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Preconditioning immersed isogeometric finite element methods with
application to flow problems

F. de Prentera,∗, C.V. Verhoosela, E.H. van Brummelena

aDepartment of Mechanical Engineering, Eindhoven University of Technology, The Netherlands

Abstract

Immersed finite element methods generally suffer from conditioning problems when cut elements
intersect the physical domain only on a small fraction of their volume. We present a dedi-
cated Additive-Schwarz preconditioner that targets the underlying mechanism causing the ill-
conditioning of these methods. This preconditioner is applicable to problems that are not sym-
metric positive definite and to mixed problems. We provide a motivation for the construction
of the Additive-Schwarz preconditioner, and present a detailed numerical investigation into the
effectiveness of the preconditioner for a range of mesh sizes, isogeometric discretization orders,
and partial differential equations, among which the Navier-Stokes equations.

Keywords: Immersed finite element method, Fictitious domain method, Navier-Stokes, Iterative
solver, Condition number, Preconditioning

1. Introduction

Immersed or unfitted finite element methods have been demonstrated to have great potential
for problems that are posed on domains for which traditional mesh-fitting techniques encounter
problems, such as prohibitively large meshing costs or the necessity for manual intervention. In
recent years, immersed methods – such as the finite cell method [1], CutFEM [2] and immer-5

sogeometric analysis [3] – have been a valuable companion to isogeometric analysis [4] as they
enable computations on volumetric domains based on the availability of merely a CAD surface
representation [5, 6] or voxelized geometries [7]. Additionally, immersed techniques can be consid-
ered as a natural way to incorporate CAD trimming curves in the design-through-analysis cycle
[8–11]. Flow problems on immersed grids have been studied for decades, see e.g., the pioneering10

work in [12, 13] and the more recent review article [14]. Contemporary work on immersed flow
problems involves numerous applications, such as: flows around complex (CAD) objects [15–17];
fluid-structure interaction with large deformations [18–24]; multiphase flows [25]; topology opti-
mization [26] and flow problems on scanned domains such as, e.g., imbibition into porous media
or biomechanical applications [3, 27, 28].15

A disadvantage of immersed finite element methods is that they can result in severely ill-
conditioned matrices when the system contains elements that only intersect the physical domain on
a small fraction of their volume, see e.g., [7, 8, 19, 29–35]. Ill-conditioning caused by small volume
fractions is not exclusive to immersed finite element methods, and also occurs in the extended
or generalized finite element method (XFEM/GFEM) [36–41] and in the immersed finite volume20

method [42].
Multiple techniques exist to resolve the conditioning problems of immersed finite element meth-

ods. A fictitious domain stiffness was already applied at the introduction of the finite cell method
in [1]. In recent years, the most prominent resolutions to these problems are the application of
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ghost penalties and element aggregation techniques. The ghost penalty weakly couples the prob-25

lematic trimmed basis functions to basis functions on neighboring elements through penalties on
the jump of (higher-order) derivatives on element boundaries [2, 31] or through volumetric pe-
nalization of differences between the solution on a cut element and extrapolations or projections
of the solution on neighboring elements [29, 43]. The application of ghost penalties is customary
in methods referred to as CutFEM. Aggregation type techniques work in a similar manner, but30

strongly couple the basis functions on a cut element to basis functions on a particular larger ele-
ment with a sufficiently large intersection with the physical domain [30, 32, 44–50]. With respect
to the conditioning problems in XFEM and GFEM, a notable technique is the Stabilized GFEM
(SGFEM) [51, 52], which modifies the enrichment functions such that these are approximately
orthogonal to the standard finite element basis functions. This concept of precluding the condi-35

tioning problems in XFEM and GFEM through the construction of the enrichment functions is
adopted in e.g., [53–55].

In this manuscript, we resolve the ill-conditioning problem of immersed finite element methods
by preconditioning of the linear system of equations. This approach has the advantage that it is
less intrusive in comparison to the above-mentioned approaches, by virtue of the fact that only the40

linear algebra aspect of the code is affected. Although the research on preconditioning of immersed
isogeometric finite element methods is limited (discussed below), there exists a rich literature on
preconditioning for related techniques. Preconditioning techniques for mesh-fitting isogeomet-
ric analysis have been studied using a variety of approaches, such as: domain decomposition
approaches [56, 57]; Additive-Schwarz preconditioning [58, 59]; multigrid and multilevel precondi-45

tioning [60–62] and fast diagonalization [63]. The most notable preconditioning approaches for the
conditioning problems of similar origin in XFEM and GFEM are: local Cholesky decompositions
[64]; a tailored FETI-type preconditioner [65]; an algebraic multigrid preconditioner based on
the Schur complement [66]; and an Additive-Schwarz-type domain decomposition preconditioner
[67, 68]. The latter preconditioning technique is conceptually similar to the approach considered50

in this work. However, direct application of the Additive-Schwarz preconditioner for XFEM to
immersed finite elements is impractical, since the number of connected problematic basis functions
in immersed finite elements is generally substantially larger than in the XFEM setting. An ef-
fective Additive-Schwarz-type preconditioner therefore requires customization to immersed finite
element methods.55

Dedicated preconditioners have been developed for immersed finite element methods applied
to problems resulting in Symmetric Positive Definite (SPD) matrices. In [34] it is demonstrated
that a diagonal scaling of trimmed basis functions in combination with an algebraic multigrid
preconditioner is effective for linear finite element methods. A Balancing Domain Decomposition
by Constraints Preconditioner (BDDC) customized to trimmed basis functions is proposed in [69],60

which also results in effective preconditioning for linear finite element bases. In [35] we have
developed a preconditioner for SPD systems based on a combination of diagonal scaling with local
orthonormalization of specific problematic basis functions, and have demonstrated its effectiveness
for immersed isogeometric finite element methods.

In this work we explore Additive-Schwarz preconditioning [70–72] for immersed finite element65

methods. Recent insights into the underlying mechanisms causing ill-conditioning of immersed fi-
nite element methods [35] convey that Additive-Schwarz preconditioning is suitable par excellence
for resolving these problems. We herein demonstrate that preconditioning based on collections of
basis functions supported over trimmed elements, and supplemented with Jacobi preconditioning
of the basis functions that are not trimmed, provides an effective general strategy for immersed70

finite element methods. This tailored Additive-Schwarz preconditioner can also be applied to
classes of matrices that are not SPD. Additionally, we demonstrate applicability of the precondi-
tioner to mixed variational forms through preconditioning based on the Schur complement. The
preconditioning technique is applicable to higher-order bases with reduced regularity, which en-
ables effective preconditioning of mixed finite element families such as Taylor-Hood [73]. These75

developments broaden the range of applications and, most notably, open the doors to applications
in flow problems. To the best of our knowledge, it is the first preconditioner demonstrated to be
effective for immersed (higher-order) finite element discretizations of (Navier-)Stokes systems.
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Figure 1: A geometrically complex domain Ω that is encapsulated in a rectilinear ambient domain A. Trimmed
elements Ktr

i ∈ T h
C are indicated in yellow, whereas untrimmed elements Ki ∈ T h \ T h

C are indicated in gray.

The remainder of this manuscript is structured as follows. In Section 2.1 the abstract problem
formulation is presented along with a brief review of the conditioning analysis for immersed finite80

element methods in [35]. The tailored Additive-Schwarz preconditioner is described in Section 3,
where we also substantiate the effectiveness of the preconditioner based on the Additive-Schwarz
lemma and estimate the computational cost. In Section 4 we demonstrate the effect on both
the system condition number and on the solver performance for a range of partial differential
equations. Conclusions are drawn in Section 5.85

2. Problem formulation and conditioning analysis

2.1. Problem formulation

We consider single-field and mixed partial differential equations posed on a domain Ω ⊂ Rd
(d ∈ {2, 3}), which we refer to as the physical domain. The boundary Γ = ∂Ω is partitioned
in the complementary parts ΓD and ΓN for the imposition of Dirichlet and Neumann boundary
conditions, respectively. The physical domain is encapsulated by the geometrically simple ambient
domain A on which the tensor product mesh T hA is defined, see Figure 1. We define the mesh of
elements intersecting the physical domain as

T h =
{
Ki ∈ T hA : Ki ∩ Ω 6= ∅

}
⊂ T hA , (1)

which consists of all elements Ki that intersect the physical domain, and the cut mesh as

T hC =
{
Ki ∈ T h : Ki ∩ ∂Ω 6= ∅

}
⊂ T h ⊂ T hA , (2)

which consists of all the trimmed elements. The intersection of an element in T hC with the physical
domain is denoted by Ktr

i = Ki∩Ω and the intersection of an element with the physical boundary
is denoted by Bi = Ki∩Γ. In this work we only consider uniform grids, but the presented method90

is not restricted to this as demonstrated in [74].
On the ambient mesh T hA we define the multivariate isogeometric B-spline basis N p

α(T hA ),
which is a tensor product of univariate B-spline bases of degree p and regularity α [4, 75]. Note
that, in principle, both p and α can be different per spatial direction and can even vary locally.
For simplicity we restrict ourselves to the same global p and α for every spatial direction. The95

restriction of N p
α(T hA ) to basis functions supported on elements in T h is denoted by the basis

N p
α(T h) = {φi}ni=1. The span of basis N p

α(T h) forms the finite dimensional function space Vh(Ω)
of dimension n which we employ to approximate the solution to the single-field problems. The
solution to two-field mixed problems is approximated in Vh(Ω)×Qh(Ω), which comprises separate
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bases for the function spaces Vh(Ω) andQh(Ω). These spaces are generally naturally equipped with100

inner products, corresponding to the problem under consideration. In the examples in Section 4
we have Vh(Ω) ⊂ H1(Ω) and Qh(Ω) ⊂ L2(Ω).

The weak form of the single-field problems we consider herein is written as{
Find uh ∈ Vh(Ω) such that:

a(vh, uh) = b(vh) ∀vh ∈ Vh(Ω),
(3)

and that of the two-field mixed problems1 as
Find (uh, ph) ∈ Vh(Ω)×Qh(Ω) such that:

auu(vh, uh) + aup(vh, ph) = bu(vh) ∀vh ∈ Vh(Ω),

aup(uh, qh) = bp(qh) ∀qh ∈ Qh(Ω),

(4)

where a(·, ·) and b(·) are bounded bilinear and linear forms. Note that the Dirichlet boundary
conditions are not considered in the construction of the approximation space Vh(Ω), but are
imposed weakly in the variational form. Different techniques for this exist, of which Nitsche’s105

method [76, 77], the penalty method [78], the nonsymmetric Nitsche method [79–81], and Lagrange
multipliers and related methods [82, 83] are the most prevalent. In this contribution we restrict
ourselves to the symmetric Nitsche’s method and the penalty method. We consider weak problems
with higher-order discretizations that are not necessarily Symmetric Positive Definite (SPD) and
that are therefore outside the scope of other dedicated preconditioners for immersed finite element110

methods such as in [34, 35, 69].
In the sequel we will frequently refer to properties of the matrices associated with the weak

forms (3) and (4). Using the basis N p
α(T h) the weak form (3) reduces to the linear system

Ax = b, (5)

where Aij = a(φi, φj) and bi = b(φi) with φi and φj denoting the ith and jth basis function,
and where x contains the basis function coefficients in accordance with the discrete solution uh =∑n
i=1 φixi. Similarly, the mixed form (4) reduces to the linear system[

Auu Aup

AT
up 0

]
︸ ︷︷ ︸

A

(
xu
xp

)
︸ ︷︷ ︸

x

=

(
bu
bp

)
︸ ︷︷ ︸

b

, (6)

where Auu,ij = auu(φi, φj), Aup,ik = aup(φi, ψk), bu,i = bu(φi) and bp,k = bp(ψk) with φi and
φj again denoting the ith and jth velocity basis function and ψk denoting the kth pressure basis
function. The basis function coefficient vectors for the velocity and pressure solutions are denoted
by xu and xp, respectively.115

2.2. Conditioning of immersed finite element methods

Immersed finite element methods are known to yield severely ill-conditioned systems, see e.g.,
[7, 8, 34]. In [35] we have shown that these conditioning problems are caused by basis functions that
are only supported on small cut elements. Furthermore, it has been established and numerically
verified that a scaling relation exists between the condition number and the smallest volume
fraction η, which is defined as the smallest relative intersection of an element in T h with the
physical domain

η = min
Ki∈T h

C

|Ki ∩ Ω|
|Ki|

= min
Ki∈T h

C

|Ktr
i |
|Ki|

. (7)

1In the remainder we denote the different physical fields by u and p, in reference to the velocity and pressure
fields generally considered in mixed flow problems. The presented results are, however, applicable to a general class
of mixed problems.
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For Symmetric Positive Definite (SPD) matrices derived from immersed formulations of symmetric
and elliptic problems, the Euclidean condition number without preconditioning scales with

κ (A) = ‖A‖‖A−1‖ =
λmax

λmin
∝ η−(2p+1−2/d), (8)

where λmax and λmin denote the largest and smallest eigenvalue, p denotes the order of the
discretization and d denotes the number of spatial dimensions. This relation is derived for SPD
matrices, but similar arguments convey that the conditioning of matrices that are not SPD suffer
from similar problems. Specifically in three-dimensional problems, volume fractions of η = 10−6 or120

smaller are no exception, such that even linear discretizations result in extremely large condition
numbers.

The mechanism by which basis functions on small cut elements lead to ill-conditioning can
be observed directly from equation (8) (see [35] for details). For an SPD system, the smallest
eigenvalue appearing in (8) can be expressed by the Rayleigh quotient

λmin = min
y

yTAy

yTy
=

(
min
y

‖vh‖
‖y‖

)2

. (9)

The argument of the minimum is the eigenvector corresponding to the smallest eigenvalue, vh
denotes the function corresponding to coefficient vector y and ‖vh‖2 = a (vh, vh) denotes the
energy norm induced by the weak formulation. The eigenvalue λmin, hence, becomes very small125

when the function norm becomes very small compared to the norm of the coefficient vector, i.e.,
‖vh‖ � ‖y‖. In [35] it is shown that this critical mode, vh, is related to trimmed basis functions
that are only supported on the cut element with the smallest volume fraction. These basis functions
cause ill-condition in two ways: i) a single trimmed basis function can have a small norm because
its support over the physical domain is very small; ii) trimmed basis functions can become almost130

linearly dependent on small cut elements, which implies that a vector y can be constructed such
that ‖vh‖ � ‖y‖. Such almost linear dependencies between trimmed basis functions can occur
for linear bases and higher-order bases with maximum regularity for specifically-shaped trimmed
elements. For higher-order bases with reduced regularity, almost linear dependencies generally
occur on elements with small volume fractions of arbitrary shape.135

Ill-conditioning caused by basis functions with a small norm can be effectively remedied by
diagonal scaling or Jacobi preconditioning, which scales the basis functions such that these all
have the same norm. Almost linear dependencies of trimmed basis functions are not resolved by
diagonal scaling, and require a preconditioning strategy that accounts for the interdependence
of basis functions. The ineffectiveness of Jacobi preconditioning for ill-conditioning caused by140

almost linear dependencies is for example observed in the results for quadratic Lagrange bases in
[35, Figure 6]. In the remainder of this manuscript a preconditioner is proposed that effectively
remedies both above-mentioned causes of ill-conditioning.

Remark 2.1. Since the conditioning problems of immersed finite element methods originate from
small eigenvalues caused by cut elements with small volume fractions, the quotient between the ab-145

solute largest and smallest eigenvalue is a good indicator of the cut element conditioning problem2.
To demonstrate the robustness of the preconditioner to cut elements in Section 4, we therefore do
not only consider the convergence of iterative solvers but also report this quotient. The observed
correspondence between the condition numbers and the iterative-solver convergence stipulates that
the ill-conditioning caused by small cut elements indeed determines solver performance, which is150

in agreement with theoretical results, see e.g., [84].

2For symmetric matrices the quotient between the absolute largest and smallest eigenvalue is equal to the
condition number and for nonsymmetric matrices this quotient bounds the condition number from below.
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3. Tailored Additive-Schwarz preconditioning for immersed finite element methods

In this section we propose a tailored Additive-Schwarz preconditioner for the immersed finite
element setting introduced in Section 2.1. In Section 3.1 we discuss the formal definition of
Additive-Schwarz preconditioners [70–72], along with the specific selection of the index blocks. In155

Section 3.2 we analyze the effectiveness of this selection for the specific conditioning problems of
immersed finite element methods. In Section 3.3 we finally discuss the computational complexity
of the iterative solution procedure.

3.1. Additive-Schwarz block selection

Additive-Schwarz preconditioning of a matrix A ∈ Rn×n relies on the selection of a set of
N ≥ 1 blocks of indices (subsets) corresponding to basis functions. We denote the index blocks as

{Ki}Ni=1 and the cardinality of each block as mi = #Ki. Given the index blocks, a preconditioner
for the matrix A is constructed as

S =

N∑
i=1

Pi

(
PT
i APi

)−1︸ ︷︷ ︸
A−1

i

PT
i , (10)

where the prolongation operator Pi ∈ Rn×mi consists of the unit vectors corresponding to the160

indices in block Ki, i.e., Pi = [eKi(1), ..., eKi(mi)], and where the restriction operator PT
i is defined

as the transpose of the prolongation operator. If the index blocks are sufficiently small, the block
matrices Ai = PT

i APi can be inverted to form A−1
i . It is implicitly assumed that the block

matrices are invertible, which is the case for all our examples in Section 4 as these derive from
coercive bilinear forms. Each of the inverted block matrices A−1

i is transferred to an n×n matrix165

using the prolongation and restriction matrices, i.e., PiA
−1
i PT

i , resulting in a sparse matrix with
only m2

i nonzero entries at the cross indices of block Ki. These sparse matrices are summed to
form the Additive-Schwarz preconditioner S in accordance with equation (10).

An Additive-Schwarz preconditioner that is tailored to the conditioning problems of scalar,
single-field immersed finite element methods can be constructed by exploiting geometrical knowl-170

edge about the connectivity of basis functions based on intersecting supports on an element. For
element Ki the index block Ki is devised, consisting of the indices of the basis functions supported
on element Ki. Since the ill-conditioning problem of immersed finite element methods originates
from the cut elements, for reasons of efficiency we only device blocks for the cut elements in T hC .
This leaves out untrimmed basis functions, i.e., basis functions that are not supported on any of175

the cut elements. These basis functions are not prone to almost linear dependencies, however,
such that for these basis functions a simple diagonal scaling suffices. This can be conceived of as
devising a separate 1× 1 block for each basis function that is not trimmed.

This procedure for single-field problems can be applied directly to vector-valued problems
such as linear elasticity. However, the structure of such problems can be leveraged to reduce180

the computational effort involved in the construction of the preconditioner. Since basis functions
for different geometrical directions are inherently linearly independent (see Remark 3.2), these
cannot become almost linearly dependent by the mechanism described in Section 2.2. Hence,
the interdependence of such basis functions does not need to be taken into consideration in the
construction of the preconditioner. This implies that it is possible to select separate index blocks for185

different geometrical directions. A preconditioner can then be constructed by direct application
of the single-field Additive-Schwarz preconditioner proposed above to each of the geometrical
directions.

For mixed problems such as (Navier-)Stokes the basis functions describing the different physical
fields can also not become almost linearly dependent. In general, basis functions of different190

physical fields can therefore be treated separately to reduce the computational effort involved
in the construction of the preconditioner. However, direct application of (10) to App is often
impossible, as for most formulations this pressure block cannot be inverted. To circumvent this
problem, we therefore construct the above described tailored Additive-Schwarz preconditioner for
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the pressure field based on an approximation of the Schur complement AupA
−1
uuAT

up, see e.g., [85].195

As pressure functions in (Navier-)Stokes are applied as L2-functions, approximating the Schur
complement by the mass (or L2-projection) matrix is sufficient to scale and resolve the almost
linear dependencies in the pressure space. Let us note, however, that different approaches can
be adopted for preconditioning immersed mixed problems, based on alternative approximations
of the Schur complement, see e.g., [86]. We have also considered approximations of the Schur200

complement of the form AupS(Auu)AT
up, with S(Auu) the Additive-Schwarz preconditioner of

Auu. Another option pertains to the use of preconditioners based on Vanka-type smoothers [87].
We have obtained similar results with these alternative preconditioning strategies. In Section 4
we restrict our investigation of mixed problems to the tailored Additive-Schwarz preconditioner
for the pressure field based on the mass matrix as approximate Schur complement.205

Remark 3.1. While the Additive-Schwarz preconditioner discussed above is conceptually different
from the SIPIC preconditioner in [35], these preconditioners are related. In both preconditioners,
blocks are selected which contain basis functions that can become almost linearly dependent. The
tailored Additive-Schwarz preconditioner described herein selects overlapping blocks by exploiting
geometrical knowledge, whereas the SIPIC algorithm algebraically selects disjoint blocks of indices210

that can become almost linearly dependent to each other. The symmetrically applied SIPIC pre-
conditioner then orthonormalizes the basis functions in a block by a Gram-Schmidt procedure.
When applied as a left preconditioner, SIPIC becomes a block Jacobi matrix, which is basically
an Additive-Schwarz preconditioner with disjoint blocks. The tailored Additive-Schwarz precondi-
tioner developed herein differs in the way the Additive-Schwarz blocks are selected. We have found215

that the overlapping blocks based on geometrical knowledge are more robust and more efficient for
high-order bases with reduced regularity, such as Lagrange bases and Taylor-Hood bases [73]. This
is because for such bases the algebraic selection of disjoint blocks as in SIPIC does not necessarily
detect all the potential almost linear dependencies. Moreover, it can also result in very large blocks,
leading to a large computational cost. The geometrical selection of overlapping blocks as used in220

the Additive-Schwarz preconditioner in this work does not suffer from this.

3.2. Effectiveness of the preconditioner

Equation (10) conveys that the preconditioner S is a summation of block-wise inverses of
A, from which it is natural to interpret S as a sparse approximation of A−1. We consider the
Additive-Schwarz lemma to describe why the preconditioner S using the block selection as dis-
cussed in Section 3.1 effectively resolves the specific cut-element related ill-conditioning discussed
in Section 2.2. This lemma states that for a Symmetric Positive Definite (SPD) matrix A, the
following holds [88, 89] (see [70, 71] for this specific form)

yTS−1y = min

y=
N∑

j=1
Pj ỹj

N∑
i=1

ỹTi Aiỹi = min

y=
N∑

j=1
Pj ỹj

N∑
i=1

(Piỹi)
T

A (Piỹi) ∀y ∈ Rn. (11)

This equation conveys that the S−1-inner product of an arbitrary vector y ∈ Rn is equal to the
minimum of the sum of the Ai-inner products of the block vectors ỹi ∈ Rmi over all sets of block
vectors that sum to y. A set of block vectors whose prolongations accumulate into y exists for225

all vectors y ∈ Rn if and only if every index is in at least one of the index blocks Ki. When the
blocks overlap, which is the case here since basis functions are generally supported on more than
one cut element, multiple sets of block vectors that sum to y exist.

To relate equation (11) to the cut-element related ill-conditioning problem, we consider a func-
tion vh that is a linear combination of almost linearly dependent basis functions. Section 2.2230

conveys that the coefficient vector y corresponding to vh can yield a very small Rayleigh quotient
with matrix A. For the basis functions that construct vh to be almost linearly dependent, these
basis functions must intersect on a small cut element. Hence, these basis functions are by con-
struction together in one index block, Ki. Consequently, the coefficient vector y corresponding to
vh can be written as the prolongation of a single block vector, i.e., y = Piỹi. From equation (11) it235
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follows that the Rayleigh quotient of y with S−1 is bounded from above by the Rayleigh quotient
with A, and hence is also very small. From this it is concluded that S−1 captures the problemati-
cally small eigenmodes that are specific to matrices derived from immersed finite element methods,
which makes S an effective preconditioner to resolve these problems.

We note that the shape of the boundary or the geometry of a cut element is not considered in240

the preconditioning scheme. In Section 2.2 it is mentioned that certain cut elements contain certain
basis functions that are prone to almost linear dependencies, while for many cut basis functions
Jacobi preconditioning suffices. This can be observed in the numerical results in Section 4, which
show that the performance of a Jacobi preconditioner is non-robust and highly dependent on the
test case. The implementation of an algorithm to determine from the geometry whether basis245

functions are prone to almost linear dependencies is, however, invasive and requires geometrical
information that is not generally accessible in numerical codes. Therefore a block is assigned to
every element in T hC as described in Section 3.1.

The proposed preconditioner does not depend on the applied boundary conditions. Since the
specific conditioning problems of immersed finite element methods originate from basis functions250

that become almost linearly dependent, the type of boundary condition in general plays a minor
role. This is confirmed by the results of the numerical simulations in Section 4. An exception
to this is the case in which boundary conditions lead to a coupling of basis functions in different
spatial directions, see Remark 3.2. Such exceptional cases can also be preconditioned effectively
by gathering the problematic basis functions in different spatial dimensions in one index block.255

Equation (11) is in principle restricted to SPD matrices, but Additive-Schwarz preconditioners,
for which equation (10) forms the basis, have been investigated extensively for nonsymmetric and
indefinite systems [70, 71, 90–97] and have successfully been applied to mesh-conforming Navier-
Stokes systems, see e.g., [98]. In Section 4 we present results for both SPD and non-SPD matrices.
The considered non-SPD matrices still derive from coercive formulations, as is the case for many260

partial differential equations such as problems involving convection and bilinear forms resulting
from the nonsymmetric Nitsche formulation, see e.g., [79, 81, 99]. The non-SPD matrices in
Section 4 can therefore be considered as sums of both SPD and non-SPD contributions, with
the relative strength of the SPD character of the resulting matrices depending on factors as the
mesh-size, the Péclet or Reynolds number and potentially Streamline Upwind/Petrov-Galerkin265

(SUPG) or Variational MultiScale (VMS) stabilization terms [100–103]. We have observed the
Additive-Schwarz preconditioner to be effective for all the examples presented in Section 4, but
a dedicated study for the effect of the relative strength of the SPD-character of the matrix is
considered beyond the scope of the current work.

Remark 3.2. While the proposed preconditioner is robust with respect to the most commonly ap-270

plied boundary conditions, modifications to the block selections can be required in the case that
boundary conditions introduce almost linear dependencies between basis functions in different spa-
tial directions. Examples of such boundary conditions are non-penetration boundary conditions,
prescribed normal displacements or boundary conditions on nearly incompressible materials. The
reason that these boundary conditions can introduce almost linear dependencies is that the bilinear275

forms related to such boundary conditions associate a much larger penalty or energy to veloci-
ties or displacements normal to the boundary than to velocities or displacements tangential to the
boundary. Basis functions describe a velocity or displacement in an elementary geometrical direc-
tion that is generally not aligned with or perpendicular to the normal of the boundary. Therefore,
basis functions in different elementary geometrical directions both contain a high-energy normal280

component and a low-energy tangential component. With very large Nitsche penalties on small cut
elements, the tangential component is completely dominated by the normal component. These basis
functions in different elementary geometrical directions can then become almost linearly dependent
to each other, which directly violates the selection procedure in Section 3.1. This can be resolved
by adding the functions in different geometrical directions to the same Additive-Schwarz block, but285

for conciseness this is not presented in the results in Section 4.
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Remark 3.3. Since small cut elements yield correspondingly small eigenvalues, it is possible that
the system contains eigenvalues that are, in absolute sense, smaller than machine precision. When
this occurs, round-off errors can play a significant role, such that inverses of the block matrices
can be inaccurate. This generally impedes the convergence of a Conjugate Gradient solver as290

observed in [74]. In GMRES, round-off errors can cause failures in the orthogonalization of the
vectors that span the Krylov space (see Section 4, Figure 21). Since these problematic eigenmodes
with eigenvalues below machine precision do not significantly affect the accuracy of the solution,
we dispose of these eigenmodes by removing specific basis functions using Algorithm 1. For the
single-field problems and the velocity matrices in (Navier-)Stokes in Section 4 a relative threshold295

of 10−14 was found to yield stable results. The preconditioner of the pressure space required a
stricter threshold, which we attribute to discrepancies between the round-off errors in the system
matrix and the pressure mass matrix by which the Schur complement is approximated. Therefore
the threshold for the pressure space was set three orders of magnitude larger than the threshold for
the velocity space to 10−11. This is still approximately two orders of magnitude smaller than the300

tolerance of the GMRES solver that was set to 2−30 ≈ 10−9, such that this does not significantly
affect the accuracy of the solution. Note that this procedure is conceptually similar to the basis
function removal in [104], but differs in the threshold value and in the fact that Algorithm 1 still
removes a basis function when basis functions that are all larger than the threshold can form a
linear combination that is smaller than the threshold. For this reason Algorithm 1 is also applicable305

to bases with reduced continuity.

Algorithm 1: eliminate(A, {Ki}Ni=1, relativeThreshold)

1 # initialize
2 referenceValue = relativeThreshold*max(diagonal(A)) # absolute reference
3 eliminatedFuncs = set() # empty set of eliminated functions

4 # loop over blocks

5 for Kj ∈ {Ki}Ni=1 do
6 stable = False # block initially assumed unstable
7 # eliminate functions until block is stable
8 while not stable do
9 Aj = AKj ,Kj # block-matrix

10 eigVals, eigVecs = eig(Aj) # eigenvalues
11 smallestValue = min(abs(eigVals)) # smallest absolute eigenvalue
12 if smallestValue < referenceValue then
13 # block-matrix unstable: eliminate most unstable basis function
14 smallestMode = argMin(abs(eigVals)) # local index smallest eigenvalue
15 eigVec = eigVecs(smallestMode) # block-eigenvector
16 localFunc = argMax(abs(eigVec)) # local index dominant basis function
17 globalFunc = Kj(localFunc) # global index
18 eliminatedFuncs.append(globalFunc) # add to eliminated functions
19 Kj .delete(globalFunc) # remove from block

20 else
21 # block-matrix stable: exit while-loop
22 stable = True

23 end

24 end

25 end

26 return eliminatedFuncs

9



3.3. Computational cost

The computational cost of setting up the Additive-Schwarz preconditioner consists of two
components, viz. the floating point operations involved in inverting the block matrices and the310

memory required for storing the preconditioner. The number of block matrices depends on the
number of cut elements and the number of solution variables. The number of block matrices can
therefore vary from negligible, in case most elements are not cut, to linear with the number of
degrees of freedom (DOFs), in case the majority of the elements is cut. The block matrices have
a small size of (p + 1)d, with p the order of the discretization and d the number of dimensions.315

Consequently, computing these inverses is inexpensive and, in our experience, negligible compared
to the computational cost of quadrature on the cut elements. Furthermore, this operation is highly
parallelizable. The memory required to store the preconditioner is also approximately linear with
the number of cut elements, and can vary from negligible to linear with the number of DOFs.
In case all elements are cut, the preconditioner of a solution variable contains a nonzero entry320

at a cross index when the two corresponding basis functions intersect. This implies that the
preconditioner of a solution variable has the same sparsity structure as the system matrix. Since
the preconditioner does not contain cross terms between separate solution variables (d nonzero
blocks instead of d2 for the system matrix), the memory required to precondition a vector problem
such as linear elasticity is approximately 1

d of the memory required to store the system matrix, in325

case all elements are cut.
A preconditioned Conjugate Gradient solver multiplies a vector with both the system matrix

and the preconditioner at every iteration. Because the number of nonzero entries in the precon-
ditioner is smaller than the number of nonzero entries in the system matrix, the cost of these
two multiplications is linear with the number of DOFs, i.e., O(n). From the results in Section 4330

it follows that the required number of iterations is inversely proportional to the mesh size, i.e.,
O(h−1) = O(n

1
d ), which is in correspondence with the literature, e.g., [84]. The total compu-

tational cost of solving the linear system with a Conjugate Gradient solver is therefore of order
O(n) · O(n

1
d ) = O(n1+ 1

d ) (or, equivalently, O(h−(d+1))). The observed CPU times for solving the
linear systems of the three-dimensional elasticity problem in Section 4 verify this scaling relation.335

The computational cost of the GMRES solver that is applied for the non-SPD matrices scales
slightly differently with the number of DOFs. The convergence analysis of GMRES is less straight-
forward, see e.g., [84], but also for GMRES we observe in Section 4 that the required number of

iterations is approximately inversely proportional to the mesh size, i.e., O(n
1
d ). For GMRES the

cost of an iteration also scales with the number of DOFs, however, the total cost of GMRES is ap-340

proximately quadratic with the number of iterations through the orthonormalization of the vectors
that span the Krylov space, i.e., O(n

2
d ). The total cost of solving a system by GMRES therefore

is of order O(n1+ 2
d ) (or, equivalently, O(h−(d+2))). This scaling relation is verified by consider-

ation of the CPU time for solving the linear systems of the three-dimensional Stokes problem in
Section 4. Because GMRES explicitly stores the Krylov space, its memory requirements must be345

taken into consideration. With the observed numbers of iterations, the required memory scales
with the number of DOFs as O(n1+ 1

d ). Note that, although not considered in this work, restarted
GMRES can potentially reduce the scaling rates of both the computation time and memory.

Considering the resemblance with mesh-fitting methods in terms of the number of iterations,
we anticipate that the required number of iterations can potentially be made independent of the350

number of DOFs by incorporation of the developed preconditioner in a multigrid framework, e.g.,
[84, 105, 106]. This would bring down the total cost of both solvers to O(n).

4. Numerical examples

In this section we study the effectiveness and performance of the tailored Additive-Schwarz
preconditioner based on several representative two- and three-dimensional numerical test cases.355

To assess the versatility of the Additive-Schwarz preconditioner in the context of immersed finite
element methods we compare it to a standard Jacobi preconditioner. This comparison specifically
demonstrates the conditioning effect of immersed discretizations, because these preconditioners are
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Figure 2: Schematic representation of the physical domain immersed in a background grid, which is rotated with
respect to the physical domain over an angle θ. Numerical integration is performed using the integration proce-
dure outlined in [107]. In this integration procedure elements intersecting the boundary of the physical domain
are recursively bisectioned, until a maximum bisectioning depth is achieved. At this lowest level a triangulation
algorithm is applied. For each of the integration subcells standard Gauss quadrature rules are employed for the
evaluation of interior integrals (gray squares). The edges of the lowest level integration subcells that approximate
the boundary of the physical domain are used to construct the quadrature points for the evaluation of boundary
integrals (white circles).

the same on untrimmed elements and only differ in the treatment of cut elements. In Section 4.1
we consider an elasticity problem, which results in a SPD system that is solved using a Conjugate360

Gradient solver. An SUPG-stabilized convection-dominated convection-diffusion problem with a
nonsymmetric but coercive weak form is then considered in Section 4.2, where use is made of a
GMRES solver. Section 4.3 is concerned with a Stokes flow problem, which results in a symmetric
indefinite mixed system, which is preconditioned using the approximate Schur complement and
solved using GMRES. Finally, in Section 4.4 a Navier-Stokes flow problem yielding a nonsymmetric365

and indefinite mixed matrix is studied. Also this problem is preconditioned using the approximate
Schur complement and solved using GMRES.

All two-dimensional problems are posed on the domain illustrated in Figure 2. Numerical
integration is based on the procedure introduced in [107] with an integration depth of 3, which is
illustrated schematically in Figure 2. The size of the square bounding box of the physical domain370

is L = 1. The radii of the circular corner exclusions are taken as Rne = 1
3 , Rnw = 1

5 , Rsw = 1
π , and

Rse = 1
4 . The radius of the interior circular exclusion positioned at xin = (− 1

20 ,
1
20 ) is given by

Rin = 1
5 . We rotate the grid over a total angle of θ = 45° in 20 steps. The stepwise rotations of the

grid yield different discretizations with different cut elements of the same problem with the same
mesh size. This enables an investigation of the robustness of both the tailored Additive-Schwarz375

and the diagonal Jacobi preconditioner. The advantage of the two-dimensional problems is that
the largest and smallest eigenvalues and the iterative solutions of all the systems can be computed
at an acceptable computational cost. Following the analysis and results in [35, page 316], the
specific conditioning problems of immersed finite element methods are not affected by the size
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(a) Displacement magnitude (b) Frobenius norm of stress tensor

Figure 3: Boundary conditions and solution of the 2D elasticity problem in (12). The Dirichlet boundary ΓD is
indicated by the thick black lines in (a). Figure (a) shows the deformed and (b) the undeformed geometry. Note
that the deformed mesh is only plotted inside the physical domain since there is no solution for the deformation in
the fictitious domain.

of the problem, which makes this investigation representative for more complex problems. The380

applicability of the preconditioner to computationally challenging three-dimensional problems is
demonstrated for an elasticity problem on a trabecular bone specimen and for Stokes and Navier-
Stokes flow problems around an object with the shape of a popcorn flake.

Detailed numerical investigations into the effect of the grid size and the discretization order
are performed by considering grid sizes of h = 1

16 , h = 1
32 , and h = 1

64 and discretization orders385

of p = 1, p = 2, and p = 3. The presented test cases cover aspects such as the effect of different
boundary conditions, the shape of the boundary, or the geometry of the cut elements, but isolated
investigations into these effects will not be presented.

4.1. Linear elasticity problems

We consider the linear elasticity problem ignoring inertia effects and body forces div (σ) = 0 in Ω,
u = gD on ΓD,

σn = gN = 0 on ΓN ,
(12)

with Cauchy stress tensor σ = σ(u) = λdiv (u) I + 2µ∇su, dimensionless Lamé parameters390

λ = µ = 1, and ∇s denoting the symmetric gradient operator. Figure 3 shows the partitioning of
the boundary into ΓD and ΓN , the boundary conditions, and the solution with a grid of h = 1

32
at an angle of 22.5° using quadratic B-splines.

The variational form of the problem with boundary conditions imposed by Nitsche’s method
[76] is 

Find uh ∈ Vh(Ω) such that for all vh ∈ Vh(Ω):

∫
Ω
∇svh : σ(uh) dV +

∫
ΓD −vh · σ(uh)n− uh · σ(vh)n dS

+
∫

ΓD λβ
λ(vh · n)(uh · n) + 2µβµvh · uh dS

=
∫

ΓD −gD · σ(vh)n dS +
∫

ΓD λβ
λ(vh · n)(gD · n) + 2µβµvh · gD dS.

(13)
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This formulation with separate penalization for the Lamé parameters was proposed in [8] and
yields an SPD matrix. The separate element-wise stabilization constants are defined as3

βλ
∣∣
Ki

= 2 max
vh∈Vh(Ω)

‖div(vh)‖2
L2(BD

i )

‖div(vh)‖2
L2(Ktr

i )

, (14)

and

βµ|Ki
= 2 max

vh∈Vh(Ω)

‖ (∇svh)n‖2
L2(BD

i )

‖∇svh‖2L2(Ktr
i )

, (15)

and can be computed by solving a local generalized eigenvalue problem following the approach

in [77]. To improve the conditioning of this generalized eigenvalue problem we perform a local395

change of basis, as described in [35, Appendix A]. For shape-regular trimmed elements it holds

that βλ,µKi
∼ |BDi |/|Ktr

i | ∼ 1/ĥKi
with ĥKi

the typical length scale of the trimmed element Ktr
i

[108].
Figure 4 displays the condition number4 and the CG convergence in terms of the residual and er-

ror for the Additive-Schwarz-preconditioned, Jacobi-preconditioned and unpreconditioned systems400

for h = 1
32 and quadratic B-splines. The systems comprise approximately 1 850 degrees of freedom.

Figure 4a shows that the systems without any preconditioning are severely ill-conditioned. The
diagonally scaled matrices are conditioned significantly better than the unpreconditioned systems.
For certain rotation angles the systems with Jacobi preconditioning are well-conditioned, while
for other angles the eigenvalue ratios are still large. This effect is explained in Section 2.2, since405

on cut elements of certain geometries Jacobi preconditioning suffices as these are not prone to
almost linear dependencies, while on other cut elements the almost linear dependencies render
Jacobi preconditioning inadequate. This non-robust behavior is typical for small systems, as for
large systems it is unlikely that none of the cut elements is prone to almost linear dependencies.
Figures 4b and 4c show the convergence of a Conjugate Gradient solver that is terminated when410

either the residual is reduced by 2−30 ≈ 10−9 or when the number of iterations reaches 104. Fig-
ure 4b shows the convergence of the relative residual, ‖b − Axi‖/‖b‖, and Figure 4c presents

the convergence of the relative error in the energy norm,
(
(x− xi)

TA(x− xi)/x
TAx

)1/2
, with x

the solution obtained with a direct solver. It is visible that the systems without preconditioning
hardly converge. The convergence of the Jacobi preconditioned systems is erratic, similar to the415

eigenvalue ratios. It is important to note that for all these systems the residual is ultimately
reduced by 2−30, while for certain rotations the reduction of the error in the energy norm is much
less. The systems that are preconditioned by the Additive-Schwarz preconditioner all converge in
approximately 200 iterations and converge robustly in both the residual and the energy norm.

The effect of the grid size on the performance of the Additive-Schwarz preconditioner is inves-420

tigated by comparing results for quadratic B-spline bases with grid sizes of h = 1
16 , h = 1

32 , and
h = 1

64 in Figure 5. The systems contain approximately 600, 1 850 and 6 300 degrees of freedom for
the different grid sizes. Figure 5a demonstrates that the eigenvalue ratios are virtually independent
of the cut elements and are approximately proportional to h−2. This h-dependence is consistent
with the literature for mesh-fitting discretizations, see e.g., [109, 110]. The consistent convergence425

of the Conjugate Gradient solver for the different rotations in Figures 5b and 5c shows that for
all grid sizes the preconditioner is robust. The number of iterations is approximately inversely
proportional to the mesh size, which is also in accordance with the literature for mesh-fitting
discretizations, see e.g., [84].

In Figure 6 we investigate the effect of the discretization order by comparing linear, quadratic430

and cubic B-splines with optimal regularity on a grid with h = 1
32 . The systems with the different

discretization orders have a size of approximately 1 650, 1 850 and 2 050 degrees of freedom. One

3See Figure 1 for the definition of Ki, K
tr
i , and BD

i .
4Using a power algorithm, the condition number can be computed at an acceptable computational cost for all

two-dimensional systems considered in this section.
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(a) Eigenvalue ratios (b) Residual

(c) Error in the energy norm

Figure 4: Comparison of the Additive-Schwarz preconditioned, Jacobi preconditioned and unpreconditioned system
with grids of h = 1

32
using quadratic B-spline bases for the 2D elasticity problem for all rotation angles.

can observe that the eigenvalue ratios and the convergence are not affected by the rotations for
different discretization orders and that the iteration counts correspond to the eigenvalue ratios,
see e.g., [84]. It is remarkable that the eigenvalue ratios and the convergence are slightly better for435

higher orders, which is not consistent with the literature on mesh-fitting isogeometric discretiza-
tions, see e.g., [110]. The observed dependence on the discretization order is small, however, and
the investigated orders are lower than in [110]. Furthermore, it should be noted that for higher
orders the Additive-Schwarz blocks are larger because more basis functions are supported on an
element, which possibly affects the eigenfunctions. In conclusion, we observe that the tailored440

Additive-Schwarz preconditioner is robust for different discretization orders.
To demonstrate the effectiveness of the preconditioner on a three-dimensional problem, we

consider the µCT-scan of the trabecular bone specimen presented in [107]. The geometry is shown
in Figure 7, which also depicts the ambient domain of (0 mm, 1.28 mm)3. The Young’s modulus
is taken as E = 10 GPa and the Poisson’s ratio is ν = 0.3. The top boundary is constrained445

with a homogeneous Dirichlet condition, and at the bottom boundary a uniform displacement of
0.0128 mm in the vertical direction is applied, resulting in an average compression of 1%. To
avoid the computational cost involved in determining the element-wise stabilization parameters,
the Dirichlet conditions are applied by the penalty method instead of Nitsche’s method. The weak
formulation in (13) then reduces to450
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(a) Eigenvalue ratios (b) Residual

(c) Error in the energy norm

Figure 5: Investigation of the performance of the Additive-Schwarz preconditioner on grids of h = 1
16

, h = 1
32

, and

h = 1
64

using quadratic B-spline bases for the 2D elasticity problem.


Find uh ∈ Vh(Ω) such that for all vh ∈ Vh(Ω):

∫
Ω
∇svh : σ(uh) dV +

∫
ΓD λβ

λ(vh · n)(uh · n) + 2µβµvh · uh dS

=
∫

ΓD λβ
λ(vh · n)(gD · n) + 2µβµvh · gD dS.

The penalty parameters are set to βλ = βµ = 10
h . The integration depth for the quadrature is

set to 2 for the grids up to 64 × 64 × 64 elements and to 0 for the finest grid of 128 × 128 × 128
elements, in order to reduce the computation time. The solution depicted in Figure 7 is computed
on a grid of 64× 64× 64 elements with a quadratic B-spline basis.

Figure 8a reports the convergence of the relative residual in a Conjugate Gradient solver for455

different grid sizes. The number of iterations increases from 144 for the coarsest grid of 4× 4× 4
elements to 9 360 for the finest grid of 128 × 128 × 128 elements. The number of supported
basis functions varies from 639 to 1 054 491. The observed behavior is similar to that of the two-
dimensional problems in Figure 5b. The number of iterations increases with a factor slightly larger
than 2 between the three finest grids. We expect this to be caused by the system changing from a460

regime where nearly all elements are cut and receive the Additive-Schwarz treatment to a regime
where the majority of the basis functions is only diagonally scaled. Figure 8b depicts the CPU
times to solve the system on a single core. The scaling of the CPU time derived in Section 3.3 is
indicated by the dashed line, which conveys that the theoretical rate of O(h−(d+1)) = O(h−4) is
closely followed.465
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(a) Eigenvalue ratios (b) Residual

(c) Error in the energy norm

Figure 6: Investigation of the performance of the Additive-Schwarz preconditioner on a grid of h = 1
32

with optimal
regularity B-spline bases of orders p = 1, p = 2, and p = 3 for the 2D elasticity problem.

(a) Displacement magnitude [mm] (b) Frobenius norm of stress tensor [MPa]

Figure 7: Domain and solution of the elasticity problem on the three-dimensional trabecular bone geometry with
a grid of 64× 64× 64 elements.
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(a) Convergence (b) CPU time

Figure 8: Convergence of the relative preconditioned residual with the Conjugate Gradient solver and CPU times
for the three-dimensional elasticity problem with different grid sizes.

Figure 9: Boundary conditions and solution of the convection-diffusion problem in (16). The Dirichlet boundary
ΓD is indicated by the thick black lines and the arrow indicates the direction of the convective velocity w. Note
that the convection causes slight oscillations in the solution, which we ignore as we focus on the conditioning and
iterative solution of the linear system.

4.2. Convection-diffusion problems

We consider the convection-dominated convection-diffusion problem div (wu− ε∇u) = 0 in Ω,
u = gD on ΓD,

ε∂nu− 1
2min (0,w · n)u = gN = 0 on ΓN ,

(16)

with scalar solution variable u, dimensionless convective velocity w = (1, 1), dimensionless diffu-
sion coefficient 0 < ε = 10−6 � 1 such that |w| � ε, and ∂n = n · ∇ denoting the co-normal
derivative. A directional do-nothing term is included in the Neumann condition to ensure the
problem is well posed in case of inflow through the Neumann boundary ΓN [111–113]. The bound-470

ary conditions and the solution using a quadratic B-spline basis with grid size h = 1
32 at an angle

θ = 22.5° are presented in Figure 9.
We employ a weak form in which the convective terms are formulated skew-symmetrically as in

[113, 114] and stabilized by Streamline Upwind/Petrov-Galerkin (SUPG) terms [100]. Boundary
conditions are enforced by Nitsche’s method with an additional penalty scaling with the inflow475

velocity as proposed in [115]. The weak form reads
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Find uh ∈ Vh(Ω) such that for all vh ∈ Vh(Ω):

∫
Ω

1
2vhw · ∇uh −

1
2uhw · ∇vh + ε∇vh · ∇uh + τw · ∇vhdiv (wuh − ε∇uh) dV

+
∫
∂Ω

1
2max (0,w · n) vhuh dS + ε

∫
ΓD −vh∂nuh − uh∂nvh + βvhuh dS

=
∫

ΓD − 1
2min (0,w · n) vhg

D dS + ε
∫

ΓD −gD∂nvh + βvhg
D dS.

(17)

For this scalar problem the element-wise stabilization parameter is defined as

β|Ki
= 2 max

vh∈Vh(Ki)

‖∂nvh‖2L2(BD
i )

‖∇vh‖2L2(Ktr
i )

, (18)

which can again be computed by the approach described in [77]. Different choices for the SUPG
parameter τ are motivated in [116]. In all our examples we use τ = h∗/ (2|w|) with h∗ the
maximal element length in the direction of velocity w. For uniform tensor product grids this
implies τ = h/ (2 maxi (|w · ei|)), with ei the unit vector in the direction of a grid line. We
therefore have

τ =
h

2
√

2 sin
(

1
4π + θ

) . (19)

Our computations based on τ according to (19) as a global parameter did not indicate a need

to consider a typical length scale ĥ∗Ktr
i

of a trimmed element. We did not perform an in depth

investigation of this aspect however, and cannot assert that this observation holds generally.
The performance of the Additive-Schwarz preconditioner is compared to a Jacobi precondi-480

tioner in Figure 10. We again consider the linear systems for all grid angles θ with a grid size
h = 1

32 using quadratic B-splines, yielding approximately 900 degrees of freedom. Figure 10a
shows the ratios between the largest and smallest eigenvalues, plotted against the smallest volume
fractions η. It is noted that the eigenvalue ratios with Jacobi preconditioning are very similar
to those of the elasticity problem in Figure 4a, which indicates that the conditioning problems485

are the result of how elements are cut and that the considered partial differential equation and
boundary conditions play a minor role. Figure 10b plots the convergence of the relative precondi-
tioned residual in a GMRES solver that is terminated at a reduction of 2−30. The preconditioned
residual is a value that is naturally computed in a GMRES solver. The figure demonstrates that
the Additive-Schwarz preconditioner is robust with respect to the rotation angle with iteration490

counts ranging between 90 and 130. We expect that the minor variation in the number of itera-
tions between approximately 90 and 130 for the preconditioned solver is caused by variation in the
(mis)alignment between the convective velocity and the grid lines and consequently the variation
in the value of stabilization parameter τ . The Jacobi preconditioner is not robust to how elements
are cut, and for certain rotations the iteration count increases to more than 400.495

Figure 11 investigates the effect of the grid size and discretization order on the performance of
the preconditioner. Figure 11a conveys that the behavior of the GMRES solver is robust for all grid
sizes, and that the observed numbers of iterations show a similar dependence on the grid size as
the Conjugate Gradient solver for the elasticity problem. The systems corresponding to different
grid sizes comprise approximately 300, 900 and 3 200 degrees of freedom. Figure 11b shows500

that Additive-Schwarz preconditioned GMRES is robust to the different discretization orders.
Again the convergence demonstrates a minor dependence on the order, where for this problem
the convergence of the lower orders is faster than for the higher orders. The discretization orders
p = 1, 2, 3 carry approximately 800, 900, and 1 000 degrees of freedom, respectively.
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(a) Eigenvalue ratios (b) Residual

Figure 10: Comparison of the Additive-Schwarz and Jacobi preconditioner with grids of h = 1
32

using quadratic
B-spline bases for the 2D convection-diffusion problem.

(a) Grid size (b) Discretization order

Figure 11: Investigation of the effect of the grid size and discretization order on the performance of the Additive-
Schwarz preconditioner for the convection-diffusion problem. Figure (a) displays the convergence with grids of
h = 1

16
, h = 1

32
, and h = 1

64
using quadratic B-spline bases. Figure (b) displays the convergence on a grid of

h = 1
32

using optimal regularity B-spline bases of orders p = 1, p = 2, and p = 3.

4.3. Incompressible Stokes flow problems505

We consider the incompressible Stokes flow problem in dimensionless form
div (2∇su− pI) = 0 in Ω,

div (u) = 0 in Ω,
u = gD on ΓD,

(2∇su− pI)n = gN on ΓN ,

(20)

on the domain in Figure 12. In this formulation u and p denote the velocity and the pressure,
respectively. The leftmost boundary of the domain is the inflow boundary where we impose a Neu-
mann condition with a uniform normal traction. The rightmost boundary is the outflow boundary
and is traction free. On all other boundaries homogeneous Dirichlet, i.e., no-slip, boundary condi-
tions are imposed. The boundary conditions and the solution with a quadratic Taylor-Hood basis510

on a grid of h = 1
32 at an angle of 22.5° are shown in Figure 12.
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(a) Velocity magnitude (b) Pressure

Figure 12: Boundary conditions and solution to the 2D Stokes flow problem. The leftmost inflow boundary contains
a uniform normal traction Neumann condition, the rightmost outflow boundary contains a traction free Neumann
condition, the other boundaries contain no-slip Dirichlet conditions indicated by the thick black lines in (a).

The symmetric variational form with boundary conditions imposed by Nitsche’s method is

Find (uh, ph) ∈ Vh(Ω)×Qh(Ω) such that for all (vh, qh) ∈ Vh(Ω)×Qh(Ω):

∫
Ω

2∇svh : ∇suh dV +
∫

ΓD −2vh · (∇suh)n− 2uh · (∇svh)n+ 2βvh · uh dS

+
∫

Ω
−phdiv (vh)− qhdiv (uh) dV +

∫
ΓD phvh · n+ qhuh · n dS

=
∫

ΓN vh · gN dS +
∫

ΓD −2gD · (∇svh)n+ 2βvh · gD + qhg
D · ndS.

(21)

The element-wise stabilization constant β in this formulation is equal to βµ in (15). In order to
obtain an inf-sup stable formulation, a proper choice for the pair of spaces Vh(Ω) and Qh(Ω) is
needed. An analysis of the inf-sup stability and performance of different pairs of function spaces
and formulations for immersed finite element methods can be found in [117, 118]. We apply a515

Taylor-Hood pair that comprises a N p
p−2(T h) B-spline basis for Vh and a N p−1

p−2 (T h) B-spline basis
for Qh, with p denoting the order of the discretization.

The performance of the Additive-Schwarz preconditioner and the Jacobi preconditioner is
reported in Figure 13. The preconditioners for the velocity are based on the velocity matrix
and the preconditioners for the pressure are based on the pressure mass matrix, which serves as an520

approximate Schur complement as discussed in Section 3.1. For all grid angles θ the linear systems
are computed for a quadratic, p = 2, basis on a grid with h = 1

32 , resulting in approximately
7 100 degrees of freedom. The eigenvalue ratios of the symmetric systems in Figure 13a are
similar to the eigenvalue ratios of the elasticity problem and the convection-diffusion problem.
This demonstrates that the effectiveness of Jacobi preconditioning depends on how the elements525

are cut, while the Additive-Schwarz preconditioner is uniformly effective for all configurations.
Figure 13b shows the convergence of the preconditioned residual with a GMRES solver, that is
terminated at a residual of 2−30 or when the number of iterations exceeds 2 500. One can observe
that the Additive-Schwarz preconditioner is robust and behaves uniformly for all configurations.
Jacobi-preconditioned GMRES generally converges slower than Additive-Schwarz-preconditioned530

GMRES. For approximately half of the considered angles, Jacobi-preconditioned GMRES does
not achieve convergence within the prescribed maximum number of iterations. Let us note that
by virtue of the symmetry of the Stokes problem, we could have sufficed with MINRES instead
of GMRES. However, we have opted for the use of the generally applicable GMRES to retain
uniformity in the presentation.535

The effect of the grid size and the order of the discretization is investigated in Figure 14. The
convergence of the preconditioned residual with the GMRES solver in Figure 14a demonstrates that
the Additive-Schwarz preconditioner is uniformly effective for the different grid sizes. The observed
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(a) Eigenvalue ratios (b) Residual convergence

Figure 13: Comparison of the effectiveness of the Additive-Schwarz and Jacobi preconditioner for the 2D Stokes
problem with grids of h = 1

32
and a discretization order of p = 2.

(a) Grid size (b) Discretization order

Figure 14: Convergence of the preconditioned residual of the 2D Stokes problem. Figure (a) displays different grid
sizes with p = 2. Figure (b) displays discretization order p = 2 and p = 3 with a grid of h = 1

32
.

numbers of iterations are approximately inversely proportional to the mesh size, which was also
observed for the elasticity problem and the convection-diffusion problem. The systems with the540

different grid sizes have approximately 2 100, 7 100 and 25 700 degrees of freedom. Figure 14b
shows that the preconditioner is effective for both p = 2 and p = 3, where the cubic space requires
slightly more iterations than the quadratic space. The systems have approximately 7 100 and 7 600
degrees of freedom for the different systems.

Next, we consider the properties of the Additive-Schwarz preconditioning scheme for a three-545

dimensional Stokes flow around the popcorn flake introduced in [119] reduced in size by a factor
2. The domain consists of the bi-unit cube, with the popcorn flake excluded at the center. At
the left boundary, x1 = −1, we prescribe a parabolic inflow velocity normal to the boundary with
dimensionless maximum velocity 1, i.e., we impose the Dirichlet condition gD = ((1 − x2

2)(1 −
x2

3), 0, 0). The right boundary, x1 = 1, is a homogeneous Neumann outflow boundary. On all550

other boundaries no-slip Dirichlet conditions are imposed. To reduce the computational cost we
apply a penalty method instead of Nitsche’s method, such that we do not have to compute the
element-wise stabilization parameters. We therefore set β = 10

h and remove the viscous terms on
the Dirichlet boundary from the variational formulation
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(a) Velocity magnitude (b) Pressure

Figure 15: Domain and solution of the three-dimensional Stokes flow around the popcorn flake with a grid of
32× 32× 32 elements and a quadratic Taylor-Hood basis.

(a) Convergence (b) CPU time

Figure 16: Convergence of the relative preconditioned residual with GMRES (a) and CPU times (b) for the three-
dimensional Stokes problem with different grid sizes.



Find (uh, ph) ∈ Vh(Ω)×Qh(Ω) such that for all (vh, qh) ∈ Vh(Ω)×Qh(Ω):

∫
Ω

2∇svh : ∇suh − phdiv (vh)− qhdiv (uh) dV +
∫

ΓD 2βvh · uh + phvh · n+ qhuh · n dS

=
∫

ΓN vh · gN dS +
∫

ΓD 2βvh · gD + qhg
D · ndS.

Similar to the three-dimensional elasticity problem, the integration depth is set to 2. The domain555

and the solution on a 32 × 32 × 32 grid with a quadratic Taylor-Hood basis are displayed in
Figure 15.

The convergence of a GMRES solver with the dedicated Additive-Schwarz preconditioner for
different grid sizes with quadratic Taylor-Hood bases is shown in Figure 16a. The systems contain
2 312, 15 468, 112 216, and 848 012 degrees of freedom, respectively. The convergence plots are560

similar to those for the different grid sizes for the two-dimensional problems in Figure 14a. The
increase in the number of iterations between the 8× 8× 8 and the 16× 16× 16 grid is slightly less
than the expected factor 2, which we attribute to pre-asymptotic behavior. The CPU time for
the GMRES solver on a single core is reported in Figure 16b. The dashed line depicts the scaling
rate that is estimated in Section 3.3, which is observed to be in excellent agreement.565
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(a) Velocity magnitude (b) Pressure

Figure 17: Boundary conditions and solution of the 2D Navier-Stokes problem with ν = 10−4 (Re ≈ 25). The thick
lines in Figure (a) indicate the Dirichlet boundary, with the solution to the Stokes problem as the inflow condition
at the leftmost boundary and no-slip conditions at all other Dirichlet boundaries.

4.4. Steady incompressible Navier-Stokes flow problems

To solve the steady Navier-Stokes equations we first consider the Oseen problem
div (w ⊗ u− 2ν∇su+ pI) = 0 in Ω,

div (u) = 0 in Ω,
u = gD on ΓD,

(2ν∇su− pI)n− 1
2min (0,w · n)u = gN on ΓN ,

(22)

with divergence free convection velocity w. Note the directional do-nothing term in the Neumann
boundary condition to ensure well-posedness in case of backflow through ΓN [111–113], cf. the
convection-diffusion problem in Section 4.2. The nonlinear steady Navier-Stokes equations are
obtained by replacing the convection velocity w with u. We solve this system by means of a
standard Picard iteration procedure, in which the Oseen problem is successively solved with at
the ith iteration the convection velocity set to w = ui−1. The initial convection velocity is set to
w = 0, such that in the first iteration the Stokes problem is solved. The applied stopping criterion
is √√√√‖ui − ui−1‖2H1(Ω) + ‖pi − pi−1‖2L2(Ω)

‖ui + ui−1‖2H1(Ω) + ‖pi + pi−1‖2L2(Ω)

≤ tol = 10−4.

The dimensionless kinematic viscosity is set to ν = 10−4. We use the solution to the Stokes
problem in (20) as a Dirichlet inflow boundary condition at the leftmost boundary, and apply
the same boundary conditions as the Stokes problem for the other boundaries. The full set of
boundary conditions and the solution are shown in Figure 17, with a quadratic Taylor-Hood basis570

on a grid with h = 1
32 at an angle of 22.5°. The resulting Reynolds number is approximately 25.

The considered weak form for the Oseen equations is based on the skew symmetric convection
formulation [113, 114] with additional penalization on the Dirichlet boundaries with the inflow
velocity as in [115]:

Find (uh, ph) ∈ Vh(Ω)×Qh(Ω) such that for all (vh, qh) ∈ Vh(Ω)×Qh(Ω):

∫
Ω

2ν∇svh : ∇suh dV +
∫

ΓD −2νvh · (∇suh)n− 2νuh · (∇svh)n+ 2βνvh · uh dS

+
∫

Ω
1
2vh · (∇uh)w − 1

2uh · (∇vh)w dV +
∫
∂Ω

1
2max (0,w · n)vh · uh dS

+
∫

Ω
−phdiv (vh)− qhdiv (uh) dV +

∫
ΓD phvh · n+ qhuh · ndS

=
∫

ΓD −2νgD · (∇svh)n+ 2βνvh · gD − 1
2min (0,w · n)vh · gD + qhg

D · ndS

+
∫

ΓN vh · gN dS

(23)
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(a) Eigenvalue ratios (b) Residual convergence

Figure 18: Comparison of the Additive-Schwarz preconditioner and Jacobi preconditioner for the 2D Navier-Stokes
problem with grids of h = 1

32
and a discretization order of p = 2.

Similar formulations can be found in [3, 15–18, 21–23, 25–27, 120, 121]. The variational forms
in most of these references contain Variational MultiScale (VMS) stabilization terms to enhance
stability for large convective velocities [101–103]. The two-dimensional and three-dimensional
examples presented in this manuscript with both a Reynolds number of approximately 25 did not575

require this stabilization. Furthermore, these stabilization terms have originally been developed
for linear bases and have in the context of immersed finite element methods only been used with
such linear bases [15–17], with a stabilization parameter that is decreased in the vicinity of the
trimmed elements [3, 21, 27] or in combination with additional stabilization techniques such as
ghost penalty terms on trimmed elements [22–26].580

The system matrix and consequently the conditioning depend on the convective velocity w.
Because the convective velocity changes in the Picard iterations, so does the system matrix and,
hence, its condition number. To keep our report of the results concise, we only present the
eigenvalue ratios and the convergence of the GMRES solver with the converged convective velocity.
We have observed that the convective velocity does not significantly affect the conditioning. Similar585

to the Stokes problem, the pressure space is preconditioned using the pressure mass matrix as an
approximate Schur complement.

The Additive-Schwarz preconditioner is compared to a Jacobi preconditioner for quadratic
bases with a grid size of h = 1

32 in Figure 18. All the systems contain approximately 7 100
degrees of freedom. One can observe that the results are very similar to those of the Stokes590

problem in Figure 13. The convergence of the GMRES solver for the different angles is less
uniform for Navier-Stokes than for Stokes. We conjecture that these non-uniformities are caused
by the (mis)alignment of the background grid lines with the convection velocity, similar to the
convection-diffusion problem.

In Figure 19 the effect of the grid size and the discretization order on the Additive-Schwarz595

preconditioner is reported. Figure 19a contains the convergence of the GMRES solver for the
preconditioned residual on grids with h = 1

16 , h = 1
32 , and h = 1

64 , resulting in systems of
approximately 2 100, 7 100 and 25 700 degrees of freedom, respectively. The results are again very
similar to those of the Stokes problem, with a larger spread in the iteration counts, which we again
attribute to the (mis)alignment between the convection velocity and the grid lines. Figure 19b600

investigates the effect of the discretization order on a grid with h = 1
32 . The systems for p = 2 and

p = 3 contain approximately 7 100 and 7 600 degrees of freedom, respectively. These results are
similar to those of the Stokes problem, with again slightly more spreading in the iteration counts.

To elucidate the properties of the Additive-Schwarz preconditioner for a 3D Navier-Stokes
problem, we consider the same three-dimensional popcorn flake problem as for the Stokes problem.605

We again replace Nitsche’s method in the weak form by the penalty method, in the same way as
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(a) Grid size (b) Discretization order

Figure 19: Convergence of the preconditioned residual at the last Picard iteration of the 2D Navier-Stokes problem.
Figure (a) displays different grid sizes with p = 2. Figure (b) displays discretization orders p = 2 and p = 3 with a
grid of h = 1

32
.

(a) Velocity magnitude (b) Pressure

Figure 20: Solution to the three-dimensional Navier-Stokes flow around the popcorn flake with a grid of 32×32×32
elements and a quadratic Taylor-Hood basis.

for the three-dimensional Stokes problem. We set the dimensionless kinematic viscosity to ν = 1
35 .

With the maximum inflow velocity of 1 and the diameter of the popcorn flake of approximately
0.71, this results in a Reynolds number of approximately 25. The solution is shown in Figure 20.

The convergence of a GMRES solver with the Additive-Schwarz preconditioner for different grid610

sizes with quadratic Taylor-Hood bases is shown in Figure 21. The systems again contain 2 312,
15 468, 112 216, and 848 012 degrees of freedom, respectively. The behavior is similar to that of the
three-dimensional Stokes problem in Figure 16a and the two-dimensional Navier-Stokes problems
in Figure 19a. It is observed that on the finest grid the solution converges to approximately
1.1 ·10−9 and does not achieve the full tolerance of 2−30. This is the result of round-off errors that615

cause a failure in the orthogonalization of the vectors that span the Krylov space in GMRES, as
described in Remark 3.3. We have resolved this by applying a restart after 2 000 iterations in the
GMRES algorithm (illustrated in the figure by the dashed line). Alternatively, this issue can be
resolved by weakening the threshold at which basis functions are eliminated (not reported in the
figure).620
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Figure 21: Convergence of the relative preconditioned residual of the GMRES solver for the three-dimensional
Stokes problem on different grid sizes.

5. Concluding remarks

Motivated by the unavailability of versatile preconditioning techniques for immersed finite
element problems, an Additive-Schwarz-type preconditioner is proposed that opens the door to
higher-order immersed discretizations of a general class of flow problems. The proposed precon-
ditioner derives its effectiveness from a tailored selection of the Additive-Schwarz blocks, which625

in essence combines diagonal scaling of untrimmed basis functions with element-wise inverses for
trimmed basis functions. The performance of the preconditioner is demonstrated for a broad class
of problems in both two and three dimensions, which convey that the cut-element related ill-
conditioning problem is adequately resolved. In contrast to Jacobi preconditioning, the proposed
preconditioner is robust with respect to the element size of the ambient mesh, the order of the630

discretization, the smoothness of the discretization, and the shape of the cut-elements.
Theoretical cost estimates for the considered preconditioned iterative solvers convey that, both

in terms of floating point operations and in terms of memory usage, the proposed technique
scales favorably compared to a direct solver. These estimates have been confirmed in our three-
dimensional numerical simulations, which can be solved efficiently using the proposed precondi-635

tioner. The structure of vector-valued and mixed problems is leveraged in the Additive-Schwarz
block selection to enhance the efficiency of the preconditioning technique. Application of the pro-
posed technique to singular blocks in mixed systems (such as the pressure block in (Navier-)Stokes
problems) is possible through an approximation of the Schur complement.

The exhibited behavior of the preconditioned systems is in close correspondence with character-640

istic behavior of mesh-fitting methods. This observation is evident, as untrimmed basis functions
are treated straightforwardly by a Jacobi preconditioner. Consequently, the convergence of iter-
ative solvers is still affected by aspects such as the discretization order and the mesh size in the
usual manner as it does for mesh-fitting approaches. Especially the dependence of the convergence
of the iterative solvers on the mesh size is apparent. It is therefore worthwhile to investigate the645

combination of the dedicated treatment of cut elements with existing preconditioning techniques,
specifically multigrid techniques, to develop a method that is robust to a combination of the above
mentioned effects.

Acknowledgement

The research of F. de Prenter was funded by NWO under the Graduate Program Fluid & Solid Me-650

chanics. All simulations in this work were performed using the open source software package Nutils
([122], www.nutils.org). The code to construct the preconditioner and data to reproduce the re-
sults can be downloaded from https://gitlab.com/fritsdeprenter/additive-schwarz-immersed-fem.
We would like to acknowledge fruitful discussions with Christoph Lehrenfeld regarding Additive-
Schwarz preconditioning.655

26



References
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[32] T. Rüberg, F. Cirak, A fixed-grid b-spline finite element technique for fluid–structure inter-
action, International Journal for Numerical Methods in Fluids 74 (9) (2014) 623–660.
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