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1. Introduction

Predictive business process monitoring techniques
are concerned with predicting the evolution of run-
ning cases of a business process based on models
extracted from historical event logs. A range of
such techniques have been proposed for a variety of
business process prediction tasks, e.g. predicting the
next activity (Becker et al., 2014), predicting the
future path (continuation) of a running case (Polato
et al., 2016), predicting the remaining cycle time
(Rogge-Solti & Weske, 2013), and predicting deadline
violations (Metzger et al., 2015). Existing predictive
process monitoring approaches are tailor-made for
specific prediction tasks and not readily generalizable.
Moreover, their relative accuracy varies significantly
depending on the input dataset and the point in time
when the prediction is made.

Long Short-Term Memory networks (Hochreiter &
Schmidhuber, 1997) have been shown to deliver con-
sistently high accuracy in several sequence modeling
application domains, e.g. natural language processing
and speech recognition. Recently, (Evermann et al.,
2016) applied LSTMs specifically to predict the
next activity in a case. This paper explores the
application of LSTMs for three predictive business
process monitoring tasks: (i) the next activity in a
running case and its timestamp; (ii) the continuation
of a case up to completion; and (iii) the remaining
cycle time. The outlined LSTM architectures are
empirically compared against tailor-made approaches
using four real-life event logs.

2. Next Activity and Time Prediction
We start by predicting the next activity in a case and
its timestamp. A log of business process executions

consists of sequences (i.e., traces) of events, where for
each event business task (i.e., activities) that was exe-
cuted and the timestamp is known. Typically, the set
of unique business tasks seen in a log is rather small,
therefore learned representations (such as (Mikolov
et al., 2013)) are unlikely to work well. We trans-
form each event into a feature vector using a one-hot
encoding on its activity.

If the last seen event occurred just before closing time
of the company, it is likely that the next event of
the trace will at earliest take place on the next busi-
ness day. If this event occurred on a Friday and the
company is closed during weekends, it is likely that
the next event will take place at earliest on Monday.
Therefore, the timestamp of the last seen activity is
likely to be useful in predicting the timestamp of the
next event. We extract two features representing the
time domain: the time since the start of the business
day, and the time since the start of the business week.

Figure 1 shows different setups that we explore. First,
we explore predicting the next activity and its times-
tamp with two separate LSTM models. Secondly, we
explore predicting them with one joint LSTM model.
Thirdly, we explore an architecture with n-shared
LSTM layers, followed by m task-specific layers. We
use cross entropy loss for the predicted activity and
mean absolute error (MAE) loss for the predicted
time and train the neural network weights with Adam
(Kingma & Ba, 2015).

For time prediction we take as baseline the set, bag,
and sequence approach described in (van der Aalst
et al., 2011). For activity prediction we take as base-
lines the LSTM based approach of (Evermann et al.,
2016) and the technique of (Breuker et al., 2016). Ta-
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Figure 1. Neural Network architectures with single-task
layers (a), with shared multi-tasks layer (b), and with n+m
layers of which n are shared (c).

Helpdesk BPI’12 W
Layers Shared MAE (time) Accuracy (act.) MAE (time) Accuracy (act.)

3 3 3.77 0.7116 1.58 0.7507
3 2 3.80 0.7118 1.57 0.7512
3 1 3.76 0.7123 1.59 0.7525
3 0 3.82 0.6924 1.66 0.7506
2 2 3.81 0.7117 1.58 0.7556
2 1 3.77 0.7119 1.56 0.7600
2 0 3.86 0.6985 1.60 0.7537
1 1 3.75 0.7072 1.57 0.7486
1 0 3.87 0.7110 1.59 0.7431

Time prediction baselines
Set 5.83 - 1.97 -
Bag 5.74 - 1.92 -
Sequence 5.67 - 1.91 -

Activity prediction baselines
Evermann - - - 0.623
Breuker - - - 0.719

Table 1. Experimental results for the Helpdesk and BPI’12
W logs.

ble 1 shows the MAE of the predicted timestamp of the
next event and the accuracy of the predicted activity
on two data sets. It shows that LSTMs outperform the
baseline techniques, and that architectures with shared
layers outperform architectures without shared layers.

3. Suffix Prediction

By repeatedly predicting the next activity, using
the method described in Section 2, the trace can
be predicted completely until its end. The most
recent method to predict an arbitrary number of
events ahead is (Polato et al., 2016), which extracts
a transition system from the log and then learns a
machine learning model for each transition system
state. Levenshtein similarity is a frequently used
string similarity measure, which is based on the min-
imal number of insertions, deletions and substitutions
needed to transform one string into another. In
business processes, activities are frequently performed
in parallel, leading to some event in the trace being
arbitrarily ordered., therefore we consider it only
a minor mistake when two events are predicted in
the wrong order. We evaluate suffix predictions
with Damerau-Levenshtein similarity, which adds a
swapping operation to Levenshtein similarity. Table 2

Method Helpdesk BPI’12 W Env. permit

(Polato et al., 2016) 0.2516 0.0458 0.0260
LSTM 0.7669 0.3533 0.1522

Table 2. Suffix prediction results in terms of Damerau-
Levenshtein Similarity.

shows the results of suffix prediction on three data
sets. The LSTM outperforms the baseline on all logs.

4. Remaining Cycle Time Prediction

By repeatedly predicting the next activity and its
timestamp with the method described in Section 2,
the timestamp of the last event of the trace can be
predicted, which can be used to predict the remain-
ing cycle time. Figure 2 shows the mean absolute er-
ror for each prefix size, for the four logs. As baseline
we use the set, bag, and sequence approach described
in (van der Aalst et al., 2011), and the approach de-
scribed in (van Dongen et al., 2008). It can be seen
that LSTM consistently outperforms the baselines for
the Helpdesk log and the environmental permit log.

5. Conclusions

The foremost contribution of this paper is a technique
to predict the next activity of a running case and its
timestamp using LSTM neural networks. We showed
that this technique outperforms existing baselines on
real-life data sets. Additionally, we found that predict-
ing the next activity and its timestamp via a single
model (multi-task learning) yields a higher accuracy
than predicting them using separate models. We then
showed that this basic technique can be generalized to
address two other predictive process monitoring prob-
lems: predicting the entire continuation of a running
case and predicting the remaining cycle time.
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Figure 2. MAE values using prefixes of different lengths for
helpdesk (a), BPI’12 W (b), BPI’12 W (no duplicates) (c)
and environmental permit (d) datasets.
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