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We present two adapted formulations, one tailored to isotropic media and one for general anisotropic
media, of the normal-vector field framework previously introduced to improve convergence near arbi-
trarily shaped material interfaces in spectral simulation methods for periodic scattering geometries. The
adapted formulations enable the definition and generation of the normal-vector fields to be confined to a
region of prolongation that includes the material interfaces but is otherwise limited. This allow for a more
flexible application of geometrical transformations like rotation and translation per scattering object in
the unit cell. Moreover, these geometrical transformations enable a cut-and-connect strategy to compose
general geometries from elementary building blocks. The entire framework gives rise to continuously
parameterized geometries. © 2016 Optical Society of America

OCIS codes: (050.1755) Computational electromagnetic methods; (050.1950) Diffraction gratings.
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1. INTRODUCTION

The concept of normal-vector fields, as introduced in [1], has
been adopted in several computational frameworks to im-
prove the convergence in a Fourier basis, in particular in the
differential method [1, 2], the rigorous coupled wave anal-
ysis (RCWA) [3], and more recently in the volume-integral
method [4–6]. The basic idea behind this concept is that normal-
vector fields can separate the components of the electric field
(E) and the electric flux density D. Via this separation, we can
access the continuous components of both E and D across ma-
terial interfaces and construct a vector field F that is continu-
ous everywhere, with the possible exception of isolated points
and lines that correspond to geometrical edges and corners of
the scattering object under investigation. By introducing the
concept of a normal-vector field, field-material interactions in a
spectral basis via the vector field F demonstrate improved ac-
curacy, compared to field-material interactions acting on either
E or D. This leads to improved characterization of reflection
coefficients at lower computational costs.

However, one of the challenges of the normal-vector-field
concept is the actual generation of the normal-vector field it-
self on the domain of computation. There are very few con-
straints to generate such a vector field, but at the same time
there are open questions related to its generation. A desir-
able property is for instance to construct a continuously vary-
ing normal-vector field for a continuously varying geometry of

the scattering object in the unit cell. If the normal-vector field
exhibits discontinuous behavior as a function of a geometrical
parameter that is being varied, the discontinuous behavior can
lead to non-smooth behavior in certain field quantities, which
in turn can give rise to discontinuous parameter derivatives. In
a gradient-based optimization algorithm, for instance in a de-
sign or inverse-scattering approach, discontinuous parameter
derivatives are known to significantly affect the convergence of
the optimization algorithm. A further requirement for the gen-
eration of normal-vector fields is the time needed to set up a
normal-vector field. This computational overhead should be as
low as possible, to allow for fast analysis and reconstruction
algorithms. One quite general approach to generate normal-
vector fields has been put forward in [7, 8], based on scattered-
data interpolation.

A disadvantage of the existing normal-vector-field formula-
tion is that the normal-vector field is required on the entire com-
putational domain [1, 3, 7]. As a consequence, one cannot oper-
ate on isolated domains without taking care of connecting inter-
faces. Here, we will demonstrate that it is possible to arrive at
a formulation that requires the normal-vector field only locally,
both for isotropic and anisotropic dielectric media. More im-
portantly, this enables a cut-and-connect technique with basic
building blocks that allow for a rapid and flexible generation of
a normal-vector field and the corresponding Fourier integrals
for the field-material interactions for more complicated shapes.
This also addresses the above mentioned issues regarding setup

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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time and continuity under geometry changes, by employing pa-
rameterized building blocks with normal-vector fields that vary
continuously as a function of the shape parameters.

2. FIELD-MATERIAL INTERACTIONS IN THE SPECTRAL
DOMAIN

For any of the spectral expansion methods, like RCWA, the Dif-
ferential method, or the spectral volume integral method, the
electric field E and the electric flux density D are expanded in
terms of a Fourier basis in the transverse plane (x, y) as

E = ∑
m∈Z2

em(z) exp{−j[(ki
x + km

x )x + (ki
y + km

y )y)], (1a)

D = ∑
m∈Z2

dm(z) exp{−j[(ki
x + km

x )x + (ki
y + km

y )y)]. (1b)

where ki
x and ki

y form the linearly progressing phase of the inci-

dent field and (km
x , km

y ) form the Bravais lattice that is reciprocal
to the spatial lattice of the periodic setup in the xy-plane.

The normal-vector field formulation in [1] can be seen as a
member of the family of Fourier factorization rules, which were
first empirically discovered in [9, 10] and subsequently system-
atically developed and formulated by Li [11]. The Fourier fac-
torization rules provide a framework for computing the coeffi-
cients dm from em, and vice versa, when the permittivity func-
tion exhibits discontinuities in the transverse plane. Material
discontinuities in the transverse plane cause problems in the
convergence of the Fourier series expansions for the electric
flux density and electric field when the permittivity function is
straightforwardly written as a standard truncated discrete con-
volution, i.e. the Laurent rule. The key idea to overcome these
convergence issues is to apply the permittivity function and in-
verse permittivity function to the continuous components of the
electric field and the electric flux density and derive expressions
for the discontinuous components of D and E. The resulting
constitutive relation between D and E in the spectral domain
is then a balanced combination of the Laurent rule, i.e. the dis-
crete convolution in the form of a Toeplitz matrix for the per-
mittivity ε(x, y, z), and the inverse rule, i.e. to apply the inverse
matrix of the Toeplitz matrix for 1/ε(x, y, z). The framework for-
mulated in [11] is most straightforward in cases when both the
periodicity and the discontinuities in the permittivity are x − y
oriented, whereas the normal-vector field formulation put for-
ward by Popov and Nevière [1] is more amenable for material
discontinuities of curved and more complicated geometries.

A. Summary of results by Popov and Nevière

The vector field Fǫ is introduced in [1] (below Eq. (8)) as a mix
between the electric field E and the electric flux density D, such
that the vector field Fǫ is continuous across an interface be-
tween two media. To this end, a normal-vector field N(r) and
two tangential-vector fields, i.e. T1(r) and T2(r), are defined
on the entire unit cell of the configuration. The normal-vector
field is normal to every material interface and both tangential-
vector fields are tangential to every material interface, with the
possible exceptions at sharp edges and corners. The vector field
Fǫ is then defined as

Fǫ =











T1 • E

N • D

T2 • E











, (2)

where • indicates the usual local real-valued vectorial inner
product. Subsequently, the two field-material operators Cǫ and
ǫ • Cǫ are derived such that (see Reference [1] below Eq. (12)),

E = CǫFǫ, (3a)

D = ǫ • CǫFǫ. (3b)

Since the vector field Fǫ is continuous throughout, the Fourier
factorization rules allow the operations defined in Eq. (3) to be
written as a matrix-vector product in the spectral domain, i.e.
the elements Cǫ and ǫ • Cǫ can be computed in the spectral do-
main and the matrix-vector product with Fǫ can be executed
according to the Laurent rule, i.e. via standard discrete convo-
lutions. This discrete convolution structure can be further ex-
ploited numerically via Toeplitz matrices or Fast Fourier Trans-
forms.

B. Revised normal-vector-field formulation

The above formulation in terms of normal-vector and
tangential-vector fields has the disadvantage that these vector
fields are required on the entire computational domain and that
each scattering setup requires a newly generated set of these
fields. To make the normal-vector field approach more generic
and modular, we first reformulate the above in terms of projec-
tion operators.

We introduce the operator Pn as

Pnv = N(N • v), (4)

where v is an arbitrary 3D vector field. From the properties of
the normal-vector field N, we observe that Pn is a projection op-
erator and therefore it is idempotent, i.e. PnPn = Pn. Similarly,
we can introduce the operator PT as

PTv = T1(T1 • v) + T2(T2 • v), (5)

which is also a projection operator. Besides the idempotency
property, the projection operators PT and Pn have two other
useful properties. We have PT = I − Pn, where I is the iden-
tity operator. This property shows that the normal-vector field
itself is sufficient to generate both the operator Pn and the oper-
ator PT, which was already observed from the construction of
the tangential-vector fields. Also, the operator PT is mutually
orthogonal to Pn, i.e. PTPn = PnPT = 0.

With these projection operators, a vector field F is con-
structed as

F = PTE + αPnD = (I − Pn)E + αPnD. (6)

where α is a non-zero scaling function, which is continuous
across material interfaces. This is a slightly, but vitally, different
definition of the vector field Fǫ and to indicate the difference,
we have dropped the subscript ǫ. The first difference regards
the scaling function α, which has two main consequences. This
can bring the scale of the components of the vector field F to
the same order of magnitude. This can improve the condition-
ing of the matrix representations Cǫ and ǫ • Cǫ. Also, and more
importantly, it has far-reaching consequences for the size of the
domain on which the normal-vector field N is required, as will
be demonstrated shortly. The second difference between F and
Fǫ is that the components of F are expressed in terms of a global
basis that is independent of N, e.g. in the Cartesian coordinate
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system as

F =











Fx

Fy

Fz











=











Fn(N • ux) + FT1
(T1 • ux) + FT2

(T2 • ux)

Fn(N • uy) + FT1
(T1 • uy) + FT2

(T2 • uy)

Fn(N • uz) + FT1
(T1 • uz) + FT2

(T2 • uz)











(7)
whereas Fǫ was defined directly in terms of the scalar projec-
tions on N, T1, and T2.

We will now show how these operators Pn and PT can be
used to construct the operators in Eq. (3) from the vector field
F in Eq. (6). To this end, we start from the spatial-domain rela-
tions between the electric field and electric flux density on the
one hand and the definition of the vector field F on the other.
We have

D = MεE, (8a)

F = PTE + αPnD, (8b)

where Mε is the spatial (pointwise) multiplication operator that
multiplies by the, generally anisotropic, permittivity tensor ε.
First, we establish a relation between E and F. By employing
the projection properties, i.e. PnPn = Pn, PnPT = PTPn = 0, and
Pn + PT = I, to the above equations, we obtain

PTF = PTE, (9a)

PnF = αPnD = αPn Mε(PnE + PTE)

= αPn Mε(PnE + PTF). (9b)

After rearranging terms, we arrive at

E = PnE + PTE, (10a)

PTE = PT F, (10b)

PnE = (PnMεPn)
−1

(

1

α
Pn − Pn MεPT

)

F, (10c)

where (PnMεPn)−1 is the inverse of (PnMεPn) on the range of
Pn, i.e. (Pn MεPn)−1(PnMεPn) = Pn. Note that Pn is equal
to the identity at its range. For isotropic media, the operator
(Pn MεPn)−1 is simply identical to M−1

ε Pn = PnM−1
ε , i.e. the

inverse of the permittivity function multiplied by Pn. For gen-
eral anisotropic media, (Pn MεPn)−1 is of the form f (x, y, z)N,
where f depends both on the local permittivity and the local
orientation of the vector field N.

By employing the relation PT = I − Pn, we obtain the linear
operator Cǫ in Eq. (3) as

Cǫ = I + (Pn MεPn)
−1Pn

(

1

α
I − Mε

)

. (11)

In a similar way, we can derive a relation between the electric
flux density and the vector field F. We finally end up with

ǫ • Cǫ = Mε

[

I + (PnMεPn)
−1Pn

(

1

α
I − Mε

)]

= MεCǫ. (12)

In the above operator representation, it is essential that the
spectral-domain counterpart of the operator product MεCǫ is
constructed as a single operator in the form of the Laurent
rule to maintain the rationale behind the Fourier factorization
rules [11]. This is because Mε and Cǫ both exhibit a jump at a
material interface, i.e.

F{MεCǫ} 6= F{Mε} ∗ F{Cǫ}, (13)

F,E,αD
En=αDn ET

FEn=αDn

ET

En E

αD

Medium 2

Medium 1

α=1/ε1

α=1/ε1

ε2

ε1

Fig. 1. Scaling of the normal component of the electric flux
density D by α to make the normal component Dn locally (in
medium 1) equal to the normal component of E. Note that
the vector field F is continuous across the interface between
medium 1 and medium 2.

where F{·} denotes the Fourier transformation and ∗ the dis-
crete convolution.

From the representations of Cǫ and ǫ • Cǫ in Eq. (11) and
Eq. (12), we observe that the projection operator Pn only occurs

in combination with the operator 1
α I − Mε. Hence, in princi-

ple, the support of the latter operator determines the domain
over which the normal-vector field N is required to generate
the coefficients of the operators Cǫ and ǫ • Cǫ. At locations

where 1
α I − Mε is zero, the scaled electric flux density, i.e. αD,

and the electric field E become locally indistinguishable. This
is schematically drawn in Figure 1 for the case of two isotropic
media, i.e. D and E are aligned in each medium, and the scaling
parameter α is chosen as the inverse permittivity of the bottom
medium. The figure shows that all fields αD, E, F are aligned
in medium 1, but the alignment does not hold for the field F

in medium 2. However, the field F is continuous in all its com-
ponents across the material interface. As a consequence of the
choice for α, we have for medium 1

F = PTE + αPnD = PTE + Pn

(

D

ε1

)

= PTE + PnE = E, (14)

and therefore the electric field is perfectly reproduced by the
field F. By choosing a basis that is independent of the normal-
vector field, such as the Cartesian basis in Eq. (7), the gener-
ation of a normal-vector field in medium 1 becomes obsolete.
This is in contrast with the framework employed in [1], where
the normal-vector field is generated and needed over the entire
computational domain.

C. Local normal-vector fields for isotropic media

For the important class of isotropic dielectric media, we can

choose the scaling function α such that the operator 1
α I − Mε

in Eq. (11) and Eq. (12) only has local support. We distinguish
the following choices for α:

1 A first choice is to set α to a constant equal to the inverse
of the (local) host-medium permittivity. This leads to the
consequence that the normal-vector field is only required
in regions where the permittivity is different from the host-
medium permittivity.

2 A second choice is similar to the first one by again choosing
α as being constant. However, depending on the grating
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structure, it may be more advantageous to choose a differ-
ent constant by choosing it equal to the inverse permittivity
of an object. In general it is beneficial to define the normal-
vector field on a geometry that does not involve the bound-
aries of the unit cell, since for such geometries the normal-
vector fields can be rotation and shift invariant.

3 A third choice is to let α be a continuous function, such that
it is a smoothed version of the original inverse permittivity
function, e.g. via tri-linear interpolation or averaging by a
Gaussian window. In that case, the normal-vector field is
only required in the direct vicinity of the interface between
materials and it becomes even more localized. However,
the resulting integrals that have to be computed are typi-
cally more difficult. By selecting where to start the transi-
tion to gradually change from one permittivity to the other,
it is possible to end up with localized normal-vector fields
that are needed on only one side of the interface between
two media.

1/α

coordinate in transverse plane

3a 3b 3c

ε

ε

ε

1

2

Fig. 2. The choice for the scaling function α against a jump in
the permittivity function ε that is indicated by the solid line.
The continuous function 1/α is plotted by two dashed lines (op-
tion 1 and 2) and three dashed curves for three possible choices
for the third option, indicated by 3a, 3b, and 3c. The normal-
vector field is only required in regions where 1/α is different
from the permittivity ε.

The three options are further illustrated in Figure 2 and the
lines are labeled according to the numbering above. In this fig-
ure, the third option is further elaborated with three smooth
dashed curves for 1/α near a jump in the permittivity function
in the transverse plane. For each of the three curves, the normal-
vector field is needed only in the area where 1/α is different
from ε. Hence, for Curve 3a, the normal-vector field is only
needed on the left-hand side of the jump, whereas for Curve 3c
the normal-vector field is only needed in a small region to the
right-hand side of the jump. For Curve 3b, the normal-vector
field is needed on both sides of the jump, but still in a limited
region, which can be advantageous when a second jump in the
permittivity follows close to the first jump.

We note that the above choices also work out for somewhat
more general setups with partial anisotropy, as long as the sub-
domain on which we do not need to generate the normal-vector
field is isotropic, such as in case of an anisotropic grating in an
isotropic host medium where we choose to generate the normal-
vector field inside the grating.

To further illustrate that the proposed framework also in-
cludes cases where a host medium is not readily identified, we
consider the case of the double sinusoidal grating and the pro-

posed normal-vector field in [1], Section 3.D. Here, the bound-
ary between two dielectric homogeneous halfspaces is given by
a product of two sine functions, one for each direction of peri-
odicity in the transverse plane. Translated to the situation dis-
cussed here, where the transverse plane is the xy plane, the cor-
responding description of the boundary between the medium
above, with permittivity εa, and the medium below, with per-
mittivity εb is given by

z = g(x, y) = (H/2) sin

(

2πx

dx

)

sin

(

2πy

dy

)

. (15)

The normal-vector field was chosen to be independent of the
longitudinal direction, which is the z direction here. The result-
ing expression for the normal-vector field N, expressed in the
Cartesian components, is

N =
1

√

(∂x g(x, y))2 +
(

∂yg(x, y)
)2

+ 1











∂x g(x, y)

∂yg(x, y)

−1











. (16)

The construction that we propose is independent of the spe-
cific choice for the normal-vector field. The only concern is to
generate a function α(x, y, z), such that 1/α is identical to the
permittivity of the medium in a region of choice. If we choose
α = 1/εa, then we need to employ the normal vector field on
the domain below the separation boundary of Eq. (15), over the
entire height of the grating, but not on the domain above the
separation boundary. If we choose α = 1/εb, then the normal-
vector field is only required on the domain above the separation
boundary over the entire height of the profile. To further con-
fine the region on which the normal-vector field is needed, we
can construct the function 1/α(x, y, z) equal to a smooth version
of the permittivity profile. There are many ways to achieve this.
One particular example is to use a description of the grating
permittivity profile as

ε(x, y, z) = εa + (εb − εa)H(g(x, y)− z), (17)

where H(·) is the Heaviside unit-step function. By replac-
ing H(g(x, y) − z) by a function U(g(x, y) − z) that smoothly
evolves from zero to one, similar to the curves 3a, b and c in
Figure 2, we obtain a realization of a smooth permittivity pro-
file, i.e.

εsmooth(x, y, z) = εa + (εb − εa)U(g(x, y)− z), (18)

and we choose α(x, y, z) = 1/εsmooth(x, y, z). In the regions
where ε(x, y, z) = εsmooth(x, y, z), Eq. (11) and Eq. (12) demon-
strate that the normal-vector field does not play a role and its
definition and generation is not needed there. In this way, we
can restrict the explicit definition of the normal-vector field to a
limited region that includes the separation boundary between
the two media.

D. Expressions for Cǫ and ǫ • Cǫ for isotropic media

For isotropic media, we ease the notation by denoting the
permittivity multiplication operator Mε by the scalar function
ε(x, y, z) and the Cartesian components of the normal-vector
field N by nx, ny, and nz. Through the definition of the projec-
tion operator Pn the operator Cǫ can be decomposed in Carte-
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sian components Ci,j where i, j ∈ {x, y, z} as

CǫF =











Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz





















Fx

Fy

Fz











. (19)

To write down expressions for these matrix elements, we
note that for isotropic media the operator combination
(Pn MεPn)−1 = Pn(ε)−1, which significantly simplifies the ex-
pression (Pn MεPn)−1Pn((α)−1 I − Mε) = Pn[(αε)−1 − 1]. Hence,
in the spatial domain the components Ci,j are given by

Ci,j(x, y, z) = δi,j + ni(x, y, z)nj(x, y, z)

[

1

α(x, y, z)ε(x, y, z)
− 1

]

,

(20)
where δi,j is the Kronecker delta. Similarly, the Cartesian com-

ponents ǫCi,j of ǫ • Cǫ are given by

ǫCi,j(x, y, z) = ε(x, y, z)δi,j

+ ni(x, y, z)nj(x, y, z)

[

1

α(x, y, z)
− ε(x, y, z)

]

.
(21)

The corresponding spectral-domain elements of Ci,j are given
by the Fourier transformation

cij(m1, m2, z) =

1

‖Au‖
∫∫

Au

Cij(x, y, z) exp
[

j
(

km1,m2
x x + km1,m2

y y
)]

dxdy, (22)

where Au denotes the unit cell in the xy plane and ‖Au‖ de-
notes its area. A similar expression holds for the elements of
ǫ • Cǫ. This means that we have to compute the Fourier inte-
grals in the transverse xy plane of the coefficients Cij and ǫCi,j

for i, j ∈ {x, y, z}. We immediately observe that the area of in-
tegration can be further reduced to the support of the function
[ε(x, y, z)α(x, y, z)− 1], as was discussed in the preceding sec-
tion. A second observation is that the expressions for Pn in
Eq. (4) and PT = I − Pn are insensitive for the choice for the
normal to be pointing inwards or outwards, which is due to
the choice for projection operators instead of the use of three
vector-to-scalar mappings as proposed in [1].

E. Translation and rotation of the scattering object

We will now concentrate on the case of disjoint isotropic and
piecewise homogeneous scattering objects embedded in an
isotropic homogeneous host medium with permittivity εh. This
allows us to further simplify the expressions and even derive
analytical expressions for several geometries, see Appendices A
and B. For the scaling function α we choose α = 1/εh. Conse-
quently, the above Fourier integrals reduce to a sum of integrals
over the support of each individual object. More importantly,
the normal-vector field depends entirely on the shape of each
individual object and not on its orientation in the unit cell or
on the presence of other objects. This makes the generation
of normal-vector fields completely modular and the normal-
vector field has to be defined or generated only on the support
of the object. Hence, several disjoint objects within the unit cell
can be treated independently and the combination of objects
simply results in the sum of the corresponding Fourier integrals.
A further consequence is that a translation or rotation parallel
to the transverse plane of an individual object can be readily
dealt with.

First we reconsider the integrals defined in Eq. (22). It is
readily observed that the integrals are composed of the more
elementary Fourier integrals Γij defined only by the shape and
its interior normal-vector field as

Γij(m, z) =

1

‖Au‖
∫∫

support

ni(x, y, z)nj(x, y, z) exp
[

j
(

km
x x + km

y y
)]

dx dy,

(23)

where the integral is understood to be defined on the support
of the shape under consideration, for a given value of z. As
an example, closed-form expressions for Γij of a binary grating
with elliptic footprint in the xy plane are given in Appendix A.
Appendix B provides a general “cut-and-connect” strategy to
obtain closed-form expressions for gratings for which the con-
tour of the cross section at a given longitudinal position z can
be decomposed into straight lines and circular arcs.

For an arbitrary translation along the c0 in the transverse
plane, the transformation gives rise to a a new set of local co-
ordinates. Its consequence is that the coefficients Γij(m, z) are
multiplied by the phase exp[j(km

x c0x + km
y c0y)].

For a rotation, the situation is somewhat more involved. Due
to the mixing of x and y directions, the Cartesian components
of the normal-vector field also change with respect to the global
Cartesian system as well as the direction of the transverse wave
vector k

m
T = (km

x , km
y ), which appears in the exponential of the

Fourier transformation as an inner product with rT = (x, y).
Since the basis for rT is transformed by a basis-transformation
matrix B, i.e. r

′
T = BrT , the vector k

m
T needs to be transformed

by the inverse-transposed of the same basis transformation, i.e.
k

m′
T = B−Tk

m
T , to maintain the invariance of the inner prod-

uct. The resulting vector k
m′
T can be interpreted as a sampling

of the vector kT along the Bravais lattice of the transformed re-
ciprocal vectors and the former causes the new coefficients Γ′

ij

to be written as a fixed linear combination of the coefficients Γij,
albeit sampled at the new values of (km

x , km
y ) after rotation.

3. LOCAL NORMAL-VECTOR FIELDS FOR GENERAL
ANISOTROPIC MEDIA

The localization of the normal-vector field as demonstrated
above applies mainly to isotropic media. The restriction is
caused by the off-diagonal elements of the permittivity tensor
for general anisotropic media, the contribution of which can, in
general, not be canceled by a single scalar function, i.e. the op-

erator
(

1
α I − Mε

)

is in general not equal zero. This obstacle can

be overcome by further modifying the definition of the vector
field F. This renewed definition of F is given by

F = PTE + αPn(D − SPTE), (24)

where α is again a non-zero scaling function and S is a scaling
operator, which are both continuous in the vicinity of material
discontinuities. Since both PnD and PTE are continuous vector
fields, the vector field F is again continuous under the require-
ments for α and S.

With the previously outlined algebra for the projection oper-
ators, see Eq. (9), we obtain the expression

E =

{

I + (Pn MεPn)
−1

[

Pn(
1

α
I − S)Pn − Pn(Mε − S)

]}

F.

(25)
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The operator between square brackets can be made zero locally.
The first term between the square brackets disappears by choos-
ing α = (PnSPn)−1 (to be understood on the range of Pn). Subse-
quently, by choosing S equal to the (anisotropic) permittivity in
a certain region that does not involve discontinuities, for exam-
ple a constant permittivity tensor Mεh

of the host medium, also
the second term between the square bracket is equal to zero in
regions where Mε = Mεh

. In such a region, the normal-vector
field is not required, provided that the basis of the vector field F

is again independent of the normal-vector field. The resulting
expression for Eq. (25) becomes

E =
{

I − (PnMεPn)
−1 [Pn(Mε − Mεh

)]
}

F. (26)

We note that the expressions for Cǫ and ǫ • Cǫ are often more
complicated than for the isotropic case, mainly because of the
operator (Pn MεPn)−1. In the spatial domain we have

(PnMεPn)
−1 =

N

N • (εN)
N•, (27)

in which the denominator intertwines both the geometry of
the material interfaces and the directions of anisotropy. Con-
sequently, analytical expressions for their Fourier transforms
are harder to obtain. In such cases, one could instead resort
to quadrature methods for more complicated domains, see e.g.
[12–14], to compute the pertaining Fourier integrals.

We note that the definitions for the vector field F in Eq. (6)
and Eq. (24) are consistent for the isotropic case, since S will
then be a multiple of the identity operator and hence S will com-
mute with PT and Pn. Consequently, PnSPT is identically zero
and the choice for α reduces to the previously identified cases
of Section C.

4. NUMERICAL RESULTS

We employ the volume-integral equation formulation pre-
sented in [4] to generate the numerical results presented here.
First, we consider an array of aerial cavities with height h =
50 nm and with an elliptical footprint inside a square unit
cell, identical to the setup discussed in [3], see Figure 3. The
lengths of the major and minor axes of the ellipses are indi-
cated by 2a = 1000 nm and 2b = 500 nm, respectively, and
the major axis has an angle of 45 degrees with respect to the
lattice vectors a1 = pux and a2 = puy that span the unit
cell, with p = 1000 nm. The ellipses, with relative permittiv-
ity εr = 1, are embedded in a metallic layer with a thickness
identical to the height of the cavities and εr = 0.8125 − j5.25
on a glass substrate with εr = 2.25. For the normal-vector field,
we choose 1/α equal to the permittivity of the glass substrate,
which means that we define the normal-vector field only on the
inside of the ellipses, as indicated by the little arrows inside the
ellipses. A normally incident plane wave with wavelength λ =
500 nm and polarization [Ex, Ey] = [1, 1] and [Ex, Ey] = [1,−1]
is used to illuminate the grating. The zeroth order diffraction ef-
ficiency in reflection is shown in Figure 3 for the normal-vector
field as given in Appendix A by the solid line for the [1, 1] po-
larization and the dashed line for the [1,−1] polarization. We
have computed the results for 33 sample points for the integra-
tion in the z direction and Fourier modes from −M, . . . , M in
both the x and the y direction, where M = {2, 4, 6, . . . , 50}. The
results for the normal-vector-field formulation are indicated by
“NV”. As a reference, the hollow bullets and triangles repre-
sent the data provided in [3], for the normal-vector field gen-
erated through the electrostatic strategy for the cases that were
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Fig. 4. Reflection coefficients versus parameter t. Left:
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angle ϕ = πt/2 with respect to the x axis. Right: |Rs(0, 1)| and
|Rp(0, 1)| for the parametrization given in Eq. (29).

referred to as “mainly TE” and “mainly TM” in [3]. The results
for the Laurent rule, indicated by “LR”, are given for complete-
ness. These results demonstrate once more the much faster
convergence when using normal-vector fields in the formula-
tion of field-material interactions in comparison to the direct
application of the Laurent rule. The computation for M = 50
requires 234 seconds running a single-core process on an In-
tel i7-2600 CPU @3.40 GHz. Further comparisons between the
volume-integral equation, with the normal-vector-field formu-
lation discussed here, and a surface-integral equation can be
found in [15–17]. For arrays of circular holes and square holes,
the normal-vector field framework defined here was also em-
ployed for a volume-integral equation in [4], where it was com-
pared to the combination of RCWA and normal-vector fields in
[3].

To further demonstrate the ease of use of geometrical trans-
formations in the local normal-vector field with parameterized
normal-vector fields, we consider the same array of elliptical
cavities but now starting from the initial situation where the
major axis of the ellipse coincides with the x-axis. We parame-
terize the ellipse in two ways. The first is to rotate the ellipse
around its center over an angle

ϕ =
π

2
t, (28)

between the major axis and the x-axis, where t ∈ [0, 1]. Note
that Figure 3 shows the ellipses for ϕ = 45◦ . The second way
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is to gradually change the lengths the semi-major axis a and
semi-minor axis b of the ellipse by using the parameterizations

a(t) =
R√
e0

exp[ln(e0) cos2(πt)], (29a)

b(t) =
R√
e0

exp[ln(e0) sin2(πt)], (29b)

where e0 = a(0)/b(0) is the initial ellipticity of the ellipse for

t = 0 and R expresses the effective radius
√

a(0)b(0) of the el-
lipse. This parametrization is constructed such that the area of
the ellipse is constant, i.e. πa(t)b(t) = πR2, and hence the scat-
tering volume is the same for all values of t. For t = 1 the role of
the major and minor axes of the ellipse has been interchanged
and for t = 0.5 the ellipse has become a circle with radius R.
Hence, the latter parametrization reveals whether or not an el-
liptic cavity can be discriminated from a circular cavity while
the former reveals whether or not the orientation of the ellipse
can be detected. For both cases, we use the same dimensions
and materials as described above for the first example and we
use 89 (±44) Fourier modes both in the x and y direction and
33 samples in the z direction. For both parameterizations, the el-
lipse has its major axis along the x direction for t = 0 and along
the y direction for t = 1. The incident plane wave is normally
incident and is polarized as [Ex, Ey] = [1, 1]. The absolute value
of reflection coefficients in s and p polarization for the Fourier
mode (m1, m2), i.e. |Rs(m1, m2)| and |Rp(m1, m2)| respectively,
for these two parameterizations are presented in Figure 4. We
note that further study has shown that zeroth-order reflection
coefficients only vary in the third significant digit as a function
of t (not shown here) and are therefore virtually independent
of this parameter. Consequently, the orientation and shape of
the elliptical cross-section of grating is best monitored via the
higher-order modes.

We continue by briefly illustrating the impact of the choice
for α on the convergence of the error in the diffraction efficiency
and the behavior of the iterative solver. For this, we modify the
setup in Figure 3 to the case of aerial cavities with square cross
section with an edge length of 500 nm and aligned with the unit-
cell boundaries, while keeping the rest of the setup the same.
The normal-vector field is chosen to be constant either pointing
in the x- or y-direction, where the interface of these two choices
lies along the diagonals of the square cavity, extended across
the unit cell as indicated in the inset in Figure 5. We now con-
sider three choices for α, all of which are constant throughout
the unit cell. The first choice is to choose 1/α equal to the per-
mittivity of the aerial cavities, implying that the normal-vector
field in only generated and used on the exterior of the cavities.
In the second case we choose 1/α equal to the permittivity of
the metal layer, which corresponds to the normal-vector field
to be generated only on the aerial cavities. For the third case
we choose 1/α as the average of the permittivities of air and
metal, which employs a normal-vector field across the entire
unit cell. In Figure 5 we illustrate the convergence in terms of
the zeroth-order diffraction efficiency compared to a reference
value of DER,ref = 0.2255, to which all three cases converge
in four significant digits for ±50 Fourier modes per direction.
As can be seen, the convergence rate and absolute accuracy are
comparable for the three cases. We also consider the impact on
computation time. Since the required Fourier integrals for these
cases are analytically available with the help of Appendix B, the
computation time is completely dominated by the number of it-
erations of the iterative solver BiCGstab(2). As can be seen from
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Fig. 5. Influence on the convergence for three choices of α
for an array of cavities with square cross section. Solid line:
α = 1/εair, dashed line: α = 1/εmetal, line with circles: α =
2/(εair + εmetal). Top: absolute error in the zeroth-order diffrac-
tion efficiency with respect to the reference DER,re f . Bottom:

number of iterations for BiCGstab(2) to reach 10−7.

Figure 5, the three choices exhibit a significant difference in the
number of iterations. Although this example shows that the
computation time can be influenced by the choice of alpha, we
should stress once more that the choice of alpha for arbitrary
complex shapes is predominantly driven by the ease of generat-
ing the NV-field. In this particular example this was relatively
simple, but for the case of the elliptic aerial cavity, it is more dif-
ficult to describe the NV field in parameterized building blocks
that vary continuously with the shape parameters.

Subsequently, we give an example of the cut-and-connect
strategy for a U-shaped grating, as outlined in Appendix B. The
geometry of the U-shape and its position on a layered medium
is shown in Figure 6. The corresponding parameters are speci-
fied in Table 1, where λ is the wavelength of the incident plane
wave in free space. The U-shape is constructed with four cir-
cular segments and six polygons. The solid lines indicate inter-
faces between two dielectric media and the dashed lines on the
interior indicate the cuts made between the mesh elements, for
which no change in dielectric material is present. The normal-
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ues specified in Table 1. The arrows indicate the region on
which the normal-vector field is used. Bottom left: cross-section
in the xz plane of the layered structure with the U-shape on
top. Right: reflection coefficients as a function of the angle θ
with respect to the z-axis, in s- and p-polarization for s- and
p-polarized incident plane waves.

vector fields are only defined on the inside of the U-shape and
are pointing in the radial direction for the circular segments
and in the direction normal to the solid line of each polygon.
The corresponding choice for 1/α equals the permittivity of
the upper halfspace, which is free space. The U-shape is po-
sitioned in the upper halfspace, on top of a layer with relative
permittivity εr = 2.25 and thickness 0.25λ. The lower halfs-
pace has a relative permittivity εr = 25. The unit cell has lat-

tice vectors a1 = λ
2 ux and a2 = λ

2 uy. Owing to the definition
of local normal-vector fields per elementary shape, computing
the Fourier coefficients for the corresponding shapes is simple
and numerically efficient since analytic expressions are directly
available. For the simulation, we employ 41 Fourier modes in
both the x- and the y-direction and 41 samples in the z-direction.
Figure 6 shows the modulus of the zeroth-order reflection coef-

ficients
∣

∣

∣
Rij(0, 0)

∣

∣

∣
, where i denotes the polarization of the re-

flected wave and j the polarization of the incident wave. The
results are given for a scan along the angle θ = {0, 1, . . . , 89}
with respect to the z-axis for fixed angle φ = 0◦, i.e. along the
x-axis. We note that in this case

∣

∣Rsp(0, 0)
∣

∣ =
∣

∣Rps(0, 0)
∣

∣, owing
to the mirror symmetry in the U-shape.

Table 1. Parameters of the U-shape.

parameter value

h 0.20λ

l 0.25λ

r 0.015λ

t 0.075λ

w 0.06λ

εr 6.25

thickness 0.4λ

Finally, we consider a grating with a three-dimensional pro-
file, for which the normal-vector field has components in all

three Cartesian directions. The grating consist of a unit cell with
four equally sized frustums in a checker-board pattern, where
two frustums are pointing upwards and two are pointing down-
wards. Together, the surfaces of the frustums, excluding their
ground planes, form the boundary between the upper halfspace
and the lower halfspace. The setup is shown in Figure 7 and it
somewhat resembles a double-sinusoidal grating. The interi-
ors of upward-pointing frustums have a permittivity identical
to the permittivity of the bottom halfspace, while the interiors
of the downward-pointing frustums have a permittivity equal
to the permittivity of the upper halfspace. Each frustum has a
square ground plane with edge length wb at z = 0 and a smaller
square plane with edge length wt = wb/2 parallel to and sym-
metrically positioned above the ground plane at z = ±h. The
height of the frustums is h = wb/2. The normal-vector field
is only generated on the interior of the frustums, up to and in-
cluding the boundary of the frustum. To this end, each frustum
is divided into four smaller elements by making cuts along the
diagonal planes of the corresponding pyramids. Each of these
elements then has a normal-vector field that is constant across
its entire volume. For this situation, the integrals defined in
Eq. (22) for Cǫ and ǫ •Cǫ are computed by means of Appendix B.
The choices for 1/α are then equal to the permittivity of the up-
per halfspace for z > 0 and the permittivity of the lower halfs-
pace for z < 0. We note that the top and bottom squares with
edge length wt do not require a normal-vector field orthogonal
to their planes, owing to the fact that the computational domain
is truncated at these planes. Consequently, the discontinuity in
the fields across these planes is automatically accounted for in
the discretization of the volume integral equation.

The upper halfspace is free space, while the lower halfspace
has a relative permittivity εr = 2.47. The grating is illuminated
by a plane wave with wavelength λ = 2wb, coming from the
upper halfspace. The bottom part of Figure 7 shows the zeroth-
order reflection coefficients as a function of the angle θ with
respect to the z-axis. The reflection coefficients are shown in s-
and p-polarization for incidents fields in s- and p-polarization,
respectively, in the plane φ = 30◦, the angle with the x-axis. For
the simulation, 41 Fourier modes per periodic direction have
been used, together with 51 sample points for the integration in
the z-direction.

5. CONCLUSION

We have presented an adapted version of the normal-vector-
field formulation that supports the concept of localized normal
vector fields that are tied to a scattering object only, for both
isotropic and anisotropic materials. This yields a flexible frame-
work to deal with multiple and composite shapes that can read-
ily be translated and rotated. Numerical results have been pro-
vided to illustrate the capability of the local normal-vector-field
framework.
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APPENDIX: EXPRESSIONS FOR SHAPE FUNCTIONS

A. The ellipse

For a binary grating with an elliptic footprint with major axis
along the x direction and minor axis along the y-direction, we
employ the following parametrization to describe the position
of the boundary in the Cartesian (x, y) coordinates

r =





a cos φ

b sin φ



 = a





cos φ

e sin φ



 , (30)

where a is the radius along the major axis and b is the radius

along the minor axis, φ the azimuthal angle and e = b
a the ellip-

ticity. This has the advantage that an analytical expression for
Γij can be derived. The normal-vector field can be derived as

n =
1

√

e2 cos2 φ + sin2 φ





e cos φ

sin φ



 . (31)

We note that the above normal-vector field is equivalent to the
Cartesian expressions provided in Section 7.7 in [18].

Through the identities in [19], Formulas 8.511.4(c), 3.613.1,
and 8.471, we can express the final integrals in terms of the
Bessel functions of the first kind Jn as

Γij(m1, m2) =
1

‖Au‖

{

ea2

R
J1(R)Φij(0)

+
ea2

R2
4[1 − J0(R)]

Nb

∑
k=1

(−1)kk Φij(k) + 2
ea2

R
J1(R)

Nb

∑
k=1

Φij(k)

− 8
ea2

R2

Nb−1

∑
m=1

J2m(R)

[

Nb

∑
k=m+1

[(−1)kk − (−1)mm] Φij(k)

]}

,

(32)
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for i, j ∈ {x, y} and Nb is the number of terms that is retained in
the summation over the even Bessel functions. Further,

R ≡ a
√

(km
x )2 + (ekm

y )2. (33)

and



















Φxx(k)

Φxy(k)

Φyy(k)



















=























2πe
(1+e)2 cos(2kc)

(

1−e
1+e

)k−1

2πe
(1+e)2 sin(2kc)

(

1−e
1+e

)k−1

− 2πe
(1+e)2 cos(2kc)

(

1−e
1+e

)k−1























(34)

=



















2πe
1+e

0

2π
1+e



















(for k = 0), (35)

where

c = arctan

(

ekm
y

km
x

)

(36)

Note that for the case of a circle (e = 1) only the terms for
k = 0, 1 are non-zero. The required number of terms Nb in the
series can be determined by exploiting the exponential decay of
the Bessel functions Jn(x) for increasing order n and fixed argu-
ment x. This behavior occurs once the order n is larger than the
argument x of the Bessel functions.

B. Cut-and-connect strategy

A particularly powerful method for generating the normal-
vector fields and closed-form expressions for Γij for more ar-
bitrary shapes is obtained when shapes can be decomposed in
elementary shapes for which the Γij integral has a closed form
suited for fast computation. By summing up the relevant Γij in-
tegrals for each elementary shape at a particular Fourier mode
index, the representation of the overall Γij can be easily ob-
tained. Of course, the class of elementary shapes must be large
enough to generate all relevant more complex shapes. Here we
consider elementary shapes of polygonal type with the follow-
ing properties.

• Each polygon has at most one edge that corresponds to a
material interface. Alternatively, all edges of the polygon
that coincide with a material interface are parallel.

• The normal-vector field across the entire polygon is con-
stant and must be perpendicular to the material interface.

• If there is no material interface, the normal-vector field can
be chosen arbitrarily, but constant.

Any arbitrary shape - or approximation thereof - can in princi-
ple be approximated through a mesh of these polygonal shapes.
The expressions for the Γij are particularly simple, owing to the
constant nature of the normal-vector field and the observation
that Gauss’s theorem allows to reduce the integral over the sup-
port of the polygon to a sum of line integrals along all the edges
of the polygon, through the identity

∫∫

D

exp [j(kt · rt)] dxdy = −
∮

C

j(kt · nt)
exp [j(kt · rt)]

(kt · kt)
dℓ, (37)

where the subscript t indicates a vector in the xy plane, rt =
(x, y), and kt is a vector independent of x and y. Further, C is

the bounding contour of D, nt is the outward pointing normal
on C in the xy plane, and dℓ is the line element along C.

We note that expressions for circular or annular segments,
where the material interface is the circular arc, are readily ob-
tained by following the steps from the previous section in this
appendix.
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