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Abstract In the research and development process at Océ, considerable amounts
of data are being generated by either machines or services. This data
is used by different data consumers at Océ for various purposes such
as analysis and reporting. However, since the data is generated by
different machines and for different purposes, the data sources are
incompatible in the sense of the format and the access technology.
When a data consumer requires data from different data sources, it
has to write its own integration code. This leads to effort and time
for each data consumer. Therefore, there is a need to have a unified
Data Access Layer between data sources and data consumers to reduce
the effort and time for each data consumer. In addition, for solving
the incompatibility of data formats, the goal is to provide a schema
and type system, in which data structures are mapped with each other.
Design and implementation of the data access layer is an important
goal to show the validation of the chosen technology. Design challenges
are: 1) mapping the schema of the data sources to the foreign tables. 2)
automatic process of creating foreign tables when the schema evolves,
and 3) designing reusable foreign data wrappers. These challenges are
addressed in the design. The system quality is validated based on the
user feedback. The report also lists several recommendations for future
improvements.

Keywords Data access layer, data integration, foreign data wrappers, join, data
source, data consumer
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Foreword

Océ is one of the world leading manufacturers of print systems for the professional market. These
systems generate an increasing amount of different data. Within our organization there are also
other sources of data, e.g. related to contracts, service activities and products that have evolved
separately from each other, resulting in different systems. We see an increasing need to be able
to relate the data from new and existing sources to successfully support the different Business
Entities within Océ. New big data related projects and developments are on the horizon. Thus a
clear need to have a platform was identified. This platform must be able to integrate and provide
access to a multitude of existing and new data sources.

As part of this assignment, Fariba took good initiative and independently consulted stakeholders
and colleagues. As the project progressed, she shaped the concept of the Data Access Layer.
Analysis on different technical routes for this DAL were done and, in the process, she built
several prototypes to evaluate these options. She built a prototype implementation to showcase
the integration of different data sources. This prototype has been used by actual end-users for
verification and we are very happy how the end result turned out. The work Fariba has done and
the insight she has provided will become part of our Data Architecture Roadmap. As part of this
roadmap we will take into considerations the future work and ideas she has provided.

As supervisors it is very rewarding to see progress and personal growth in a student and
we hope we contributed in a positive way to that. We see that Fariba has shown great eagerness
to learn and develop herself and we also believe she will continue to develop herself even further.
She has quickly become part of our teams, both in professional and social context.

We are very happy she has accepted a job position at Océ and that she will actually start in
one of our teams.

Tim Paffen and Jeroen Janssen
18 September 2017
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Preface

This report summarizes the project entitled: "The Design and Engineering of a Unified Data Access
Layer: Bridging Data Consumers and diverse Data Sources" executed by Fariba Safari, as part of her
graduation assignment for the PDEng (Professional Doctorate in Engineering) program under
supervision of Océ and Eindhoven University of Technology (TU/e). The goal of the project is to
design and implement a Data Access Layer to reduce the effort and time for accessing data within
Océ. This report confirms the successful design and engineering of the project. It also provides
detailed information about the software development and the project management process.

The audiences of this report are both technical as well as non-technical readers. Readers
that are interested in the domain, the problem and its challenges within Océ, can read Chapters
1,2, and 3. Readers who are interested in the technical details, such as system requirements,
system architecture, and system design, are referred to Chapters 3, 5, and 6. Readers that are
interested to know the rationality behind the chosen technologies are invited to read Chapter 4.
Readers mainly interested in the results or the future continuation of the project can read Chapter
7 and 8. Readers interested to know about the project plan and retrospective are referred to
Chapter 9 and 10.

Fariba Safari
18 September 2017
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Executive Summary

Océ, as one of the leading manufacturers in printing industry, deals with various machines and
services that produce data. In addition, it deals with various business systems that aim to gather
insight from the data for the purpose of analysis and reporting. To improve the data access
process for accessing and combining the data sources, Océ decided to take advantage of the data
integration technologies. This project was established to achieve this.

In the current situation in Océ, the data access process is not straightforward. Each business
system needs to take care of the data access and handle the incompatibilities of the data by
itself. Since data is gathered from different machines and services, the chances of incompatibility
of data are high. This makes the process of data access complicated when data from multiple
sources are needed. By bringing data together, users gain comprehensive insights for analysis.
For example, for predicting a malfunction in a machine, combining data of the service visits and
the functional logging is helpful. Hence, the goal of this project is to develop a Data Access Layer
(DAL) for combining diverse data sources with different formats of data. Having a Data Access
Layer strengthens the business from its very core by incorporating the information from multiple
sources. It helps to create a comprehensive view from the data of the customers and the products.

The main delivery of this project is a prototype DAL that provides the data access and
integration. The Foreign Data Wrappers technology is the choice for implementation based on the
results of a performance test and requirement analysis. The system design is modeled in a way to
cover the challenging aspects of the design, such as mapping the schema of the data sources to the
foreign tables, as well as automatic processes of creating foreign tables. The system is extensible
for new data sources. Multiple data source formats and data types are supported. The system is
tested by users, using real data, in their working environment. The results are verified based on a
user feedback survey showing that the use of a DAL is beneficial for data analysis and reporting
within Océ.
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Chapter 1

Introduction

This chapter introduces the project and its context including the PDEng program, Océ, and the
stakeholders. The outline section gives a brief overview of what is discussed in the following
chapters.

1.1 PDEng Program Introduction

This project was conducted as part of the Professional Doctorate in Engineering (PDEng)
program. The PDEng degree program in Software Technology is provided by the Department
of Mathematics and Computer Science of Eindhoven University of Technology in the context of
the 3TU School for Technological Design, Stan Ackermans Institute. The program is a two-year,
third-cycle engineering degree program during which the trainees focus on strengthening their
technical and non-technical competencies related to the design and development of software for
software-intensive systems in an industrial setting.

1.2 Project Context

This project is initiated by Océ, a Canon company, within the Research and Development
(R&D) department. Océ is a top 10 R&D investor in the Netherlands and its main products are
printing technologies: large format, continuous feed, cut-sheet printing, and sheet-fed printing.
In addition, they offer work flow software solutions and business services. Océ’s key growth
areas are graphic arts, business services, and industrial printing. Graphic arts is the printing of
text and graphics for applications such as newspapers, books, magazines, banners and signage.
Océ products offer customers a number of advantages, such as shorter runs, individualization,
customization, and high-quality specialized products. Arizona is a graphic arts production
machine (See Figure 1.1).

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Océ Arizona 6170 XTS printer: Signature for up to 200 signs per day [1]

An example for the cut sheet printing is the VarioPrint i300, also known as the Niagara
(Figure 1.2).

Figure 1.2: Océ VarioPrint I300: Cutsheet High Production System [1]

Niagara produces a large amount (gigabytes per day) of log data useful for analysis.
This log data flows from the machines in the field towards Océ. This data is the input for a
number of data analysis tools and eventually results in valuable information for both Océ and
their customers. However, since the data is generated by different machines and for different
purposes, the data sources are incompatible in the sense of the format and the access technologies.
This brings up difficulties in accessing data from both data sources and combining them. The
goal is to design and implement a data integration and access layer to hide the technical details of
data sources and provide an easy way to access data by handling the incompatibilities. The goal
aligns with the vision of the organization to provide data to various stakeholders in an easy and
transparent manner.

1.3 Project Stakeholders

This section introduces the involved stakeholders in the project. Océ is the owner
and initiator of the project. This makes it the most important stakeholder in the project. Océ
stakeholders have several interests as their key drivers for the project (See Table 1.1).

2



1.4. OUTLINE

Table 1.1: Océ stakeholders

Role Interests

Project owners

• Having a Data Access Layer (DAL) to provide easy, fast, and
transparent access to different data sources.

• Having DAL as the main data access platform within Océ.

System users

• Access the data without the need to know about the technical
aspects of data sources such as the storage technology, the
location, the access mechanism, and the API.

• Access the real-time data by considering the performance.

• Access the data by writing queries in a language that they are
familiar with .

Data providers
• Maintain the ownership of data and provide data to the

authenticated and authorized users

The Eindhoven University of Technology (TU/e) is responsible for the educational aspect
of the project and fulfilling the requirements. That means certain standards need to be met. It is
concerned with the design process, project management, and implementation. Table 1.2 lists the
stakeholders, their role and interests.

Table 1.2: TU/e stakeholders

Role Interests

TU/e supervisor
• The design and documentation meet the standard of a PDEng

project.

TU/e PDEng trainee
• Fulfill the responsibility for the design and implementation of

the DAL.

1.4 Outline

Chapter 2 explains the domain of the project. Problem analysis including the
requirements, use cases are specified in Chapter 3. They provide a basis for designing the system
and choosing the suitable technology. Solution Analysis chapter (Chapter 4) explains the decisions
taken for choosing the solution technology. Moving on, Chapter 5,6 presents the architecture and
design of the system, respectively. Chapter 7 explains the validation and verification of the system.
The results and future work for the project are presented in Chapter 8. This chapter also gives a
conclusion about the project. The last two chapters of this report reflect on the management part
of the project. Chapter 9 addresses the management process during the nine months of the project
as well as techniques used to manage it. In Chapter 10, the author gives her retrospective and
reflection on the project.
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Chapter 2

Domain Analysis

Understanding the domain, its related elements and the dependencies between them is an
important step to establish a good understanding of the project. This chapter focuses on the
domain analysis. The main objective in the domain analysis is to identify the data sources, data
consumers, and the data flow between them. The information is gathered from existing technical
documents and interviews with stakeholders and experts. Five different layers are explained.

2.1 Domain Model

In the current situation, data flows through five layers. These layers and the data flow
between them are shown in the Domain Model in Figure 2.1. This model contains blocks that
describe the composition of the system by describing users as actors and the other participating
entities as System Modeling Language (SysML) blocks. The dashed lines with “flow” stereotype
show the information flow between the different layers and blocks. In the following section, layers
and their contained blocks are described. These layers are:

• Initial data providers: The machines and the services that produce data.

• Data gathering layer: The process of collecting data from the initial data providers.

• Data sources: Any source of data, for example, an SQL database or a CSV file.

• Data consumers: Any application that retrieves and manipulates data.

• Users: People who work with the data consumers and intend to analyze data.

2.1.1 Initial data providers

Initial data providers are the machines and the services that produce diagnostic and
usage data. These providers produce data in both automatic way, such as customer devices and
services, as well manual way, such as operational data providers. Below the data providers are
explained.

1. Customer devices: Océ printers which provide diagnostic data and Canon printers which
provide the usage data for analysis and customer reporting.

2. Customer services: The following services which are provided to the customer devices.
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• Managed Document Services (MDS) cloud and Site Audit System: Systems from which
total fleet information is retrieved.

• Universal Gateway(UGW): An proprietary interface for retrieving meter reads from
Canon devices.

• UniFlow: A software package that provides accounting information.

3. Operational data providers: The Canon back office systems, which are manually supplied
by an actor called operational data provider.

Figure 2.1: Domain Model
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2.1.2 Data gathering layer

Data from different machines are generated and in the data gathering layer an Extract,
Transform, and Load (ETL) technique is used to gather this data. Océ Remote Service (ORS)
and Customer Reporting Service (CRS) back office gather data from the initial data providers by
implementing ETL processes. CRS system connects to Canon Back office in order to collect data
including contracts and service information. Figure 2.2 shows that the ETL process employed to
collect data into the CRS data sources.

Figure 2.2: Customer Reporting Service

ORS system connects to the Océ printers in order to collect data including diagnostic
data and meter reads. An ETL process in employed to store this data in meter reads and service
information data sources.

2.1.3 Data sources

The term data source is used to refer to any source of data, for example, an SQL database,
a cube, an HDF5 store, or a web service. Current data sources are: PPP meter reads, service
information, functional logging, and CRS data store. In some cases, a data source is a collection
of passive files (for example: functional logging) and in other cases it is a data source including
software to access the data, such as a database server with a web service (for example: meter reads
and service information). Here, each of the data sources is explained.
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PPP meter read

It is a structured database storing the meter reads from Océ printers. Figure 2.3 depicts this data
source. Accessing the data is through an internal web service. A client can retrieve the meter reads
for a specific machine using the web service. Clients can be either a user or a system.

Figure 2.3: PPP meter reads

Service Information

Service Information is stored as raw files, which include logbooks and data logs. Logbooks contain
data from the service technicians. The contents of these logbooks are the same in 80-90% of the
time (see Figure 2.4). Followings are the two different technical formats for logbooks from which
the STAR logbooks have the historic format.

1. STAR logbooks: The logbooks are stored as text files in the Archive database. They can be
downloaded by using one of the STAR modules named STAR Archive as Microsoft Access
format.

2. Product logbooks: A new generation of Extensible Markup language(XML) logbooks for new
products. Similar to STAR logbooks , there is a download tool in order to access product
logbooks.
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Figure 2.4: Service information

Functional Logging

It is a collection of large structured data from many printers, situated all over the world. Functional
logging is stored in a Comma-separated-value format (CSV files) initially. For increasing the
performance, the files are converted to the Hierarchical Data Format (HDF5). HDF5 is a container
of data with hierarchical ordered contents. The functional logging flow is shown in Figure 2.5.

Figure 2.5: Functional Logging
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CRS data store

The CRS data store includes the service level reporting data in the SQL multidimensional cubes
shown as Customer reporting service cube in Figure 2.2. This data store is available to different
reporting systems: Service Level Reporting and Analysis tools.

2.1.4 Data Consumers

The term data consumer refers to any application that retrieves and manipulates data.
For example, CRS is a data consumer which itself is a reporting service. Data consumers use data
from the existing data sources in order to achieve their specific goals, such as analyzing data and
reporting to the customers.

• Océ Remote Service (ORS) dashboard: a back-office system, which connects to the products
in order to collect data and provide remote assistance to the customer. The dashboard
provides access to this collected data.

• Reporting Portal: a portal for reporting from the Service Information data source.

• Service Level Reporting (SLR) and Analysis Tool (AT): the Excel workbooks that can be used
for analyzing data and generating reports for customers (See Figure 2.2).

• Optimal Diagnostic Analysis System (ODAS): a Jupyter Notebook environment for users to
perform data analysis.

2.1.5 Users

Users are master data providers, service technicians, data scientists, function designers,
customer account managers, and customers. The users work with data consumers for their specific
tasks. For example, a customer account manager uses SLR to generate reports for customers.

• Master data providers: People who are responsible for configuration of the master data.

• Service technicians: People whose aim it is to troubleshoot the printer problems and issues,
on-site and remotely.

• Function designers: The designers who are in control of the design of a printer module.

• Data scientists: People who are responsible for analyzing and interpreting data for the
purpose of improving products and processes.

• Customer Account Managers: Users whose aim it is to build reports for the customers.

• Customer: Organizations/people who consume a service.
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Chapter 3

Problem Analysis

After analysis of the domain, the problems is analyzed. The problem is discussed by explaining the
existing situation difficulties and the characteristics of the desired situation. A set of requirements,
functional and non-functional, are extracted and formulated to be satisfied for this project.
In addition, the use cases and their key concerns are represented. The problem definition
and requirements formulation process are conducted by discussions with the stakeholders and
thorough analysis of the problem.

3.1 Problem Statement

In the existing situation, each system has access to a group of specific data sources and
there is no transparent access between these different data sources and data consumers. The
current situation has several disadvantages as shown in Figure 3.1.

Figure 3.1: Data sources and data consumers in the current situation

In order to access the data, each data consumer needs to know: where the data
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sources are stored physically; where the database servers run; what the required application
programming interface (API) is; and which storage technologies to use. In addition, the data
consumer needs to take care of the process of joining data (based on a common data elements
such as z1.serialNumber=z2.printerId), when data from multiple data sources are needed. In
this situation, the incompatibility of data sources increases the difficulties. Thus, one action is to
identify the internal structure of the data.

In order to overcome the mentioned disadvantages, a solution should be devised that abstracts
the data sources to the data consumers. The focus of the solution should be on integrating data
sources in a way that the technical details are hidden, and the data consumers can work with
a unified API for accessing data (See Figure 3.2). In the next chapter, the requirements and the
approaches for solving the problem is identified.

Figure 3.2: Data sources and data consumers in the desired situation
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3.2 Use cases and key concerns

The main use cases are identified in the process of refining the requirements. Table 3.1
lists the identified use cases and their main key concerns. Use cases are categorized based on the
common actors and their key concerns into three groups. The identified actors are: Customer
account managers, Service technicians, Function designers, and Data scientists. Each of these
actors are explained in the Problem Analysis chapter.

Table 3.1: Main use cases and key concerns

Title Actors Key concerns

Combine the Functional Logging
and the Service Information in
ODAS.

Function
Designers

Data Scientists

• Access to data sources through a
compatible Python interface.

• Write Blaze Queries to access data.

• Perform filtering on the data sources to
get only the interesting parts of the data:
data of specific period of time, data of
specific machines.

• Perform column filtering on the data
sources to get only the specified
columns.

• Access to combination of the two
different data sources based on
common columns: machine Id.

• Get data in the format which is
compatible with ODAS data formats:
Data Frames, Lists, and Series, as well
as dictionaries.

Include CRS data in Océ Remote
Service (ORS) dashboard

Service
Technicians

• Access to the data sources through
compatible SQL interface.

Include the Océ Meter Reads in a
CRS Report to extend the Canon
Meter Reads

Customer
Account
Manager

• Access to the data sources through
compatible SQL interface.

• Get data in the format which is
compatible with CRS data format: SQL
Table
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3.3 Functional Requirements Specification

This section lists the functional requirements identified after communication with
the stakeholders. The requirements are categorized based on their priority level: Must have
requirements are critical to the success of the project; Should have requirements are important but
not necessary for the scope of the project; Nice to have requirements are desirable but not necessary.
Table 3.2 summarizes the functional requirements.

Table 3.2: Functional Requirements Specification

Num Requirements Priority

FR-01
Full functionality is provided to data consumers without the need
to know about the technical aspects of data sources which are: the
storage technologies, location, access mechanism, and API.

Must

FR-02
Data consumers need to use one unified API in order to access the
data sources.

Must

FR-02-01 Standard tools such as MATLAB and R can access the data sources. Should

FR-03
Data sources shall not be replicated and aggregated into a new data
source.

Must

FR-04 All the existing data source technologies are supported. Must

FR-04-01 HDF5 store technology is supported Must

FR-04-02 Web services data technology is supported Must

FR-04-03 SQL database technology is supported Must

FR-04-04 CSV files technology is supported Must

FR-04-05 MDX Cube technology is supported Should

FR-05
Data consumers have to be authorized and authenticated for reading
data sources.

Should

FR-06
Data consumers have to be authorized and authenticated for writing
into data sources.

Should

FR-07
Data consumers are able to send multiple concurrent requests to the
data sources.

Should

FR-07-01 Data sources that do not support concurrent access are supported.
Nice to
have

FR-08 Data consumers have access to the latest version of data. Must
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Num Requirements Priority

FR-09 Data consumers have the ability to execute queries on data sources. Must

FR-09-01

Data consumers can filter data based on conditions and record
details, for example:

SELECT *
FROM P u b l i c a t i o n
WHERE P u b l i c a t i o n . country = ’Germany ’

Must

FR-09-02

Data consumer can select specific fields of data sources, for example:

SELECT name
FROM P u b l i c a t i o n Must

FR-09-03

Data consumers are able to join data from different tables in different
data sources, for example:

SELECT t i t l e , authorname
FROM Books , Authors
WHERE Books . authorid = Authors . authorid

Must
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3.4 Non-Functional Requirement Specification

Besides the functional requirements, a number of non-functional requirements are
identified from the requirements gathering process.

Table 3.3: Non-Functional Requirements Specification

Num Name Requirements Priority

NFR-01 Performance

The system should respond reasonably fast to data
requests. The solution response time does not get
worse than 30% in compare with the current situation’s
performance.

Should

NFR-02 Extensibility
Data sources can be extended and new data sources can
be supported.

Should

NFR-03 Learnability

Data consumer have no difficulties regarding writing
queries. For example, ODAS users are familiar with
Blaze querying language and prefer to write queries in
Blaze. In addition, Learnability includes the possibility
to work with the solution from different programming
environments such as C#, Java, and Python.

Must

NFR-04 Flexibility
Data consumers are not limited to predefined queries.
They can write their own queries.

Must

NFR-05 Scalability
The solution continues to functioning well when data
source is changed in size.

Should

Each of these requirements were taken into consideration when designing and
implementing the solution. In the Verification and Validation as well as the Conclusion Chapter,
the requirements are revisited in order to evaluate the success of the solution.
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Chapter 4

Solution Analysis

This chapter aims to choose the solution direction and the technology based on the result of the
experiment and the evaluation criteria. Solution directions are discussed; technology options are
listed; and Performance experiment is performed and finally the technology is chosen.

4.1 Solution Directions

In order to solve the data integration problem mentioned in the previous chapter, the
following approaches can be considered:

4.1.1 Individual API for each data source

In this situation, for each data source there is an API or a software library to provide
access from the data source to the data consumer. The consumer knows how to access the API. We
call this approach RAW access. This is exactly the existing implementation between data sources
and data consumers in Océ.

4.1.2 Unified API to different data sources

In this situation, the data consumers access the data through a unified API and the API
hides the data sources details. We call this Data Access Layer (DAL). A DAL offers numerous
advantages:

• When either a data source or a data consumer changes, the others do not need to change.

• Data consumers do not need to know the storage format and technical details of the data
sources.

• Data consumers can access a combinations of data sources without knowing the internal
structure of each data source.

• There is one unified API to access all the different storage formats, and therefore data access
is simple.

• Data consumers access the new data sources quickly and without much integration works
(effortless data access).

In spite of multiple advantages, having a DAL between data sources and data consumers has
one possible disadvantage depending on the chosen implementation technology and data. DAL
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might reduce the speed depending on the code that needs to be executed for the data integration.
However, Performance is highly dependent on the size and complexity of data sources and the
implementation of the DAL. In addition to that, performance is a non-functional requirement and
it is measured when choosing the technology for implementation. Since the advantages of having
DAL outweigh the possible disadvantages, we chose this approach to solve the problem of data
integration. In the following section, we investigate the technical frameworks to create a DAL.

4.2 Technology options

For implementing the DAL, the following technologies are investigated: Foreign Data
Wrappers, Blaze, GraphQL, Jupyter Notebook, and Data Warehouse. In this section, each of the
technologies are explained. In addition, two important aspects of the technical requirements data
joining and Information hiding are mentioned per option.

4.2.1 Foreign Data Wrappers

Foreign Data Wrappers (FDW) technology was introduced in PostgreSQL 9.1 in 2011.
FDWs are extension methods for PostgreSQL server in order to query external data sources. A
foreign data wrapper is an object that wraps code for communication with an external data source
using regular SQL queries. There are three main concepts when designing a foreign data wrapper
[2]:

1. Foreign server: An object that specifies how to locate a certain external data source. It
belongs to a foreign data wrapper.

2. Foreign table: An object that describes the data structure contained in an external data
source. It belongs to a foreign server.

3. User mapping: An object that contains credentials to authenticate with an external data
source. It belongs to a foreign server and a database user.

When a user attempts to access a foreign table, PostgreSQL knows how to reach the
data source (via the foreign server that belongs to the foreign table), how to authenticate (via the
user mapping) and what functions to use to perform this connection and exchange data (via the
foreign data wrapper)[3]. Figure 4.1 shows the communication between the above-mentioned
components.

Data joining

Data joining between multiple data sources is possible by writing the join routines in FDW code.
In addition to having remote joins on two foreign tables, there is also the possibility to join between
a local table and a foreign table .

Information hiding

Foreign tables in PostgreSQL are the interface for data consumers. All the foreign tables are treated
as if they were local tables. Therefore, the storage technology, the API, the location, and the access
mechanism are hidden from the data consumers.

18



4.2. TECHNOLOGY OPTIONS

Figure 4.1: Foreign data wrappers

4.2.2 GraphQL

GraphQL is an open source query and specification language for APIs. In GraphQL, the
following concepts are important:

• GraphQL query: A GraphQL query is a string that is sent to the GraphQL server to be
executed. For every query, resolver functions explain to the GraphQL server about how to
respond to a query. Finally, the GraphQL server returns results in the shape of the requested
query [4]. In the example below, the user wants to get the hero name. On the left side, query
is depicted. On the right side, data is depicted.

• GraphQL schema: GraphQL cannot execute a query without a type system. A schema
defines types and their relationships. It is written in the "GraphQL Schema Language" [5]. It
specifies which queries can be made against the server and what responses can be returned
back from the server (See below example).

type c h a r a c t e r {
name : S t r i n g
}
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This language is readable in the way:

– Character is a GraphQL object type with some fields.

– Name is the field of the character type. This field can appear in any part of a GraphQL
query that operates on the character type.

Data joining

GraphQL server joins the data from multiple data sources by following the relationship that is
defined in the schema.

Information hiding

For every data consumer, the query schema, the query resolver, and the connections to the remote
data source can be implemented once and used thereafter. Therefore, the data consumer has no
information about the storage technology, the access mechanisms, and the APIs of the data sources.

4.2.3 Blaze

Blaze is a Python library that allows the data consumers to query data living in a variety
of data sources. Blaze gives Python users a familiar interface to query external data such as SQL
databases or raw files. A server hosts data remotely and a Python client can send Blaze queries to
the server and get the data. The following example shows a mount of two different resources on
the server [6]:

server = Server ( {
’ c s v f i l e ’ : resource ( ’ mycsv . csv ’ ) ,
’ s q l i t e t a b l e ’ : resource ( ’ s q l i t e :/ mysqlitedb . db ’ )

} )

Thus, the CSV file and the SQLite table can now be accessed through Blaze Server. Figure
4.2 shows the Blaze solution.

Figure 4.2: Blaze
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Blaze Expressions

Blaze separates the computations from the query definitions. Users write predefined queries
in the format of Blaze expressions and execute the queries on different data sources. Blaze
expressions explain the computational work flows symbolically. They allow the developers to
write and double check their computations before applying them to data. At the core, Blaze is a
way to express data and computations. One Blaze query can work across data sets ranging from
a CSV file to a distributed database[7]. In the following example, an abstract table is built:

hero = TableSymbol ( ’ hero ’ , ’ { id : in t , name : s t r i n g , droid : i n t } ’ )

query = hero [ hero [ ’ id ’ ]==2000] [ ’name ’ ]

compute ( query , d a t a s e t )

The query is computed on different back-ends no matter what the back-end storage technology is.

Data joining

Blaze does not have a way to join resources in different back ends. This means there is no good
way to join the two different data sources [8].

Information hiding

Blaze provides a uniform access to a variety of common data formats. Blaze Server builds off of
this uniform interface to host data remotely.

4.2.4 Jupyter Notebook

Jupyter notebook is a web-based notebook environment for interactive computing.
Common uses of Notebooks are: data cleaning and transformation, numerical simulation,
statistical modeling, and machine learning [9]. Figure 4.3 shows the Jupyter Notebook solution.

Figure 4.3: Jupyter Notebook
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By investigations on the Jupyter Notebook solution, we concluded that it cannot be a
DAL. The reasoning behind this conclusion is that the Notebooks are designed as interactive
interfaces in which users write code rather than a service to get data. Jupyter Notebook
community confirmed this conclusion [10]. Therefore, in the further investigation, Jupyter
Notebooks are not included as a solution for the DAL. However, they remain as the data
consumer(ODAS).

4.2.5 Data warehouse System(DWH)

The core concepts of data warehouse (DWH) is the Extract, Transform, Load (ETL)
process by which data is extracted from data sources, transformed, and loaded into a central
repository. This creates a single view from different data sources (See Figure 4.4).

Figure 4.4: Data warehouse

In spite of potential advantages, such as performance, followings are multiple
disadvantages for using DWH as the DAL:

• Transferring all data from different back-ends to a single central repository does not satisfy
the requirement FR-03, which emphasizes the importance of not having the data replication.

• DWH is not a flexible approach when data sources are frequently updated (such as: interface
change, data shape change). When data sources are updated, the ETL process needs to be
re-executed for synchronization [11]. Therefore, the requirement FR-08 is not satisfied.

Therefore, in the further investigation, DWH is not further considered as a possible DAL solution.
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4.3 Evaluation

In order to design and implement a data access layer that satisfies the functional and
non-functional requirements, a thorough evaluation of different technology options is needed.
Technology options are Foreign Data Wrappers, GraphQL, and Blaze. Table 4.1, shows the
evaluation results of the technology options based on the criteria, derived from the requirements.
FDW is the technology that satisfies the criteria(Dfor all the criteria with two out-of-the-box
solutions).

Table 4.1: Evaluation Criteria based on the Requirements

Req Criteria FDW GraphQL Blaze

FR-01
Information hiding from data
consumers D D D

FR-02 Unified API to data consumers D D D

FR-02-01
Standard tools (MATLAB and R)
access D D 6

FR-03 Non-materialized data access D D D

FR-04-01 HDF5 store technology support D D D

FR-04-02 Web services technology support D D D

FR-04-03 SQL technology support Dout-of-the-box D D

FR-04-04 CSV technology support Dout-of-the-box D D

FR-04-05 MDX and cube support D D D

FR-05
Authorized and Authenticated data
access D D D

FR-06 Data writing support D D 6

FR-07 Concurrent access support D D D

FR-08 Real-time data access D D D

FR-09-01,
FR-09-02

Data filtering D D D

FR-09-03 Data joining support D D 6

NFR-02
Easy to extend for supporting new
data sources D D D

NFR-03
Data consumer can still write Blaze
queries D 6 D

NFR-03
Data consumer can still write SQL
queries D D D

NFR-03 Access from C# language D D 6

NFR-03 Access from Java language D D 6

NFR-03 Access from Python language D D D

NFR-04 Flexibility to write queries D 6 D

For evaluating the requirement NFR-01, an experiment is needed to measure
performance of each of the solutions. The experiment determines how the technologies perform
in term of responsiveness and stability. In addition, the experiment helps to investigate, measure,
and validate other quality attributes of the system (such as NFR-03 and NFR-05). In the next
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section, the evaluation experiment is explained in details.

4.4 Technology Evaluation setup

For evaluating the performance of the technologies, an evaluation experiment was setup.
This experiment led to the decision of which solution best satisfies the requirement regarding
performance. The design of the experiment is shown in Figure 4.5. Four programs are created
to do the same task of providing data from data sources to data consumers. These programs are:
RAW, DAL1 to DAL3. The dashed lines are the information flow from data source to the data
consumer through DALs. The solid line is the RAW information flow from data source to the data
consumer.

Figure 4.5: Design of the experiment

4.4.1 Test Process

Data source

In order to compare the solutions, it is essential to develop a collection of typical inputs that can
serve as benchmarks. We choose the benchmark inputs such that they are representative of the
typical input to the final solution. Therefore, the solution that performs reasonably well on the
benchmark inputs is considered to perform well on all inputs.

Currently in Océ, data sources that need to be integrated are different from the perspective
of storage technology and the access mechanisms. For example Functional Logging data are
CSV and HDF5 files while Customer Reporting Service data is stored in an SQL database.
Therefore, the performance experiment was carried out for SQL database (relational) and flat
files (non-relational). In addition, different sizes of the data sets determines the Scalability of the
solutions. Therefore, the input data sets are categorized into three groups including Empty data
set, Data set A, and Data set B. Data set A is in the one MB range and Data set B is in the 100 MB
range. It is expected that the performance of the solutions has a correlation with the size of the
data set.

Query

The query group requirement FR-09 are categorized in three groups: Selection of all data, based on
conditions and details of a record; Selection of a specific part of the data; and Join of two different
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data sources. The queries used in this experiment are based on the three categories(See Appendix
A). The sizes of data sets were chosen by investigating the typical sizes of data sets within Océ
context.

4.4.2 time

The performance time is the sum of the data source connection time (Connect) and data
retrieval time (Read)(See Figure 4.6). Figure (a) shows that there is a remote read time when DAL
is located between the source and the client. Since the results that are derived from one test might
be influenced by external factors, performance time is measured as the mean time of repeating the
experiment for 100 times.

(a) Performance Time calculation in DAL solutions

(b) Performance Time calculation in RAW solution

Figure 4.6: Performance Time calculation

In the test, the connection to the data source is established per query, and after the
execution of the query, the connection is closed. This helps to perform tests in an environment,
which is simulated to the real world. Therefore, this test setup gives a good insight into the
performance of the solutions.

4.4.3 Results of the experiment

The results present the execution time of the queries for each solution when it is
compared with the RAW. This gives insight into measuring the speed of each DAL. This helps to
choose a technology for implementation. The performance requirement is measured based on the
maximum percentage difference of each DALs from RAW.

The results are presented for three data sets. In each case (Figures 4.8, 4.9, and 4.10), the
maximum and average difference from RAW solution and the comparison between all solutions
for different queries are represented. Looking at the difference between average and maximum
deviation demonstrates the stability. In each Figure, Q1-Q12 represents the queries mapped with
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requirement FR-09 (See Appendix A).

Empty data set

The purpose of having an empty data set is to compare the connection time regardless of the size
of the data. This brings a useful insight on understanding the connection overhead of the DALs
versus RAW. Since RAW is the direct access, it is also expected to be the fastest solution. However,
for combining different data source queries (Q7-Q12), FDW is very closely competing with RAW.

Figure 4.8: Results of the performance experiment on empty data set

None of the DALs satisfies the performance requirement. This means that DALs cannot
compete with RAW when connection time is the only factor for comparison. This result is similar
to what was expected. We expect that DALs show their superiority to RAW when it comes to Data
set A and B when actual data is being retrieved.

Data set A

The purpose of having data set A with 1MB size is to compare the DALs and RAW with small size
of data. (See Figure 4.9). FDWs satisfy the performance requirement while GraphQL and Blaze
have considerable difference compared with RAW.
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Figure 4.9: Results of the performance experiment on data set A

Data set B

The purpose of having data set B with 100MB size is to compare the DALs and RAW with rather
large size of data. RAW is the best solution (See Figure 4.10) for queries that point to a single data
source. However, for combining different data source queries (Q7-Q12), FDW solution performs
faster than RAW. FDWs satisfy the performance requirement while GraphQL and Blaze have
considerable difference with RAW.

Figure 4.10: Results of the performance experiment on data set B
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4.5 Chosen Solution: Foreign Data Wrappers

We summarize the findings as follows:

• Results of the performance experiment show that FDWs satisfy the performance
requirement.(Design Criteria: Performance)

• FDWs provide freedom and flexibility in writing queries. Blaze and GraphQL limit the query
format to not well-known and specific query language.(Design Criteria: Flexibility)

• FDWs provide SQL query interface, and the querying language is well-known. Note that
Blaze and GraphQL can still be implemented on top of the FDWs in case of the specific
interest of a data consumer (Design Criteria:Learnability)

• FDWs perform better than RAW when the size of data increases. Therefore, FDWs can satisfy
the Scalability requirement by which we expect the solution to continue functioning well
when the data source changes in size.(Design Criteria: Scalability)

Hence, based on the result of the evaluation in Table 4.1 and the results of the performance
experiment, FDWs are chosen as the solution for the DAL.
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Chapter 5

Sytem Architecture

The purpose of designing an architecture for a system is to solve the problem statement formalized
with the system requirements. This chapter elaborates on the system architecture based on the
chosen technology in Chapter 4. The deployment model is also represented.

5.1 Architecture Overview of the DAL

In this project, Foreign Data Wrappers are chosen for implementation of the DAL.
PostgreSQL offers a high-level architecture for this purpose as shown in Figure 5.1. In this
client-server model of the DAL, there are three layers: Client, Server, and Data. Any layer
is allowed to be modified and changed without affecting the rest of the system as long as
the communication interface between the different tiers remains the same. Therefore, the
Extensibility requirement (NFR-02), regarding the support of the additional data sources and
the data consumers is satisfied. In Figure 5.1, the Extensiblity of data sources is shown by
implementing or reusing a new or current foreign data wrapper, as well as extending schema
mapping for new data sources. Here, we took advantage of PostgreSQL’s Extensible architecture.

The majority of the design choices occur in the supporting mechanism section in Figure 5.1:
1) Schema Mapping (mapping the data sources with the foreign tables), 2) Foreign Tables
Generation Mechanism. These topics are discussed in depth in the System Design (Chapter 6).
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Figure 5.1: Overview of the DAL

The DAL is a system that receives queries from client applications (users). To do this, it
retrieves data based on the query specifications from the data sources. Then, the DAL performs
data filtering inside the data sources, to return only the requested data to the data consumers and
nothing more. Data Filtering can happen at one of the following two levels:

1. At the Data Source- When the data source supports the data filtering capabilities: Then the
query conditions can be passed to the data source. In this case, the retrieved data from data
sources are already filtered based on the query conditions.

2. At the Database Server- When the data source does not support the data filtering
capabilities: Then the PostgreSQL database Server performs the data filtering .

In both cases, the data consumer gets the filtered data from the DAL. Figure 5.2
demonstrates the sequence diagram of the query execution in the DAL. In Figure 5.2, the
"qualifiers" keyword represent the filtering conditions.
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Figure 5.2: Foreign Data Wrappers Sequence Diagram

In addition to data filtering, the DAL supports the data joining by implementing the join
mechanism and linked schema in the Foreign data wrappers. This topic is further discussed in the
system design chapter.

5.2 Deployment View

The deployment view concerns the structure of the product regarding software
to hardware mappings and distribution aspects. Given that the very core of the system is
client-server communication, client being the data consumer systems and server being a machine
that hosts the service, a straightforward approach is followed when designing the deployment
view of the system.

PostgreSQL was chosen as the database since it provides the Foreign data wrappers API.
There are several FDWs implemented and added as an extension to PostgreSQL. Other databases
have the similar feature. For example, MySQL’s FEDERATED storage engine can connect to another
MySQL database, but not to the other RDBMSs; Microsoft SQL Server has the similar concept in
Linked Servers. However, the linked servers are configured to query relational data sources.

Figure 5.3 depicts the designed deployment view of the DAL.
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Figure 5.3: Deployment of the DAL

This deployment model satisfies the requirements FR-03, as each data source remains on
its current location. The foreign tables are only the table definitions and include 0 bytes of data.
In this model, ODAS, as a Python environment, is able to connect to DAL with the SQLALchemy
library for writing Blaze query while CRS system writes SQL queries over an ODBC connection.
Linux is chosen as the execution environment because building the open source packages in
windows is not straightforward. By investigating the development communities of foreign data
wrappers, Ubuntu is a common Linux distribution for development of the DAL. Foreign Data
Wrappers can be implemented in two languages: C and Python. In this project, Python is chosen
because of ease of prototyping and the existing Python knowledge. In addition, Python is a de
facto standard in the Business Intelligence (BI) community, for which DALs are very relevant.
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Chapter 6

System Design

The previous chapter elaborates on the high-level architecture of the DAL. This chapter dices
into the system design. The system design includes the schema mapping and the foreign table
generation for each use cases.

6.1 Use case 1: Combine the Service Information and the
Functional Logging for ODAS

In the problem analysis chapter, each of the data sources as well as each of the data
consumers are explained. Use case 1 provides the ODAS users a combination of the Service
Information and the Functional Logging. In the System Requirement Chapter, the use case, its
actors, and main key concepts are introduced.

The difficulty of the current situation is the amount of time and effort it takes for the
ODAS user to access data from these two data sources and join them. As such, this case focuses
on providing data access to ODAS and handling the joining of data between sources. In this case,
the ODAS user only gets back the parts of data that she/he is interested in. In the next section, the
structure of each of the data sources, the mapping of data sources with the foreign tables, and the
foreign data wrappers are explained.

6.1.1 Functional Logging: HDF5 files

Functional Logging data is stored in an HDF5 format. HDF5 is both a data model and
a file format, for supporting a variety of data types. It is designed for high volume and complex
data. Data is stored in a hierarchical format on a daily basis (See Figure 6.1).
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Figure 6.1: Hierarchal Format of HDF5 Files

Each path points to a completely different set of data. In order to map a HDF5 file with a
foreign table, the following design decision is made:

Table 6.1: Mapping of the Foreign Tables with the Functional Logging

Choice Table definition Number of tables

One table per path
path(printer-id, date, c1, ..., cn)
, where c1,...cn is the set of all
column names for a path

Equals with the
number of path

This approach is user friendly since in the functional logging, a path is requested based
on the user interest. This means that the users specifically point to the path that they are interested
in. In the HDF5 files, the data shape can be different for each different path. Hence, the mapping
problem is solved by having one foreign table per path in the HDF5 file (See Figure 6.2).
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Figure 6.2: Mapping of the Foreign Tables with the Functional Logging

6.1.2 Service Information : Extensible Markup Language (XML) files

Service Information is stored as an XML file per machine. Each file contains the latest
logbooks for a specific machine. In the logbooks, multiple interesting groups of data need to be
retrieved and mapped with foreign tables. Figure 6.3 shows the entities and the relationships
between them, retrieved from logbooks.

Figure 6.3: The structure of Service Information XML file

By understanding the existing entity-relationship in the XML file, the design decision
is to create one foreign table per entity. Entities are visit, parts, and problemdescription. Each visit
might have multiple parts and problem description. In order to map foreign tables with these entities
of an XML file, there is a need to define relationships between the foreign tables. The parts and
problemdescription entities should be distinguishable for different visits. To achieve this, a "Foreign
key relationship" between Foreign tables is defined between for parts and problemdescription
entities. Figure 6.4 shows the mapping of the entities with the foreign tables and the relationships
between them.
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Figure 6.4: Mapping of Foreign Tables with Service Information

6.1.3 Foreign tables Creation Mechanism

In the creation process of the foreign tables, these are two important concepts:

• Evolving data shape: The data shape shows the structure of the data in a data set. On one
hand, this structure can evolve and change for data sets over time. On the other hand, the
foreign table definition depends on the data shape. Thus, if the data shape evolves, then
the foreign table needs to evolve and change accordingly. Therefore, a reference data shape is
proposed.

A reference data shape is created by choosing a specific data set as the reference. For example
in case of Functional Logging files, the reference data shape is stored for a reference printer Id
and a reference date. In the Service Information case the reference data shape is stored in the
DAL for a reference system Identification. Whenever a new data set is added to the data source,
the shape of this data set is compared with the reference data shape. If there is an update in
the data shape, the update applies to the reference data shape as well.

• Compatible data types with postgreSQL data types: When creating foreign tables, data
types of the source data shape are mapped with the acceptable data types in PostgreSQL.
Therefore, the compatibility of the data source shape with PostgreSQL acceptable data types
is considered in the design of the foreign tables.

The sequence diagram of foreign table creation for the HDF5 files is shown in Figure 6.5. When a
HDF5 file is created, its shape is compared with the reference data shape and if a new data type
is introduced, then the reference data shape is updated. Accordingly, the corresponding foreign
table is regenerated. Figure 6.6 shows the creation of the foreign tables for the HDF5 files. It
includes the detailed operations and attributes. This also brings a better insight on the mapping
of HDF5 files.
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.

Figure 6.5: Foreign table creation Sequence Diagram : Functional Logging
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Figure 6.6: Foreign table generation for HDF5 files

6.1.4 Combining the Functional Logging and the Service Information

In order to combine the different data sources, identifying the common columns between
them is necessary. In this case,the Functional Logging and the Service Information are identified
based on the machine Id. However, the machine Ids have different formats and names in these
two different data sources(See Figure 6.7). This incompatibility is an obstacle to join data sources
with each other. Therefore, it should be solved. Following approaches can be adopted:

1. Renaming and Reformatting: In this approach, the columns which have similar meaning
in different data sources are renamed and reformatted to a unified name and format in
DAL. For example, systemIdentification, serialNumber, and printerId have the same meaning
but are formulated differently in three data sources. In DAL, we can define a unified naming
mechanism. This happens in the schema definitions of foreign tables. In this example, we
can name every column which are related as printerId.

2. Transformation table: A transformation table that maps the common columns from different
data sources with each other (See Figure 6.7).
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This approach makes the queries more complex, since the transformation table should be queried
when joining data sources.

Figure 6.7: Combining the Functional Logging and the Service Information

3. Adding new columns: We can include all the different formats of a column in the foreign
table definition. For the above example, we can have three columns in the schema definition
of a data source:systemIdentification, serialNumber, and printerId. This approach is less desired
because of the data repetition in DAL.

The design decision is to choose the Renaming and Reformatting option. This option brings
a unified name and format within different data sources.
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6.2 Use Case 2: Combine Service Information and the Customer
Reporting Service (CRS) data for ODAS

In this case, a user is interested to combine the visits, parts and problem descriptions from
Service Information with specific data of CRS. In order to complete the analysis, ODAS users are
interested to have access to the service downtime information from the CRS data store. CRS data
is stored in a remote relational data base (Microsoft SQL Server). In order to map SQL tables with
foreign tables, one by one mapping is the chosen approach. Therefore, there is one foreign table
per SQL table.

Figure 6.8: Combining the CRS and the Service Information

Figure 6.8 shows the mapping of data types between CRS and Service Information. There
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SERVICE (CRS) DATA FOR ODAS

are multiple difference regarding the naming of data columns which needs to be handled. This
incompatibility is an obstacle to join of data sources with each other. Therefore, the design decision
is to define a Transformation table that maps the common columns with each other. The choices
discussed in the Section 6.1.4 are also applicable to this case.
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Chapter 7

Verification and Validation

The previous chapter described the design of the system. In order to ensure that the system is
being correctly created, the process of verification and validation should be put in place. This
chapter describes this process.

7.1 Verification

The verification process includes the evaluation on whether the functionality of the
system corresponds to the requirements in a good way. The verification process gives an answer
to the question: Did we build the product right?. Verification is done first by devising an experiment
setup to choose the right technology and second by varying inputs and examining the outputs
while developing elements of the DAL. The results of the experiment are demonstrated in Chapter
4.

7.2 Validation

Assuring that the DAL meets the needs of the stakeholders is the focus of the validation
process. The validation process gives an answer to the question: Did we build the right product?
In order to perform the system validation, a feedback survey is performed when users started
working with the DAL. The survey questions are devised based on the requirements (See
Appendix B for the survey questions). Table 7.1 shows the results of the survey.
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Table 7.1: Survey Results

Question Response

Without Knowing that the Service Information
logbook is a web service, could you access it?

Yes

Without Knowing that the Functional Logging is an
HDF5 store, could you access it?

Yes

How simple is it to connect to DAL from your system? its really easy
How simple is it to join data of different data sources
with DAL?

its really easy

Does the DAL provides you the possibility to write
query in the language that you are already familiar
with?

Yes

How do you rate the functionality of DAL, in terms
of performance?

In case of Functional Logging, its
slower than what I am using but
acceptable. In case of Service
Information, its much faster than
what I am using now.

Did using the DAL improve the usage of multiple
data sources instead of directly accessing them?

Yes

Did you encounter any difficulty while working with
DAL?

• I could connect from R to DAL.
However, I encountered with
the connectivity issues from
PowerBi Desktop(Certificate
issues: not installed at the client
system)

• I could query multiple
printers from Functional
Logging. However, querying
multiple printers from Service
Information was not possible

• With DAL accessing the data is
easy. However, there is still an
underlying question of who may
access which information.

Recommendations
DAL should inform the user if she/he
has no access rights.

In addition to survey results, we analyzed whether the DAL meets the requirements.
DAL provides a unified query interface in which users have no knowledge of the storage format
and the access detail of the data sources. This validates FR-01 and FR-02 requirements. In
addition, DAL was tested regarding the access of the third-party software such as MATLAB and
EXCEL. This validates FR-02-01.

DAL already supports the existing data sources: HDF5, Web Services, SQL databases, and
CSV files (FR-04-01, FR-04-02, FR-04-03, and FR-04-04). The MDX cube data source (FR-04-05)
was not included in the use cases. However, since the DAL supports Extensibility, implementing
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a foreign data wrapper for cube data sources is possible.

By combining the data sources of the Service Information and the Functional Logging, we
validated that the DAL is able to join data sources that contain information of the same machine,
but originate in different sources. In addition to data joining, data filtering based on conditions
and record details is accomplished. Data has remained in its original source and every time that
the user writes a query, the latest version of the data is returned. Hence, the user requirements
listed as FR03, FR08, and FR09 are supported by the system.

Data consumers are able to send multiple concurrent requests to DAL if the data source
supports the concurrency (FR-07). Concurrency of queries against the same foreign table is
just like for the local tables handled by PostgreSQL. Therefore, there can be arbitrarily many
concurrent readers. In implementation of DAL, to access the Service Information, the latest
version of the file is retrieved per query and a unique name is assigned to it so that concurrency
of requests is possible. This feature of the DAL validates the requirements FR-07. However, the
capabilities of the underlying data store affects the concurrency mechanism. For example, to
have concurrent read requests with Functional Logging, HDF5 file system must allow concurrent
processes to open the file for reading simultaneously. Requirement FR-07-01 remains as future
work.

Data writing support including INSERT, UPDATE and DELETE can be supported in the
implementation of foreign data wrappers. In this project, this feature is not implemented because
of the stakeholders priorities and interests. In addition, the data writing support requires that the
authentication and authorization policies are in place. This remains the future work. Therefore
validation of FR-05 and FR-06 are delegated to future work.

Table 7.2 gives an overview of the requirements validation.
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Table 7.2: An overview of the requirements validation

Req Validation Results

FR-01: Hiding the technical details D

FR-02: Unified API D

FR-02-01: Access from MATLAB, Excel, and R D

FR-03: No data replication D

FR-04: Support of all existing data sources D

FR-04-01: Support of HDF5 technology D

FR-04-02: Support of Web service technology D

FR-04-03: Support of SQL database technology D

FR-04-04: Support of CSV technology D

FR-04-05: Support of MDX technology Future work
FR-05: authorized and authenticated SELECT Future work
FR-06: authorized and authenticated WRITE, INSERT, UPDATE Future work
FR-07: concurrent request to data sources D

FR-07-01: concurrent request to sources that do non supported
concurrency

Future work

FR-08: access to latest version of data D

FR-09: ability to execute queries including D

FR-09-01: data filtering based on conditions and record details D

FR-09-02: data filtering based on specific fields of data sources D

FR-09-03: data joining from different data sources D

Generally, the validation was taken into consideration by the agile way of working:
weekly progress meetings, regular evaluations and discussion about the ideas and requirements
which were prioritized by the stakeholders.
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Chapter 8

Conclusions

This chapter explains the results achieved by this project, the limitations, and the
recommendations for the future works.

8.1 Results

The result of the project is a system that provides access to a combination of several data
sources. The functionality provided by the system is accessed using its query interface. After
implementation, the system became available to selected users in order to support them with
their data access activities. They also evaluated the system.

Choosing the right technology is a difficult process, since preferences and needs of the users are
different. Users have different set of skills and they prefer to work with the technology that they
are familiar with. This was a challenge during the project. Therefore, Learnability was considered
an important requirement. The system achieved the Learnability since the query languages is
based on the user preference. For example, ODAS users could still write Blaze queries while the
default query language of the system is SQL.

Providing a high-performance data access layer depends on factors such as the implementation
technology. Therefore, performance was taken into consideration by designing an experiment
to choose the technology that has least performance difference with the current situation of data
access in Océ. In addition, bringing this possibility for the user to retrieve only the required data
had a positive impact on the performance.

Since data is generated from different machines and services, their formats are different
and they often have incompatibility with each other. This was also a challenging aspect of the
project. To handle this, a schema and type system in the format of foreign tables was introduced.
By having the schema mapping, related data in different data sources were linked.

8.2 Limitations and Future Work Recommendations

This section introduces the identified future works. It also includes the limitations due to
constraints, such as time.

• Due to the time of the project and also the complexity of the security topic, the authorization
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and authentication policies were not taken into considerations when designing the DAL.
However, with not having the adequate policies, users might access restricted and sensitive
data. Therefore, the system should be extended to provide comprehensive security policies.

• The desired goal in performing data filtering is to pass as many data filtering conditions
as possible to the data sources. This helps to improve the performance by only returning
back the requested data. However, the format of the data sources has influenced the
implementation of DAL. For example, the Functional Logging are HDF5 files and their
storage format does not support the data filtering. Therefore, DAL performed filtering when
it received the unfiltered data from the data source. Changing this will have positive impact
on the performance. Therefore, it is strongly suggested for the data source providers to
considering the data filtering functionality when storing the data. In case of Functional
Logging, this has been already communicated with the data providers.

• In the system design and implementation, we focused on two use cases. A set of use cases
was introduced along with the system requirements. Including more data sources that
support the data analysis and reporting process, makes the DAL a more comprehensive
system. Thus, the data consumers refer to DAL for their data analysis purposes. This leads
to the acceptance and usage of the system. Therefore, it is recommended to extend the DAL
to include more use cases.
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Chapter 9

Project Management

This chapter describes the management process as well as the issues and challenges throughout
the project.

9.1 Project Planning

A set of agreements about the way of working and the processes was established between
the trainee and the supervisors. Weekly progress meetings were organized in order to discuss
the progress of the work and the Sprint planning. Project Steering Group (PSG) meetings were
organized on a monthly basis including TU/e supervisor and Océ supervisors. The PSG meetings
were planned to discuss the status, the progress and the planning. The project was divided into
three parts:

• Domain and problem analysis

Recognize the different layers of data flow in Océ.

Understand the difficulties of the current situation and define the desired situation.

Introduce the different use cases for the DAL in Océ.

Formalize the requirements for the DAL.

• Solution analysis and experiment setup

Investigate the technology choices for the DAL.

Set up an experiment to measure the performance.

Choose the technology.

• Design and Implementation

Design the DAL.

Implement the DAL.

Validate and Verify the results of the DAL.

The initial project planning devised in the beginning did not match the actual project execution.
Several adjustments were introduced along the way, as the knowledge and understanding
deepened. In the initial version, three use cases were defined:

• Use case 1: combine Functional Logging and Service Information for ODAS
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• Use case 2: combine Customer Reporting Service (CRS) and Service Information for ODAS

• USe case 3: combine Océ Meter Reads in the CRS Report

In the final version, an experiment setup was added to the project plan. This was to have
a better insight on each of the technology choices and choosing the correct technology. By this
decision, the project plan was revised to include only the first two use cases. Figure 9.1 shows the
Final project planning.

Figure 9.1: The Final project plan

9.2 Issues

This section describes the issues and challenges that are encountered during the lifetime
of the project.
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9.2.1 Issues and challenges

Considering different systems and stakeholders, there are different or even conflicting
approaches and expectations toward the project. Establishing agreements between stakeholders
and defining concrete requirements are challenging activities.

In addition, having access to the data sources for the purpose of understanding the
internal structure of the data and developing the data access layer is critical for delivering the end
product of this project as it affects the design, modeling, and implementation. Data availability
and access is a risk identified and elaborated in the following section.

9.2.2 Risks

Several risks are identified during this project. This section explains the risks identified,
their impact on the project, and the corresponding mitigation techniques.

Table 9.1: Risks and mitigation strategies

ID Description Impact Mitigation strategy

R-01

Not having access
to data sources for
developing and
evaluating the data
access layer.

Development of general
data access layer, which
covers less relevant design
problems.

Create and use data that
satisfies the specifications
of real-word data source.

R-02

Not all requirements
can be met given the
limited time frame of
the project

Data access layer would
not meet all requirements
from the identified
stakeholders.

Prioritize the requirements
with the agreement
of stakeholders.
Continuously revise
the project plan and reflect
on the project progress.
Consider the Extensiblity
of system for future
updates.

R-03

Stakeholders
conflicting
expectations from
the project

Stakeholders
dissatisfaction with the
result of the project, and
depending on the impact
of the stakeholder, the
impact of this can be high
(project failure) or less.

Prioritize stakeholders,
regarding their power
and interest in the project.
Regular meetings with
Stakeholders helps to
reach agreement.
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Chapter 10

Project Retrospective

This chapter finalizes the document by providing a reflection on the project based on the author’s
perspective.

10.1 Reflection

This project included different aspects and challenges. Before this project, we had an
in-house project at Océ. Hence, I became familiar with some parts of the domain which was
related to my current project. This increased the speed of domain analysis. In addition, the
stakeholders from Océ provided the support and necessary information to complete the domain
picture for me. I received constructive feedback from them which helped me to make sure
that I am on the right path. This gave me the confidence to continue the project with a strong
understanding of the domain and the application of the project in the domain.

The challenging parts include having a good project management process, defining the problem
scope, analyzing the solution direction, and translating the requirements into tangible results. In
the first months of the project, I faced difficulties regarding project management and planning.
Fortunately, I received feedback from Océ stakeholders in the early phases. Having this feedback
helped me to focus on my planning skills to define a realistic plan, establish agreements, and
confirm the plan with the stakeholders. I learned this rule of thumb: "Revising a plan is not a
problem, the problem is to stick to an unrealistic plan".

Since the project was started from scratch, no decision was already made regarding the solution
direction. This was challenging to choose the solution direction that satisfies the requirements.
Therefore, among different solution directions, an experiment setup was conducted to measure
the performance and the other quality attributes. Changing the plan to include the experiment
was a wise choice to gain insight on each of the technologies and choosing the proper technology.

Overall, the project was a fulfilling experience. I improved in the design and the technical
skills as well as the communication skills. Cooperating with people and managing expectations
of stakeholders are crucial and these were repeatedly practiced during the project. On top of
that, several new technologies were used that broadened my knowledge in the field of Software
Development.
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10.2 Design Opportunities Revisited

During the problem analysis process, design opportunities were identified, namely
Learnability, Flexibility, and Extensibility. Since the goal of the project was to make a system for
users, such as data scientists and function designers, special consideration was taken to ensure that
the DAL is easy to use from the interface and query language perspective. The DAL provides a
unified interface. Following the iterative development approach and receiving constant feedback,
stakeholders were able to evaluate the Learnability, look, and feel of the product. Flexibility of the
DAL regarding no limitation for writing different queries were considered in the whole process
of design and implementation. The design of the DAL considered the Extensibility of the data
sources in terms of evolving data shapes and new data sources. Formally, the use of a survey
provided a feedback from a larger group of users. Results of the survey shows that the DAL
provides functionality that meets the expectations and user requirements.

54



Glossary

Term Definition

Data Access Layer
(DAL)

The technology that offers data consumers a unified API for
querying data from heterogeneous set of data sources.

Data consumer
Applications that receive data from data sources and use it for
analysis and reporting purposes.

Data source
Any source of data, for example, an SQL database, an HDF5 store,
or a web service.

Authentication
The process of verifying that a data consumer is the entity that it
claims to be for the data source.

Authorization

The process of determining which actions an authenticated data
consumer is allowed to perform on the data source. These actions are
typically SELECT, INSERT, UPDATE, DELETE from/into the data
source. This process also defines whether the data consumers are
allowed to see specific parts of the data.

Data joining
The process in which data from different data sources are brought
together.

Data filtering
The process in which specific parts of data is retrieved from a data
source

Materialized data Data which is copied from one data source to another data source

Multidimensional
Expressions (MDX)

A query language for online analytical processing using a database
management system

Concurrent access
A mechanism in which multiple users access the data sources at the
same time

Raw access
A direct access from each data consumer to each data source,
assuming that there is one individual API for each data source.

Jupyter Notebook
An open-source web application that allows you to create and share
documents that contain live code, equations, visualizations and
explanatory text.
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Appendix A

Appendix 1: Experiment setup

The queries were defined based on the data filtering and data joining requirements (FR-09):
Data consumers can filter data based on conditions and the details of a record:

Q1 : SELECT * FROM t a b l e 1 WHERE u l l i d =49876996433 AND s h e e t i d =6394503;

Q2 : SELECT * FROM t a b l e 2 WHERE u l l i d =49876883285 AND s h e e t i d =6391745;

Q3 : SELECT * FROM t a b l e 1 WHERE c o l o r = ’K ’ ;

Q4 : SELECT * FROM t a b l e 2 WHERE h i g h e s t p o i n t h e i g h t =421;

Data consumers can select specific fields of data sources:

Q5 : SELECT s h e e t i d FROM t a b l e 1 ;

Q6 : SELECT s h e e t i d FROM sheethe ight ;

Data consumers are able to join data from different tables in different data sources:

Q7 : SELECT t a b l e 1 . c o l o r FROM t a b l e 1 , t a b l e 2
WHERE t a b l e 1 . u l l i d = t a b l e 2 . u l l i d AND t a b l e 1 . headid =2;

Q8 : SELECT t a b l e 2 . defectfound FROM table1 , t a b l e 2
WHERE t a b l e 1 . u l l i d = t a b l e 2 . u l l i d AND t a b l e 2 . camera= ’ PrintUnitRearCamera ’ ;

Q9 : SELECT t a b l e 1 . color , t a b l e 2 . defectfound FROM table1 , shee the ight
WHERE t a b l e 1 . u l l i d = t a b l e 2 . u l l i d ;

Q10 : SELECT * FROM t a b l e 1 JOIN t a b l e 2 USING ( u l l i d ) ;

Q11 : SELECT * FROM t a b l e 1 JOIN t a b l e 2 USING ( u l l i d )
WHERE t a b l e 1 . c o l o r = ’K ’ AND t a b l e 2 . defectfound= ’ yes ’ ;

Q12 : SELECT * FROM t a b l e 1 JOIN t a b l e 2 USING ( u l l i d )
WHERE t a b l e 2 . camera= ’ PrintUnitRearCamera ’ ;
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Appendix B

Appendix 2: Feedback Survery

Figure B.1: DAL Feedback Survey
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APPENDIX B. APPENDIX 2: FEEDBACK SURVERY

Figure B.2: DAL Feedback Survey(Con’d)
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