

Analysis and visualization of execution traces of dataflow
applications
Citation for published version (APA):
Seyedalizadeh Ara, S., Baghbanbehrouzian, A., Geilen, M. C. W., Hendriks, M., Goswami, D., & Basten, A. A.
(2017). Analysis and visualization of execution traces of dataflow applications. 19-20. Abstract from Integrating
Dataflow, Embedded Computing, and Architecture, IDEA2016, 11 April 2016, Vienna, Austria, Vienna, Austria.
http://www.es.ele.tue.nl/esreports/esr-2017-01.pdf

Document status and date:
Published: 31/01/2017

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

http://www.es.ele.tue.nl/esreports/esr-2017-01.pdf
https://research.tue.nl/en/publications/407e08fb-6ddb-49c8-9e3e-467d9a1eae42

Analysis and Visualization of Execution Traces of
Dataflow Applications

Hadi Alizadeh Ara∗, Amir Behrouzian∗, Marc Geilen∗, Martijn Hendriks†∗, Dip Goswami∗, Twan Basten∗†,
∗Eindhoven University of Technology, Eindhoven, The Netherlands

†TNO ESI, Eindhoven, The Netherlands

I. OBJECTIVES

Embedded applications are an integral part of modern
embedded systems. These applications typically have real-
time constraints on throughput or latency. Temporal analysis
techniques are required at the design stage to ensure that the
applications meet their constraints and determine the required
amount of resources (processors or memories for the applica-
tion).

The Synchronous Dataflow Graph (SDFG) [4] model of
computation is a popular method for temporal analysis of
applications. SDFG represents the application by a graph
consisting of actors and channels. Actors represent the indi-
vidual computations within the application. Each actor has an
execution time which usually indicates the upper bound on
the time it requires to complete its firing (execution), once
it is started. Channels model the dependencies of individual
computational tasks on the resources, on input data, and on
the data produced by other tasks. When an actor starts and
completes firing, it consumes and produces a fixed amount of
tokens on the FIFO channels respectively. An actor is able to
fire if its consumption rates are not greater than the number
of tokens on the channels from which it consumes. Figure 1
shows two SDFGs. Each SDFG models a working mode of a
single application. Each mode has three actors. The execution
time of actors x, y and z are assumed to be 101, 73 and 125
milliseconds in both modes respectively. The numbers near
the channel endings indicate the consumption and production
rates. The actors are bound to different processors in different
modes. This property is modeled by having a self edge on each
actor which contains a token labelled with the name of the
processor to which it is bound (e.g. x is bound to processors
P1 and P2 in modes A and B respectively).

The temporal analysis techniques developed for SDFGs
can analyse throughput and latency for data-driven execution
of the application or when the application is mapped to a
predictable platform with limited resources. These techniques
output the latency, throughput and possibly the critical path
within a graph that models the task and resource dependencies.
However, they do not give much tangible information about the
system such as when and where the tasks are being processed
or in which time intervals which one of the resources are busy
or idle. We therefore develop a technique to visualize execution
traces of dataflow applications. Visualization gives developers
a more detailed understanding of the temporal behaviour of
the application. For example visualization of the critical data
and resource dependencies, makes it easier to recognize the
system’s bottlenecks. TRACE [1] is a powerful Gantt chart
visualization tool capable of presenting tasks on resources and
dependencies between them as a function of time. Moreover,
it can run performance analysis such as critical path analysis,
latency and throughput analysis based on execution trace

y zx 3 2

y zx 2 2 2

P1 P2 P3

P2 P1 P3

A:

B:

Fig. 1: An example application having two different modes

information and it can compare traces and visualize their
differences for model validation and design-space exploration.

We have integrated TRACE visualization into the SDF3

tool. SDF3 is a tool for temporal analysis of SDFG and
various types of dynamic dataflow models such as Cyclo Static
Dataflow (CSDF) [2], Senario Aware Dataflow (SADF) [6]
and Finite State Machine-SADF (FSM-SADF) [5]. SDF3 also
supports automated mapping of applications onto predictable
multi-processor platforms. This integration enables us to vi-
sualize execution traces of application tasks and track the
resource usage associated with these executions. Moreover, we
can utilize the various analysis and visualization options in
TRACE such as critical path analysis to visualize the critical
dependencies.

II. METHODS

In dataflow theory, the set of actor firings that brings
the tokens back to the initial token distribution, is called
an iteration. According to [3], the temporal behaviour of an
SDFG can be captured by finding the time differences between
the production times of tokens at the end and start of an
iteration. In this method the production times of each token
and consequently the start and the completion times of each
actor firing can be represented by a symbolic time stamp of the
form t = maxi(ti + gi) where ti are the symbolic availability
times of initial tokens (P1, P2, P3 for the example). gi are
suitable constants that indicate the time difference between t
and ti. It is −∞ if there is no dependency between t and ti.
In (max,+) algebra we can represent a symbolic time stamp
with the vector dot-product t = t̄.ḡ where t̄ = [tP1; tP1; tP2]
for the example. Assuming t̄ = [tP1; tP1; tP2] = [0; 0; 0], the
start and completion time of the first firing of actor x in mode
A of the example can be represented as [0;−∞;−∞] and
[101;−∞;−∞] respectively. This vector representation of the
start (completion) time of firings is called the symbolic start
(completion) time. The time differences gi are determined by
symbolically simulating the application graph for one iteration.
Symbolic simulation characterizes the time differences of the
application by a matrix in (max,+) algebra. This matrix
allows to compute the completion times of any iteration using

19

the following equation in (max,+) algebra

γk+1 = Gm × γk (1)

where Gm is called the characterization matrix of the
application when it is in mode m and γk is a vector that
determines the start of iteration k. Using Equation 1 we can
capture the evolution of the application in time. However, this
equation cannot be directly used for tracing purposes, because,
it only records the completion time of firings that produce
tokens at the end of the iteration. Individual firings inside the
iteration have been abstracted into a single matrix multiplica-
tion. To overcome this problem, we construct another matrix
that allows us to reconstruct detailed information about the
individual actor firings from the starting point of an iteration.
During the symbolic simulation we store the symbolic start
time and completion times. We do this for all firings involved
in one iteration of the graph in the order they get enabled
and completed. All stored vectors are vertically concatenated
to construct a matrix. With this matrix, all firings within the
iteration can be calculated from the initial token time stamps
γk as follows.

τk = Hm × γk (2)

where Hm is the tracing matrix in mode m and τk is
a vector that contains the start and completion times of all
firings within iteration k in the order they are stored during
the symbolic simulation. It is important to realize that tracing
only requires extra calculations for the iterations for which we
want to observe the traces. In the worst-case, the number of
firings in a single iteration is exponential in the size of the
graph. Nevertheless, the tracing function is computationally
efficient in many practical cases.

III. RESULTS

We implemented this tracing algorithm for FSM-SADF
in the SDF3 tool. We generate two files as input to the
TRACE tool, a configuration file and the actual trace file.
The configuration file defines specific properties of the FSM-
SADF executions as actor names, scenario names and iteration
indexes. These properties are called attributes in the TRACE
tool and used to colour and group the traces for different
visualization purposes. TRACE considers an individual task
execution as a single claim which is made on a resource from
the start time of the execution to its completion time. The trace
file then lists all claims and their attributes for the requested
tracing interval. TRACE outputs Gantt charts of activities, i.e.
task executions, and resource claims for a given trace file.
These Gantt charts then can be grouped together and coloured,
based on the selected attributes.

Consider the application in Figure 1. Assume it executes
iterations in the given mode order: A,B,B,A,A,B. TRACE
outputs, by default, a Gantt chart in which every task execution
has a different colour. For a better visualization, we group
the executions by actor names and use different colours for
different iterations with the same colour for task executions
within an iteration. Figure 2 shows the Gantt chart of activities
and the corresponding processor claims for the given order
respectively. By applying the critical path analysis to the traces,
the dependencies between the different executions are analysed
and critical dependencies are found. Then the colouring of the
Gantt charts are changed for better visualization of the critical
path, as shown in Figure 3 (with the critical path coloured in
red). By visualizing the critical path, we can easily verify that

Fig. 2: Gantt charts of actor firings and processor claims

Fig. 3: Gantt charts of actor firings and processor claims,
visualizing the results of critical path analysis

for example increasing the frequency of processors P1 and
P2 during the first second and P3 during the next second will
reduce the system latency; also the throughput will improve if
the sequence is being repeated.

IV. CONCLUSION

We provided an efficient method to symbolically compute
the start and end time of all actor firings of a dataflow graph.
This information may be used to visualize dataflow execu-
tion traces to obtain a better understanding of the temporal
behaviour of the system.

ACKNOWLEDGMENT

This research is supported by the ARTEMIS joint under-
taking through the ALMARVI project (621439).

REFERENCES

[1] Embedded Systems Innovation by TNO. website http://trace.esi.nl.

[2] G. Bilsen, M. Engels, et al. Cyclo-static dataflow. IEEE Transactions
on Signal Processing, 44, 1996.

[3] M. Geilen and S. Stuijk. Worst-case performance analysis of synchronous
dataflow scenarios. In Proc. ISSS+CODES, 2010.

[4] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. In Proc.
IEEE, 75, 1987.

[5] S. Stuijk, M. Geilen, et al. Scenario-aware dataflow: Modeling, analysis
and implementation of dynamic applications. In Proc. SAMOS, 2011.

[6] B. Theelen, M. Geilen, et al. A scenario-aware data flow model for
combined long-run average and worst-case performance analysis. In
Proc. Memocode, 2006.

20

