element Type which
is also specialized in two classes for distinguishing primitive and classifier types.

The IDL pointer has symbols for representing the parameter pointers. They are directly
mapped to the pointer property of the interface model parameter.

The IDL identifier contains the parameter name. Therefore, it is directly mapped to the Name
property of the interface model parameter.

4.2.5 Model-to-Code Transformer

The model-to-code transformer component uses an interface model information to initialize
wrapper code templates and write all text content of the templates to a file from the templates. As
mentioned in the previous chapter, the Microsoft T4 is used as the template based code generation
technology for this component.

Figure 4.10 shows detailed design of the model-to-code transformer. The
Model2CodeTransformer is an abstract class that we use in the factory method as an interface
for creating concrete implementation instance. It has protected fields for defining COM header,
COM source, C++ interface, template type, as well as a dictionary for storing all templates. The
concrete implementation is done in Com2CppWrapperCodeGenerator class, which initializes the
templateType field in its constructor and overrides the InitializeTemplates method of the abstract
class. The InitializeTemplates method initializes the wrapper code templates depending on a
template type that is configured in the command line option of the custom build tool. The
Generate method writes all text contents of the templates to files. The code generation activity is
considered as generic for all templates. Thus, the Generate method is implemented in the abstract
class. The implementation details of two methods are discussed in Chapter 5.1.3.
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Figure 4.10: Model-to-Code transformer design
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Implementation

This chapter elaborates on the implementation of the framework design. The following sections
discuss the implementation of parser, model-to-model transformer, model-to-code transformer,
interface grammar, interface model, wrapper code templates, as well as custom build tool that we
have configured in Visual Studio tool.

5.1 Implementation of the framework design

Figure 5.1: Implementation of the framework design

The implementation of the framework design is shown in Figure 5.1 as
CodeGenerationFramework C# command line application solution in Visual Studio. The solution
includes Irony library, interface grammar and interface metamodel namespaces as well as
interface generator namespace.

The Irony .NET Language Implementation Kit is included in the solution as an open source
library. The InterfaceGrammar namespace contains all DSL grammars of the framework. The
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grammars are specialized from the Grammar class of the Irony library. The InterfaceMetamodel
namespace contains all metamodels of the framework. The InterfaceGenerator namespace contains
all classes of the framework design as well as wrapper code templates.

5.1.1 Parser

Figure 5.2: Class diagram of the parser implementation

The Irony open source library is extended using a static class which is IronyParserExtension. The
static class make use of four particular classes from the Irony.Parsing namespace: Grammar, Parser,
ParseTree, and ParseTreeNode. As shown in Figure 5.2, the static class has five static methods:

• Get: searches a node from a parse tree using the key string parameter and returns the
matching node

• GetAll: searches for all nodes matching the key string parameter and returns all of them as a
list

• Has: searches a node from a parse tree using the key string parameter and returns boolean
value which indicates whether the tree has the node

• Parse: reads all text from a file, parses the text to a parse tree, and returns the tree

• ThrowParseTreeException: throws exception when the tree has errors or does not have a root
when parse

5.1.2 Model-to-model transformer

The class diagram of the model-to-model transformer design is presented in Figure 4.8 in Chapter
4.2.4. As presented in that diagram, the Model2ModelTransformer class has Transform method
which is implemented in Ast2InterfaceModelTransformer. Activity diagram of the Transform method
is shown in Figure 5.3.

There are two types of IDL files are identified during the project. First type of IDL files
include a library definition that has definitions of members such as interfaces, coclasses, and
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enumerations. Second type of IDL files include directly defined members without collecting them
in a library. Thus, the Transform method has two types of mapping procedures for the two IDL file
content types respectively.

The first procedure is for the IDL files that contain a library definition. If the IDL file has a
library definition, the Transform method gets the library node from its parse tree and maps the
library node information to a namespace. Then, it maps each member nodes of the library to the
matching interface models and adds the interface models to the namespace.

The second procedure is for the IDL files that contain member definitions directly. The
Transform method maps each member nodes of a parse tree to the matching interface models and
adds the interface models to a namespace. The namespace is initialized using the same name as
the member node.

Figure 5.3: Activity diagram of Transform method

The Transform method uses the Mapper class for mapping the member nodes of a parse tree to an
object-oriented interface model type instances. The IdlMapper class implements abstract methods
of the Mapper abstract class such as:

• CreateInterfaceFields: Checks all parameters of a given method whether they are primitive
or classifier type. If the method has classifier type parameters, creates new fields using the
parameters information and returns a list of fields.

• MapCoClass: Maps given coclass node information to an interface model type coclass object
and returns the coclass object.

• MapEnumeration: Maps given typedef node information to an interface model type
enumeration object and returns the enumeration object.

• MapInterfaceMethods: If given interface node has methods in its body, maps all methods to
an interface model type method objects and returns a list of methods.
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• MapInterfaceName: Returns the name of given interface node.

Additionally, the IdlMapper class has private methods for internal use such as:

• MapMethod: Maps given method node information to an interface model type method object
and returns the method object. The mapping procedure includes name, attributes, and
parameters mapping activities. The name mapping activity is a direct assignation from the
method node identifier information to the interface model type method object. The attributes
mapping activity involves assignation of the method kind such as get, put, or other. The
parameters mapping activity uses the following private method MapParameter.

• MapParameter: Maps given parameter node information to an interface model type
parameter object and returns the parameter object. The mapping procedure include type,
name, pointer, and attributes mapping activities. The type mapping activity varies to
primitive and classifier type mappings depending on whether the parameter node is
primitive or classifier type. The following two methods, MapClassifierTypeParameter and
MapPrimitiveTypeParameter, are used for each. The name mapping activity is a direct
assignation from the parameter node identifier information to the interface model type
parameter object. The pointer mapping activity is assignation of boolean fields of the
interface model type parameter. If the parameter node has the symbol ”*” or ”**” the boolean
fields are set to true accordingly. The attribute mapping activity involves assignation of the
parameter direction such as in, out, inout, or retval. If the parameter has both out and retval
attributes, the direction would set to outretval.

• MapClassifierTypeParameter: Creates new classifier type parameter object using given name
and returns the parameter object.

• MapPrimitiveTypeParameter: Creates new primitive type parameter object using given name
and return the parameter object. The parameter type kind varies depending on the given
name such as bool, char, int, float, double, void, or string.

5.1.3 Model-to-code transformer

Figure 5.4: Activity diagram of the InitializeTemplates method
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The class diagram of the model-to-code transformer is presented in Figure 4.10 in Chapter
4.2.5. As presented there, the class has two methods: InitializeTemplates and Generate. This section
introduces each methods with their activity diagrams.

The Com2CppWrapperCodeGenerator concrete class implements the InitializeTemplates abstract
method of the Model2CodeTransformer abstract class. Figure 5.4 shows activity diagram of the
InitializeTemplates method. A template type is given from the command line option of the custom
build tool. The command line option currently has three options: optics, acquisition, and energy
filter service. The InitializeTemplates method uses the option to create suitable template objects and
adds them to the template list of the base class, Model2CodeTransformer.

Figure 5.5: Activity diagram of the Generate method

The Generate method is implemented in the Model2CodeTransformer abstract class. Figure 5.5
shows activity diagram of the Generate method. The methods gets all items of the templates list,
converts each template’s contents to string, and writes the string text to a file in given outpath
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directory.

5.1.4 Interface grammar

Figure 5.6: Class diagram of the interface grammar implementation

In InterfaceGrammar namespace, the IDL grammar is implemented in the IdlGrammar class
which is derived from the Grammar class of the Irony.Parsing namespace, see Figure 5.6. The
implementation of IDL grammar has three main sections: terminals, nonterminals, and rules.

Terminal and nonterminal symbols are lexical elements used in specifying the rules
constituting the IDL grammar. Terminal symbols are the elementary symbols of the IDL.
Nonterminal symbols are replaced by groups of terminal symbols according to the rules.

In our implementation, the terminals include regex based terminal for GUID, number literals
for integer and float, as well as other literals. Also, the terminals include lexical structure such as
string literal, char literal, number, identifier, comment, and other symbols like colon, semicolon,
dot, comma, question mark, and brackets. The following code snipped shows sample terminal
symbol declaration using Irony library in C# for GUID, integer, float, and other literals:

. . .

. . .

. . .
RegexBasedTerminal uuid_rep = new RegexBasedTerminal ( " uuid " , " [A−Fa−f0 −9]{8}−[A−Fa−f0

−9]{4}−[A−Fa−f0 −9]{4}−[A−Fa−f0 −9]{4}−[A−Fa−f0 −9]{12} " ) ;
NumberLiteral i n t e g e r _ l i t e r a l = new NumberLiteral ( " i n t e g e r " ) { Options = NumberOptions .

IntOnly | NumberOptions . AllowSign | NumberOptions . Hex | NumberOptions .
Al lowLetterAfter } ;

NumberLiteral f l o a t _ l i t e r a l = TerminalFactory . CreateCSharpNumber ( " f l o a t " ) ;
var o t h e r _ l i t e r a l = new RegexBasedTerminal ( " [^\ t \n\r 0−9A−Z_a−z ] " ) ;
. . .
. . .
. . .
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The nonterminals include definitions of nodes that are used for defining the grammar rule. In
Irony, nonterminals are implemented as NonTerminal type instances. The following code snipped
shows an example declaration of nonterminals in our IDL grammar:

NonTerminal s p e c i f i c a t i o n = new NonTerminal ( " s p e c i f i c a t i o n " ) ,
d e f i n i t i o n s = new NonTerminal ( " d e f i n i t i o n s " ) ,
d e f i n i t i o n = new NonTerminal ( " d e f i n i t i o n " ) ,
. . .
i n t e r f a c e = new NonTerminal ( " i n t e r f a c e " ) ,
i n t e r f a c e _ h e a d e r = new NonTerminal ( " i n t e r f a c e _ h e a d e r " ) ,
in ter face_body = new NonTerminal ( " in ter face_body " ) ,
interface_body_member = new NonTerminal ( " interface_body_member " ) ,
interface_body_members = new NonTerminal ( " interface_body_members " ) ,
. . .
method = new NonTerminal ( " method " ) ,
. . .

In Irony, grammar rule is implemented as an EBNF expression of nonterminal symbol. The
implementation of the IDL grammar using the Irony is as follows:

s p e c i f i c a t i o n . Rule = d e f i n i t i o n s ;
d e f i n i t i o n s . Rule = MakeStarRule ( d e f i n i t i o n s , d e f i n i t i o n ) ;
d e f i n i t i o n . Rule = i n t e r f a c e | . . . ;
. . .
i n t e r f a c e . Rule = i n t e r f a c e _ h e a d e r + i n h e r i t a n c e _ s p e c + inter face_body + ToTerm ( ’ ’ ; ’ ’ ) ;
i n t e r f a c e _ h e a d e r . Rule = a t t r i b u t e _ s p e c i f i c a t i o n + ’ ’ i n t e r f a c e ’ ’ + i d e n t i f i e r ;
i n h e r i t a n c e _ s p e c . Rule = ToTerm ( ’ ’ : ’ ’ ) + scoped_names ;
. . .
in ter face_body . Rule = ToTerm ( ’ ’ { ’ ’ ) + interface_body_members + ’ ’ } ’ ’ ;
interface_body_members . Rule = MakeStarRule ( interface_body_members , interface_body_member

) ;
interface_body_member . Rule = method | . . . ;
. . .

Figure 5.7: Sample interface and its parse tree

The Irony .NET Language Implementation Kit comes with a grammar explorer tool in the open
source package for verifying the developed grammar. The tool is intended to parse given text file

Model-Based Interface Code Generation 43



CHAPTER 5. IMPLEMENTATION

conforming to loaded grammar into parse tree. Also, the tool identifies grammar errors which
helps the grammar developer to easily fix if there are any conflicting rules in the grammar. Figure
5.7 shows sample IDL interface model and its parse tree on the Irony Grammar Explorer tool using
our IDL grammar implementation.

5.1.5 Interface metamodel

Figure 5.8: Detailed class diagram of inteface metamodel

Figure 5.8 shows detailed class diagram of interface metamodel that we have introduced in
Chapter 4.2.2. This class diagram is the direct representation of the actual C# implementation
including all private, protected, and public fields and methods. Hence, the diagram is considered
as self explanatory.

5.1.6 Wrapper code templates

In order to separate template abstraction from its actual implementation, we provide a generic
interface for all templates. This interface is an agreement between the model-to-code transformer
and the wrapper code templates. Thus, every template implements the ITemplate interface. In
order to generate the COM-to-C++ wrapper code, we needed three code artifacts such as COM
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Figure 5.9: Class diagram of the wrapper code templates

interface, COM implementation, and C++ interface. Hence, we have created three templates for
the artifacts: ComHeader, ComSource, and CppHeader, see Figure 5.9. Each template consists of two
type of partial classes: C# class and run-time T4 template class. The C# class has helper methods
for the template. The run-time T4 template has the body of the code.

Figure 5.10: Sample T4 template for generating C++ interface

Figure 5.10 shows sample T4 template. The template contains the text that will be generated
from it. There are various control blocks inserted in the template. The control blocks are fragments
of program code. They provide varying values and allow parts of the text to be conditional and
repeatable. This structure makes a template easy to develop because the developer can start with
a prototype of the generated file, and incrementally insert control blocks that vary the result. The
text templates are composed of the following parts [23]:
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• Directives - elements that control how the template is processed

• Text blocks - content that is copied directly to the output

• Control blocks - program code that inserts variable values into the text, and controls
conditional or repeated parts of the text

Control blocks are sections of program code that are used to transform the templates. A
standard control block is a section of program code that generates part of the output file. Any
number of text blocks and standard control blocks can be mixed in a template file. However, a
control block cannot be placed inside another. Each standard control block is delimited by the
symbols <# ... #>. An expression control block evaluates an expression and converts it to a string.
This is inserted into the output file. Expression control blocks are delimited by the symbols <#= ...
#>.

5.2 Custom build tool

A custom build tool was configured during the project for generating COM-to-C++ wrapper code
artifacts from an IDL file. The tool has functionalities of both the standard MIDL compiler and
our code generation framework. The MIDL compiler generates a TLB files from the input IDL
file. The code generation framework generates COM-to-C++ wrapper code from the input IDL file.

Figure 5.11: Visual Studio custom build tool option

Figure 5.11 shows Visual Studio property page for configuring a custom build tool for a file. A
custom build tool provides the build system with the information it needs to build specific input
files [24]. It specifies a command to run, a list of input files, a list of output files that are generated
by the command, and an optional description of the tool.

The custom build tool is specified in the Property Pages dialog box of the ”.idl” file. The item
type is selected as Custom Build Tool instead of MIDL. The selected file must be included in build.
Hence, the ”Exclude From Build” option is set as ”No”.
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Figure 5.12: Visual Studio custom build tool option

Figure 5.12 shows detailed configuration of the custom build tool. In Command Line, the
following command is specified:

c a l l " C:\Program F i l e s ( x86 ) \Microsof t Visual Studio 12.0\VC\ v c v a r s a l l . bat "
" C:\Program F i l e s ( x86 ) \Windows K i t s \8.1\ bin\x86\midl . exe " /D _DEBUG /D _UNICODE / I .\ gen\

/ I . . \ shared\include\gen\ / I . . \ . . \ shared\include\gen\ / I . . \ . . \ sdk\include\gen\ / I . . \
shared\include\ i d l \ / I . . \ . . \ shared\include\ i d l \ / I . . \ . . \ sdk\include\ i d l \ / I . . \ . . \ . . \
FEI_CPPLIBS\sdk\include\ i d l \ / I . . \ . . \ . . \COMMON_TYPES\sdk\include\ i d l \ / I . . \ . . \ . . \
IMAGING\sdk\include\ i d l \ / I . . \ . . \ . . \ IMAGING_TEM\sdk\include\ i d l \ / I . . \ . . \ . . \ INFRA\sdk
\include\ i d l \ / I . . \ . . \ . . \ FEI_CPPLIBS\sdk\include\gen\ / I . . \ . . \ . . \COMMON_TYPES\sdk\
include\gen\ / I . . \ . . \ . . \ IMAGING\sdk\include\gen\ / I . . \ . . \ . . \ IMAGING_TEM\sdk\include\
gen\ / I . . \ . . \ . . \ INFRA\sdk\include\gen\ /W1 /nologo /char signed /env win32 /Oicf /out
" gen " /h " . . \ . . \ . . \ sdk\include\gen\%(Filename ) . h" / i i d " . . \ . . \ . . \ sdk\include\gen\%(
Filename ) _ i . c " / t l b " . . \ . . \ . . \ sdk\include\gen\%(Filename ) . t l b " /no_robust %(Filename )
. i d l

" $ ( FdtBinDebug ) \ I n t e r f a c e G e n e r a t o r " −e f s "%(Ful lPath ) "

The commands are specified as if they were being specified at the command prompt. It
includes a valid command or batch file, and any required input or output files. The call batch
command is specified before the name of a batch file to guarantee that all subsequent commands
are executed. The above command first calls the MIDL compiler to generate type libraries from
the given IDL file. Second, the command calls the code generation framework with command
line option to generate wrapper code.

The Output specifies the name of the output file. This is a required entry. Without a value for
this property, the custom build tool will not run. If a custom build tool has more than one output,
the names would be separated with a semicolon.

The name of the output file should be the same as it is specified in the Command Line
property. The project build system will look for the file and check its date. If the output file is
newer than the input file or if the output file is not found, the custom build tool would run. If the
input file is older than the file specified in the Output property, the custom build tool would not
run.
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Deployment

This chapter introduces the deployment of our framework considering company built
environment, the framework component, and the demo project component.

6.1 Company built environment

The client company uses the component oriented code architecture (COCA) for organizing their
code base. Figure 6.1 shows sample structure of the COCA. The structure consists of sandbox,
component, function groups, module, and test. The sandbox contains loaded components as root
folders. The component contains loaded source files from version control system. The function
groups group modules of similar or related functionality. The module contains project file and
sources. The test is an optional folder, which contains test code of the module. All packages are
required to comply with the COCA structure, which enables easy integration of components into
projects.

Figure 6.1: Structure of Component Oriented Code Architecture (COCA)

The build infrastructure consist of version control system, build virtual machine, holding area,
and SCOTS (Shared Components Off The Shelf) server as shown in Figure 6.2. The build flow of
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the of a component is as follows:

1. Load sources from version control system to build virtual machine

2. Synchronize dependencies from holding area and SCOTS server to build virtual machine

3. Build the source in build virtual machine

4. Upload results to holding area

Figure 6.2: Build flow

Holding area contains copy of all successful build results. Every component build results are
stored under packages/packagesFDT folder.

6.2 CodeGenerationFramework component

A new component, CodeGenerationFramework, has been created and deployed on the company
built environment as the prototype of the project. Figure 6.3 shows COCA structure of the
CodeGenerationFramework component. The component consists of the Irony open source library,
as well as InterfaceGenerator, InterfaceGrammar, and InterfaceMetamodel namespaces. The shared
folder is used for the build infrastructure.

Figure 6.3: COCA structure of CodeGenerationFramework
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The successful build results of the component are stored in the holding area
(see Figure 6.4) which is accessible to all developers who want to consume the
CodeGenerationFramework in their development. The results are labeled automatically using
the PRODUCT_VERSION_POSTFIX.RANDOM form. The POSTFIX varies DEV, RC, and REL
depending on whether the component is development or release version.

Figure 6.4: Jenkins build result stored in the Holding Area

The Jenkins open source automation server is used for building, deploying, and automating
the project. Figure 6.5 shows build process of the CodeGenerationFramework component in the
company build virtual machine.

Figure 6.5: Jenkins build of the CodeGenerationFramework
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6.3 Demo project component

A demo project component, ItfCodeGenDemo, has been created and deployed on the
company built environment as a consumer of the CodeGenerationFramework component.
Figure 6.6 shows COCA structure of the component. The component consists of the
CodeGenerationFramework component as well as other company specific function group modules.
The ITF_CODE_GENERATION_DEMO folder has five sub-folders such as Objectmodel, sdk,
shared, Test, and build. The Objectmodel folder contains the demo project source code. The
sdk contains shared files which is accessible among all other components. The shared is a build
infrastructure specific folder. The Test folder contains unit tests of the demo project. The build
folder contains client company development tool specific settings files.

Figure 6.6: COCA structure of ItfCodeGenerationDemo

The demo project component gets the code generation framework component automatically
using the company development tool. The build infrastructure synchronizes all dependencies for
a component. The dependencies are configured in the build folder component.xml file. Sample
configuration settings are as follows:

<?xml vers ion=" 1 . 0 " encoding="UTF−8" ?>
<Component>

< V i t a l s >
<Include Module = " * " />

</ V i t a l s >

<Dependencies>
< !−− Put dependencies of ITF_CODE_GENERATION_DEMO here −−>

<Component
Name = "CODE_GENERATION_FRAMEWORK"
Label = "CODE_GENERATION_FRAMEWORK_1. 0 . 0 _DEV27 . 2 "

/>
</Dependencies>

</Component>
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The demo project structure is mimicked one of the existing platform in the built environment
called Acquisition Server. Figure 6.7 shows package diagram of the demo project and its
implementation in Visual Studio.

Figure 6.7: Package diagram of the demo project component

In general, the project consists of five projects representing three layers such as client
application layer, COM layer, and server layer. The client application layer is represented by
a test project, TestBhvIomAcquisitionCpp, which is implemented in google test framework. The
COM layer consists of two sub-projects such as IomAcquisition and IomAcquisitionTypeLib. The first
sub-project includes an IDL file and an header file that imports a type library generated from the
IDL file. The second sub-project creates the COM environment around the type library. The server
layer has the COM-to-C++ wrapper code as well as the C++ implementation in BhvIomAcquisition
and BhvIomAcquisitionLib projects respectively.

Figure 6.8 shows class diagram of the demo project. It consist of COM classes, C++ interfaces
and C++ implementations. The classes colored in red are the files that we generate using our
framework. The classes colored in white are manually developed.

As same as the CodeGenerationFramework component, the demo project component uses Jenkins
for build, deployment, and automation. The successful build results of the component are
stored in the holding area as well. Figure 6.9 shows sample successful builds of the demo
project which are stored in the holding area. The results are labeled using the same form as the
CodeGenerationFramework component.
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Figure 6.8: Class diagram of the demo project component

Figure 6.9: Jenkins build result stored in the Holding Area
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Verification and Validation

This chapter presents the process of verification and validation the framework. The strategy, test
of the demo project, and trial with an end-user are introduced in the following sections.

7.1 Verification and validation strategy

The verification and validation processes determine whether the developed framework conform
to the requirements of the project and whether the framework satisfies its intended application
and user needs. Verification evaluates the framework to determine whether the generated code
artifacts satisfies the existing test criteria. Validation evaluates the framework at the end of the
development process to determine whether it satisfies specified requirements.

The verification and validation strategy was decided based on consultation with the company
stakeholders. The strategy consists of two phases: test with a demo project (verification), and
trial with an end-user (validation). The verification took place parallel with the framework
implementation process and the validation took place in the final two months of the project. The
next two sections explain each phases in more details.

7.2 Test of the demo project

The framework was continuously developed in parallel with the demo project. The demo project
has a unit test for the sample component. The testing was performed during development to
verify generated artifacts by following the below steps:

• Selecting an interface

• Collecting knowledge about the interface

• Defining methods in the interface

• Creating templates for the wrapper code artifact to be generated

• Compiling the file that contains the interface definition using the custom build tool (this
action generates type libraries and code artifacts)

• Executing unit test

The demo project mimics the StemDetectorGeometry interface. Therefore, we have implemented
an unit test in GoogleTest framework for the component inspired by existing unit test. Figure 7.1
shows unit test result of the stem detector geometry.
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Figure 7.1: Unit test result

The demo project has been configured as a compliant component in the company built
environment, therefore, the test execution is included in the Jenkins build process. After building
all projects of the component, the Jenkins builds all tests and if all tests pass the build is considered
as successful. Figure 7.2 shows the Jenkins build console output log. This result shows that our
framework has been successfully integrated in the company built environment and component
build procedure.

56 Model-Based Interface Code Generation



7.3. TRIAL WITH END-USER

Figure 7.2: Jenkins test result

7.3 Trial with end-user

The trial with an end-user was centered on parsing existing IDL files and generating existing
manually developed codes. During this process, an interface developer has used our framework
to generate COM-to-C++ wrapper code artifacts based on the existing IDL files. The interface
developer has used his own workstation and responsible code base. He has modified his
component configuration to include our code generation framework as dependency.

7.3.1 Parsing IDL files

The first challenge was to parse sample IDL files selected by end-user from existing code base. This
activity was focused on validating the IDL grammar that we have implemented. The validation
was performed using the Irony Grammar Explorer tool. The following existing IDL files are used
for testing the parser:

• IImageRotation.idl

• IOptics.idl

• IOpticsDoseData.idl

• ipeo_column.idl

• ITemFocus.idl
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All files are successfully parsed conforming to our IDL grammar. Figure 7.3 shows parsed
result of the IOptics.idl file as an example. The other parsed results are included in Appendix D.

Figure 7.3: Parsed result of the IOptics.idl file

7.3.2 Generating code artifacts

The second challenge was to generate existing manually developed code artifacts. In this activity,
we used the wrapper code of the IDL files that we have used in the previous activity. The wrapper
code files are as follows:

• IImageRotation.idl

– ComImageRotation.cpp
– ComImageRotation.h

• IOptics.idl

– ComOptics.cpp
– ComOptics.h

• IOpticsDoseData.idl

– ComOpticsDoseData.cpp
– ComOpticsDoseData.h

• ITemFocus.idl

– TemFocusProxy.cpp
– TemFocusProxy.h

We have created templates for each sample wrapper code using transformed interface model
information and generated visually as same code artifacts as the existing manually developed
code files.
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7.3.3 Feedback from the end-user

After the validation session with end-user, we have asked for feedback concerning his impression
about using the framework. The questions are based on the ease-of-use requirement as follows:

• Q1: How much time required to learn the tool?
Not much, just followed the instructions.

• Q2: How much time required to get used to the tool?
I haven’t had the time to get used to the tool, because I only helped to prove the concept. But
as a user, I would say that there are not much to get used to.

• Q3: How much time required for generating code artifacts?
Initially this step took some time, but this was because of the infrastructure to select the
component. This is not related to the tool itself.

• Q4: How much time required to learn the process of generating code artifacts?
As soon as the tool is in place for a component, it only consists of repeating the same steps
for different IDL files.

• Q5: How easy was it to associate with the domain concepts?
I don’t know what you mean. How easy it is to relate the generated artifacts to the input?
Or get used to the terms used in the code generation framework? In any case, the 15 (or
so) minute presentation was enough to understand the goal of the tool, the general technical
approach and the artifacts it generates.

7.4 Proposal for COM-to-C++ wrapper code generation

During the trial with end-user, we have faced several obstacles for generating wrapper code
from IDL file. For instance, there are no current separation of COM and C++ layers in Optics
team. The behaviors of all components are implemented directly in the COM layer. On one hand,
it is difficult to create a generic template for such code. On the other hand, creating templates
for every exceptional case would be worse than implementing them by hand. Hence, based
on collaboration and feedback from the end-user, we have proposed a generic template for
COM-to-C++ wrapper code generation. The proposed templates are included in Appendix E

We have used the generic template to generate one of the existing wrapper code for Energy
Filter Service because the implementation of its wrapper code is well separated into COM and
C++ layers. Therefore, it is considered as a good example for the generic template and we suggest
to start using the framework in this component. However, there has been on-going changes in
the code base of the Energy Filter Service at the same time our validation activity. Thus, we could
not generate the actual production wrapper code for this component. Fortunately, the Energy
Filter Service component itself is relatively new and under development for further improvement.
Hence, we suggest the Thermo Fisher Scientific company to adopt our code generation framework
for software development starting from the Energy Filter Service component. Furthermore, the
end-users are enthusiastic for using our framework and they are suggesting to adopt of the
framework in the road-map of the Optics team as well for using the code generation after editing
the current Optics code base into clearly separated COM and C++ layers.
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Chapter 8

Conclusions

This chapter focuses on conclusions of this project, elaborating achieved results and added values
to the stakeholders. It also presents future work and alternatives for improving the framework.

8.1 Results

Model-based code generation is a set of ideas that aim for faster and cheaper artifact creation
by automating repetitive tasks that are derivable from high-level models. Implementing and
deploying these ideas into the Thermo Fisher Scientific software development process is the focus
of this project.

The framework is based on the Model-Driven Architecture (MDA). Model transformation is
the corner stone of this architecture. In our case, transformation from Domain Specific Language
(DSL) to code artifacts is considered as a large abstraction gap because source and target
models are in different technical spaces such as Extended Backus-Naur Form (EBNF) and Meta
Object Facility (MOF). Therefore, we have introduced model-to-model transformation activity
before model-to-code transformation activity. This design decision has led us to construct the
framework with three components such as parser, model-to-model transformer, and model-to-
code transformer. The parser component parses the input DSL model to an Abstract Syntax Tree
(AST). The model-to-model transformer transforms the AST to an object-oriented interface model.
The model-to-code transformer transforms the interface model to code artifacts.

We have chosen the Interface Definition Language (IDL) as the DSL in the project scope. The
client company has been using this language for interface models for decades combining with
the Microsoft Component Object Model (COM) technology. Thus, it was natural decision for us
to use this language as the DSL for our framework. The Irony .NET Language Implementation
Kit was used for implementing the IDL grammar. The tool supports the EBNF like notation for
defining grammar rule. Thus, our IDL grammar implementation, which is based on the OMG
IDL grammar, has followed the EBNF for defining its rule.

We have designed an interface metamodel for the framework based on the MOF. The
metamodel structure combines general object-oriented programming language concept and
COM. Further, it is extensible and easily modifiable for further demands.

The parser component of the framework is developed using the Irony .NET Language
Implementation Kit. This kit is suitable for C# and .NET based environment comparing to
other existing technologies, further, directly suitable for client company’s software development
environment. Therefore, this kit fulfills the necessity of having an usable tool for interface
developers.
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The model-to-model transformer component of the framework is developed using a structure
driven approach. Currently, there are no proven technology exists for .NET framework so that we
have decided to implement the component in C# environment by using direct mapping approach
from source to target model.

The model-to-code transformer component of the framework is developed using Microsoft T4.
This technology fulfills the ease-of-use requirement because it includes human-readable output
artifact definitions. Also, the technology is developed by Microsoft which means it is suitable for
C# and .NET framework.

In order to integrate our framework with the current work-flow of software development
process of the client company, we have configured a custom build tool for IDL file compile action
in Visual Studio. The custom build tool combines the Microsoft IDL (MIDL) compiler, which is
used for generating type libraries, with our code generation framework tool.

The framework is deployed on the client company’s built environment as a component. The
deployed component is available for all developers of the company through the company build
infrastructure.

Furthermore, the framework is verified and validated using unit test and end-user respectively.
For verification, we have created a unit test inspired by existing unit test. For validation, we have
performed a trial run with an end-user. During the trial run, we have parser various IDL files
using our grammar and generated several code artifacts that are visually the same. However,
due to existing code base changes of the company, we could verify the generated artifacts using
smoke test and integrate to the production code base. Yet, we have created a proposal for ideal
wrapper code generation template based on the input of the end-users. The template could be
good starting point for using the framework and standardizing the wrapper code structure in the
client company.

In conclusion, during the lifetime of the project, we have successfully designed, implemented,
and deployed a generic framework which generates code artifacts based on input DSL files. The
framework is easy to use with the custom build tool. Also, the framework is available for the
client company’s developers due to successful deployment of the code generation framework
component. Further, the framework is extensible due to its component based nature.

8.2 Design Opportunities Revisited

The project was aimed at fulfilling three design opportunities (non-functional requirements)
such as extensibility, ease-of-use, and reliability. This section summarizes the results of each
implementations.

• Extensibility
The framework was designed the extensibility in mind from the beginning. We have
used the factory method design pattern to allow future extension for supporting different
grammar, model-to-model transformer, and model-to-code transformer. We have used
an open source library for the parser component as well as implementing the grammar.
The component based structure allows easy change for integrating or replacing a better
technology. The template based technology is considered as mature because it is supported
by Microsoft and is under constant maintenance. In conclusion, the framework is extensible.

• Ease-of-use
The end-user has evaluated the framework at the end of the project. They have indicated
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that the tool is easy to learn by just following the instructions and a 15 minute presentation
was enough to understand the goal, general technical approach, and generated artifacts of
the tool. The tool is easy-to-use.

• Reliability
The parser has successfully parsed various sample IDL files into parse tree. Also, the
template based technology allows the interface developers to design templates that suits
their needs. The model-to-model transformer transforms the parse tree information to
interface model information by following simple mapping approach. Therefore, the output
code artifacts are reliable for using instead of manually written code artifacts.

8.3 Future work

During the development of the project, we have identified future possibilities and improvements
as well as features that were not implemented due to various constraints such as time, technology,
complexity, and added value. The ideas for future work are listed below:

• We have implemented the IDL grammar with focus of generating wrapper code. However,
there might be some parts that are not covered with the grammar but could be useful for
further code generation projects. Therefore, it is important to improve the grammar in the
future for further demands of various code generation projects.

• The model-to-model transformer works for simple use case of generating COM-to-C++
wrapper code based on simple IDL models. Thus, it would need further extension to fully
cover all type of IDL models and wrapper code that the client company use.

• The code generation framework currently supports primitive type transformations from
source to target model. Classifier type conversions are purely based on the identifier of the
parameter type. Therefore, this part needs some work to be done. The transformer might
need to check if the classifier is defined in the current IDL file or in one of the imported IDL
files.

• In order to make use of another IDL file definitions, the framework would need to parse
other type libraries or IDL files as input as well. There are common use of importing another
type libraries or IDL files in an IDL file and using the type definitions from those files.

• Interfaces and enumerations are used as type in IDL model as well. Therefore, these should
be implemented in the future.

• We have proposed an ideal template for generation COM-to-C++ wrapper code. However,
this template needs to be verified and modified for more generic use for all interfaces of the
client company.

• Client side wrapper code generation is as important as server side wrapper code generation.
The client company wants to create clear separation of COM and C++ layers on the client
side of the software as well. Unfortunately, during the lifetime of this project, we could not
find existing good example for the client side wrapper code and could not propose ideas due
to time limitation. Yet, it is possible to extend the framework for generating such wrapper
code.
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Chapter 9

Project Management

This chapter describes the project management process that was conducted during the life-time of
the project.

9.1 Introduction

The project is more practical than theoretical which means we have developed a prototype
of usable and extensible framework. We have decided to follow an iterative-incremental
development combined with an agile methodology. By following this approach, we have held
two meetings per week with the project mentor for progress analysis, requirement refinement,
and planning.

Iterations usually lasted one month. The outputs of the iterations were an updated version of
the prototype that implements the refined requirements. The requirements were evaluated and
redefined or discarded for following iterations.

9.2 Work-Breakdown Structure (WBS)

Figure 9.1 shows work-breakdown structure. The work-breakdown structure is the way in which
the project had been decomposed into small packages with deliverable oriented components. The
project is divided into five main activities as follows:

• Domain research: Research and study the current code base of the client company including
interface technology and wrapper code implementations, as well as research of the Model-
Driven Architecture

• Technology research: Research and implementation of the technologies that we used in the
framework

• Design and implementation: Usage of the results of the previous two activities in order to
build a framework for our project

• Deployment: Deployment of the framework and the demo project on the company built
environment

• Verification and Validation: Test of the generated code artifacts and trial run with an end-
user

• Documentation: Redaction of the expected documentation deliverables
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Figure 9.1: Work-breakdown structure

9.3 Project planning

This project was executed in nine months, starting in January 2017 until the end of September 2017.
The duration of nine months consists of 5 weeks spent on university events and vacation, and 34
entire working weeks at the client company. Figure 9.2 shows general plan overview containing
chronological sequence and duration of high-level activities carried during this project. From this
plan, we distinguish three main project phases that match with the five main activities of the WBS:

Figure 9.2: Project plan

• Research: Initial phase covering the first three months of the project in which domain and
technology research were the main activities

• Design and implementation: Intermediate phase covering five and a half months. The
incremental-iterative development approach was applied and the prototype was developed
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• Closure: Final phase covering one and a half month at the end of the project period in which
the project was concluded and the final documentation was delivered

As Figure 9.2 shows, during the intermediate phase, relevant activities were split and
overlapped. This describes iterations life-cycles in which more requirements were implemented
into the prototype.

9.4 Feasibility analysis

The feasibility analysis was performed after understanding the problem and domain. We have
identified existing or possible challenges, issues, and risks of the project.

9.4.1 Challenges

Several challenges were encountered for the project. This section discusses these main challenges
and the strategies that we took into account to address them.

Scoping the project

Scope definition is essential for a project. The scope and deliverables define the acceptance criteria
of a project. The project scope would be defined using extended discussion with all stakeholders
where we gather their concerns and prioritize deliverables. The project has time limitation of nine
months, therefore, the deliverables should be reasonable to be implemented in the time-frame.

Project deployment

Deploying the framework on the company built environment is crucial for this project. The
framework should be available for all developers who wants to generate wrapper code for the
components that they work on. Therefore, this activity would demand certain understandings
about structure of the built environment, procedure of adding new component, configuration of
a proper component, and proper validation of using the code generation component on another
consumer component. Additionally, inserting a new element in a development process has to
be considered carefully. The added element has to be easy to understand by developers and its
benefits and advantages should be defined in terms of saved time of the user.

Automation of repetitive task

Automation of repetitive task is a key goal of this project. The repetitive tasks are tedious and
mechanical, as well as error prone as a consequence. These activities contemplate wrapper code
of COM interfaces. All the interface wrapper code contain similar parts following certain patterns
in the high-level view. These parts are repeated and applied to different elements. However,
having a pattern does not ensure that all parts for creating wrapper code can be automated. There
are parts that cannot be related to a predefined pattern depending on technology and system
features. Thus, the necessity of defining automated and non-automated parts have emerged. The
information source for generating code artifacts was the domain specific language that we have
chosen. All automated parts are based on these informations and the parts that are not modeled
in the domain specific language were identified as non-automated parts.

9.4.2 Risks

A number of risks were identified during the project. This section discusses these risks, their
possible impacts on the project, and corresponding mitigation strategy from project management
perspective.
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Unavailability of ideal wrapper code

Finding an ideal sample wrapper code for code generation might not be straightforward activity.
Any legacy code base might include various different dialects of implementation style depending
on developers and teams due to manual implementation and lack of standardization.

The impact of this risk is that it might result less generic template creation in the framework.
Moreover, additional time and domain knowledge would be necessary for creating a generic
template for automatic code generation that is suitable for all interface developers.

The mitigation strategy that we have taken on this risk includes two activities. First, we have
decided to choose the best and simplest example wrapper code from the current code base based
on the consultation of interface developers. These wrapper code implements the separation of
COM and C++ layers. Second, we have decided to propose an ideal wrapper code template for
separating COM and C++ layers.

Fulfilling requirements in limited time-frame

Some of requirements might not be fulfilled in the time-frame of this project due to unpredicted
obstacles.

The impact of this risk is that the project might not meet all requirements identified from
stakeholders.

The mitigation strategy that we have taken on this risk was that prioritizing requirements
together with the stakeholders. The requirements that has should or optional priority could be
carried on as a future work. The project plan and progress would be revised continuously, and
updated the list of requirements and their priorities. Furthermore, the framework would be
designed extensible and easy-to-change for future improvements.

Stakeholder unavailability

Stakeholders might be unavailable due to several excuses such as illness, holidays, and work load.
In any of these circumstances, the project should proceed with sufficient inputs and feedbacks.

The impact of this risk is that some stakeholders might not be available for detailed
discussions. Thus, the project might lack inputs and feedback on particular activities which might
result wrong decisions, priorities, and unnecessary time consumption.

The mitigation strategy that we have taken on this risk was that prioritizing the importance of
inputs and feedbacks from the stakeholders, create plans for meetings in advance, and always try
to have a backup strategy. An example backup strategy was that in case an important stakeholder
is unavailable, try to gather insights from alternate stakeholders.

9.5 Project execution

Requirement specification, technology research as well as design and implementation had been
executed simultaneously during this project. This approach aims to validate technology research
through implementation as soon as possible. This implementation have produced a prototype
that demonstrated our results, and provided input to future refinements. The prototype was
evolved over time to become the final solution.

In accordance with the PDEng project guidelines, the Project Steering Group (PSG) meeting
was held in which project progress was presented by the PDEng candidate. The members of the
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PSG are university supervisor, company supervisor, and company mentor. The main topics of
these meetings were the project status together with a demonstration of the prototype. The goal
of these meetings was informing, discussing, and getting feedback from the PSG members. These
feedback sessions had been working as a method of validating and keeping track of the project
direction.

The iterative-incremental approach and the prototype development have allowed stakeholders
to have a clear view of the project progress, technology features and potential, as well as
requirement implementation. Additionally, it helped to detect risks and to make decisions to
address them.
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Project Retrospective

This chapter finalizes the document by providing a reflection on the project based on the author’s
perspective. It also depicts the revision of the design opportunities, defined in the beginning of
the project.

10.1 Reflection

During these nine months, my journey has been challenging but rewarding. Due to its real
industrial setup, the project has enhanced my professional and personal skills by presenting
challenges from technical to managerial perspectives. These challenges has led me to learn and
apply best practices and identify my strengths and improvement points.

At the beginning of the project, I had to learn various new technologies, related works, and
concepts. I spent first three months on domain and technology research. This phase included not
only reading activities but also prototyping examples. Thus, I have gathered sufficient experience
on the relevant technologies and related works in the short time.

Scoping the project was crucial as any other industrial project. The project serves for two
purposes such as PDEng thesis and industry driven technical project. Therefore, I had to define
clear scope for managing the limited time to deliver customer demands as well as university
standard. Periodic and structured discussions with the stakeholders have proven to be useful to
keep everybody on the same page.

In the design of the framework, I have used three design patterns such as factory method,
builder, and template method. During the design and implementation phase, I was constantly
trying to apply design patterns in order to make the framework extensible, organized, easy-to-
understand, and maintainable. Therefore, in most part of the framework design, I have iteratively
analyzed the code and applied the design patterns accordingly.

I had my first meetings with the end-users in the second half of the project. The meetings have
provided me broader perspective on the problem and helped me to understand the company
vision towards code generation. With that in mind, I filtered a rule of thumb that is if you want
to obtain broader overview about the project then meet the actual problem holders as early as
possible. This activity helps to observe the important aspects of the project and act accordingly.

Managing individual project has been challenging. My previous work experience was based
on team oriented projects, thus, I had to learn self management approaches and best practices.
I have studied couple of previous PDEng project reports and discussed with my fellow PDEng
trainees to learn from their approaches. This method has helped me to create my own approach
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which was suitable for this project.

Overall, I have had a challenging and beneficial experience with this project. Practicing
software development, cooperating with technical and managerial people, and managing their
expectations have improved my both hard and soft skills. I have grown professionally with
these experiences. Moreover, use of new technologies and application of different techniques has
broadened my overview and opened promising outlook for the future.
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10.2 Abbreviations

PIM Platform Independent Model
PSM Platform Specific Model
MDA Model-Driven Architecture
COM Component Object Model
IDL Interface Definition Language
TEM Transmission Electron Microscope
T4 Text Template Transformation Tool
PDEng Professional Doctorate in Engineering
DSL Domain Specific Language
EBNF Extended Backus-Naur Form
OMG Object Management Group
MOF Meta Object Facility
GUID Globally Unique Identifier
API Application Programming Interface
MIDL Microsoft Interface Definition Language
UML Unified Modeling Language
CAFCR Customer, Application, Functional, Conceptual, and Realization
TLB Type library
FIDL FEI Interface Definition Language
MBIF Model-Based Interface Framework
AST Abstract Syntax Tree
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Appendix A

Appendix 1 Stakeholder Analysis

This appendix presents the stakeholders of this project, their interests and goals. The Thermo
Fisher Scientific Company and the Eindhoven University of Technology are the involved parties
and each of them has specific interests towards the project. The following sections introduce the
stakeholders and present each party in detail.

A.1 Thermo Fisher Scientific

Thermo Fisher Scientific as a company is the owner and initiator of the project. They represent the
source of knowledge, requirements, and expectations for this work.

STAKEHOLDER High-Level Project Management

ROLE

Project Manager

• The project manager is the person who
defines the project goals, funds the project,
and looks for the business value.

REPRESENTATIVE
Martijn Kabel / Arjen Klomp (Starting from April
1, 2017)

RESPONSIBILITIES
Monitor the project progress and deliverables. Plan
the project future and deployment.

ACCEPTANCE (SUCCESS)
CRITERIA

Same as Company supervisor’s acceptance criteria

INVOLVEMENT
The trainee presents the project and results to the
project manager one or two times in the final phase
of the project.

Model-Based Interface Code Generation 81



APPENDIX A. APPENDIX 1 STAKEHOLDER ANALYSIS

STAKEHOLDER Company Supervisor

ROLE

Project Owner and Project Mentor

• The project owner is the person who
organizes the project and has to make sure
that the project goals (defined by the
manager) are met on time and within the
budget.

• The project mentor is the person who
decomposes the project goal, monitors the
project progress daily and assist the trainee in
the project related technical matters.

REPRESENTATIVE Project Owner: Andrei Radulescu
Project Mentor: Erwin de Groot

RESPONSIBILITIES

• Monitor, evaluate, assess, and provide
regular feedback on the project progress and
deliverables

• Provide relevant domain knowledge,
references, and contacts

• Provide relevant information regarding the
needs and requirements of the project

• Evaluate and assess the robustness of the
system, the functionality provided, and
whether the solution meets the requirements

• Review the final project report

ACCEPTANCE (SUCCESS)
CRITERIA

• Timely report of the project

• Project deliverable

• Project deployment in the built environment
of the company

INVOLVEMENT

During the entire project by continuous
communication via daily meetings on ad-hoc basis,
regular weekly progress update meetings, and
regular monthly project steering group meetings.
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STAKEHOLDER Knowledge source and potential users
ROLE Domain knowledge source
REPRESENTATIVE Aldo Martinez

David van Luijk
Ronnie Smets
Acquisition Server Team

RESPONSIBILITIES

• Provide relevant domain knowledge,
references, and skills

• Provide sample source materials and
use-cases

• Perform a test run using the prototype

ACCEPTANCE (SUCCESS)
CRITERIA

N/A

INVOLVEMENT
During the entire project by continuous
communication via meetings and e-mail on ad-hoc
basis.

A.2 Eindhoven University of Technology

As an educational program, the Professional Doctorate in Engineering (PDEng) in Software
Technology (ST) is conducted and assessed by the Eindhoven University of Technology. TU/e
dictates certain standards that have to be met. Those standards are mainly related to the design
process, project management, and project implementation.
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STAKEHOLDER University Supervisor

ROLE
The university supervisor guards the educational
interests of the university and the trainee.

REPRESENTATIVE Erik de Vink

RESPONSIBILITIES

• Monitor, evaluate, assess, and provide
regular feedback on the project progress and
deliverables

• Provide relevant domain knowledge,
references, and contacts

• Provide relevant information regarding the
needs and requirements of the project

• Monitor, evaluate, assess and provide
feedback on the trainee’s design process and
qualities of the design

• Review the final project report and provide
feedback for improvement to fulfill the
university standards

ACCEPTANCE (SUCCESS)
CRITERIA

• Timely report of the project deliverables

• Design, implementation, project
management, and documentation that meet
the PDEng project level

INVOLVEMENT

During the entire project by continuous
communication via meetings on ad-hoc basis with
the PDEng trainee and regular monthly project
steering group meetings.
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A.2. EINDHOVEN UNIVERSITY OF TECHNOLOGY

STAKEHOLDER PDEng Trainee
ROLE Software Designer
REPRESENTATIVE Sodkhuu Dalaikhuu

RESPONSIBILITIES

• Design, implement, deploy, and test the
model-based interface code generator

• Apply designer and professional skills

• Deliver required results on time

ACCEPTANCE (SUCCESS)
CRITERIA

• Timely report of the project deliverables

• Content of sufficient quality as to the level
expected of a PDEng trainee

INVOLVEMENT Full involvement
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Appendix B

Appendix 2 Context Diagram

The context diagram, Figure B.1, shows technologies and projects that are relevant to the
framework. The Auto Component Interface and the Model-Based Interface Framework are
previously developed in-house projects of the Thermo Fisher Scientific company. They provide
proof-of-concept for framework design decisions and technology choices. The company built
environment includes technologies, tools, and code bases relevant to the current project.

Figure B.1: Context diagram
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Appendix 3 Functional Requirements

ID Description Priority
FR01 The framework should use a DSL file as input. MUST
FR01-01 The framework should use IDL as input. MUST
FR01-02 The framework should use FIDL as input. OPTIONAL

FR02
The framework should generate code artifacts as
output.

MUST

FR02-01
The framework should generate server-side
COM-to-C++ wrapper code as output.

MUST

FR02-02
The framework should generate client-side
COM-to-C++ wrapper code as output.

OPTIONAL

FR03
The framework should convert COM interface
information to object-oriented interface model

MUST

FR03-01
The framework should convert method from
source to target

MUST

FR03-02
The framework should convert primitive type
parameters of a method from source to target

MUST

FR03-03
The framework should convert classifier type
parameters of a method from source to target

SHOULD

FR04
The framework should convert COM enumeration
information to object-oriented interface model

SHOULD

FR05
The framework should convert COM class
information to object-oriented interface model

SHOULD

FR06
The framework should convert COM dispinterface
information to object-oriented interface model

OPTIONAL

FR07
The framework should be able to specify output
directory path

MUST

FR08
The framework should be able to generate multiple
target code artifact using single source model
information

MUST
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Appendix D

Appendix 4 Parsed results

Figure D.1: Parsed result of the IImageRotation.idl file
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APPENDIX D. APPENDIX 4 PARSED RESULTS

Figure D.2: Parsed result of the IOpticsDoseData.idl file

Figure D.3: Parsed result of the ipeo_column.idl file
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Appendix E

Appendix 5 Proposal for
COM-to-C++ wrapper code
generation

E.1 COM header file

<#@ include f i l e ="common . t t " #>
// This f i l e has been generated using Model−Based I n t e r f a c e Code Generation p r o j e c t .

#pragma once

# include <vector>
# include <Fei/ISupportErrorInfoImplEx . h>
# include <Fei/ComObject . h>
# include " Acquis i t ion/ U t i l i t i e s /Logger . h"
# inc lude " Acquis i t ion/ U t i l i t i e s /DecoupledConnectionPoint . h"
# inc lude " ObjectModel/Com/IomEnergyFi l terServ ice . h"
# inc lude " BhvIomAcquisition/<#= i t f .Name # >.h"
# inc lude " CoClientOwnedObject . h "

namespace Fe i {
c l a s s D i s p a t c h e r I t f ;

namespace Tem {
namespace Iom {

c l a s s CoEnergyFil terContext ;

c l a s s ATL_NO_VTABLE Co<#= i t f .Name #> :
NonCopyable ,
publ ic CoClientOwnedObject<Co<#= i t f .Name #> , CComMultiThreadModel > ,
publ ic IDispatchImpl<Com::I <#= i t f .Name #> , &__uuidof ( Com::I<#= i t f .Name #> ) , &__uuidof

( Com::__<#= i t f . OwnerNamespace .Name #> ) , /*wMajor =*/ 1 , /*wMinor =*/ 0 > ,
publ ic ISupportErrorInfoImplEx<Com::I <#= i t f .Name #> > ,
publ ic LoggingSupport

{
p u b l i c :

s t a t i c CComPtr<Com::I <#= i t f .Name #>> Create ( const s t d : : s h a r e d _ p t r <<#= i t f .Name #>>& p<
#= i t f .Name #> , const s t d : : s h a r e d _ p t r <CoEnergyFi l terContext>& pContext ) ;

v i r t u a l void DisconnectObject ( ) ;

DECLARE_NO_REGISTRY ( )

BEGIN_COM_MAP(Co<#= i t f .Name #> )
COM_INTERFACE_ENTRY( Com::I<#= i t f .Name #> )
COM_INTERFACE_ENTRY( IDispatch )
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COM_INTERFACE_ENTRY( ISupportError Info )
END_COM_MAP( )

DECLARE_PROTECT_FINAL_CONSTRUCT ( )

<# foreach ( var method in i t f . Methods )
{
#> STDMETHOD( <#

i f ( method . IsGet ( ) ) { #>get_<# }
e l s e i f ( method . IsPut ( ) ) { #>put_<# }
#><#= method .Name #> ) ( <#
i f ( method . Parameters . Count > 0)
{

var l a s t = method . Parameters . Last ( ) ;
foreach ( var parameter in method . Parameters )
{

i f ( parameter . GetParameterType . IsPr imit iveType ( ) ) { #><#=
G e t P r i m i t i v e T y p e I d e n t i f i e r ( parameter . GetParameterType ) #><# }

e l s e { #>Com::<#= parameter . GetParameterType .Name #><# }
i f ( parameter . Po inter ) { #>*<# }
e l s e i f ( parameter . P o i n t e r 2 P o i n t e r ) { #> * * <# }
#> <#= parameter .Name #><#
i f ( ! parameter . Equals ( l a s t ) ) {#> ,<#}

}
} #> ) ;

<# } #>

p r o t e c t e d :
CoEFSli t ( const s t d : : s h a r e d _ p t r <<#= i t f .Name #>>& p S l i t , const s t d : : s h a r e d _ p t r <

CoEnergyFi l terContext>& pContext ) ;
~CoEFSli t ( ) ;

p r i v a t e :
s t d : : s h a r e d _ p t r <<#= i t f .Name #>> m_p<#= i t f .Name #> ;
F e i : : D i s p a t c h e r I t f& m_dispatcher ;

<# foreach ( var f i e l d in i t f . F i e l d s ) { #>
CComPtr<Com:: <#= f i e l d . GetFieldType .Name #>> m_pI<#= f i e l d .Name #> ;

<# } #>
} ;

} // namespace Server
} // namespace Acquis i t ion
} // namespace Fei

E.2 COM source file

<#@ include f i l e ="common . t t " #>
// This f i l e has been generated using Model−Based I n t e r f a c e Code Generation p r o j e c t .

# inc lude " s t d a f x . h"
# include <Fei/ComApi . h>
# include <Fei/ComObject . h>
# include <Fei/HResultFromException . h>
# include " CoEnergyFil terContext . h "
# include " CoEFSlitEdge . h"
# include "Co<#= i t f .Name # >.h"

namespace Fe i {
namespace Tem {
namespace Iom {

Co<#= i t f .Name #> : : C o<#= i t f .Name #> ( const s t d : : s h a r e d _ p t r <<#= i t f .Name #>>& p<#= i t f .
Name #> , const s t d : : s h a r e d _ p t r <CoEnergyFi l terContext>& pContext ) :
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CoClientOwnedObject ( pContext−>L i f e c y c l e S i g n a l s ( ) ) ,
LoggingSupport ( pContext−>Logger ( ) ) ,
m_p<#= i t f .Name #> ( p<#= i t f .Name #> ) ,
m_dispatcher ( pContext−>BehaviorDispatcher ( ) ) <#
foreach ( var f i e l d in i t f . F i e l d s ) { #> ,
m_pI<#= f i e l d .Name #> (Co<#= f i e l d . GetFieldType .Name #> : : C r e a t e (m_p<#= i t f .Name #>−><#=

f i e l d .Name #> ( ) , pContext ) ) <# } #>
{

a s s e r t ( m_dispatcher . IsDispatcherThread ( ) ) ;
}

Co<#= i t f .Name #> : : ~Co<#= i t f .Name #> ( )
{

a s s e r t ( m_dispatcher . IsDispatcherThread ( ) ) ;
}

void Co<#= i t f .Name #> : : D i s c o n n e c t O b j e c t ( )
{

a s s e r t ( m_dispatcher . IsDispatcherThread ( ) ) ;
}

CComPtr<Com::I <#= i t f .Name #>> Co<#= i t f .Name #> : : C r e a t e ( const s t d : : s h a r e d _ p t r <<#= i t f .
Name #>>& p<#= i t f .Name #> , const s t d : : s h a r e d _ p t r <CoEnergyFi l terContext>& pContext )

{
re turn CreateComObject<Co<#= i t f .Name #> >(p<#= i t f .Name #> , pContext ) . G e t I n t e r f a c e <

Com::I <#= i t f .Name #> >() ;
}

<# foreach ( var method in i t f . Methods )
{
#>STDMETHODIMP Co<#= i t f .Name #> : : <#

i f ( method . IsGet ( ) ) { #>get_<# }
e l s e i f ( method . IsPut ( ) ) { #>put_<# }
#><#= method .Name
#> ( <#
i f ( method . Parameters . Count > 0)
{

var l a s t = method . Parameters . Last ( ) ;
foreach ( var parameter in method . Parameters )
{

i f ( parameter . GetParameterType . IsPr imit iveType ( ) ) { #><#=
G e t P r i m i t i v e T y p e I d e n t i f i e r ( parameter . GetParameterType ) #><# }

e l s e { #>Com::<#= parameter . GetParameterType .Name #><# }
i f ( parameter . Po inter ) { #>*<# }
e l s e i f ( parameter . P o i n t e r 2 P o i n t e r ) { #> * * <# }
#> <#= parameter .Name #><#
i f ( ! parameter . Equals ( l a s t ) ) {#> ,<#}

}
}
#> )

t r y
{

re turn ComRetVal ( <#
foreach ( var f i e l d in i t f . F i e l d s ) {

i f ( f i e l d . GetDefinedMethod .Name. Equals ( method .Name) )
{

#>m_pI<#= f i e l d .Name #> , <#
i f ( method . HasOutRetVal ( ) ) {
#><#= method . GetOutRetVal ( ) .Name #><#
}

}
}
#> ) ;

}
ca tch ( . . . )
{

re turn LOG_HRESULTFROMEXCEPTION( GetLogger ( ) ) ;
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}

<# } #>

} // namespace Iom
} // namespace Tem
} // namespace Fei

E.3 C++ interface file

<#@ include f i l e ="common . t t " #>

// Copyright ( c ) 2009 − 2013 by FEI Company
// All r i g h t s reserved . This f i l e inc ludes c o n f i d e n t i a l and p r o p r i e t a r y information of

FEI Company .

#pragma once

namespace Fe i {
namespace Tem {
namespace Iom {

<# foreach ( var fieldTypeName in i t f . F i e l d s . S e l e c t ( x => x . GetFieldType .Name) . D i s t i n c t ( ) )
{ #>

c l a s s <#= fieldTypeName #> ;
<# } #>

c l a s s I <#= i t f .Name #>
{
p u b l i c :
<# foreach ( var method in i t f . Methods )

{
i f ( method . HasOutRetVal ( ) ) {

var outRetValType = method . GetOutRetVal ( ) . GetParameterType ;
i f ( outRetValType . IsPr imit iveType ( ) ) {

#> <#= G e t P r i m i t i v e T y p e I d e n t i f i e r ( outRetValType ) #><#
}
e l s e {

#> <#= outRetValType .Name #><#
} #>*<#

}
#> <#= method .Name #> ( ) const = 0 ;

<# } #>
} ;

} // namespace Iom
} // namespace Tem
} // namespace Fei
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