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Abstract Urea is an organic compound that is used widely as a fertilizer to increase the crop size and 

the yield. Urea is produced from ammonia and carbon dioxide in urea plants. Stamicarbon’s 

main activity is designing and licensing urea plants. An important activity of the process 

engineers at Stamicarbon consists of the design of the flowsheet and the calculation of the 

solution of the heat and material balances for the urea plant. Improving the productivity of 

the process engineers and shortening the learning curve of the new process engineers is of 

great importance to Stamicarbon. Stamicarbon’s vision is to the change the flowsheet de-

sign from text-based to graphics-based. This project aimed to implement a graphics-based 

solution that would increase the comprehension of the structure and the state of the flow-

sheet design. This project also aimed to enable the process engineers to visually merge 

plant sections that could be reused in flowsheet designs. Finally, a part of this project in-

volved the integration of the graphics-based editor and the flowsheet solver into one tool. 

The three major design criteria are usability, navigability, and extensibility. The main tools 

used for the implementation of this project are the Eclipse Modeling Framework (EMF) 

and the Eclipse Sirius. The domain model is designed with EMF. The visual representations 

are created with Eclipse Sirius. The architecture of the system is plug-in based. The final 

prototype is deployed as an RCP outside the Eclipse IDE.  

 

Keywords 

 

Flowsheet, heat and material balances, EMF, Eclipse Sirius, Stamicarbon, TUE, PDEng, 

software technology 

 

Preferred  

reference 

Visual environment for editing and solving flowsheets: Design and implementation of a 

visual environment for editing and solving flowsheets to produce heat and material bal-

ances for urea plant designs. PDEng Technical Report, September 2017. (2017/043) 

 



 

Partnership This project was supported by Eindhoven University of Technology and Stamicarbon. 

 

Disclaimer 

Endorsement 

Reference herein to any specific commercial products, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-

ment, recommendation, or favoring by the Eindhoven University of Technology or Stami-

carbon. The views and opinions of authors expressed herein do not necessarily state or re-

flect those of the Eindhoven University of Technology or Stamicarbon, and shall not be used 

for advertising or product endorsement purposes.  

 

Disclaimer  

Liability 

While every effort will be made to ensure that the information contained within this report 

is accurate and up to date, Eindhoven University of Technology makes no warranty, repre-

sentation or undertaking whether expressed or implied, nor does it assume any legal liability, 

whether direct or indirect, or responsibility for the accuracy, completeness, or usefulness of 

any information. 

 

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of 

their respective owners. We use these names without any particular endorsement or with the 

intent to infringe the copyright of the respective owners. 

 

Copyright Copyright © 2017. Eindhoven University of Technology. All rights reserved. 

 No part of the material protected by this copyright notice may be reproduced, modified, or 

redistributed in any form or by any means, electronic or mechanical, including photocopy-

ing, recording, or by any information storage or retrieval system, without the prior written 

permission of the Eindhoven University of Technology and Stamicarbon. 





 

  



 

 

Foreword 
Automation is a key driver for improving productivity. Tasks that were performed 

manually in the past are currently being executed by machines that get the job done 

faster and better and thus cheaper. This is not only the case in industries that produce 

tangible artefacts like machines and consumer goods but also in the services sector 

where engineering companies like Stamicarbon produce design information. Here the 

essence is to instruct a computer to solve a particular engineering problem, which is to 

find a design that meets specific requirements within specific design constrains. At 

Stamicarbon the end-product is a Process Design Package (PDP) for urea plants. It 

contains the necessary information (minimum requirements) for further detailed design 

and construction of a urea plant. An essential part of a PDP are Heat and Material 

Balances (H&MB). 

 

Creating a H&MB is repetitive task executed by an engineer and supported by a com-

puter which requires flexibility with respect to the specification of requirements and 

design constraints. For that purpose Stamicarbon uses an in-house developed software 

tool called Tisflo whose origin dates back to the mid 70ties of the last century. This 

tool’s strengths are also its weaknesses on two levels: the tool smith’s level and prac-

titioner’s level. The tool smith is confronted with a FORTRAN implementation (par-

ser, domain model, and solver) that is compact and fast but undocumented, ill-struc-

tured and hardly maintainable which hampers modification and extension of the tool. 

The practitioner is confronted with an extremely fast flowsheet solver and a very flex-

ible but archaic, hard-to-learn and error-prone low level problem specification lan-

guage with little help on diagnosing specification problems. Productivity gain is only 

to be expected when the weaknesses on both levels are addressed: specification on 

higher levels of abstraction both of the tool itself as well as the problems to be solved 

by the tool. 

 

Model Driven Software Engineering promises to be the perfect candidate for the rede-

sign job of the software. It should get you from A to B fast and good and improve 

productivity. This is why Stamicarbon embarked on journey for a step-wise transfor-

mation of Tisflo: a first step (in hind sight a side step) was to wrap the essential 

FORTRAN code in C++ wrappers, rewrite the parser (using ANTLR), the domain 

model and the solver in C++ and produce a functional kernel. A second more funda-

mental step was the development of an EMF based meta-model for the flowsheet do-

main that allows easy integration with a graphical front and allows for M2M and M2T 

transformations serving and increasing both the productivity of the tool smith and the 

practitioners. The thesis you are about to read reflects the work done by Konstantinos 

Raptis on developing the meta-model and the graphical front-end for Tisflo 2.0 whose 

result shows that MDSE is truly bringing value to development and deployment of 

real-world engineering tools. We are not there yet but we have taken a first step in the 

right direction. On behalf of the colleagues in Stamicarbon I would like to thank Kostas 

and his TU/e mentor prof. dr. Mark van den Brand for the efforts they put into the 

project. I hope you enjoy reading Kostas’ thesis. 

 

ir. Rob Faessen 

August 2017 
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Preface 
 

This report summarizes the “Visual environment for editing and solving flow-

sheets” project. The project was carried out by Konstantinos Raptis as a final as-

signment for the Professional Doctorate in Engineering (PDEng) program in Soft-

ware Technology (ST). The program is provided by the Stan Ackermans Institute 

of the Eindhoven University of Technology. The project was executed over a pe-

riod of a nine-months at the end of the two-year program, under supervision of 

Stamicarbon B.V. in Sittard. 

 

This report is primarily intended for a reader with a technical background in differ-

ent disciplines, such as model-based engineering, visual editing, and general soft-

ware engineering. 

 

Chapters 1 to 4 are more suitable for readers with a non-technical background who 

are interested in getting an introduction about the project, the problem, and learning 

details about process flow diagrams from urea plant designs. 

 

Chapters 6 to 10 are more interesting for readers with a technical background. 

These chapters cover the system requirements, the system architecture, the system 

implementation, the verification and validation, and the deployment of the project. 

 

Finally, Chapters 2, 5, 11, 12, and 13 cover the project management, conclusions, 

and the project retrospective. 

  

 

Konstantinos Raptis 

September 2017 
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Executive Summary 
 

The world’s population is increasing by more than 1% per year. More than 7.4 

billion humans live on earth. This number is expected to be more than 9 billion by 

2040 [1]. As the number of humans is increasing, the demand for food is also in-

creasing. Since the area of the world’s agricultural land is expected to be almost 

the same in the next 20 years [2] a solution for producing enough food has to come 

from somewhere else. Urea can be used to increase the global food production. 

Urea is an organic compound that is used widely as a fertilizer to increase the crop 

size and the yield. Urea is synthesized in chemical plants from ammonia and carbon 

dioxide. 

 

Stamicarbon’s main activity is licensing urea plants. The licensing requires the col-

laboration of people from different engineering disciplines, for example, process 

engineers, process control engineers, and mechanical engineers. An important task 

of the process engineers at Stamicarbon consists of the design of flowsheet dia-

grams and the calculation of the heat and material balances. 

 

Process engineers at Stamicarbon design flowsheet diagrams with a text editor. The 

flowsheet diagrams are specified in text format that has a rigid layout; an extra 

space could make the text file invalid. A second tool is used for the calculation of 

the heat and material balances. This tool is called Tisflo. 

 

Improving the productivity of the current process engineers and shortening the 

learning curve of the new process engineers is of great importance to Stamicarbon. 

Stamicarbon’s vision is to the change the flowsheet design from text-based to 

graphics-based. 

 

A famous English language proverb says “a picture is worth a thousand words.” 

This project aimed to provide a graphics-based solution that would increase the 

comprehension of the structure and the state of the flowsheet design. Editable forms 

aimed to eliminate the number of errors made because of the rigid layout of the text 

files. This project also aimed to enable the process engineers to visually merge 

plant parts that could be reused between different designs. Finally, a part of this 

project involved the integration of the editor and the solver into one tool. 

 

This report presents the architecture, the design, and the implementation of the 

graphical-based Tisflo. The three major design criteria are usability, navigability, 

and extensibility. The main tools used for the implementation of this project are the 

Eclipse Modeling Framework (EMF) and the Eclipse Sirius. The domain model is 

designed with EMF. The visual representations are created with Eclipse Sirius. The 

architecture of the system is plug-in based. The final prototype is deployed as an 

RCP outside the Eclipse IDE. 

 

In conclusion, the prototype is the first version of the graphical-based Tisflo that 

calculates the heat and material balances of urea plant designs. According to the 

feedback from the process engineers the prototype achieved the main goals and 

aims of the project, although extra functionality needs to be added until it can fully 

replace the old tools. The extra functionality is mentioned as a future work in this 

report. 
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1.Introduction 
 

This chapter introduces Stamicarbon as a company. The project and its context are 

briefly mentioned. The outline section at the end of this chapter gives a brief overview 

of what is discussed in the following chapters. 

 

1.1    About Stamicarbon 
Stamicarbon was founded in 1947 and currently is a member of Maire Tecnimont SpA. 

Stamicarbon’s main activity is the development and the licensing of urea technology 

for the fertilizer industry. More than 250 urea plants around the world are based on 

Stamicarbon’s technology to produce urea, which adds nutrients to crops, replenishes 

arable land, and increases crop yields [3]. 

 

 

Figure 1 Urea plant 

Licensing commercializes the know-how that has been developed and patented over 

the years as a result of Research and Development activities and experience gained of 

plant operations. Stamicarbon designs have to meet customers’ needs with respect to 

safety, product quality and quantity, reliability, emissions, and energy consumption. 

 

1.2    About urea 
Urea is an organic compound with the chemical formula CO(NH2)2. Since its discovery 

in 1773, urea has become the most important nitrogen-based fertilizer in the world. 
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Urea is produced from a mixture of simple inorganic molecules (ammonia and carbon 

dioxide); the white crystalline organic compound contains about 46% nitrogen. 

 

The vast majority of urea is used in the agricultural sector as a fertilizer to increase 

crop yield and as an additive for animal feed. Urea is also used as a base product in the 

manufacture of resins and commercial adhesives. Cosmetics products, for instance, 

hair conditioners, tooth-whitening, and facial cleaners might contain urea. Cars and 

trucks use urea in the exhaust gas catalysts in order to reduce the NOX emissions. 

Urea facts [4]: 

 Urea is the world's most produced chemical. 

 Over 190 million tons of urea is produced each year. 

 Over 80% of urea is used to fertilize crops. 

 Demand for urea fertilizer is growing at over 3% (faster than the global rise 

in population). 

 

1.3    Life cycle of a urea plant 
Stamicarbon’s main activity is licensing new urea plants, maintaining, upgrading and 

optimizing existing plants. Each license requires the collaboration of many people 

from different engineering disciplines, for example, process engineers, process control 

engineers, and mechanical engineers. 

 

 

Figure 2 Life cycle of a new urea plant 

The life cycle of a project depends on the type of the project and on the customer 

requirements. An average time of three years from a concept proposed by a customer 

to an actual new plant that produces urea is required. Projects that involve optimization 

or upgrade of an existing plant start with a feasibility study; however, this phase is 

omitted in projects that involve the creation of a new urea plant. For a new urea plant 

projects Stamicarbon delivers a proposal to the customer about the equipment that can 

be used, an estimation of the costs of the project, the process flow diagrams, and the 

heat and material balances of the plant. 

 

The next stage is the conceptual process engineering phase. At the end of this stage the 

customer receives the Process Design Package (PDP). The PDP contains documents 
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with more detailed information about the plant, for instance, the piping and instrumen-

tation diagrams, and equipment datasheets, in addition to the process flow diagrams, 

and the heat and material balances with minor changes for tuning purposes.  

 

The next stage is the basic engineering phase. In this phase a company of the Maire 

Tecnimont group delivers to the customer and to the constructors the Basic Engineer-

ing Package (BEP). The BEP contains more detailed information about the construc-

tion, for instance, the physical position of the equipment. Finally, Stamicarbon is also 

involved during the detailed Engineering, Procurement, and Construction (EPC) phase 

of the plant in order to verify if it functions according to its design objectives and 

specifications. At the end of a three year period the plant is ready to operate. 

 

1.4    Process engineers’ responsibilities 
In order to meet customers’ needs for licensing a urea plant, a part of the process en-

gineers’ job is designing process flow diagrams and calculating the heat and material 

balances based on the process flow diagram. A process flow diagram is the conceptual 

layout of a plant. A process flow diagram indicate the equipment and the main process 

streams between the equipment. A process engineer spends a week on the design of a 

process flow diagram. 

 

Figure 3 Process flow diagram 

A heat and material balance is a document produced by process design engineers. The 

heat and material balance document includes operating conditions, composition and 

key physical properties of every major process stream on the process flow diagram. 

The calculation of the heat and material balances is performed by applying the mass 

balance equation and the energy balance equation to each piece of equipment. A pro-

cess engineer spends five weeks on the calculation of the heat and material balances. 

 

1.5    Project introduction 
The idea behind the project is the utilization of a new tool that the process engineers 

could use for creating or editing flowsheet diagrams and calculating the heat and ma-

terial balances. 

 

The process engineers are currently using text files with a rigid layout for storing the 

definition of urea plant designs and for specifying what heat and material balances are 

calculated. However, the rigid layout could lead to many errors. In order to create or 
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edit a urea plant design and calculate the heat and material balances, the process engi-

neers have to use two different tools. 

 

The first tool is a text editor to create or modify the structure of a urea plant design. 

For example, a process engineer can use a text editor for adding a new stream or chang-

ing the name of an existing stream. However, the process engineers have to be very 

careful while editing because of the rigid layout that the files have. 

 

The second tool is a flowsheet solver. The process engineers use the flowsheet solver 

for calculating the heat and material balances of a urea plant design. However, the 

process engineers using the flowsheet solver cannot modify the structure of a urea plant 

design. 

 

It is worth mentioning that the process engineers are mostly working on files that con-

tain information of a complete urea plant and not on files that contain different parts 

of a urea plant. The main reason for not working on files containing different parts is 

again the rigid layout that the files have. Combining all the different plant parts into 

one could lead to many errors. 

 

This project focuses on a graphics-based tool that could increase the comprehension of 

the structure and the state of the flowsheet design. This project also focuses on a tool 

that the process engineers could use for combining different plant sections into one. 

The elements contained in the different sections have to be editable and the tool has to 

allow the process engineers to simulate the plant sections or the complete plant. In 

addition, the new tool has to provide ways to eliminate syntax errors made with the 

text editors. Finally, the new tool has to integrate the graphics-based editor and the 

flowsheet solver into one tool. 

 

1.6    Outline 
The next chapter introduces the stakeholders involved in this project as well as their 

goals and interests. After the presentation of the stakeholders, the problem analysis is 

presented (Chapter 3), which describes the aspects and the expectations of the project. 

Next, the domain analysis is presented (Chapter 4), namely urea plant designs. 

 

Chapter 5 presents the feasibility analysis of the problem. Potential issues, challenges, 

and risks are identified are presented. After the feasibility analysis, the system require-

ments are presented in Chapter 6. The requirements are presented in two categories the 

functions and the non-functional. 

 

Chapter 7 presents the system architecture. Chapter 8 presents the system design and 

implementation. Design decisions are also covered on this chapter. Next, Chapter 9, 

elaborates on the verification and validation.  Chapter 10 depicts the deployment of the 

system. 

 

Chapter 11 discusses the results and future work for the project. Chapter 12 reflects on 

the project management. Finally, Chapter 13 presents the retrospective of the project 

from the author’s point of view. 
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2.Stakeholder Analysis 
 

 

In the previous chapter an introduction about Stamicarbon is given. 

This chapter analyzes the stakeholders involved in the project, their interests, and their 

goals. The two main parties involved in the project are Stamicarbon and Eindhoven 

University of Technology. 

 

2.1    Stamicarbon 
Stamicarbon is the project owner. Stamicarbon has two interests as their key drivers 

for the project. The first interest is to shorten the learning curve for new engineers. 

New process engineers receive six month training courses to learn the domain and the 

company’s software tools. Stamicarbon is also interested in improving the productivity 

of process engineers. Process engineers use two separate text-based environments for 

designing urea plants. In order to achieve the aforementioned interests Stamicarbon 

envisions a new graphic-based environment for designing urea plants. 

 

The Stamicarbon stakeholders can be grouped in two categories: 

1) Process Control and Modelling Department: 

Process Control and Modelling Department 

Name  Role 

Rob Faessen 

Head of Department 

Project supervisor and owner. Member of the Progress 

Steering Group. Manages project progress and defines 

priorities and requirements. Provides knowledge about 

the existing software tools and extends the back-end code. 

Harry Welten 

Technical Software 

Engineer 

Provides knowledge about the existing software tools and 

is responsible for extending the back-end code. 

 

2) Process Engineering Department: 

Process Engineer Department 

Name  Role 

Chuanbo Gao 

Gijs de Jong 

Hoa Bui 

Harold Borkink 

Paz Munoz 

Rahul Patil 

Veronica Rivas 

Yuniyono Kho 

The actual users of the deliverable of the project. Provide 

feedback and request new features. 

 

2.2    Eindhoven University of Technology (TU/e) 
The Eindhoven University of Technology is responsible for the educational aspect of 

the project. The educational aspects of the project are related to the software design 

process, project implementation, project management, and risk management. That 

means certain standards have to be met. 

 

TU/e Stakeholders 

Name  Role 

Ad Aerts Ensures the quality and the deliverables of the project 

that are in line with the program standards. 
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Program Director of 

PDEng in Software 

Technology 

Mark van den Brand 

TU/e Supervisor 

Ensures quality of the design and the scientific aspect of 

the report. 

Yanja Dajsuren 
Program Director of 

PDEng in Software 

Technology 

Ensures the quality and the deliverables of the project 

that are in line with the program standards. 

Konstantinos Raptis 

PDEng Candidate 

Responsible for the design and the implementation of the 

project. In parallel, responsible for matching project re-

sults with company and university standards. 
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3.Problem Analysis 
 

 

In the previous chapter the stakeholders and their interests are mentioned. 

This chapter focuses on the problem that this project is trying to solve. First, there is 

an introduction about the project and the problem. Next, there is an introduction and 

brief explanation about how the process engineers interact with the text files, the text 

editor, and the flowsheet solver. Finally, reasons why a new tool for the process engi-

neers is needed, are given. 

 

3.1    Introduction 
The flowsheet design of a urea plant is an important step for the calculation of the heat 

and material balances that are needed for granting a license. New process engineers 

receive six month training courses in order to learn the domain and the company’s 

software tools. A process engineer on average can calculate the heat and material bal-

ances in five weeks. Stamicarbon is interested in ways that can shorten the learning 

curve of new engineers and improve the productivity of the process engineers. 

 

The information needed for the heat and material balances of a plant is stored in text 

files, for instance, in a text file the process engineers specify what heat and material 

balances will be calculated. The text files have two big downsides. The first is a rigid 

layout. The second is the limited overview that they provide to the process engineers, 

for example, the best way for a process engineer to find where a specific artifact is used 

is to search for the name of the artifact within the text. 

 

In order to create or edit a urea plant design and calculate the heat and material bal-

ances, the process engineers use two different tools. A text editor is a tool that the 

process engineers use for creating or modifying the structure and the state of a urea 

plant design. The flowsheet solver is the tool that the process engineers use for calcu-

lating the heat and material balances of a urea plant design. Tisflo is the name of the 

flowsheet solver that the process engineers use. 

 

This project aims at designing and implementing a tool that could be used both as an 

editor and as a flowsheet solver and it would provide visual representations of the dif-

ferent artifacts. Another aim of the tool is to allow the process engineers to work on 

small parts that could be reused between different designs. The tool aims to allow pro-

cess engineers to merge the different parts for the definition of a urea plant design. By 

providing a merge functionality, it would possible to allow the process engineers to 

work simultaneously on different parts of the same plant. In general, the new tool aims 

to improve the productivity and the overview that the process engineers have about the 

urea plant designs. 

 

3.2    Text files 
The text files contain the information needed for the calculation of heat and material 

balances. The information required is: 

 Process definition 

 Process determination 

 

The definition should include the following specifications: 

 Chemical components occurring in the process 

 Nodes involved and how they are linked 

 

The determination consists of: 

 Specification of known data 
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 Requirements 

 

The file extension of the text files is DAT. The text in the file has to follow a strict 

syntax and each character should be placed in a specific position. A text editor is a tool 

that the process engineers use for creating or editing text files. A process engineer can 

load a text file to Tisflo for calculating the heat and material balances. 

 

3.2.1.  Text files example 

For example, if a process engineer would like to calculate the heat and material bal-

ances of the flowsheet diagram as shown in Figure 4, then a text file with text similar 

to Figure 5 should be created. The text file can contain extra information, for instance, 

in Figure 5 two chemical components with names A and B are added. The two chem-

ical components are not visible from Figure 4. 

 

The biggest downside, as already mentioned, with the text files is the strict syntax the 

specific position that each character should have. A character in a wrong position al-

ways leads to an invalid file. Figure 6 shows an invalid file because the X of compo-

nent A from stream STR2 is not aligned in correct position. In addition, the names have 

a maximum size, for example, the stream names cannot have more than six characters. 

 

 

Figure 4 Flowsheet diagram with 2 nodes and 4 streams 

 

 

Figure 5 Textual representation of Figure 4 

 

Figure 6 Invalid textual representation of Figure 4 
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3.3    Text editor 
A text editor is a tool that process engineers use for creating or modifying the structure 

and the state of urea plant designs. The choice of the text editor is up to the process 

engineers. The text editor choice could vary from Notepad to more sophisticated text 

editors such as Notepad++ or UltraEdit. 

 

3.3.1.  Text editing example 

For example, if a process engineer would like to add a new incoming stream with name 

STR5 and 25 units of component B to the node N2, then the process engineer has to 

open with a text editor a text file that contains text similar to Figure 5 and modify it. 

Otherwise the process engineer could create a new text file from scratch. 

 

 

Figure 7 Flowsheet diagram with the addition of stream STR5 

 

 

Figure 8 Textual representation with the addition of stream STR5 

 

3.4    Tisflo 
Tisflo is the software tool used as a flowsheet solver. Tisflo is intended for use by 

process engineers for calculating the heat and material balances. The process engineers 

have to provide the information needed for Tisflo in a text file. 

 

Tisflo can be used for simulation, balancing of redundant data, and optimization [5]. 

 Simulation: calculation of a system without degrees of freedom. The system 

is determined by the combination of given information and requirements. The 

number of unknowns is equal to the number of equations. 

 Balancing: calculation of a system with redundant data (measured data); there 

is more information available than is necessary for solving all the equations. 

 Optimization: calculation of a system with degrees of freedom to which an 

object function has been added. In addition, constraints are also incorporated. 



 

14 
 

The program solves the problem in such a way that the conditions of all equa-

tions are satisfied, the constrained variables lie in their allowable range, and 

the object function is maximum. 

 

3.4.1.  Tisflo example 

In this section an example of how Tisflo works is presented. As mentioned, Tisflo can 

calculate the heat and material balances according the text files. In the example below 

stream matrixes present the information contained in the text files because they are 

easier to read. The stream matrix of the flowsheet diagram in Figure 4 is as Table 1 

shows. 

 

Table 1 Stream matrix 

Stream From Node To Node 

STR1  N1 

STR2 N1 N2 

STR3  N2 

STR4 N2  

 

Figure 5 shows that the flowsheet diagram has two chemical components with names 

A and B. The amount can represent a quantity in a specific unit, for instance, kg/h; 

however, it is omitted. If the amount is unknown an X is added. In the textual repre-

sentation a number before the X is required, although in the stream matrix we could 

skip this unnecessary information. 

 

Table 2 Stream matrix with chemical components A and B 

Stream From 

Node 

To 

Node 

Chemical Component 

A 

Chemical Component 

B 

STR1  N1 50  

STR2 N1 N2 X  

STR3  N2 50 70 

STR4 N2  X X 

 

In order to calculate the heat and material balances of Table 2 a process engineer has 

to load a text file into Tisflo and run the flowsheet problem. 

 

Table 3 Result of the stream matrix with chemical components A and B 

Stream From 

Node 

To 

Node 

Chemical Component 

A 

Chemical Component 

B 

STR1  N1 50  

STR2 N1 N2 50  

STR3  N2 50 70 

STR4 N2  100 70 

 

Results explanation: Every chemical component that goes into a node has to go out. In 

our case the 50 units of A that go into the node N1 from stream STR1 should go out 

via the stream STR2. The incoming units to node N2 are 50 units of A from stream 

STR2, 50 units of A and 70 units of B from stream STR3. The units that pass through 

stream STR4 should be 100 of A and 70 of B. 
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3.5    New tool 
When a process engineer is working on different plant parts it means that he or she is 

working on different text files. A complete plant can be a combination of text files 

defining different plant parts. However, different text files might have the same infor-

mation written in a different order. Text files could have a different order for the chem-

ical components. In case of a merge a process engineer decides which order to follow 

and modifies the text accordingly. In a merged file the naming of the different elements 

should be taken into consideration. A name that appears the same in two files means 

that either the name from one file must change or the name must be added only once 

in the merged file. The process engineer should also consider the predefined position 

of the characters. Errors can appear even with an extra space. Taking into consideration 

everything that is mentioned in this paragraph means that merging two text files is not 

an easy task, and that is the reason that usually only one process engineer works on a 

project. 

 

The text files also limit the overview that the process engineers have about the design. 

Having more complex flowsheet diagrams than the diagram shown in Figure 4, for 

instance, a diagram with 20 nodes and 100 streams, would require a considerable 

amount of time for the process engineers to understand which streams are connected 

to which nodes. 

 

Another downside of the current infrastructure is that the process engineers use two 

tools, one tool for editing the structure and another tool as a problem solver. If the same 

text file is opened with both tools then for every structure change made in text editor 

the changes would be reflected in the problem solver only if the file is reloaded. 

 

The original proposal for the new tool was the following: 

The new tool should be graphics-based and therefore should increase of the overview 

that the process engineers have about design. In order to eliminate the syntax errors 

and the errors caused from the predefined position of the characters in the text file the 

new tool should have forms that the process engineers could fill. The new tool should 

simplify how different plant parts can be merged. There are different designs that could 

be reused, for instance, there are four different reactors that the process engineers could 

choose for their design. The process engineers could reuse designs or work in parallel 

on different parts and decrease their scope if they could easily merge the different plant 

parts. Last but not least, the new tool should combine the editing and problem solving 

into one tool. 

 

The high level goals were: 

 Shorten the learning curve of the new engineers 

 Improve the productivity of engineers 

 

 

The project aimed to: 

 Increase the comprehension of the structure and the state of the flowsheet 

design 

 Decrease the number of errors made by the engineers 

 Allow the process engineers to use predefined reusable sections that can be 

merged 

 Allow the process engineers to work simultaneously on different plant parts 

 Integrate the editor and the solver into one tool 

 

3.6    Design Criteria 
In this section we introduce the design criteria that surround the software design of the 

project. The criteria are from a high level point of view and based on the problem that 

project is trying to solve. The three major criteria for the design are: 
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Usability 

The issues discussed in this chapter suggest a need for a tool that can improve process 

engineers’ productivity and shorten their learning curve. Usability should be addressed 

by means of making the product easy to understand and use. 

 

Navigability 

Navigability could improve the overview that the process engineers have about their 

design. The way that the process engineers interact with the diagrams and navigate 

between the different elements of the diagrams should be taken into consideration. 

 

Extensibility 

The design is a unified solution for editing and solving flowsheets. The new tool should 

be easily extendable with functionality that the process engineers might require in the 

future. 

 

 

Based on the design, the design criterion that is less applicable is: 

 

Simplicity 
Version management of visual representations is also more complex than version man-

agement of text because extra information is stored, such as the position, the size, and 

the color of the different elements. An experienced process engineer might require 

more time to edit visual representations compared to text. Last but not least, in the 

software design extra associations between the elements could be used in order to im-

prove the usability and navigability.   
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4.Domain Analysis 
 

 

In the previous chapter the problem analysis is discussed, which revealed the domain 

of the project, namely urea plant designs. 

This chapter gives a more detailed explanation about the domain and focuses on the 

relevant part of the solution of the problem. The following sections give a detailed 

view of the urea plant design from the point of view of a process engineer. 

 

4.1    Introduction 
This chapter describes what a process flow diagram is, what a process flow diagram 

contains, and how the process engineers calculate the heat and material balances. 

 

4.2    Process flow diagrams 
A process flow diagram is the conceptual layout of a plant. A process flow diagram 

displays equipment and relationships between the equipment of a plant. It also indi-

cates the general flow of chemical components between equipment in a urea plant de-

sign. 

 

 

Figure 9 Process flow diagram 

 

A process flow diagram that represents a complete urea plant can be decomposed into 

smaller parts that are called sections. Sections are responsible for a specific function 

in a urea plant. Some of the most common sections are 

 Synthesis 

 Low pressure recycle 

 Evaporation 

 Water treatment 

 Finishing 

 



 

20 
 

 

Figure 10 Synthesis section 

 
Each section consists of different equipment. Some of the most common pieces of 

equipment are 

 Reactor 

 Stripper 

 Carbamate Condenser 

 Scrubber 

 

Figure 11 Reactor in a urea process flow diagram 

 

The process flow diagram also displays the relationship between pieces of equipment 

of a plant. The relationship is described as stream. A stream contains a mixture of 

chemical components flowing from one piece equipment to the other. Stream is an 

abstraction of a pipe. Streams are used for structuring and decomposing the problem; 

therefore, a pipe in a plant may consist of more than one stream.  

 

Figure 12 Streams in a process flow diagram 

 

4.3    Heat and material balances calculation 
As described the information needed for the calculation of heat and balances is stored 

in text files. A text file may contain the information of a complete plant or a section or 
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a piece of equipment. Streams are responsible for physical property and chemical com-

ponent flow. A stream can be attached to up to two nodes (from node and to node). A 

node is a joint point with zero to many input and output streams. A piece of equipment 

can be represented as a set of nodes. 

 

The streams are responsible for physical property and chemical component flow.  

Examples of chemical components in a urea plant design are: 

 Urea (CH4N2O) 

 Ammonia (NH3) 

 Water (H2O) 

 Carbon dioxide (CO2) 

 

Examples of physical properties in a urea plant design are: 

 Temperature 

 Pressure 

 Enthalpy 

 

Each stream has variables equal to the number of chemical components and physical 

properties. The total number of variables is equal to the number of all the stream vari-

ables. The name of the variable is the stream name plus the chemical component or the 

physical property. A variable can be free or fixed. Fixed means that the value of the 

variables is given by the process engineers. Free means that the value is not known and 

it should be calculated for the problem solution from the flowsheet solver. 

 

A necessary rule for a flowsheet problem to be considered as determined is that the 

total number of equations must be equal to the free variables. If the number of variables 

is more or less than the number of equations, then the problem is considered as over-

determined or under-determined respectively. In a flowsheet all the chemical compo-

nents that go into a node must go out. 

 

4.3.1.  Heat and material balances calculation example 

The calculation of the heat and material balances is based on mathematical equations. 

The steam matrix of Table 4 has six variables; three are fixed and the other three free. 

The problem has three equations: 

STR1. H2O = 𝑆𝑇𝑅2.𝐻2𝑂 

𝑆𝑇𝑅2. 𝐻2𝑂 + 𝑆𝑇𝑅3.𝐻2𝑂 = 𝑆𝑇𝑅4.𝐻2𝑂 

STR3. CO2 = 𝑆𝑇𝑅4. 𝐶𝑂2 

 

The number of equations is equal to the number of free variables and the problem is 

determined. 

Table 4 Stream matrix with a determined problem 

Stream From 

Node 

To Node H2O CO2 

STR1  N1 50  

STR2 N1 N2 X  

STR3  N2 50 70 

STR4 N2  X X 

 

By changing the state of one variable from free to fixed or vice-versa, the problem 

would be over-determined or under-determined respectively. 
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Table 5 Stream matrix with an over-determined problem 

Stream From 

Node 

To Node H2O CO2 

STR1  N1 50  

STR2 N1 N2 X  

STR3  N2 50 70 

STR4 N2  X 80 

 

Table 6 Stream matrix with an under-determined problem 

Stream From 

Node 

To Node H2O CO2 

STR1  N1 X  

STR2 N1 N2 X  

STR3  N2 50 70 

STR4 N2  X X 

 

For the calculation of the heat and material balances the process engineers can specify 

the ratio between chemical components or between physical properties by using labels. 

For instance, Table 7 is equivalent to Table 4. 

 

Table 7 Stream matrix with labels 

Stream From 

Node 

To 

Node 

Labels H2O Labels CO2 

STR1  N1  50   

STR2 N1 N2  X   

STR3  N2 LB1 1 LB1 1.4 

STR4 N2   X  X 

       

Label Value      

LB1 50      

 

In the previous examples the equations are linear; however, in real plants non-linear 

equations are being used. The process engineers can create their own models or use 

existing thermodynamic-models that are available in the flowsheet solver. Each model 

contains one or more non-linear equations and a convergence criterion. If the equation 

residual value is greater than the value in the convergence criterion then the equation 

is not converged. In case the equation is not converged the process engineers may need 

to conduct more than one iteration in a simulation until all the non-linear equations are 

converged. 

 

Example of a non-linear equation with four variables is 

 

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = (𝐶 ∗ 𝐷) − (2.2 ∗ 𝐴 ∗ 𝐵) 
 

An example of a converge criterion is 

0.001 ∗ |𝐶| ∗ |𝐷| 
 

It is possible that an equation will never converge. In this case the process engineers 

have to change the initial values of the variables or add extra information to the param-

eters. For instance, the process engineers could add a maximum or a minimum value 

of the variable in order facilitate convergence.  

 

Apart from the variables that are related to actual streams and to chemical components 

or to physical properties, there are other types of variables that the process engineers 
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can use. Those variables are named as auxiliary variables and are used in the thermo-

dynamic-models for simulation and optimization of the urea plant designs. 
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5.Feasibility Analysis 
 

 

After explaining the problem and domain analysis, a feasibility analysis is performed 

in order to identify potential issues and challenges as well as potential risks that may 

arise or exist. This chapter describes issues and risks identified and presents their mit-

igation strategies. 

 

5.1    Potential issues and challenges 
Working on a project that combines more than one domain is challenging. In this pro-

ject, an understanding of the terminology used by process engineers and a basic under-

standing of how a urea plant is designed is required. Domain knowledge can be gained 

by reading documents; however, there are cases that the existing documentation is poor 

or uses outdated terminology. Another way of gaining the knowledge needed is by 

discussing with process engineers, although proper language is required in order to 

prevent miscommunication. People from different domains might use the same termi-

nologies for completely different purposes. For example, the word model for a soft-

ware engineer could mean the software model, although for a process engineer could 

mean the thermodynamic model. 

 

5.2    Potential risks 
Several risks are identified within this project. The risk management is applied from 

the first months of the project. There are two different types of risk: the process related 

risks and the technical related risks. The description of the risks is written together with 

their impact on the end result and probability of appearance in the project. 

 

The meaning of the values of the impact on the end result and the probability of ap-

pearance based on relative importance is: 

1. Limited 

2. Low 

3. Moderate 

4. High 

5. Extreme 

 

The last column of the table is corresponding to the mitigation strategy.  
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Table 8 Process risks 

ID Description Impact 

(1-5) 

Probability 

(1-5) 

Mitigation Strategy 

RP1 Conflicting opinion between the stake-

holders about the end product. 

3 4 A demonstration with the progress of end product with all the stakeholder present shall be 

made. At the end of the presentation a decision shall be made according to the time given.  

RP2 Not all the requirements can be met given 

the time constraints. 

4 5 Prioritize the requirement with the stakeholders. Requirements with medium or low prior-

ity might be carried on as a future work. 

RP3 Stakeholder unavailability 5 3 Organize meetings in advance. Communicate regularly and upfront about the new func-

tionality needed for the project. 

RP4 Extension of the back-end API by stake-

holder is slower than expected 

5 2 Inform the stakeholder on-time about the new functionality needed. Work on other tasks 

from the backlog. 

RP5 A file containing a complete urea plant 

design suitable for performance test appli-

cation is not given on time 

4 3 Performance test of the application with smaller sections shall be made every time a new 

functionality is added. Inform the stakeholder on time about the concern.  

 

 

Table 9 Technical risks 

ID Description Impact 

(1-5) 

Probability 

(1-5) 

Mitigation Strategy 

RT1 Process engineers might prefer textual 

based editing instead of graphical-based 

editing 

3 3 The meta-model shall be easily extendable with textual based editors 

RT2 Back-end API does not return expected 

values 

5 3 Test cases could automate the verification procedure. Inform the stakeholders about the 

issues identified. 

RT3 New releases of the development environ-

ment 

2 5 Read documentation about new features and check whether the new features are could ad-

vocate the development of the project. Check for backwards compatibility before migrat-

ing. 
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RT4 The performance of the new tool on spe-

cific tasks is significant slower than the 

previous tools 

5 3 Identify the root of the problem. Try to optimize the code of the tool. If the problem exists 

because of the technology used inform the community about the issue.  Finally try imple-

ment workarounds. 
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6.System Requirements 
 

 

In the previous chapters the problem and the domain are defined. 

This chapter describes the functional and non-functional requirements that have to be 

satisfied by the project. 

 

6.1    Requirements gathering process 
The problem and domain analysis revealed core parts that this project aims to imple-

ment. However, in order to narrow the project scope requirements should be defined. 

Well defined requirements aim to further decompose the problem into small and trace-

able sub-problems. The requirements phase occurred in parallel with the software de-

velopment activities. There were two main phases in the process: 

 High-level requirements and use cases: This phase started at the beginning 

of the project and lasted for two months. The main focus of this stage was to 

define the technology constraints and necessary system use cases. 

 Detailed requirements: This phase focused on more concrete requirements 

according to the previous high-level requirements. The requirements were de-

fined on biweekly iterations during the sprint planning. The agile way of 

working aimed at a prototype at the end of each iteration. 

 

The requirements were discussed with the involved stakeholders. The following four 

categories are defined as the priority according to the MoSCoW method [6]: 

1. Must – A requirement that the project must fulfill 

2. Should – A requirement that is important, but the project success does not 

rely on it 

3. Could – A requirement that is desirable but not necessary 

4. Would – A requirement that is the least-critical 

 

6.2    High-level requirements and use cases 
The high-level requirements and use cases are based on the project aims and goals as 

mentioned in Section 3.5   Stamicarbon wants to change the way that the process en-

gineers work from text-based to graphics-based. The new tool should allow process 

engineers to load and combine sections in order to gradually construct a complete urea 

plant. The new tool should also integrate the editor and the flowsheet solver function-

ality. Finally, the new tool should be a standalone application. 

 

6.2.1.  Use cases 

Six main use cases are identified from the high-level requirements, namely create flow-

sheet canvas, load section, view section variables, modify section variables, merge sec-

tions, and simulate flowsheet. 
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Figure 13 Main use cases 

 

Table 10 Create flowsheet canvas use case specification 

Create flowsheet canvas use case specification 

Use Case Name Create flowsheet canvas. 

ID UC1 

Description A process engineer wants to create a new 

flowsheet canvas. 

Actors Process engineer 

Pre-conditions  Application is open. 

Basic Flow 1. User selects new Tisflo project. 

2. User inserts the project name and 

presses finish. 

Post-conditions  An empty flowsheet canvas is cre-

ated and displayed to the user. 

Alternate Flows       2a. Project name exists. 

        2a1. User has to type another name. 

 

Table 11 Load section use case specification 

Load section use case specification 

Use Case Name Load section. 

ID UC2 

Description A process engineer wants to load a sec-

tion in the flowsheet canvas. 

Actors Process engineer 

Pre-conditions  A flowsheet canvas is displayed 

to the user. 

Basic Flow 1. User selects load section. 

2. User selects a DAT file. 

Post-conditions  A section with all the available 

diagrams is created on flowsheet 

canvas. 

 All section elements and their 

diagrams are created. 

uc Use cases

System

Process Engineer Modify v ariable 

v alue

Merge sectionsSimulate flowsheet

Load section

View v ariables of a 

section

Create flowsheet 

canv as
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Alternate Flows       1a. User selects load predefined sec-

tion. 

      2a. User selects a DAT file. 

 

Table 12 View variables of a section use case specification 

View variables of a section use case specification 

Use Case Name View variables of a section. 

ID UC3 

Description A process engineer wants to view the var-

iables of a section. 

Actors Process engineer 

Pre-conditions  A flowsheet canvas with one or 

more sections is displayed to 

the user. 

Basic Flow 1. User selects a section. 

2. User selects the section varia-

bles diagram. 

Post-conditions  A table diagram with all the sec-

tion variables is displayed. 

Alternate Flows       1a. User selects the flowsheet canvas. 

      2a. User selects the flowsheet varia-

bles diagram. 

      2a. User navigates to the section. 

 

Table 13 Modify variable value use case specification 

Modify variable value use case specification 

Use Case Name Modify variable value. 

ID UC4 

Description A process engineer wants to modify the 

value of a variable. 

Actors Process engineer 

Pre-conditions  A diagram with variable is dis-

played to the user. 

Basic Flow 1. User selects the value of a vari-

able from the table diagram. 

2. User inserts a new value. 

Post-conditions  The value of a variable has 

changed. 

Alternate Flows  

 

Table 14 Merge sections use case specification 

Merge sections use case specification 

Use Case Name Merge sections. 

ID UC5 

Description A process engineer wants to merge two 

sections. 

Actors Process engineer 

Pre-conditions  A flowsheet canvas with two or 

more sections is displayed to the 

user. 

Basic Flow 1. User selects the stream con-

nector. 

2. User selects an output stream of 

a section. 
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3. User selects an input stream of 

another section. 

4. User selects merge sections. 

5. User selects the folder that the 

merged section will be saved. 

6. User inserts a name for the new 

section. 

Post-conditions  Sections are merged and sorted in 

a new DAT file. 

Alternate Flows  

 

Table 15 Simulate flowsheet use case specification 

Simulate flowsheet use case specification 

Use Case Name Simulate flowsheet. 

ID UC6 

Description A process engineer wants to simulate the 

flowsheet. 

Actors Process engineer 

Pre-conditions  A flowsheet canvas with one or 

more sections is displayed to 

the user. 

Basic Flow 1. User selects simulate. 

2. User inserts number of itera-

tions. 

Post-conditions  A message if the flowsheet is 

converged or not is displayed. 

 The variable values have 

changed. 

Alternate Flows  

 

6.2.2.  Technology constraints 

The technology stack was defined at the beginning of the project by the stakeholders.  

Eclipse is the development tool picked by the stakeholders. The usage of two Eclipse 

tools was also defined at the beginning of the project. The Eclipse Modeling Frame-

work (EMF) is the first tool that the stakeholders picked for defining the vocabulary 

(concept, relations, and properties) of the application. Eclipse Sirius is the second tool 

that the stakeholders picked for visual representations of the application. The stake-

holders also envisioned that the product should run as a standalone application outside 

Eclipse. 

 

The programming language that the stakeholders picked for the application is Java. 

Finally, the Java Native Interface (JNI) picked by the stakeholders in order to enable 

Java code to call C++ functions of the kernel. 

 

Stamicarbon implemented a proof of concept of the application before the beginning 

of this project using the aforementioned technology stack. 

 

6.3    Detailed requirements 
This section presents more concrete requirements that were decided during the sprint 

planning. The detailed requirements are split in two categories, namely the user func-

tional requirements and the system functional requirements. The user functional re-

quirements are from the process engineer perspective and apply to parts visible to the 

end users of the application. The system functional requirements describe the behavior 

that the application should satisfy.  
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6.3.1.  User functional requirements 

Each user functional requirement has and ID, a short description, and an assigned pri-

ority according to the MoSCoW method. 

 

Table 16 User functional requirements 

ID Description Priority 

UFR1 A user shall be able to create a flowsheet canvas M 

UFR2 A user shall be able to load DAT files in a flowsheet 

canvas 

M 

UFR3 A user shall be able to load predefined sections in the 

flowsheet canvas 

S 

UFR4 A user shall be able to view in diagrams all the infor-

mation retrieved from a DAT file 

M 

UFR5 A user shall be able to modify the variables of a sec-

tion 

M 

UFR6 A user shall be able to modify the labels of a section M 

UFR7 A user shall be able to simulate the flowsheet M 

UFR8 A user shall be able to view the simulated results M 

UFR9 A user shall be able to specify the number of itera-

tions 

S 

UFR10 A user shall be able to modify section variables while 

the simulation is running 

S 

UFR11 A user shall be able to merge sections by connecting 

streams 

M 

UFR12 A user shall be able to navigate inside a section M 

UFR13 A user shall be able to auto arrange the size and the 

position of the elements 

W 

UFR14 A user shall be able to use hotkeys for merging and 

simulating 

C 

 

6.3.2.  System Functional requirements 

Each system functional requirement has an ID, a short description, and an assigned 

priority according to the MoSCoW method. 

 

Table 17 System Functional Requirements 

ID Description Priority 

SFR1 The DAT files shall be identified as sections by the 

system 

M 

SFR2 The system shall generate unique names for each sec-

tion 

M 

SFR3 The system shall be able to store information, which 

is used by process engineers, in a DAT file 

M 

SFR4 The system shall generate automatically all the visual 

representations 

M 

SFR5 The system shall present the sections with a prede-

fined image according to their type 

M 

SFR6 The system shall map the kernel instances to the 

model instances 

M 

SFR7 The system shall be able to simulate the flowsheet M 

SFR8 The system shall display the streams with different 

color according to their flow 

S 

SFR9 Test cases that verify the returning values of the ker-

nel shall be created 

C 

SFR10 The system shall be able to run as a standalone appli-

cation 

M 
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SFR11 The system shall synchronize the model instances 

with the kernel instances 

S 

SFR12 The system shall track when a variable changes from 

free to fixed or the opposite 

S 

SFR13 The system shall display error and warning messages 

to the users 

S 

 

6.4    Non-functional requirements 
In this section, the non-functional requirements of the project are listed. The non-func-

tional requirements derived from the two main goals of the project, namely shorten the 

learning curve of the new engineers and improve the productivity of engineers. 

 

6.4.1.  Ease of use 

In order to shorten the learning curve of the new engineers and improve the productiv-

ity of engineers, the system shall be easy to use. The tool shall be easier to use than the 

tools that the process engineers were using before the start of this project. Metrics that 

could be used to quantify the ease of use of the tool are: 

 Time required to learn how to use the tool 

 Time required to learn all the tool features 

 Time required to create a new urea plant design 

 

6.4.2.  Performance 

The system shall respond reasonably fast to the process engineer requests. The perfor-

mance shall be comparable to the tools that the process engineers were using before 

the start of this project. Metrics that could be used to quantify the performance of the 

tool are: 

 Time required to create the model instances 

 Time required to open the diagrams 

 Time required to edit the model element instances 

 Time required to simulate a flowsheet 

 

6.4.3.  Extensibility 

The system shall be open to addition or modification of functionality and features. 

Metrics that could be used to quantify the extensibility of the tool are: 

 Effort required to create or modify visual representations 

 Effort required to integrate new components or plug-ins 
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7.System Architecture 
 

 

In the previous chapters the problem and the requirements are defined. 

This chapter elaborates on the architectural reasoning and relevant decisions based on 

the requirements. This chapter also presents a comparison between the envisioned sys-

tem architecture and the old architecture.  

 

7.1    Architecture before this project 
This section describes how the different components were organized before the start 

of this project. As already described in the problem analysis in Chapter 3, before the 

beginning of this project, the process engineers were using two applications, a flow-

sheet solver and a text editor. 

 

 

Figure 14 Information flow before this project 

 

With a text editor it is possible to open a flowsheet definition contained in a DAT file. 

A text editor can be used to modify the structure of a flowsheet. A text editor can also 

be used to create a flowsheet from scratch. 

 

On the other hand, with the flowsheet solver it is possible to open a flowsheet definition 

contained in a DAT file. A flowsheet solver cannot modify the structure of a flowsheet; 

however, it can calculate the heat and material balances of a flowsheet. 

 

On the front-end layer of the flowsheet solver, there is a user interface, which is written 

in Visual Basic. On the back-end and hidden from the process engineers there are a 

kernel and thermodynamic libraries, both written in FORTRAN. The kernel and the 

thermodynamic libraries are the components that handle the calculation of the heat and 

material balances. 

 

cmp Old Architecture Infromartion Flow
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Flowsheet solv er

flowsheet definition

«flow»
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«flow»

flowsheet definition

«flow»
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Figure 15 Flowsheet solver architecture before this project 

 

7.2    Architecture decision 
The starting point for the design of the system architecture is the choice for a suitable 

architectural pattern. An architectural pattern is a general and reusable abstract frame-

work that could be used for solving a commonly occurring problem. The decision for 

the ideal architectural pattern is typically based on the high-level requirements, tech-

nology constraints, and on the non-functional requirements. 

 

The two main requirements of the product are stated in Section 6.2    The first is to 

change the way of working from text-based to graphics-based. The second is to com-

bine the editor and the solver into one tool. The technology for the implementation of 

the project, as stated in Section 6.2.2.  was defined at the beginning of the project by 

the stakeholders. 

 

7.3    Plug-in architecture 
According to the technology chosen by the stakeholders, namely Eclipse, the plug-in 

architecture is the most suitable for the project. The main reason is that everything in 

Eclipse is a plug-in, with the exception of a small runtime kernel [7]. A plug-in requires 

an extension point to plug into in order to function. The most important plug-in that 

provides extension points that allow a user to create plug-ins is the Eclipse platform 

plug-in. 
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7.3.1.  Eclipse platform plug-in 

The Eclipse platform defines the set of frameworks and common services that collec-

tively make up the infrastructure required to support the use of Eclipse as a component 

model, as a Rich Client Platform (RCP) and as a comprehensive tool integration plat-

form. These services and frameworks include a standard workbench user interface 

model and portable native widget toolkit [8]. 

 

The Workbench component contains extension points that allow the user plug-ins to 

extend the Eclipse user interface with menu selections and toolbar buttons, to request 

notification of different types of events, and to create new views. The Workspace com-

ponent contains extension points that allow users interact with resources, including 

projects and files [7]. 

 

The Help component allow users to provide documentation and context-sensitive help 

in their application. The help documentation could help the end users of the applica-

tion; however, it does not have essential functionality. The Debug component allow 

the user plug-ins to launch a program, interact with the running program, and handle 

errors. Finally, the Team component allows Eclipse resources to interact with version 

control systems [7]. 

 

 

Figure 16 Eclipse architecture 

 

7.3.2.  Plug-in architecture advantages 

Plug-in based architectures are ideal for the development of applications that are mod-

ular, customizable, and easily extensible. The different plug-ins in the system provide 

a higher level of abstraction and divide the problem into sub-problems. For example, 

a plug-in is a separate module that can isolate and solve a specific problem. With a 

plug-in based architecture, it is possible to create a different version of an application 

without source code modifications. Another advantage of the plug-in based architec-

ture is the development of additional features. New features can be created without any 

change on the original application. 

 

7.4    Architecture of the project 
This section describes the different plug-ins and components of the project. It also pre-

sents the information flow between the application and the data files. 

 



 

42 
 

 

Figure 17 High-level architecture of this project 

 

7.4.1.  Meta-model plug-in 

Eclipse modeling framework (EMF) is the tool picked for the definition of the domain 

model. In the case of the project, the flowsheet solving. The domain model contains 

the business vocabulary (concept, relations, properties) needed for the application. 

EMF is a modeling framework and code generation facility for building tools and ap-

plications based on a structured data model. EMF provides tools and runtime support 

to produce a set of Java classes for the model, along with a set of adapter classes that 

enable viewing and command-based editing of the model, and a basic editor [9]. The 

Tisflo meta-model plug-in is a set of three plug-ins, the Tisflo plug-in, the Tisflo edit 

plug-in, and the Tisflo editor plug-in. The Tisflo plug-in contains the meta-model de-

scription. The Tisflo edit plug-in and the Tisflo editor plug-in are automatically gener-

ated according to the meta-model description. Therefore, for simplicity reasons, the 

combination of all three plug-ins is identified as the Tisflo meta-model plug-in. 

 

7.4.2.  Sirius plug-in 

Eclipse Sirius is that tool that the stakeholders picked for visual representations of the 

application. Sirius is an Eclipse project, which allows the creation of graphical model-

ing workbenches by leveraging the Eclipse Modeling technologies. A modeling work-

bench created using Sirius is composed of a set of Eclipse editors (diagrams, tables, 

and trees), which allow the users to create, edit, and visualize EMF instance models. 

The editors are defined by a model, which defines the complete structure of the mod-

eling workbench, its behavior, and all the edition and navigation tools. This description 

of a Sirius modeling workbench is dynamically interpreted by a runtime within the 

Eclipse IDE [10]. 

 

7.4.3.  RCP 

The stakeholders envisioned that the product should run as a standalone application. 

The standalone application must combine the editor and the flowsheet solver function-

ality. In Eclipse in order to fulfill that requirement, a Rich Client Platform (RCP) 
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should be created. As explained, the Eclipse platform is designed to serve as an open 

tool platform. It is architected so that its components could be used to build client ap-

plication. The minimal set of plug-ins needed to build a standalone application is col-

lectively known as the Rich Client Platform [11]. 

 

7.4.4.  Branding plug-in 

A RCP based application without branding looks similar to a default Eclipse applica-

tion. By creating a branding plug-in it is possible to change the appearance of the ap-

plication. For example, with a branding plug-in it is possible to change the application 

icon and splash screen from the default provided by Eclipse to one that is more relevant 

for the application. The branding of the application could also be used for hiding but-

tons or menu options, provided by default from the Eclipse platform, which is more 

relevant to software engineers rather than process engineers [12]. 

 

7.4.5.  Back-end components 

The communication interface between the Eclipse plug-ins and the back-end is called 

TISjapi. The kernel in the graphical-based Tisflo did not remain the same; the imple-

mentation of the kernel changed from FORTRAN code to C++ code.  The functionality 

of the kernel remained the same; however, new API calls to extend the kernel were 

defined. The design and implementation of the kernel and the thermodynamic libraries 

are not part of this project. 

 

7.4.6.  Data files 

In order to satisfy the requirements the application remained compatible with the DAT 

files that are being used on the applications of the previous architecture. In addition to 

the DAT files, it is visible in Figure 18 that a new file format, XMI, is also supported. 

XMI (XML Metadata Interchange) is a standard for exchanging metadata information 

via Extensible Markup Language (XML). The XMI files of the application are auto-

matically generated from the serialization that takes part in the Tisflo meta-model plug-

in and in the Tisflo Sirius plug-in. The information that is stored in the XMI files is a 

superset of the information stored in the DAT files. Additional information of the XMI 

files is extra associations between elements for easier navigability, information of how 

an element is visually represented, and where the element is located on a particular 

diagram. 

 

 

Figure 18 Information flow of the project 
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8.System Design and Implemen-

tation 
 

 

In the previous chapter the high-level architecture of the system is defined. 

This chapter decomposes the high-level architecture into a detailed design. This chap-

ter elaborates on the system design and the implementation. 

 

8.1    Introduction 
The system design is explained by utilizing the 4+1 view model. The 4+1 view model 

is designed by Philippe Kruchten [13] and it is being used for describing software-

intensive systems, based on the use of multiple, concurrent views. The views are used 

to describe the system from the viewpoint of different stakeholders, such as end-users 

and developers. The four views of the model are: 

 Logical view – Describes the structure (object model) of the design. UML 

diagrams to represent the logical view include class diagrams and object dia-

grams. The logical view is mandatory when using the 4+1 views. 

 Process view – Describes the run-time behavior of the system. UML diagrams 

to represent to the process view include activity diagrams and sequence dia-

grams. The process view is optional when using the 4+1 views. 

 Development view – Describes the static organization of the system. UML 

diagrams to represent the development view include component diagrams and 

package diagrams. The development view is optional when using the 4+1 

views. 

 Physical view – Describes how the software is mapped to the hardware. The 

deployment view is optional when using the 4+1 views. 

 

The fifth view is the use-case or scenario view. The use-case view describes the func-

tionality of the system and its users. The main use-cases of the system were defined in 

Section 6.2.1.  The use-case view is mandatory when using the 4+1 views. 

 

 

Figure 19 4+1 view model 
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8.2    Logical view 
The logical view describes the structure of the design. The logical architecture primar-

ily supports the functional requirements – what the system should provide in terms of 

services to its users. 

 

8.2.1.  Meta-model 

As introduced in the previous chapter, the EMF is a modeling framework and code 

generation facility for building tools and applications based on a structured data model. 

The meta-model of the EMF is aligned with the Meta-Object Facility. The Meta-Object 

Facility (MOF) is an Object Management Group (OMG) standard for Model-driven 

engineering (MDE) [14]. 

 

 

Figure 20 Meta-Object Facility layers example 

 

MOF is designed as a four-layered architecture. It provides a meta-meta model at the 

top layer, called the M3 layer. This M3-model is the language used by MOF to build 

meta-models, called the M2-models. The M2-models describe the elements of the M1-

layer, and therefore M1-models. The last layer is the M0-layer or data layer. It is used 

to describe real-world objects. 

 

The meta-model of the system is designed based on the domain analysis in Chapter 4. 

The meta-model of the system captures all the elements needed for flowsheet solving. 

A model is a concrete instance of the meta-model. The model instances are created 

according to the kernel. The kernel is the component that is responsible for the parsing 

of the DAT files. The kernel is also responsible for the calculation of the heat and 

material balances. A part of the meta-model is presented in Figure 21. The complete 

meta-model is presented in Appendix A: The complete meta-model.
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Figure 21 Part of the meta-model





 

49 
 

The root class of the meta-model is called a flowsheet. The flowsheet has a name and 

a handle. The handle is a transient attribute that stores the memory location of the 

flowsheet that is created by the kernel. A transient attribute is not serialized. The oper-

ation createFlowsheetSection has one input parameter. The input parameter is the file 

path of the DAT file. The operation createFlowsheetSection calls a JNI function. The 

JNI function calls a kernel function that parses a DAT file and creates instances of all 

the DAT file elements in the kernel. Next, inside the createFlowsheetSection operation 

there are other JNI functions that query the kernel and create the model instances (see 

Section 8.3.1.  ). This approach was used for the instantiation of the model because: 

 The application needed to support the DAT files and the kernel already had a 

DAT file parsing mechanism. 

 The kernel handles the calculation of the heat and material balances and there-

fore the kernel should also have instances of the elements of a DAT file. 

 The kernel does not support functions to create all the elements that are 

needed for the calculation of the heat and material balances. Therefore a pars-

ing DAT file mechanism on the Tisflo meta-model plug-in would not work. 

 

The flowsheet instance can contain zero or more sections. For every DAT file that is 

loaded in the flowsheet a section is created. Every DAT file is considered as a section. 

A section can be a small segment of a plant or even the complete plant. A section has 

a name and a type. According to the type a section has different visual representations. 

Each section also has a handle. Similarly to the flowsheet class, the handle is a transient 

attribute. The handle stores the memory location of the section that is created by the 

kernel. The handle is used as an input parameter in the JNI functions in order to query 

or set values to the kernel for a section or for elements contained by a section. 

 

On the top part of every DAT file the stream items (the chemical components, the 

physical properties, and the total) are defined. The stream items are almost the same in 

every DAT file. For reusability reasons the stream items could be contained by the 

flowsheet; however, the order (the position) that the stream items are specified in the 

DAT file is important. The position of the stream items might differ from DAT file to 

DAT file. The kernel cannot merge sections that have the stream items in a different 

order, although in the future it is expected that it would. In order to serialize the posi-

tion of the stream items; the stream items are contained by the section class. 

 

Next, in the DAT file, the nodes, the streams, the stream variables, and the labels are 

specified. As explained in Chapter 4, a node is a joint point with zero to many input 

and output streams. A stream can be connected with one or two nodes. Streams that 

are connected with one node are either an input or an output stream of a section. Output 

streams of a section can be connected with input streams of another section. In order 

to prevent connections between output streams with input streams that do not have 

identical stream items, a hash attribute is used. The value of the hash is based on the 

items defined in a stream. An output stream can be connected with an input stream 

with the same hash. The attribute synchronized on the label class is a transient attribute 

and it is used for the synchronization of the model instances with the kernel instances. 

More details about the synchronization will be provided later on this chapter. 

 

All the variables have a value and it is specified if it is free or fixed. However, a vari-

able could have additional information, for instance, a step size value, a step size per-

centage, a minimum value, and a minimum percentage. The additional information of 

a variable is rarely used.  According to the DAT files used while the application was 

developed fewer than 5% of the total number of variables have additional information. 

Since the majority of the variables do not have additional information in the initial 

design there was another class called an additional information and it was contained 

by the variable class. With that approach fewer queries to the kernel had to be made 

and less information had to be serialized. However, the kernel stores additional infor-

mation for all the variables, for example, if the minimum value of a variable is not 

specified in a DAT file, then the kernel stores the lowest value of type double as the 

minimum value of that variable. In order to reflect the kernel instances in the model 
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instances all the additional information of a variable is added as attributes of a variable. 

Finally, an extra attribute called a synchronized is added in the meta-model. Synchro-

nized is a transient attribute and it is used for the synchronization of the model in-

stances with the kernel instances (see Section 8.2.2.   

 

To sum up, the meta-model represents the different elements of the DAT files. The 

model instances are created in a way that they can represent the kernel instances. The 

same principles are applied for the rest of the meta-model that is presented in Appendix 

A: The complete meta-model. 

 

8.2.2.  Synchronization of the model instances with the ker-
nel instances 

As already explained the instances in the kernel are created by parsing DAT files. The 

first time that a section is loaded on the flowsheet the model instance elements are 

created by querying the kernel. The model instance and its non-transient attributes are 

serialized in XMI files when saving the model instance. Every time that a flowsheet is 

reloaded the model instances are created according the information that is available in 

the XMI files (without querying the kernel) and the kernel instances are created ac-

cording the information that is serialized in the DAT files. 

 

While the application is running any change made in the model instance is reflected in 

the XMI files and in the kernel; however, the DAT files remain the same. A DAT file 

is modified when the user of an application decides to save the changes made in a DAT 

file. In case that there is a crash on the computer or on the application, or if the user 

decide to exit the application without saving the changes in the DAT file, there will be 

inconsistency between the DAT file and the XMI file. It is worth to mention that even 

if there was a mechanism that auto-updates the DAT files it would not work as a solu-

tion to the problem. The reason is that the kernel cannot serialize all the information 

needed in the DAT files. 

 

In order to synchronize the model instances and the kernel instances a monitoring ser-

vice is created. The monitoring service extends the org.eclipse.emf.common.no-

tify.impl.AdapterImpl class. Every time that a flowsheet is reloaded the monitoring 

service modifies the kernel instances according to the model instances and sets the 

transient attribute synchronized as true. This approach allows the synchronization of 

the model instances with the kernel instances; however, it is not possible to change the 

naming of the elements or the structure of the flowsheet design. For instance, if the 

labels in an XMI file have different names from the labels in a DAT file then the syn-

chronization would not work. It is possible to overcome such a constraint if the kernel 

instances are created by parsing the XMI files or if new JNI functions are implemented 

that would allow the creation of all the kernel instances. 

 

8.2.3.  Sirius 

Sirius is an Eclipse project which allows the creation of graphical modeling work-

benches by leveraging EMF. Sirius allows users to specify representation for their do-

main models. Representation can be diagrams, tables, matrices (cross-tables) or hier-

archies (trees). Representation can be organized in viewpoints. Viewpoints are defined 

in Viewpoint Specification Models and they are specified as models inside Viewpoint 

Specification Projects. Viewpoint Specification Projects (VSPs) are Eclipse plug-in 

projects, which contain one or more *.odesign files (the extension used for Viewpoint 

Specification Model). By convention, the VSM (or VSMs) defined in a project are 

stored inside a folder called a description [15]. 

 

In this project the visual representations created with Sirius involve the UI that the 

users of the application interact with. In the Tisflo Sirius plug-in one VSP and one 

VSM are created. Representations for the flowsheet, the sections, the streams, and the 

eclipse-javadoc:%E2%98%82=tisflo/C:%5C/Users%5C/KRaptis%5C/Desktop%5C/eclipse%5C/plugins%5C/org.eclipse.emf.common_2.13.0.v20170609-0707.jar%3Corg
eclipse-javadoc:%E2%98%82=tisflo/C:%5C/Users%5C/KRaptis%5C/Desktop%5C/eclipse%5C/plugins%5C/org.eclipse.emf.common_2.13.0.v20170609-0707.jar%3Corg.eclipse
eclipse-javadoc:%E2%98%82=tisflo/C:%5C/Users%5C/KRaptis%5C/Desktop%5C/eclipse%5C/plugins%5C/org.eclipse.emf.common_2.13.0.v20170609-0707.jar%3Corg.eclipse.emf
eclipse-javadoc:%E2%98%82=tisflo/C:%5C/Users%5C/KRaptis%5C/Desktop%5C/eclipse%5C/plugins%5C/org.eclipse.emf.common_2.13.0.v20170609-0707.jar%3Corg.eclipse.emf.common
eclipse-javadoc:%E2%98%82=tisflo/C:%5C/Users%5C/KRaptis%5C/Desktop%5C/eclipse%5C/plugins%5C/org.eclipse.emf.common_2.13.0.v20170609-0707.jar%3Corg.eclipse.emf.common.notify
eclipse-javadoc:%E2%98%82=tisflo/C:%5C/Users%5C/KRaptis%5C/Desktop%5C/eclipse%5C/plugins%5C/org.eclipse.emf.common_2.13.0.v20170609-0707.jar%3Corg.eclipse.emf.common.notify
eclipse-javadoc:%E2%98%82=tisflo/C:%5C/Users%5C/KRaptis%5C/Desktop%5C/eclipse%5C/plugins%5C/org.eclipse.emf.common_2.13.0.v20170609-0707.jar%3Corg.eclipse.emf.common.notify.impl
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auxiliary streams are created. The main diagram where process engineer can load and 

view sections is called a flowsheet canvas. 

 

In order to increase the navigability options and to provide all the necessary infor-

mation in the diagrams, extra associations are added in the meta-model. For example, 

in the meta-model there is a bi-directional reference between the stream variable and 

the label. The flowsheet solving domain could be captured with a simple reference 

from the stream variable to the label; however, in order to provide more detailed dia-

grams to the process engineers a bi-directional reference is added. With this approach 

the process engineers can view a diagram with all the stream variables that are attached 

to a label. Such a diagram is not required for the flowsheet solving, although it in-

creases the navigability options and the overview about the flowsheet design. 

 

8.3    Process view 
The process view describes how the run-time system is structured as a set of elements 

that have run-time behavior and interactions. The process architecture takes into ac-

count some non-functional requirements, such as performance and availability. The 

process view is typically explained through sequence and activity diagrams. 

 

8.3.1.  Creation of the model instances 

In the application all the model instances, apart from the root instance, are created 

automatically when a user initiate an action and loads a DAT file on the flowsheet 

canvas. The initial name of a section is equal to the name of the DAT file. The kernel 

can simulate a flowsheet only if the section names are unique. Therefore a function 

that generates unique section names is implemented. 

 

After a unique name for the section is generated the system calls the JNI function cre-

ateFlowsheet. The function createFlowsheet can create a flowsheet or a section in-

stance in the kernel (in the kernel there is no distinction between a flowsheet and a 

section). The memory location of the kernel instance is returned. Next, a function with 

name loadFlowsheetProblem sends the location of the DAT file to the kernel. The ker-

nel parses the file and creates the kernel instances. Afterwards, there are JNI functions 

that query the kernel and create the model instance elements of a section. 

 

The model instance elements can have associations between each other. For instance, 

a stream variable is associated with zero or one stream item and with zero or one label. 

In order to associate the instance elements with each other two approaches can be fol-

lowed. The first approach implies that each stream variable shall query all the section 

stream items and all the section labels, until it finds the desired one. The second ap-

proach implies that every time that an instance element (that may have association with 

other instance elements) is created is added in a HashMap. In the second approach the 

association can be made by getting the desired object from the HashMap according to 

its name. The first approach uses less memory than the second, the second approach 

uses less CPU cycles than the first. The second approach is implemented in this system. 

 

The sequence diagram in Figure 22 represents how the chemical component model 

instance elements of a section are created. In the class TISjapiCreate there are other 

functions similar to the addChemicalComponents that create all the other model in-

stance elements contained by a section. 
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Figure 22 Sequence diagram representing the creation of the chemical component 

instances 

 

8.3.2.  Simulation of a flowsheet 

The activity diagrams can present a higher level picture of the behavior of the system 

compared to the sequence diagrams. The activity diagram in Figure 23 displays the 

simulation of a flowsheet. Three tiers are involved in the communication. The process 

engineer initiates the start of the action by pressing the simulate flowsheet button.  An 

action is triggered in the Tisflo RCP and send a simulation request to the kernel. The 

simulation is handled in the kernel. After the simulation is finished the Tisflo RCP 

starts the update of the model instances. For every section the stream variable and the 

label values are updated by querying the kernel. Next, the Tisflo RCP sends a request 

to the kernel to verify whether or not the flowsheet is converged. Finally, a message 

that indicates if the flowsheet is converged or not is displayed to the process engineer. 
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Figure 23 Activity diagram representing the simulation of a flowsheet 

 

From the activity diagram it is visible that there is a delay from the time that a process 

engineer presses a button that simulates the flowsheet until the time that the final mes-

sage is displayed. The delay is caused from the processing that needs to be done in the 

kernel and in the Tisflo RCP. 

 

8.4    Development view 
The development view focuses on the static organization of the system. The software 

is packaged in small chunks – program libraries, or subsystems – that can be developed 

or extended. This view is primarily intended for developers. 
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8.4.1.  Development view of the Tisflo meta-model plug-in 

As described in the previous chapter, the Tisflo meta-model plug-in is a set of three 

plug-ins, the Tisflo plug-in, the Tisflo edit plug-in, and the Tisflo editor plug-in. The 

Tisflo plug-in contains the meta-model description. The Tisflo edit plug-in and the 

Tisflo editor plug-in are automatically generated according to the meta-model descrip-

tion. 

 

 

Figure 24 Deployment view of the Tisflo meta-model plug-in 

The Tisflo plug-in contains two main packages, the tisflo and the com. The tisflo pack-

age contains code generated (with modifications) from the meta-model description. 

The com package contains extra code that is needed for the application. 

 

 

Figure 25 Deployment view of the Tisflo plug-in (generated code) 
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The tisflo package contains the interfaces of the meta-model classes. An interface of 

the Factory to create the model instances is also part of the tisflo package. The 

tisflo.impl package contains the concrete implementation of the interfaces defined in 

tisflo. Finally, the tisflo.util package contains other implementations, such as the 

AdapterFactory and the ResourceFactory. 

 

 

Figure 26 Deployment view of the Tisflo plug-in (other code) 

 

The com.stamicarbon package contains six packages, the adapters, the externalja-

vaaactions, the handlers, the tisjapi, this utility, and the diagramcreation. The classes 

in the adapter package are used for the synchronization of the model instances with the 

kernel instances (see Section 8.2.2.  ). The classes in the externaljavaaactions package 

implement the IExternalJavaAction. They are used in the Tisflo Sirius plug-in to load 

the information of the DAT files on the flowsheet canvas. The classes in the handlers 

package extend the AbstractHandler. In the Tisflo meta-model plug-in the extension 

point org.eclipse.ui.handler uses those two handlers. The tisjapi package contains five 

classes. The TISjapi class contains all the JNI functions. The other four classes are 

using those functions. The class TISjapiCreate uses the classes of the diagramcreation 

package in order to automate the generation of the visual representations. Finally, the 

package utility contains classes that are used by the classes of the tisjapi package. For 

example, the TISjapiCreate uses the TisfloWrapperFactory class. The TisfloWrapper-

Factory class contain functions that generate model instances. The TisfloWrapperFac-

tory wraps functions of the TisfloFactory and setters for the model attributes. 
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Figure 27 Deployment view of the Tisflo edit plug-in 

The Tisflo edit plug-in is atomically generated. It contains providers to display Tisflo 

in a UI. There are providers for every class of the meta-model. Each provider can be 

used to display a model instance showing an icon and a name. 

 

 

Figure 28 Deployment view of the Tisflo editor plug-in 

The Tisflo editor plug-in is also automatically generated. The Tisflo editor plug-in pro-

vide wizards for creating new model instances and a UI for the editor that allows users 

to enter information in the model instances. The Tisflo editor plug-in is included in the 

RCP; however, it is not intended to be used by the process engineer. The Tisflo Sirius 

plug-in is the replacement for the Tisflo editor plug-in. 
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8.4.2.  Development view of the Tisflo Sirius plug-in 

In Figure 29 the development view of the Tisflo Sirius plug-in is presented. 

 

 

Figure 29 Deployment view of the Tisflo Sirius plug-in 

The Tisflo Sirius plug-in contains two packages, the tisflo.design package and the 

tisflo.wizards package. Inside the tisflo.design package there are two classes, the Ac-

tivator and the Services. The Activator class controls the plug-in life cycle. The class 

Services contains Java methods that can be transparently invoked from interpreted ex-

pressions in Sirius. Inside the tisflo.wizards package there is a wizard that simplifies 

the creation of a new Tisflo project for the process engineers. Every time that a new 

project is created an instance of a Flowsheet (the root element) is created, Sirius dia-

grams corresponding the Flowsheet instance are created on the background, and a 

flowsheet canvas is displayed to the process engineers. 

 

8.5    Physical view 
The physical or deployment view describes how the software is mapped to the hard-

ware. An extended description about the deployment view is presented in Chapter 10. 
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9.Validation and Verification 
 

 

In the previous chapter the design and implementation of the product is defined. 

This chapter presents the validation and verification techniques used in order to con-

firm that the right system is being build. 

 

9.1    Validation 
The software validation gives an answer to the question: Are we building the right 

product? Building the right product implies the creation of the requirement specifica-

tion that contains the needs and the goals of the stakeholders. As presented in Chapter 

6, the high-level requirements and goals of the system were known since the first two 

months of the project. Additional and more concrete requirements were derived from 

the high-level requirements and were defined on the sprint meetings. 

 

The sprint meetings and the project steering group meetings resulted in a continuously 

and iterative validation process by the stakeholders. The feedback that the stakeholders 

provided during those meetings facilitated on the completeness and correctness of the 

product. 

 

As a part of the validation, a survey was created. The survey was given to the process 

engineers at a late stage of the project. The survey aimed on an evaluation of the prod-

uct by the actual users. 

 

9.1.1.  Survey 

At a late stage of the project one-hour meetings with four process engineers individu-

ally were conducted. During those meetings a live demonstration of prototype was 

given to the process engineers. In addition, the process engineers were able to create 

their own use cases and interact with the application on their laptops. Moreover, during 

those meetings the process engineers gave feedback related to missing functionality of 

the application. Their feedback is included as a future work and it is presented in Sec-

tion 11.2    Finally, at the end of each meeting a survey was given to the process engi-

neers. The survey is split in two parts: the questions and the statements. The questions 

are shown in Table 18 and they are based on the non-functional requirements. The 

statements are shown in Table 19 and they are based on the project goals and aims. 

The answers represent the average grade from all the answers collected from the sur-

vey. 

 

Table 18 grading system: 

1. N/A (not applicable, not available, or no answer) 

2. Bad 

3. Not good 

4. Good 

5. Very good 

6. Excellent 
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Table 18 Survey questions 

Question 1 2 3 4 5 6 

How do you grade the time required to learn how 

to use the tool? 
    X  

How do you grade the time required to create a 

flowsheet? 
   X   

How do you grade the appearance of the dia-

grams? 
  X    

How do you grade the piece of information that 

displayed in the diagrams? 
   X   

How do you grade the loading time of a plant part 

definition? 
    X  

How do you grade the loading time of a complete 

plant definition? 
    X  

How do you grade the time required for a simula-

tion? 
X      

How do you grade overall the application? 
    X  

 

Table 19 grading system: 

1. N/A (not applicable, not available, or no answer) 

2. Strongly disagree 

3. Disagree 

4. Neither agree nor disagree 

5. Agree 

6. Strongly Agree 

Table 19 Survey statements 

Statement 1 2 3 4 5 6 

The new application will shorten the learning 

curve of the new engineers. 
   X   

The new application will improve the productivity 

of new engineers. 
    X  

The new application will improve the productivity 

of experienced engineers. 
   X   

The diagrams in the new application increase the 

overview of the flowsheet design. 
    X  

The new application simplifies the editing of the 

flowsheet design. 
    X  

The predefined sections that can be merged will 

simplify the flowsheet design. 
     X 

The merging functionality will enable the parallel 

work of the process engineers on the same project. 
    X  

The new application will reduce the time required 

for a design. 
    X  

 

The answers in the survey feature a general satisfactory of the process engineers about 

the application. The process engineers showed great enthusiasm about the predefined 

sections that can be merged. On the other hand, the appearance of the diagrams is one 

of the weakest points of the application. Improvement points are presented as a future 

work in Section 11.2    
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9.2    Verification 
The software verification gives an answer to the question: Are we building the product 

right? The verification process involves the evaluation on whether the software con-

forms to the requirement specification or not. The software verification aims on the 

design and implementation of the product. The verification of the application is per-

formed by software testing. The testing conducted with two different approaches: the 

manual testing and the unit testing. 

 

9.2.1.  Manual testing 

The manual testing was conducted on the model and on the user interface. 

The manual testing of the model covered 

 The creation of the model instances 

 The initialization and modification of the attributes of the model instances 

 The serialization 

 The synchronization 

The manual testing of the user interface covered 

 The creation of a new urea plant design project 

 The functionality of each button 

 The appearance of the icons 

 The appearance of the diagrams 

 

9.2.2.  Unit testing 

The unit testing is a software testing method in which individual parts of the source 

code, called units, are tested. The unit testing was performed on the JNI functions. The 

unit tests covered 70% of the total JNI functions. 59 test cases were implemented. 

 

 

Figure 30 Unit tests for the JNI functions 

 

9.3    Dynamic program analysis 
The dynamic program analysis is the analysis that is performed while the application 

is being executed. In order to measure the space (memory) and the time complexity 

and identify possible bottlenecks of an application, software profiling can be con-

ducted. In this project two different profilers were used. The first profiler was the Sirius 

profiler. The Sirius profiler is a profiler that measures the time complexity of specific 

parts of Sirius. The second profiler was the VisualVM, which is a Java profiler that is 

able to provide more in depth information about the time and space usage of the appli-

cation. In addition to the profilers, the Eclipse debugger was also used in order to op-

timize the source code. A result of the dynamic program analysis is that the model 



 

62 
 

instance elements are created and presented to the end-users in one eighth of the initial 

time. The performance improvement is achieved by not serializing automatically the 

sections when they are created.  
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10. Deployment 
 

 

This chapter elaborates on the deployment view of the application, the technologies 

used for the build of the application, and how to build and deploy newer versions of 

the application. 

 

10.1    Deployment view 
The application can run on any Windows machine that supports the x86 architecture.  

The Windows machine must have a Java Virtual Machine (JVM) installed. A JVM 

version 8 update 121 or newer is advised, because the Java Development Kit (JDK) 

version 8 update 121 is used for the development of the application. The application 

consists of an RCP that runs outside the Eclipse IDE. The RCP depends on the kernel 

and the thermodynamic libraries that are contained in the TISjapi.dll. The application 

is portable and it can be used without any installation. 

 

 

Figure 31 Deployment view of the application 

 

10.2    How to build and deploy the application 
In this section there is an introduction about the technologies used for the build of the 

project. Next, there is information about how the application can be built and deployed. 

 

10.2.1.  Maven 

Maven is a build automation tool used primarily for Java projects. In Yiddish, the word 

maven means "accumulator of knowledge" [16]. Maven projects are configured using 

a Project Object Model (POM), which is stored in a pom.xml file [17]. The XML file 

describes the software project being built, its dependencies on other external modules 

and components, the build order, directories, and required plug-ins. It comes with pre-
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defined targets for performing certain well-defined tasks such as compilation of code 

and its packaging. 

 

Maven dynamically downloads Java libraries and Maven plug-ins from one or more 

repositories, such as the Maven 2 Central Repository, and stores them in a local cache. 

This local cache of downloaded artifacts can also be updated with artifacts created by 

local projects. 

 

10.2.2.  OSGi 

OSGi (Open Service Gateway Initiative) is a Java framework for developing and de-

ploying modular software programs and libraries. Each bundle is a tightly coupled, 

dynamically loadable collection of classes, jars, and configuration files that explicitly 

declare their external dependencies [18]. 

 

10.2.3.  Tycho 

Tycho is focused on a Maven-centric, manifest-first approach to building Eclipse plug-

ins, features, update sites, RCP applications and OSGi bundles. Tycho is a set of Ma-

ven plug-ins and extensions for building Eclipse plug-ins and OSGi bundles with Ma-

ven. Tycho uses native metadata for Eclipse plug-ins and OSGi bundles and uses the 

POM to configure and drive the build. Tycho supports bundles, fragments, features, 

update site projects and RCP applications. Tycho also knows how to run JUnit test 

plug-ins using OSGi run-time. 

 

Tycho use OSGi metadata and OSGi rules to calculate project dependencies dynami-

cally and injects them into the Maven project model at build time. Tycho supports all 

attributes supported by the Eclipse OSGi resolver. Tycho uses proper classpath access 

rules during compilation. One important design goal in Tycho is to make sure there is 

no duplication of metadata between POM and OSGi metadata [19]. Tycho also enables 

Maven to understand package types such as eclipse-plugin, eclipse-feature, and 

eclipse-repository [20]. 

 

10.2.4.  Tisflo plug-in projects 

The Tisflo plug-in projects are the Tisflo meta-model plug-in, the Tisflo Sirius plug-

in, and the Tisflo branding plug-in. The package type of the Tisflo plug-ins is eclipse-

plugin. Each plug-in has a Maven based configuration file, the pom.xml, which is used 

for the Tycho build. 

  

10.2.5.  Tisflo feature project 

An Eclipse feature project contains features. A feature describes a list of plug-ins and 

other features which can be seen as a logical unit. A feature has a name, a version 

number, and in most cases license information assigned to it. Instead of having many 

individual plug-ins it is possible to group the plug-ins using features. Grouping the 

plug-ins into logical units improves the system structure. The Tisflo feature contains 

all the Tisflo plug-ins. The feature project has package type eclipse-feature and it has 

Maven based configuration file, the pom.xml, which is used for the Tycho build. 

 

10.2.6.  Tisflo product project 

The Tisflo product contains a product configuration file and a Maven based configu-

ration file, the pom.xml. The product configuration file defines the configuration of an 

Eclipse application. The configuration of an Eclipse application includes icons, splash 

screen, and the plug-ins or features. The Tisflo product contains the Tisflo feature pro-

ject and the Eclipse platform. The Tisflo product has a package type eclipse-repository. 
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10.2.7.  Tisflo parent project 

The Tisflo parent project contains only a Maven-based configuration file, the pom.xml. 

The packaging type of the Tisflo parent is pom. The pom.xml of the Tisflo parent con-

tains general configurations that are inherited by all the other projects. The general 

configurations include the Tycho version, the build environment, and a repository 

where Tycho can find and download the dependencies of the projects. 

 

 

Figure 32 Part of the Tisflo parent pom.xml 

The build environments that are specified on the parent pom.xml are independent of 

the development environment. For instance, Eclipse Neon and a 64-bit version of Win-

dows can be used for the development; however, the build could be based on the 

Eclipse Oxygen and the application could run on a 32-bit Linux machine or on a 32-

bit Windows machine. 
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11. Conclusions 
 

 

This chapter elaborates on the results achieved by this project. The value that this pro-

ject added to the stakeholders is also presented. Finally, this chapter also presents fu-

ture work related to the project. 

 

11.1    Results 
The flowsheet design and the calculation of the heat and material balances is an im-

portant task that the process engineers have on every project. The main goal of this 

project was to improve the productivity of the process engineers. In order to improve 

the productivity of the process engineers the project aimed to: increase the comprehen-

sion of the structure and the state of the flowsheet design, decrease the number of er-

rors, allow the process engineers to use predefined reusable sections that can be 

merged, allow the process engineers to work simultaneously on different plant parts, 

and integrate the editor and the solver into one tool. 

 

According to the results of the survey in Section 9.1.1.  the end product is very prom-

ising. More specifically, the process engineers agree that the new application will re-

duce the time required for the flowsheet design. The predefined sections that can be 

merged is the feature that adds the most value in the application according to the pro-

cess engineers. Furthermore, the process engineers can use for the first time the same 

tool to edit and solve flowsheets. On the other hand, one of the weakest points of the 

application is the appearance of the diagrams and the visual representations. The ap-

pearance of the diagrams and the visual representations was a deliverable of the end 

product, although this deliverable is related more with graphic designing rather than 

software engineering. A comparison between the textual representations and the visual 

representations is presented in Appendix B: Comparison between textual representa-

tions and visual representations. 

 

From the software design point of view, the system demonstrates usability, navigabil-

ity, and extensibility. A reflection based on the design criteria is presented in Section 

13.2    

 

11.2    Future work 
This section elaborates on future possibilities and improvements, as well as on features 

that were not designed or implemented in this project due to various constraints such 

as time and lack of knowledge. 

 

Possible extensions are: 

 Sirius provides functionality that can auto-arrange the elements of a diagram. 

The auto-arrange was not always ideal especially for diagrams with many el-

ements. A customized auto-arrange function could be implemented. 

 

 The streams are aligned in a default position that Sirius defines. The default 

position is not always the desired. The functionality about the default posi-

tioning could be overridden. 

 

 All the streams have the same visual representation. The streams could have 

a different visual representation according to their items. 
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 The predefined sections are created on the flowsheet canvas by selecting them 

from the file system. Icons that represent each predefined section could be 

added to the palette of the flowsheet canvas. 

 

 The history variable instances are used to display variable changes from free 

to fixed, or the opposite. The deletion of a history variable instance does not 

revert the changes. In order to revert the changes a new functionality could be 

implemented. 

 

 The application logs the return values of limited kernel functions. The only 

messages that originate from the kernel and appear on the application screen 

are about the convergence of the simulation. As a future work a logging sys-

tem and an error reporting system to the process engineers could be imple-

mented. 

 

 In order to save and load the structure and the state of a flowsheet design, a 

version control system could be added. 

 

 The RCP can run in any major operating system (Windows, macOS, Linux) 

in both x86 and x64 architecture. However, the kernel can run only on Win-

dows machines with x86 architecture. A kernel version that could run on the 

x64 architecture could improve the application performance. 

 

 The RCP is based on the Eclipse platform, therefore menu items and toolbar 

buttons that are more useful for developers rather than process engineer exist. 

In order to simplify the UI it is recommended that a newer version of the RCP 

would hide those menu items and toolbar buttons. 

 

 The application performance when opening a diagram for first time that con-

tain a large piece of information is not ideal. For example, opening a diagram 

for first time that contains all the section variables of a complete plant varies 

from 7 to 14 seconds, depending on the information. As a part of this project 

performance issues related to the diagrams are mentioned as a bug in Eclipse 

Sirius. A workaround could be achieved by splitting the information into 

more diagrams with less information. 

 

 The application is missing functionality that the previous flowsheet solver 

has. For instance, modify the step size of all the variables, the linstep, the 

damping factor, the case study, and the optima mode are missing. 

 

 The kernel can only merge and simulate sections, which they have the stream 

items on the same position. As a future work a kernel which can merge and 

simulate section with stream item on different position is advised. 

 

 The kernel instances are created by parsing a DAT file. The instances of the 

model are created by querying the kernel and the non-transient attributes are 

serialized in XMI files. As already explained in a previous chapter there is a 

synchronization mechanism for the kernel and the model instances. The syn-

chronization mechanism will be omitted if the kernel instances will be created 

from the same XMI files that describe the model instances. 

 

 The API of the kernel does not support functions that can reflect the creation 

of a model instance to a kernel instance. For instance, there is no JNI function 

that would reflect the creation of a node or a stream instance from the model 

to the kernel. In the current product it is not possible to create a flowsheet 
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diagram from scratch, a DAT file should always be used. As a future work 

function calls that would reflect the creation of all the model instances to the 

kernel is advised. 

 

 The API of the kernel currently supports setters for the attributes of the label, 

stream variable, and auxiliary stream variable instances. Any change made in 

any other model instance, for example, in a calculation function instance, will 

not be reflected in the kernel. Any change that is not reflected in the kernel is 

not taken into consideration in the simulation. As a future work new API calls 

that would allow the modification of all the attributes of kernel instances is 

advised. 

 

 The test cases that implemented in this project cover only the JNI functions. 

Test cases for the model and the visual presentations is left as a future work. 
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12. Project Management 
 

 

This chapter elaborates on the project management process that was conducted during 

the lifetime of the project. 

 

12.1    Way of working 
The system was developed under the agile methodology. The agile methodology sug-

gests iterative and incremental development. Each iteration is called a sprint. The du-

ration of each sprint for this project was two weeks. At the end of each sprint a deliv-

erable had to be produced. The different phases of the sprint involve: the plan, the 

design, the development, a prototype with the new functionality, and the evaluation of 

the progress. 

 

 

Figure 33 Agile lifecycle 

The definition or the refinement and the prioritization of the requirements was held 

during the planning phase of each sprint. The next two sprint phases involved the soft-

ware design and the software development of the application. The next phase involved 

a prototype and a new version of the product. The last phase involved the evaluation 

and the feedback about the sprint. 
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12.2    Work-Breakdown Structure (WBS) 
The work-breakdown structure is presented on this section. The WBS is the way in 

which the project has been decomposed. The project is divided into four main activities 

as follows: 

 Domain research: Research and study about the elements used in the flow-

sheet diagrams for the calculation of the heat and material balances. 

 Technology research: Research about the technologies picked by stakehold-

ers for the project. 

 Design and implementation: Usage of the research and study of the previous 

two activities in order to build the software solution of the project. 

 

 

 

Figure 34 Work-breakdown structure of the project 

12.3    Project Planning 
According to the work-breakdown structure a project plan was formulated. The initial 

version of the project plan was formulated during the first weeks of the project. Ad-

justments were introduced during the whole period of the project, as the knowledge 

and the understanding about the project deepened. 

12.3.1.  Initial version 

The initial version of the project plan involved four activities: the domain analysis, the 

design and implementation, the technical report, and the final presentation. As it is 

visible in Figure 35 there is overlapping between the activities. 

 

The domain analysis activity involves the domain research, the technology research, 

and the requirements. The domain analysis was expected to last until the first week of 

April. 

 

The design and implementation was expected to last from mid-January to mid-August. 

The design of EMF, the design of Sirius and the integration with the kernel was ex-

pected to last from mid-January to late-May. 

 

The writing of the technical report and the preparation for the final presentation were 

expected to last from mid-May until the end of the project. 
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Figure 35 Initial project planning 

12.3.2.  Final version 

The final version of the project plan displays what actually happened during the pro-

ject. The only activities that remain the same or almost the same are the writing of the 

technical report and the preparation for the final presentation. 

 

In the domain analysis phase, the domain research lasted less than expected; however, 

new requirements were introduced in June. The new requirements affected the design 

and implementation of the project. More specifically, because of the new requirements, 

the design of the EMF and the design of Sirius lasted longer. In addition, a new activity 

called a performance check added in the project plan. The integration with kernel also 

lasted longer than what was initially expected. 

 

Finally, it is worth mentioning that the testing was developed and applied iteratively 

in different time periods. This incremental-iterative development approach is better 

aligned with the agile way of working that the approach planned in the initial project 

plan. 

 

Figure 36 Final project planning 

12.4    Project execution 
The execution of the project followed a structured path based on the project planning.  

The first days of the project involved meetings with the stakeholders in order to famil-

iarize the PDEng trainee with the domain and the high-level requirements. The agile 

way of working aimed on a prototype that it is iterative and incremental implemented. 

The domain analysis and the design and implementation of project have been executed 

simultaneously. 

 

Every three weeks a Project Steering Group (PSG) meeting was held. The project pro-

gress and a live demonstration of the prototype was presented by the PDEng trainee 

during the PSG meetings. The prototype allowed the stakeholders to have a clear view 

of the project progress. During these meetings the stakeholders were giving feedback 

about the project and the product. The feedback worked as a method of validation about 

the product and advocated on keeping track of the project direction. 

 

The prioritization of the requirements at the end of each iteration was the main reason 

that the project execution was significantly different from the initial project plan. 



 

76 
 

 



 

77 
 

13. Project Retrospective 
 

 

This chapter presents a reflection of the project based on the candidate’s perspective. 

At the end of the chapter a reflection is presented based on the design criteria set in 

Chapter 3. 

 

13.1    Reflection 
In the project conducted over the past nine months I faced several challenges from both 

technical and non-technical perspective. For me as a software engineer it was a great 

experience and it helped to improve my technical and soft skills. 

 

At the beginning of the project I had two main concerns regarding to the project. The 

first concern was related to the project domain and the second was related to the tech-

nology constraints of the project. About the first concern, my knowledge about chem-

ical engineering and more specifically about the flowsheet solving was zero prior to 

this project. I was able to gain the domain knowledge from the user manual of the old 

flowsheet simulator and from my stakeholders. Luckily for me most of the times it was 

easy to arrange a meeting with my stakeholders and I could gain the needed infor-

mation for my project. About the second concern, I had low to zero experience with 

the technology constraints. My knowledge about Eclipse Modeling Framework was 

limited. During my first year as a PDEng trainee I participated in a one week workshop 

about model driven software engineering. However, this was the first and last experi-

ence that I ever had with EMF prior to this project. In addition, I had no experience 

with Eclipse Sirius, although I found the tool relatively easy to use. Finally, I had no 

knowledge about what an RCP is and how could I build one. 

 

The tasks that required the most time was the design of the EMF meta-model and the 

kernel integration. The design of the EMF meta-model was probably the most crucial 

task of the project. The majority of the code is automatically generated from the meta-

model. The model instances have to reflect the kernel instances, although I had no 

access in the kernel. I was using the user manual of the flowsheet simulator as a refer-

ence to understand elements needed for the heat and material balances calculations. 

However, there were some inconsistences between the user manual and the kernel. For 

instance, the kernel adds additional information for all the variables, although accord-

ing the user manual only a specific number of variables have additional information. I 

was able to bypass such a problem by communicating with my stakeholders. About the 

kernel integration it is mentioned that he API of the kernel was extended in parallel 

with my project. The return values of the new API functions were not always correct. 

That was the main reason that I spent more time on kernel integration than I expected. 

The extra time was spent mostly on debugging. 

 

At a late stage of my project I identified performance issues in the application. The 

issues were related to the creation of new sections and to the simulation of the flow-

sheet. The performance issues were noticeable in the creation and the simulation of a 

complete urea plant. In order to optimize the application I used the Eclipse debugger, 

two profilers, and I contacted the Eclipse Sirius community. Thanks to their help I 

managed to solve the performance issues. In order to contribute back to the community 

I created a video tutorial about how to create an Eclipse Sirius based RCP1. In this 

project I managed to create the RCP and automate the build of the RCP in a week. I 

believe that if there was a tutorial similar to the one that I created I would have achieved 

the task in one or two days. 

 

                                                      
1 https://www.youtube.com/watch?v=ZmUrTlzqCXcv  

https://www.youtube.com/watch?v=ZmUrTlzqCXcv
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Apart from the project design and implementation, the project management was an-

other important part of the project that I had to satisfy. I was responsible for updating 

the requirement list and estimating the time needed for each requirement. Although the 

initial project plan differed significantly from the final plan, my sort-term time estima-

tions for the tasks were quite accurate. In addition to project management, I was also 

responsible for the organization of the majority of the meetings, for instance, the meet-

ings with the process engineers and the project steering group meetings. All those 

meetings helped me to improve my soft skills, for example, my presentation and or-

ganization skills.  

 

In conclusion, this project was a great experience. I had the opportunity to gain expe-

rience in a new domain. The Eclipse modeling tools that I used (EMF and Sirius) 

broaden my experience and knowledge about model driven software engineering. On 

top of that, the cooperation with the stakeholders and the project management respon-

sibilities helped me to improve my soft skills. 

 

13.2    Design criteria revisited 
This section presents a reflection of the project based on the design criteria that were 

introduced in Section 3.6    

 

Usability 

Usability should be addressed by means of making the product easy to understand and 

use. Functionality that could reduce the steps that a process engineer needs in order to 

perform an action is implemented. A wizard that simplifies the creation of a new urea 

plant project is implemented. With the wizard the number of clicks required in order 

to create a new project, create a root instance of the model in the project, select the 

viewpoints for the project, and create the representations for the root instance, reduced 

from more than 40 to 7. In addition to the wizard, functionality that automatically gen-

erates diagrams is implemented. For example, in a complete urea plant design more 

than a hundred diagrams are generated automatically.  

 

Navigability 

In the previous tools the process engineers had to scroll and search for keywords in the 

text files in order to find the desired piece of information, in the new application all the 

information is structured in diagrams. In order to increase the navigability options and 

to provide all the necessary information in the diagrams, extra associations are added 

in the meta-model. An example is given in Section 8.2.3.  In addition, the diagrams 

provide information that wasn’t available with the previous tools, for instance, the his-

tory tracking of the free and fixed variables. 

 

Extensibility 

The plug-in based architecture that is used in this project is ideal for an extensible 

application. New diagrams can easily be created by modifying the Tisflo Sirius plug-

in. The domain model can be extended by modifying the Tisflo meta-model plug-in. 

New plug-ins that contain other domain models or functionality could simply be added 

on the Tisflo feature project and be deployed in a future version of the RCP. 
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Glossary 
This chapter presents the terminologies used in this report. 

 

 

Term Definition 

API Application Programming Interface 

BEP Basic Engineering Package 

DAT File extension of the text files that the process engineers 

are storing the information needed for urea plant designs 

DLL File extension of dynamic-link library files 

Eclipse IDE Eclipse Integrated Development Environment 

EMF Eclipse Modeling Framework 

EPC Engineering, Procurement, and Construction 

H&MB Heat and Material Balances 

JDK Java Development Kit 

JNI Java Native Interface 

JVM Java Virtual Machine 

MDE Model-driven engineering 

MOF Meta-Object Facility 

MoSCoW The framework for prioritizing requirements by four 

groups: Must, Should, Could, Would 

OMG Object Management Group 

OSGi Open Service Gateway Initiative 

PDEng Professional Doctorate in Engineering 

PDP Process Design Package 

POM Project Object Model 

PSG Project Steering Group 

RCP Rich Client Platform 

Sirius Eclipse plug-in for creating visual representations 

ST Software Technology 

Stamicarbon The company name 

Tisflo The software program name of the flowsheet solver 

TU/e Eindhoven University of Technology 

UI User Interface 

UML Unified Modeling Language 

VSM Viewpoint Specification Model 

VSP Viewpoint Specification Project 

WBS Work-Breakdown Structure 

XMI XML Metadata Interchange 

XML Extensible Markup Language 
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Appendix A: The complete meta-model 

 

Figure 37 The complete meta-model
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Appendix B: Comparison be-

tween textual representations 

and visual representations 
 

 

Figure 38 Input and output streams of a section in a textual representation 

 
 

 

Figure 39 Input and output streams of a section in a visual representation 
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Figure 40 Streams and nodes in textual representation 

 
 
 

 

Figure 41 Streams and nodes in visual representation 
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Figure 42 Information of the variables of stream 113 in a textual representation 

 
 

 

Figure 43 Information of the variables of stream 113 in a visual representation 
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