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Summary
This paper addresses the problem of estimating the state for a class of uncer-

tain discrete-time linear systems with constraints by using an optimization-based

approach. The proposed scheme uses the moving horizon estimation philosophy

together with the game theoretical approach to the ∞ filtering to obtain a robust

filter with constraint handling. The used approach is constructive since the pro-

posed moving horizon estimator (MHE) results from an approximation of a type of

full information estimator for uncertain discrete-time linear systems, named in short

∞-MHE and ∞–full information estimator, respectively. Sufficient conditions

for the stability of the ∞-MHE are discussed for a class of uncertain discrete-time

linear systems with constraints. Finally, since the ∞-MHE needs the solution of

a complex minimax optimization problem at each sampling time, we propose an

approximation to relax the optimization problem and hence to obtain a feasible

numerical solution of the proposed filter. Simulation results show the effectiveness

of the robust filter proposed.

KEYWORDS

constrained estimation, moving horizon estimation, optimization, robust estimation, uncertain linear

systems

1 INTRODUCTION

State estimation methods are used in a broad range of application areas including, but not restricted to, aerospace, robotics,

communication, control, signal processing, system biology, and process engineering, see for instance, several studies,1-5 where

the well-known estimators like the Kalman filter and its linear and nonlinear variations are mainly used. However, when the
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2 GARCIA TIRADO ET AL.

model considered in the filtering process is uncertain, the central design premise of most classic and Kalman-based estimators

is violated and hence the filter performance is compromised.

In this sense, robust estimation has attracted the interest of researchers to cope with different uncertainty sources and to limit

the performance degradation of nonrobust observers and filters like the Luenberger observer, the Kalman filter, and many of

their variations.6,7 The problem of estimating the state of uncertain linear systems is well-known from the beginning of the

1980s.7 Since then, countless publications have been provided from many authors by using different approaches. Regarding

only the linear framework, the contributions have been focused to tackle two main sources of uncertainty, i.e., uncertainty on

the parameters of the system8,9 and uncertainty on the statistics of the disturbing noises.7,8,10,11 Contributions addressing both

uncertainty sources in the same statement of the problem are also available.8,12,13 A literature review on state estimation for

uncertain linear systems is found elsewhere.14

The moving horizon estimator (MHE) has shown to be an effective estimation scheme able to handle constraints even in

the nonlinear framework.15,16 Typically, the MHE solves the constrained estimation problem when parameter uncertainties are

somehow negligible and the additive noises have known statistics as in the Kalman filter. The MHE rewrites the optimal esti-

mation problem in an optimization-based procedure, allowing the natural addition of useful process insight in the form of

constraints.15-18 Some outstanding applications of MHE are found in previous studies19-22 in topics ranging from actuator fault

detection, observer design for linear-parameter-varying systems with uncertain measurements, large-scale nonlinear processes

with delayed lab measurements, and model-based output feedback. The basic strategy of MHE, regarding only to the linear

framework, reformulates the estimation problem as a quadratic program using a moving, fixed-size estimation window. The

fixed-size window is needed to bound the computational burden derived of the solution of the optimization problem. This is

the principal difference of MHE with the full information estimator, FIE in short.15,17,18

However, when models are uncertain, either because there exists uncertainty in the model parameters or in the statistics of the

inputs, the classic MHE exhibits poor performance.23,24 Main efforts to provide an estimation strategy for linear systems with

uncertainty under a moving horizon approach are mainly due to Alessandri and coworkers.25-30 In these contributions, the authors

tackle the above problem through the formulation of a minimax optimization problem using the classic cost function provided

in Rao et al.18 A general issue in these contributions is the difficulty to provide a numerical solution to the stated problem even

in an unconstrained scenario; the given solutions are the result of successive reformulations of the original statement under

complicated and unrealistic assumptions. This is explained by the fact that typically minimax formulations are still complex

to solve numerically.29,31-33 An alternative approach was found in Sui and Johansen,34 where the use of a pre-estimating linear

observer in the forward prediction equations of the MHE cost function allowed to reduce the effects of uncertainty.

The present work provides an understandable and clear path to achieve a constrained estimation strategy for discrete-time

linear systems with unknown inputs using a moving horizon approach. Our contribution differs from the ones presented by

Alessandri et al because we consider the uncertainty in the statistics of the inputs instead of the uncertainty in the model

parameters. Moreover, our formulation allows a direct addressing of constraints. Finally, we provide a way to circumvent the

resulting minimax problem by means of the solution of two successive quadratic programs.

This work follows the ideas presented in Garcia-Tirado et al.35 Robustness against unknown inputs is guaranteed by using the

game theoretical approach of the ∞ filtering.10 For the sake of completeness, we present first a robust FIE in a ∞-FIE, and

then its moving horizon approximation, denoted in short as ∞-MHE. As this approximation is made by using the concept of

window shifting, the filter stability for both the ∞-FIE and the ∞-MHE is investigated following some results presented in

Keerthi and Gilbert36 and Rao.15 Finally, a numerical approximation of the minimax optimization problem generated at each

sampling time in the ∞-MHE is provided to avoid the computational burden and complexity of such optimization problem.

The filter with the numerical approximation is denoted as the ∞-aMHE.

The paper is organized as follows. In Section 2, the problem of estimating the state of a constrained discrete-time linear

system with unknown inputs using an optimization-based framework is stated. Then, the moving horizon approximation of the

stated problem is provided in Section 3 along with a suitable definition of the arrival cost, the matrix recursion weighting the

estimation error, and a suitable numerical approximation of the stated problem, denoted as ∞-aMHE. A stability analysis for

both the ∞-FIE and the ∞-MHE schemes is provided in Section 4. Then, a numerical example showing the benefits of the

proposed scheme and its ability to handle constraints is given in Section 5. Finally, conclusions and future work are given in

Section 6.

2 PROBLEM STATEMENT

Consider the uncertain discrete-time linear system

xk+1 = Axk + Gwk,

yk = Cxk + 𝜈k,
(1)
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where xk ∈ Rn is the state, yk ∈ Rp is the system output, and wk ∈ Rm and 𝜈k ∈ Rp are the model and measurement uncertainties,

respectively, and A, G, and C are time-invariant matrices of corresponding order. wk and 𝜈k are assumed to be unknown. It is

also known that the states and disturbances satisfy the following constraints:

xk ∈ X,wk ∈ W, and𝜈k ∈ V, (2)

where the sets X,W, and V are assumed to be polyhedral and convex.

Consider the constrained estimation problem for (1). The estimate of xt given the measurement sequence {y0, · · · , yt−1},

denoted as x̂t|t−1, is obtained by the solution of the state equation (1) if the a priori estimates of the initial state x0|t−1 and the

disturbance sequence {w0, · · · ,wt−1} are known, ie, x̂0|t−1 and {ŵ0, · · · , ŵt−1}, respectively,

x̂t|t−1

(
t; x̂0|t−1,

{
wj
}t−1

j=0

)
= Atx̂0|t−1 +

t−1∑
j=0

At−j−1Gŵj. (3)

The constrained estimation problem for the uncertain discrete-time linear system (1) can be formulated as the solution of the

following minimax problem:

𝜓̄∗
t = min

x0

max
{wk},{𝜈k}

𝜓̄t (x0, {wk} , {𝜈k})

s.txk ∈ X,wk ∈ W, and 𝜈k ∈ V

(4)

with 𝜓̄t the objective function defined by

𝜓̄t (x0, {wk} , {𝜈k}) =
1

2
||x0 − x̄0||2Π−1

0

− 1

2𝛾

t−1∑
k=0

(||wk||2Q−1 + ||𝜈k||2R−1

)
, (5)

where x̄0 is the a priori guess of the initial state, {wk} = {wk}t−1
k=0

, {𝜈k} = {𝜈k}t−1
k=0

, 𝛾 > 0 the performance bound, ||y||2S = yTSy,

and Π−1
0

, Q−1, and R−1 are assumed to be symmetric positive definite matrices. Π−1
0

and x̄0 give the a priori information of the

filter at time t = 0.

Since 𝜈k is a function of the measurements and the system state, (5) can be finally rewritten as

𝜓̄t (x0, {wk}) =
1

2
||x0 − x̄0||2Π−1

0

− 1

2𝛾

t−1∑
k=0

(||wk||2Q−1 + ||yk − Cxk||2R−1

)
. (6)

This problem is referred as ∞-FIE, because all the available measurements are considered from k = 0 to k = t − 1. Some

classical papers had used the term full information for control systems where an enlarged output is made up from the state and

disturbance.37 However, in this paper, the term full information is used in the sense of estimation as used in Rao et al15,18 and

Jazwinski.38 An analytic solution to the ∞-FIE can be obtained in absence of constraints.39

Remark 1. The cost function 5 comes from the definition of the following disturbance attenuation function 7,10

𝜓t (x0, {wk} , {𝜈k}) =
||x0 − x̄0||2Π−1

0∑t−1

k=0

(||wk||2Q−1
+ ||𝜈k||2R−1

) , (7)

which is set to obtain an optimization-based estimation scheme in a ∞ setting. Since the direct minimization of the above

disturbance attenuation function is not tractable, a common practice is to force (7) to fulfil a performance bound; that is,

the estimation strategy will try to find the best initial state under the worst-case disturbances such that

𝜓t (x0, {wk} , {𝜈k}) ≤
1

𝛾
. (8)

Remark 2. An objective function in the form of a disturbance attenuation function provides the elements to formulate the

estimation problem in a worst-case framework.7,10 This type of costs functions is common in the ∞ filtering.7,10,40,41
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3 THE H∞-MHE

In the previous section, the constrained estimation problem for discrete-time linear systems with unknown inputs was stated.

Although there exist strategies to solve (4), the problem size grows with time as the estimator processes more data. To make

the estimation problem feasible and computationally tractable, the size of the problem needs to be bounded.

In this section, the ∞-MHE is presented as an approximation to the ∞-FIE. This moving horizon approximation helps to

rewrite the estimation problem presented in the last section as a fixed dimension min-max optimization problem. To this end,

the estimation problem is split in a moving estimation window plus a term summarizing the effect of old data. One way to

summarize the old data is by means of the concept of arrival cost, which is discussed later for the problem of interest.

A moving horizon approximation of the ∞-FIE will allow to solve the estimation problem for linear systems with uncertain

inputs even in the constrained case. This is the main advantage of this approach with respect to other contributions. More-

over, full information approaches make sense in a theoretical frame since these are not feasible to be implemented in practice.

Finally, despite of the need to solve a complex min-max problem at each sampling time, we propose a way to circumvent the

computational burden derived of the numerical solution of such optimization problems.

3.1 The constrained ∞-MHE
Consider a system that is dynamically described by (1) subject to (2), where wk and 𝜈k are unknown. Given the measurement

sequence {yt−N , · · · , yt−1}, the estimate of xt, denoted as x̂t|t−1, is computed by means of (3) but modified as

x̂t|t−1 = At−Nx̂t−N|t−1 +
t−1∑

j=t−N
At−j−1Gŵj|t−1, (9)

where x̂t−N|t−1 = x∗t−N and {ŵk|t−1}t−1
k=t−N = {w∗

k|t−1
}t−1

k=t−N are obtained from the solution of the following minimax problem:

𝜓̂∗
t = min

xt−N
max
{wk}

𝜓̂t (xt−N , {wk})

s.t.xk ∈ X,wk ∈ W, and𝜈k ∈ V,

(10)

where 𝜓̂t is

𝜓̂t (xt−N , {wk}) =
1

2
||xt−N − x̄t−N||2Π−1

t−N

− 1

2𝛾

t−1∑
k=t−N

(||wk||2Q−1 + ||yk − Ckxk||2R−1

)
+ 1

2
𝜓̂∗

t−N .

(11)

From the last formulation, there are two issues that need to be discussed further, the definition of the arrival cost and the

weighting matrix Πk. These will be explained below.

3.2 The arrival cost in the ∞-MHE and the weighting matrix Πk

The arrival cost is an important concept in estimation theory since it helps to approximate the effect of the old data on the state

at the beginning of the estimation window.15 The arrival cost is an analogue concept of the cost to go, which is widely used

in most model predictive control formulations. In the case of the ∞-MHE, the classic arrival cost must be redefined to fit

in the robust statement of the estimation problem. Consider again the ∞-FIE. The associated objective function (6) can be

rearranged by dividing it into two parts

𝜓̄t
(
x0, {wk}t−1

k=0

)
= 𝜓̄t−N

(
x0, {wk}t−N−1

k=0

)
− 1

2𝛾

t−1∑
k=t−N

(||wk||2Q−1 + ||yk − Cxk||2R−1

)
, (12)

where N is the so-called estimation horizon. This parameter helps the estimation procedure to bound the size of the optimization

problem to be solved at each sample time. Note that the first term in the right-hand side of (12) is the cost from k = 0 to

k = t − N − 1 and the second term acts from k = t − N to k = t − 1. The cost 𝜓̄t−N must be approximated by the arrival cost

to avoid the use of the complete set of data. Therefore, the redefinition of the optimization problem (4) with cost (6) using the

arrival cost becomes

𝜓∗
t = min

xt−N
max

{wk}t−1

k=t−N

Θt−N(xt−N) −
1

2𝛾

t−1∑
k=t−N

(||wk||2Q−1 + ||yk − Cxk||2R−1

)
, (13)
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where for z ∈ t, 𝛩t(z) is the arrival cost defined as

Θt(z) ∶= min
x0

max
{wk}t−1

k=0

{
𝜓̄t

(
x0, {wk}t−1

k=0

)
∶ x

(
t; x0, {wk}t−1

k=0

)
= z

}
(14)

with t the reachable set of states as defined in Rao15

t =

{ x0 ∈ X,

x
(
t; x0, {wk}t−1

k=0

)
= x(k; x0, {wk}t−1

k=0
) ∈ X∀k = 0, · · · , t

wk ∈ W,∀k = 0, · · · , t − 1,
(15)

where the optimization is also subject to the constraints in (10). The indexes on wk are recovered, for the sake of clarity. Following

a similar reasoning as in Rao,15 we approximate (14) as

Θt(z) = (z − x̄t)TΠ−1
t (z − x̄t) + 𝜓̄∗

t , (16)

where Πk with k = 0, … , t is a matrix weighting the confidence on the a priori estimation of the state at time k. This approx-

imation also follows in this formulation since optimizing the arrival cost will give back x̄t|t−1, our previous best estimate. The

above recursion matrix is important for two reasons. First, it provides a quantification of how good is the estimate.38 It also

helps to prove convergence and stability of the filter. Moreover, as this weighting matrix is part of the arrival cost, then it helps

to summarize the old data to obtain the moving horizon approximation.

At time t, the arrival cost can be used to rewrite (13) as

𝜓̂∗
t (xt−N , {wk}) ∶= min

xt−N
max

{wk}t−1

k=t−N

− 1

2𝛾

t−1∑
k=t−N

(||wk||2Q−1 + ||yk − Cxk||2R−1

)
+ 1

2
(xt−N − x̄t−N)TΠ−1

t−N (xt−N − x̄t−N)

+ 1

2
𝜓̄∗

t−N ,

(17)

where 𝜓̂∗
t is used instead of 𝜓̄∗

t to make a difference between the costs used in the ∞-MHE and ∞-FIE, respectively. Now,

x̄t−N turns out to be the moving horizon estimate of the state at time t − N instead of an a priori guess. Therefore, the pair

(x̄t−N ,Πt−N) summarizes the prior information at time t − N. For t ≤ N, the ∞-MHE is equivalent to the ∞-FIE.

Recursive computation of the estimation error weighting 𝚷k.
The following lemma gives a recursion for Πk.

Lemma 1. Let 𝛾 > 0 be a prescribed level of noise attenuation. The following recursion describes the dynamic evolution
of the error weighting matrix of the ∞-MHE:

Πk+1 = AkΠk

[
I + 1

𝛾
CT

k R−1
k CkΠk

]−1

AT
k + 𝛾GkQkGT

k , (18)

where k = t − N, … , t − 1 and Π0,Rk, and Qk are user-defined positive definite matrices.

Proof. the proof is in Garcia-Tirado et al.35

3.3 Approximate numerical solution to the constrained ∞-MHE problem
Constrained minimax optimization problems are, in general, hard to solve numerically.33 To circumvent the computational

burden derived from the above problem for the posed estimation strategy, a numerical approximation is provided. The filter

derived from this approximation is referred in short as the ∞-aMHE. With the approximation, the range of applications to

which the ∞-MHE can be applied is considerably broadened.

Consider the cost function (11) in matrix form as

𝜓̂t (xt−N , {wk}) =
1

2
(xt−N − x̄t−N)TΠ−1

t−N (xt−N − x̄t−N)

− 1

2𝛾

[
w̃TQ̄w̃ + (Y − Γxt−N − Ξw̃)TR̄ (Y − Γxt−N − Ξw̃)

]
+ 1

2
𝜓̂∗

t−N ,

(19)
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where w̃ = {wk}t−1
k=t−N , x̄t−N is an a priori guess of the state provided by the ∞-aMHE estimate of the state at time t − N, and

Q̄ and R̄ are block diagonal matrices defined as

Q̄ = ⊕t−1
j=t−NQ−1

j =
⎡⎢⎢⎢⎣

Q−1

Q−1

⋱
Q−1

⎤⎥⎥⎥⎦ , R̄ = ⊕t−1
j=t−NR−1

j =
⎡⎢⎢⎢⎣

R−1

R−1

⋱
R−1

⎤⎥⎥⎥⎦ .
Making the products, ordering, and neglecting terms not involved in the optimization problem, (19) is rewritten as follows:

𝜓̄t (xt−N , {wk}) =
1

2
xT

t−N
(
Π−1

t−N − 𝛾−1ΓTR̄Γ
)

xt−N − 1

2𝛾
w̃T (ΞTR̄Ξ + Q̄

)
w̃

+ 1

𝛾

[(
YTR̄Γ − 𝛾 x̄T

t−NΠ
−1
t−N

)
xt−N + YTR̄Ξw̃ − w̃TΞTR̄Γxt−N

]
.

(20)

It is worth to note that the two first terms of the previous equation are quadratic with respect to the optimization parameters. The

pure linear terms associated with these parameters are also given. However, there is only one term involving both the estimate

of the state at the beginning of the window and the disturbance sequence, ie, w̃TΞTR̄Γxt−N . Therefore, the minimax optimization

is not separable, and hence the application of an specialized algorithm is needed. To avoid the application of such a complex

minimax optimization algorithm, we provide an approximation of the mixed term w̃TΞTR̄Γxt−N from a reasoning supported by

the following remark:

Remark 3. At time t, the estimate of the state at the beginning of the time window x̂t−N|t−1 is sought together with the

disturbance sequence {wk}t−1
k=t−N from the solution of the minimax problem (10). However, from the past data, there exist

a ∞-aMHE estimate of xt−N, which was found by using the measurement sequence {yt−2N , · · · , yt−N−1}, ie, x̂t−N|t−N−1.

Therefore, x̂t−N|t−N−1 is a good guess for x̂t−N|t−1. Then, the term w̃TΞTR̄Γx̂t−N|t−N−1 becomes a good approximation of

w̃TΞTR̄Γx̂t−N|t−1.

By using the last reasoning, the minimax optimization becomes separable and allows the computation of the disturbance

sequence maximizing the cost function. Then, the disturbance sequence is computed as follows:

w̃∗ = argmax
{w}

− 1

2𝛾
w̃T (ΞTR̄Ξ + Q̄

)
w̃ + 1

𝛾

(
YTR̄Ξ − x̄T

t−NΓ
TR̄Ξ

)
w̃

s.twk ∈ W,

(21)

which can be solved as a constrained quadratic program. Once the disturbance sequence is found, we no longer need to approxi-

mate w̃TΞTR̄Γx̂t−N|t−N−1 with w̃TΞTR̄Γx̂t−N|t−1, and the problem is set as it was posed originally. Therefore, the initial condition

minimizing the original problem is computed as

x∗t−N = argmin
xt−N

1

2
xT

t−NM̃xt−N + 1

𝛾

[
YTR̄Γ − 𝛾 x̄T

t−NΠ
−1
t−N − (w̃∗)TΞTR̄Γ

]
xt−N

s.t. xk ∈ X and 𝜈k ∈ V, with M̃ = Π−1
t−N − 𝛾−1ΓTR̄Γ.

(22)

4 STABILITY ANALYSIS OF THE H∞-MHE

As it was stated before, the stability of the ∞-MHE must be investigated since, at every sampling time, only a subset of the

entire data is used due to the approximation. The main motivation of the moving horizon setting is the possibility of including

constraints on the estimation problem to improve the quality of the estimates. As Rao and coworkers pointed out,18 the implica-

tions of constraints for the estimator are more subtle than for the regulator, i.e., the model predictive controller. The difference

is that the estimator has no control over the behavior of the state of the system. A poor choice of constraints may prevent the

convergence to the true state of the system.18 Examples of how a poor choice of constraints may prevent the convergence of the

classic MHE are given in Rao.15

The discussion about the stability of the filter is based on the work on stability of optimization-based systems of Keerthi

and Gilbert,36 which was substantially adapted by Rawlings and coworkers to guarantee convergence and stability of the clas-

sic MHE.18 Our contribution follows a similar derivation. To present the stability results, some definitions about zero-sum

dynamic games and some auxiliary results are needed. In the following stability proof, Theorems 1-3 were taken from Başar

and Bernhard42 and de Souza et al,43 respectively, and Lemmas 4 and 6 from Rao.15
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Consider the cost function (6) defined over X × W. Equation (6), x0 ∈ X, and w0 ∈ W define a static zero-sum game to

estimate x1 in a ∞-FIE setting.42 If there exists a pair
(
x∗

0
∈ X,w∗

0
∈ W

)
such that

min
x0∈X

𝜓̄(x0,w∗
0
) = max

w0∈W
𝜓̄(x∗

0
,w0) = 𝜓̄(x∗

0
,w∗

0
) = 𝜓̄∗, (23)

then the pair
(
x∗

0
,w∗

0

)
is called a (pure-strategy) saddle-point solution. The saddle-point solution will also satisfy the following

inequality:

𝜓̄(x∗
0
,w0) ≤ 𝜓̄(x∗

0
,w∗

0
) ≤ 𝜓̄(x0,w∗

0
),∀x0,w0 ∈ X ×W. (24)

The following theorems from Başar and Bernhard42 guarantee the existence of a saddle-point solution of the ∞-FIE to estimate

x1 from x0 .

Theorem 1. Let X, W be compact, and 𝜓̄ be continuous in the pair (x0,w0 ). Then, there exists a saddle-point solution in
mixed policies.

Proof. See Başar and Bernhard.42

Theorem 2. In addition to the hypothesis of Theorem 1 above, let X and W be convex, 𝜓̄ is convex in x0 ∈ X for every
w0 ∈ W and concave for w0 ∈ W for every x0 ∈ X. Then, there exists a saddle-point in pure policies. If, furthermore, 𝜓̄ is
strictly convex-concave, the saddle-point solution is unique.

Proof. See Başar and Bernhard.42

Remark 4. By definition, the concept of mixed strategy covers pure strategy.42

As the time goes forward, every zero-sum dynamic game needs to be solved at each sample time. Unlike the zero-sum static

games, the zero-sum dynamic games are subject to the system dynamics. We refer to x0 and {wk}t−1
k=0

as the policies minimizing

and maximizing 𝜓̄t, respectively. Let X = X and W be the spaces of the policies x0 and {wk}t−1
k=0

, respectively, where W is the

cartesian product of t − 1 times W. A pair of policies
(
x∗

0
, {wk}∗

)
constitutes a saddle-point solution for the game {𝜓̄ ;X,W} if

for all
(
x0, {wk}t−1

k=0

)
∈ X × W

𝜓̄t
(
x∗

0
, {wk}t−1

k=0

)
≤ 𝜓̄t ∗

(
x∗

0
, {w∗

k}
t−1
k=0

)
≤ 𝜓̄t

(
x0, {w∗

k}
t−1
k=0

)
,∀x0, {wk}t−1

k=0
, (25)

where 𝜓̄∗ denotes the value of the game.42

Now, the monotonicity of the saddle-point value of the ∞-FIE is discussed by using the following result.

Lemma 2. Consider Γt, Ξt, Q̄t, and R̄t defined as

Γt =

⎡⎢⎢⎢⎢⎣
CA
CA2

⋮
CAt−1

⎤⎥⎥⎥⎥⎦
,Ξt =

⎡⎢⎢⎢⎣
CG 0 · · · 0

CAG CG ⋱ ⋮
⋮ ⋮ ⋱ 0

CAt−1G CAt−2G CG

⎤⎥⎥⎥⎦ , (26)

Q̄t =
t
⊕
j=1

Q−1
j , R̄t =

t
⊕
j=1

R−1
j , (27)

where ⊕t
j=1

D = diag(D, … ,D) with D repeated t times.
Assume Π0, Q̄t, and R̄t are definite positive. Omitting the time dependence of the above matrices, 𝜓̄t(x0, {wk}) in (6) is

strictly convex in x0 and strictly concave in {wk}t−1
k=0

iff

Π−1
0

− 𝛾−1
(
ΓTR̄Γ

)
≻ 0, (28a)

−𝛾−1
(
ΞTR̄Ξ + Q̄

)
≺ 0. (28b)

Proof. Inequalities (28a) and (28b) are easily obtained by differentiating twice (6) with respect to x0 and {wk}, respectively,

and then making these second-order derivatives greater than and lower than zero, respectively.
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From Theorem 2 and Lemma 2, it follows that the ∞-FIE admits a unique (pure-strategy) saddle-point solution at each

sampling time.

Now, let us switch to the ∞-MHE. To show the saddle-point feasibility of the solution for the ∞-MHE, let the cost

function (11) be considered

𝜓̂t (xt−N , {wk}) =
1

2
||xt−N − x̄t−N||2Π−1

t−N

− 1

2𝛾

t−1∑
k=t−N

(||wk||2Q−1 + ||yk − Cxk||2R−1

)
+ 𝜓̂∗

t−N .

The following lemma provides a necessary and sufficient condition for (11) to be strictly concave in {wk}t−1
k=t−N and strictly

convex in xt−N.

Lemma 3. Consider ΓN ,ΞN , Q̄N, and R̄N defined in the moving horizon approximation of ∞-FIE as

ΓN =

⎡⎢⎢⎢⎢⎣
CA
CA2

⋮
CAN−1

⎤⎥⎥⎥⎥⎦
,ΞN =

⎡⎢⎢⎢⎣
CG 0 · · · 0

CAG CG ⋱ ⋮
⋮ ⋮ ⋱ 0

CAN−1G CAN−2G CG

⎤⎥⎥⎥⎦ , (29)

Q̄N =
N
⊕
j=1

Q−1
j , R̄N =

N
⊕
j=1

R−1
j . (30)

Assume Π0, Q̄N, and R̄N are positive definite. For the quadratic two-person zero-sum dynamic game described by (1) and
(10), the functional 𝜓̂t in (11) is strictly concave in {wk}t−1

k=t−N for all xt−N ∈ X and is strictly convex in xt−N, for all
{wk}t−1

k=t−N ∈ W iff
Π−1

k − 𝛾−1
(
ΓT

NR̄NΓN
)
≻ 0, (31)

where Πk is given by (18) in Lemma 1:

Πk+1 = AkΠk

[
I + 1

𝛾
CT

k R−1
k CkΠk

]−1

AT
k + 𝛾GkQkGT

k .

Proof. For the sake of simplicity, the indexes of 𝛤N and ΞN are omitted. Concavity of 𝜓̂t is guaranteed by (28b)

𝛾−1(ΞTR̄Ξ + Q̄) ≻ 0

provided R̄ and Q̄ positive definite. Since 𝜓̄t is a quadratic functional of x0, the requirement of strict convexity is equivalent

to the existence of a unique solution to the optimal control problem

min
xt−N∈X

𝜓̂t(xt−N ,
{

w∗
k
}
) (32)

subject to the dynamics and for each sequence {wk}t−1
k=t−N ∈ W. Furthermore, since the Hessian matrix of 𝜓̂t with respect

to xt−N is independent of {wk}t−1
k=t−N , the positive definiteness of (31) guarantees what is claimed.

We showed that both the ∞-FIE and ∞-MHE problems guarantee saddle-point solutions at each sample time if conditions

(28a), (28b) and (31), (28b) are fulfiled, respectively. Then, a sequence of saddle-points is expected as time grows up.

In the case under study, as constraints are dealt with, we use the modified Lyapunov stability theory as presented in Keerthi

and Gilbert36 and further adapted by Rawlings and coworkers.18 The following definition gives the guidelines to state the stability

of both the ∞-FIE and the ∞-MHE.15

Definition 1. The estimator is an asymptotically stable observer for the system

xk+1 = Axk, yk = Cxk (33)

if for any 𝜖 there correspond a number 𝛿 > 0 and a positive integer t̄ such that ||x0− x̄0|| ≤ 𝛿 and x̄0 ∈ X, then ||x̄t−Atx0|| ≤ 𝜖

for all t ≥ t̄ and x̄t → Atx0 as t → ∞.

The following assumption gives a way to handle the constraints.18
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Assumption 1. Suppose the system (33) with initial condition x0 generates the data yk = CAkx0. It is assumed the existence

of x0|∞, {wk}∞k=0, and 𝜌 > 0 such that

(
x0|∞ − x̄0

)TΠ−1
0

(
x0|∞ − x̄0

)
− 1

𝛾

( ∞∑
k=0

wT
k|∞Q−1wk|∞ + 𝜈T

k|∞R−1𝜈k|∞
)
,

≥ −𝜌||x0 − x̄0||2
where xk|∞ ∈ X,wk|∞ ∈ W, 𝜈k|∞ ∈ V, xk|∞ ∶= x(k, x0|∞,{wj|∞}), and 𝜈k|∞ ∶= yk − Cx(k, x0|∞,{wj|∞}).

Assumption 1 states the existence of a feasible state and disturbance sequence with bounded cost, if an infinite data

sequence is considered. To establish asymptotic stability for both the ∞-FIE and the ∞-MHE, we require the following

technical lemma.

Lemma 4. Suppose (C,A) is observable and N ≥ n. If
t−1∑

k=t−N
||wk|t−1||2Q−1 + ||𝜈k|t−1||2Q−1 → 0,

then ||x̂t − xt|| → 0

Proof. The proof is available in Rao.15

Now, the first result is presented, ie, the stability of the ∞-FIE.

Proposition 1. Assume Q, R, and Π0 are positive definite, (C,A) is observable, and Assumption 1 holds. Then, the ∞-FIE
is an asymptotically stable observer for the system (33).

Proof. Assume throughout the proof t > n, where n is the order of the system. Convergence of the cost sequence
{
𝜓̄∗

t
}

is demonstrated first. The existence of the solution to the ∞-FIE problem was already shown. Moreover, Assumption 1

guarantees a feasible trajectory given an infinite set of data. By optimality, 𝜓̄∗
k ≥ −𝜌||x0 − x̄0||2 for all k, 𝜌 > 0. Now,

consider the cost function at times t and t + 1

𝜓̄∗
t = ||x̂0|t−1 − x̄0||2Π−1

0

− 1

𝛾

( t−1∑
k=0

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)

𝜓̄∗
t+1

= ||x̂0|t − x̄0||2Π−1
0

− 1

𝛾

( t∑
k=0

||ŵk|t||2Q−1 + ||𝜈̂k|t||2R−1

)

= ||x̂0|t − x̄0||2Π−1
0

− 1

𝛾

( t−1∑
k=0

||ŵk|t||2Q−1 + ||𝜈̂k|t||2R−1

)
− 1

𝛾

(||ŵt|t||2Q−1 + ||𝜈̂t|t||2R−1

)
,

where 𝜈̂k|t ∶= yk − Cx̂k|t and x̂k|t = x(k; x̂0|t, {ŵk|t}). Let the difference between the optimal values at times t + 1 and t be

written as

𝜓̄∗
t+1

− 𝜓̄∗
t = ||x̂0|t − x̄0||2Π−1

0

− 1

𝛾

( t−1∑
k=0

||ŵk|t||2Q−1 + ||𝜈̂k|t||2R−1

)
− 1

𝛾

(||ŵt|t||2Q−1 + ||𝜈̂t|t||2R−1

)
−

[||x̂0|t−1 − x̄0||2Π−1
0

− 1

𝛾

( t−1∑
k=0

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)]
.

(34)

Note that (
x̂0|t,{ŵk|t−1

}t−1

k=0

)
and

(
x̂0|t,{ŵ0|t−1, · · · , ŵt−1|t−1,wt|t})

are feasible at times t − 1 and t, respectively, though not optimum (in the saddle-point sense). Also note that the last
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disturbance component to be applied at time t is not optimized, ie, it is a free parameter. Using these solutions, (34) becomes

an inequality as it is verified by means of (24):

𝜓̄∗
t+1

− 𝜓̄∗
t ≤ ||x̂0|t − x̄0||2Π−1

0

− 1

𝛾

( t−1∑
k=0

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)
− 1

𝛾

(||wt|t||2Q−1 + ||𝜈t|t||2R−1

)
− ||x̂0|t + x̄0||2Π−1

0

+ 1

𝛾

( t−1∑
k=0

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)
= −1

𝛾

(||wt|t||2Q−1 + ||𝜈t|t||2R−1

)
(35)

Then, from the last inequality, the sequence
{
𝜓̄∗

t
}

is nonincreasing and bounded below by −𝜌||x0 − x̄0||2, which in turns

implies the convergence of the sequence

{𝜓̄∗
∞} ≥ −𝜌||x0 − x̄0||2 > −∞.

Convergence implies for some fixed N ≥ n,

𝜓̄∗
t − 𝜓̄∗

t−N ≤ −1

𝛾

( t−1∑
k=t−N

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)
→ 0 (36)

as t → ∞. Then, by Lemma 4, it follows that the estimation error ||x̂t − Atx0|| → 0 as t → ∞.

Stability is proved in the sense of the Definition 1. Let 𝜖 > 0 and choose 𝜁 ≥ 0, a sufficiently small upper bound of the

cost in Lemma 4. If 𝛿 > 0 is chosen such that −𝜌𝛿2 > −𝜁 , the following inequality is obtained for all t ≥ n

−𝜌𝛿2
≤ ||x∗

0|t−1
− x̄0||2Π−1

0

− 1

𝛾

( t−1∑
k=0

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)

≤ ||x̂0|t−1 − x̄0||2Π−1
0

− 1

𝛾

( t−1∑
k=t−N

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)
.

The term ||x̂0|t−1 − x̄0||2Π−1
0

≥ 0 is dependent of the initial guess x̄0. If the initial guess is a good approximation of the real

initial state, then the above cost is close to zero. As it is expected, this cost tends to a constant as time increases since the

more data are available, the better is the estimation of the initial state. On the other hand, the term

−1

𝛾

( t−1∑
k=0

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)
≤ 0

is always decreasing as more data are processed. Therefore, the following inequality is also true:

−𝜁 ≤ −𝜌𝛿2
≤ −1

𝛾

( t−1∑
k=t−N

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)
.

By Lemma 4, if the above inequality holds, the ∞-FIE is an asymptotically stable observer for the system (33) in the sense

of Definition 1. Therefore, if the initial estimation error ||x0 − x̂0|| ≤ 𝛿, then the estimation error ||x̂t − Atx0|| ≤ 𝜖 for all

t ≥ n as claimed.

To prove stability of the ∞-MHE, we need to guarantee the positive definiteness of the estimation error weighting matrix Πt.

As Πt is computed from a Riccati recursion, the positive definiteness of the unique solution is well established by the following

technical theorem.

Theorem 3. Subject to Π0 > 0, then the detectability of (C,A) and the nonexistence of unreachable modes of (A,GQ1/2) on
the unique circle are necessary and sufficient conditions for

lim
t→∞

Πt = Π∞,

where Π∞, with initial condition Π0, is the unique stabilizing solution of the Riccati Equation (18).

Proof. The proof is available in de Souza et al.43
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From Theorem 3, if Π0 is chosen such that Π0 ≥ Π∞, then Πk is positive definite ∀k ≥ 0. An alternative scenario is when G is

nonsingular that implies GQGT positive definite. Then, Πk is also positive definite ∀k ≥ 0. Before proceeding with the stability

of the ∞-MHE, the following Lemma is posed.

Lemma 5. Consider the reachable set of states at time t generated by a feasible initial condition x0 and disturbance sequence
{w}t−1

k=0
, as shown in (15). The error weighting matrix Πt, defined by (18), satisfies the following inequality for all p ∈ t:

(p − x̂t)TΠ−1
t (p − x̂t) + 𝜓̂∗

t ≥ min
xt−N

max
{wk}

{𝜓̂t(xt−N , {wk}) ∶

x(N; xt−N , {wk}) = p} ∶= Θ̂t(p),

where the minimization and the maximization are subject to the constraint (2).

We proceed in a similar way as in Rao.15 Before proving Lemma 5, we use the following technical lemma for general quadratic

programs.

Lemma 6. Let 𝜃z = zTQz where the matrix Q is symmetric definite positive and the sets 𝛤 and Ω are closed and convex
with Γ ⊆ Ω. If a solution exists to the following quadratic programs 𝜃(ẑ) = minz∈Ω𝜃(z), and 𝜃(z̄) = minz∈Γ𝜃(z), then
𝜃(z̄) ≥ 𝜃ẑ + 𝜃(Δz) where Δz = z̄ − ẑ.

Proof. The proof is in Rao.15

It is important to state that the above lemma applies for the posed min-max programs as long as the disturbance sequence

{wk} is fixed with its optimum value.

Proof. [Lemma 5]. Without loss of generality, let us consider x̂t−N = 0. Consider an arbitrary p ∈ T . Let(
x̄t−N|t−1,

{
w̄k|t−1

}t−1

t−N

)
= min

z
max
{wk}

{𝜓̂t (z, {wk}) ∶ x(N; z; {wk}) = p} ,

where the optimization is subject to constraints in (4). If

Δxt−N|t−1 ∶= x̄t−N|t−1 − x̂t−N|t−1,Δw̄k|t−1 ∶= w̄k|t−1 − ŵk|t−1,

then, by Lemma 6,

Θ̂t(p) ≤ 𝜓̂∗
t + 𝜓̂t

(
Δxt−N|t−1,

{
wk|t−1

})
since all the costs are lower than zero. Now, if we choose p = x̂t, then both xt−N|t−1 = 0 and

{
wk|t−1

}
= 0∀k ∈ t−N, · · · , t−1,

as a matter of fact.

Let Δp ∶= p − x̂t. Then, the following inequality can be verified

𝜓̂t
(
Δxt−N|t−1,

{
wk|t−1

})
≤ min

z
max

wk

{
𝜓̂t(Δz, {wk|t − 1} ∶ x(N; Δz,

{
Δwk|t−1

}
)
}

= (p − x̂t)TΠ−1
t (p − x̂t)

and the Lemma follows as claimed.

We present the second important result of this contribution, ie, the proposition stating the stability of the ∞-MHE.

Proposition 2. Suppose the matrices Q, R, and Π0 are positive definite, (C,A) is observable, Assumption 1 holds, N ≥ 0,
and either

1. The matrix G is nonsingular, or
2. (A,GQ1/2) is controllable and Π0 ≥ Π∞.

Then, the constrained ∞-MHE is an asymptotically stable observer for the system (33).

Proof. As in the stability proof of the ∞-FIE, convergence of the cost sequence
{
𝜓̂∗

t
}

is demonstrated first. Then, the

stability of the filter is shown in the sense of Definition 1. An optimal solution to the constrained ∞-MHE problem exists
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as stated by Lemma 3 and Assumption 1. By definition, and stated by (36),

𝜓̄∗
t − 𝜓̄∗

t−N ≤ −1

𝛾

( t−1∑
k=t−N

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)
→ 0.

As the aim is to demonstrate that −𝜌||x0 − x̄0||2 is a uniform bound, let an induction argument be considered. The case

when t ≤ N is equivalent to the ∞-FIE. It was already shown that −𝜌||x0 − x̄0||2 is indeed a lower bound to the objective

function (6). By using Lemma 5,

Θ̂t(xt|∞) ≤ (xt|∞ − x̂t)TΠ−1
t (xt|∞ − x̂t) + 𝜓̂∗

t .

For the induction argument, assume that

Θ̂t−N(xt−N|∞) ≤ (xt−N|∞ − x̂t−N)TΠ−1
t−N(xt−N|∞ − x̂t−N) + 𝜓̂∗

t−N .

By optimality, the induction assumption, and the properties related to the arrival cost, for all t ≥ N,

min
xt−N

max
{wk}

{
−1

𝛾

( t−1∑
k=t−N

||wk||2Q−1 + ||𝜈k||2R−1

)
+ Θ̂t−N(xt−N) ∶

x(N; xt−N , {wk}) = xt|∞} ≥ −𝜌||x0 − x̂0||2,
where the optimization is subject to constraint 4. The above is also true by Assumption1, because the solution to the esti-

mation problem by using an infinite set of data is feasible. Using the induction argument the following inequality also

holds

min
xt−N

max
{wk}

{
−1

𝛾

( t−1∑
k=t−N

||wk||2Q−1 + ||𝜈k||2R−1

)
+ (xt−N − x̂t−N)TΠ−1

t−N(xt−N − x̂t−N) + 𝜓̂∗
t−N ∶ x(N; xt−N , {wk}) = xt|∞} ≥

min
xt−N

max
{wk}

{
−1

𝛾

( t−1∑
k=t−N

||wk||2Q−1 + ||𝜈k||2R−1

)
+ Θ̂t−N(xt−N) ∶

x(N; xt−N , {wk}) = xt|∞
}

≥ −𝜌||x0 − x̂0||2.
Finally, by Lemma 5,

(xt − x̂t)TΠ−1
t (xt − x̂t) + 𝜓̂∗

t

≥ min
xt−N

max
{wk}

{
−1

𝛾

( t−1∑
k=t−N

||wk||2Q−1 + ||𝜈k||2R−1

)
+ Θ̂t−N(xt−N) ∶

x(N; xt−N , {wk}) = xt|∞
}

≥ −𝜌||x0 − x̂0||2,
where is verified that

𝜓̂∗
t ≥ −𝜌||x0 − x̂0||2

with every optimization procedure fulfilling the constraint (2). Hence, the sequence {𝜓̂∗
t } is monotone nonincreasing and

bounded below by −𝜌||x0 − x̂0||2. As verified before, convergence implies (36) as t → ∞. By Lemma 4, the estimation error||x̂t − Atx0|| → 0 as t → ∞. Now, the stability proof follows a similar procedure as for the ∞-FIE. Let 𝜖 > 0 and choose

𝜁 > 0 sufficiently small for t = N such that it is an upper bound of the cost in Lemma 4. Choose 𝛿 > 0 such that −𝜌𝛿2 > −𝜁 ,

then the following inequality holds for all t ≥ N

− 𝜌𝛿2
≤ ||x̂t−N|t−1 − x̂t−N||2Π−1

t−N
− 1

𝛾

( t−1∑
k=t−N

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)

+ 𝜓̂∗
t−N ≤ ||x̂t−N|t−1 − x̂t−N||2Π−1

t−N
− 1

𝛾

( t−1∑
k=t−N

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)
since 𝜓̂∗

t−N < 0. Then, using a similar argument that for the ∞-FIE
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−𝜁 < −𝜌𝛿2
≤ −1

𝛾

( t−1∑
k=t−N

||ŵk|t−1||2Q−1 + ||𝜈̂k|t−1||2R−1

)
.

Therefore, using Lemma 4, if the initial estimation error ||x0 − x̂0|| ≤ 𝛿, then the estimation error ||x̂t−N − Atx0|| ≤ 𝜖 for all

t ≥ N as claimed.

5 NUMERICAL EXAMPLE

In this example, the approximate numerical solution provided by the ∞-aMHE is tested into the spring-mass-damper system

from Appleby.44 The dynamics of the system are modeled by means of the following uncertain continuous-time linear system

ẋ =
[

0 1
−k0

m0

−b0

m0

] [
x1

x2

]
+
[

0
1

m0

]
w, (37a)

y =
[

1 0
] [ x1

x2

]
+ 𝜈, (37b)

where x = [ x1 x2 ]T is the state of the system with x1 the position of the mass and x2 its velocity, w is the disturbance force, 𝜈

is the measurement uncertainty, m0 is the nominal mass, b0 is the nominal viscous damping coefficient, and k0 is the nominal

spring constant. The nominal parameters are known to be 1∕m0 = 1.25, b0 = 0.15, and k0 = 5. The objective is to estimate the

state by measuring x1, taking into account the unknown inputs.

Because we are considering discrete-time designs, the system is discretized using a zero-order hold with a sampling time of

Ts = 0.1 second. The matrices of the discrete-time model are

Ad =
[

0.9691 0.0980
−0.6127 0.9507

]
,Bd =

[
0.0062
0.1225

]
,

Cd =
[

1 0
]
,Dd = 0.

In this example, the measurement uncertainty 𝜈k is assumed to be zero-mean white-noise with an unknown covariance. The

modeling uncertainty wk is assumed to be a random variable of unknown type. It is a priori known that wk > 1. This information

is added to the filter to improve the estimates. Two filters are tested in this scenario, the analytic and hence unconstrained

∞-MHE, from now on u∞-MHE35,39 and the constrained ∞-aMHE. The u∞-MHE is the filter resulting from the solution

of the problem 10 without constraints. Therefore, analytical expressions for both x̂t−N and {ŵk}t−1
k=t−N are available. The initial

condition for the plant and filters are (x1,0, x2,0) = (2, 4) and (x f
1,0
, x f

2,0
) = (0, 0), respectively. The tuning parameters for both

filters were found by a trial and error procedure and are given in Table 1.

Figure 1 shows the time response of the u∞-MHE and the ∞-aMHE schemes in the presented scenario. A zoom on the first

5s of Figure 1 is shown in Figure 2 in order to show that initial conditions for the plant and filters are indeed different. Although

an approximation was made in the ∞-aMHE, the time response of this filter is considerably better than the u∞-MHE. The

latter fact is appreciated by the steady-state error in the estimate of the state x2 of the u∞-MHE, since the filter has not included

the a priori information about the modeling noise. The above result is also supported by Table 2 where the mean square error

(MSE) is calculated for both filters using 3 sets of different initial conditions. Note that the MSEs for x1 are small for both filters

while the MSE for x2 is considerably better in the ∞-aMHE. This is an expected result since the modeling uncertainty affects

directly the state x2 in the presented example.

TABLE 1 Tuning parameters for u∞-MHE and constrained ∞-aMHE

Filter N Qk Rk Po 𝛾

u∞-MHE 8 0.1 10 diag(10, 10) 100

∞-aMHE 8 0.1 10 diag(0.01, 0.01) 100

Abbreviation: MHE, moving horizon estimator.
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FIGURE 1 Time response of the analytic ∞-MHE vs the ∞-aMHE [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Zoom of Figure 1 from 0-5s [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Mean square error (MSE) of the filters

IC State u∞-MHE ∞-aMHE

0 MSE x1 0.0092 0.0412

0 MSE x2 0.9485 0.3359

1.5 MSE x1 0.0087 0.0133

3.5 MSE x2 0.8066 0.1144

3 MSE x1 0.0091 0.0202

5 MSE x2 0.7862 0.2202

Abbreviations: IC, initial conditions of the filters; MHE,

moving horizon estimator.

6 CONCLUSION

In this paper, we provided a theoretical basis to solve the constrained estimation problem for uncertain linear systems based on

the MHE and the game theoretical approach to the ∞ filtering.

As the key result, we demonstrated stability for both the ∞-FIE and ∞-MHE. This theoretical construction was mainly

based on a modified Lyapunov theory for optimization-based systems, which had been used previously for the classic MHE.

http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
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The ∞-MHE was derived for uncertain linear systems whose main uncertainty source is in form of additive noises with

unknown statistics. As the main difference with previous contributions for uncertain linear systems, the filter was endowed with

the ability of adding a priori information in form of equality and inequality constraints to improve the estimation quality.

A reliable approximation of the∞-MHE, named as the∞-aMHE, was provided to circumvent the direct numerical solution

of a complex minimax optimization problem. Instead, a separable min-max optimization problem was posed, which produces

a feasible numerical method to be solved even in real life applications.

Finally, as main open problems to be tackled in the near future are the formulation of new numeric strategies to solve minimax

optimization problems, the filter formulation for linear systems with uncertain parameters, and the formulation of the nonlinear

version of the ∞-MHE.
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