

Assessing the quality of tabular state machines through
metrics
Citation for published version (APA):
Osaiweran, A. A. H., Marincic, J., & Groote, J. F. (2017). Assessing the quality of tabular state machines through
metrics. (Computer science reports; Vol. 1701). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/61fbd3b9-a7fe-4888-85a1-c188c1e3875a

Technische Universiteit Eindhoven
 Department of Mathematics and Computer Science

 Assessing the quality of tabular state machines
through metrics

Ammar Osaiweran, Jelena Marincic, Jan Friso Groote

17/01

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 17-01
Eindhoven, February 2017

Assessing the quality of tabular state machines

through metrics

Ammar Osaiweran1, Jelena Marincic1, Jan Friso Groote2

1ASML Netherlands B.V., Veldhoven, The Netherlands
2Eindhoven University of Technology, Eindhoven, The Netherlands
ammar.osaiweran@asml.com, jelena.marincic@asml.com, j.f.groote@tue.nl

Abstract

Software metrics are widely used to measure the quality of software and to give an early
indication of the efficiency of the development process in industry. There are many well-
established frameworks for measuring the quality of source code through metrics, but limited
attention has been paid to the quality of software models. In this article, we evaluate the
quality of state machine models specified using the Analytical Software Design (ASD) tooling.
We discuss how we applied a number of metrics to ASD models in an industrial setting and
report about results and lessons learned when collecting these metrics. Furthermore, we
recommend some quality limits for each metric and validate them on models developed in a
number of industrial projects.

1 Introduction

The use of model-based techniques in software development processes has been promoted for
many years [24, 3, 4, 5, 1, 12, 6]. The aim is to use the models as a main software artifact in the
development process, not only for visualization and communication among developers but also as
an important means of specification, formal verification, code generation, testing and validation.

The premise is that, by modeling, engineers will focus more on the core software functionality
rather than the implementation details. As a crucial part of the modeling paradigm, the code
is often automatically generated, implementing the specification of the source model. This auto-
matic construction of source code gives real-world value to the behavior specified in the model.
Usually, the transformation to code is hidden from modelers; it is just one more command to
execute or a button to click before compilation. Furthermore, for some modeling frameworks,
behavioral correctness of models is established by automatic formal verification of which related
formal specification is also hidden from end users. Visible to users is only the verification results
or counterexamples guiding users when certain properties are violated.

The shift from traditional coding towards the model-based development paradigm is becoming
very popular and attractive in industry. The reason is that it results in a notable increase of quality
and reduction of time to market. Implementation details that support the execution of the core
functionality is taken care by the code generator, reducing the time and overhead for error-prone
manual implementation, facilitating automatic verification, and increasing overall productivity
[23].

In traditional development, source code is the main software artifact. To measure the quality of
source code, a number of widely used metrics are utilized, with well-established industrial strength

1

tools and frameworks, such as TICS [27], CodeSonar [9], SourceMonitor [26] and VerifySoft [28].
Code metrics are useful means to detect decays in architectures and code smells [13] that hinder
future evolution and maintenance.

However, these frameworks and tools cannot be applied directly to measure the quality of
models. They can measure the generated code but it is debatable whether this is meaningful. This
is because ,usually, code generators generate correct and optimal source code tailored to a specific
domain and the generated code is often excluded from code analysis tools due to violations and
non-adherence to the prescribed coding standards. Therefore, complexity, duplication and other
undesired properties must be analyzed at the level of models. Since industry is becoming more
and more reliant on software models, there is an urgent need to establish a way for measuring
various metrics at the level of models and not at the level of source code.

In our industrial context, we use state machines to design and specify reactive and control as-
pects of software. The behavior of these machines is described using a lightweight formal modeling
tool called ASD:Suite. The tool allows specification of state machines in a tabular format. These
specifications can be formally verified and corresponding source code can be generated from these
verified models [29].

Using ASD:Suite, we can create models but how can we ensure their quality. Because there is
no means to measure the quality of these models, a number of challenging questions are raised.
How can we evaluate the quality of this type of state machine models? Will we find complex and
big models in the software archive? Which factors contribute to the complexity of models? How
can these factors be detected and measured? How can we help engineers to improve the quality
of their future models? How can we provide to modelers information on deterioration as their
models evolve?

In this paper we provide answers to the above questions by utilizing a number of software
metrics that we tailored and adapted for measuring the quality of ASD models. We discuss a
number of observations raised when analyzing metrics of various models. Based on our empirical
results, we propose a number of practical thresholds for various metrics. Note that our work is
applied to models developed in real industrial projects and real products that are shipped to the
market, and not to simple case studies or prototypes.

This article is structured as follows. Section 2 discusses related work on model-based devel-
opment and metrics of state machines. Section 3 introduces ASD to the extent needed for this
article. In Section 4 a number of well-known software metrics are detailed with the application to
ASD models. Section 5 introduces recommended limits of metrics for good quality models. Section
6 details the data collection process of metrics from models and discusses observations during the
data analysis. In Section 7 we conclude our paper highlighting the limitations and future work in
this regard.

2 Related work

In a previous research at Philips Healthcare [25], guidelines for readability and verifiability of ASD
models were introduced. An important guideline is for instance: an ASD tabular model should not
include more than 250 rows leading to not more than 3000 lines of generated code. The limitation
of this guideline is that it considers only the size of models and generated code while no other
complexity factors were addressed. Furthermore, there was no automatic means to calculate the
metrics at the level of models.

Most recently, a number of metrics such as cyclomatic complexity (CC) [21], Halstead complex-
ity [17] and Zage complexity [31, 30] were applied to SCADE models. The purpose is to establish
whether metrics for traditional source code can be used to assess complexity of SCADE model
and to detect unavoidable complexity.

2

To estimate the reliability of UML state machines, and to identify failure-prone components, a
group of authors [20] measured the cyclomatic complexity of UML state machines. They did not
measure the CC directly on state machines, but on the control flow graph generated from their
software realization.

Similarly, other authors focus on assessing the number of tests. For example, in [15] decision
diagrams as intermediate artefacts were used to calculate the number of tests for the code of
concurrent state machines.

For automatically generated state-machines that contains a large number of states, and that
have abstraction levels flattened, the work of [16] proposes a complexity metric to assist in generat-
ing hierarchical state-machines from a flat state-machine. A technique for search-based clustering
of related states to identify potential superstates is used and then the CC of each cluster is
evaluated for a proper choice of super-states.

3 Analytical Software Design

This section provides a short introduction of the ASD approach and its toolset, the ASD:Suite [7,
19]. ASD is an approach used for building formally verified, component-based systems through
the application of formal methods into industrial practice. ASD combines the Box Structure
Development Method [22] and the Communicating Sequential Processes (CSP) formalism [18],
and uses Failures-divergence refinement FDR2 [11] as a model checker tool for formal verification.

Using the ASD:Suite, models of components and interfaces can be described. Two types
of models are distinguished which are both state machines specified by a tabular notation: ASD
interface models and ASD design models. These models are specified following the Sequence-Based
Specification technique, to force consistent and complete specifications [8].

The external behavior (or contract) of a component is specified using an interface model which
excludes any internal behavior not seen by client components that use the interface. The interface
model is implemented by a design model which typically uses the interfaces of other so-called
server components.

In ASD we distinguish between two types of components: ASD components and foreign compo-
nents. An ASD component includes an implemented interface model, a design model, and optional
server interface models. A foreign component has only an interface model of which implementation
is constructed manually.

Formal verification is established by verifying that calls in design models to interfaces of server
components are correct, with respect to contracts of the servers. The model checker tool ex-
haustively searches for illegal interactions, deadlocks or livelocks in the specification. It is also
formally checked whether the behaviour of the design model obeys its implemented interface model.
Verification starts automatically with the click of a button. In case an error is detected in the

system_on()

system_off()

Config

SensorMotor

Door
ControlTimer

Figure 1: example controller system of automatic door

3

models, the modeler receives a counterexample visualized in a sequence diagram, nicely traceable
to the original specification of the model. Besides formal verification, the ASD:Suite allows code
generation from design and interface models to a number of languages (C, C++, C#, Java).

In ASD, communication between client and server components is asymmetric, using syn-
chronous calls and asynchronous callbacks. A client issues synchronous calls to server components,
whereas a server sends callbacks to its clients. Callbacks are stored in a First-In-First-out (FIFO)
callback queue. These callbacks are non-blocking and can be received by a component at any
time.

Note that in ASD:Suite a designer can configure an ASD component to be multi-threaded
or single-threaded. Using the multi-threaded option any ASD queue will run in its own thread
causing potential thread-switching and interleaving of actions. In our industrial context we always
use the single-threaded option which means that actions are executed until completion without
any interleaving with other actions of the same or other ASD components.

We detail the ASD specification by using a small automatic Door controller example. It consists
of a Door controller component that controls a Sensor and a Motor component, see Figure 1. The
Controller receives two requests from external clients, namely systemOn to start-up the system
and systemOff to shutdown the system. When the system is ON, the controller may receive a
callback from the sensor component when there is a detected object. Upon such an event, it issues
a command to the motor component to open the door and apply a brake. Then it starts a timer
and when it times-out the controller issues a command to release the brake to close the door.
This example is used to clarify and illustrate the the interface model in Section 3.1 and the design
model in Section 3.2.

3.1 ASD Interface Models

The interface model is the first artifact that must be specified when creating an ASD component.
It describes the formal contract of the component by means of the allowed sequence of calls and
callbacks, exchanged with clients. Any internal behaviour not visible to clients is abstracted from
the interface specification.

Figure 2 depicts the tabular specification of an ASD interface model. The specification lists
all implemented interfaces, their events (also called input stimuli), guards or predicates on the
events. A sequence of response actions can be specified in the Actions list such as return values or
callbacks to clients, and special actions such as Illegal which essentially marks the corresponding
event as not allowed in that state.

In Figure 2 the interface specification of the Door controller is described. The model contains
two states: Off and On. Any ASD model must be complete in the sense that actions for all
input stimuli events must be defined. For example in row 3 a systemOn event is accepted and the
component will transit to state ON after returning a voidReply to IDoorControlAPI. In row 4 and
7 of Figure 2 the Illegal action is specified denoting that invoking the event is forbidden by clients.
Once in the On state, the component accepts a systemOff request and transits back to the Off
state. Similarly, Figure 3 depicts the external behavior of the Sensor hardware component, which
is strictly alternating between the Active and Inactive states via the startSensing and stopSensing
events. In row 10, a so-called internal event is specified denoting that something internal in the
device can happen, which is in this case a detectedMovement. As a consequence, the detectedObject
callback is sent to the controller and the Sensor remains in the Active state. Via internal events,
the interface abstracts from one or more actions that happen internally in the implementation.
Or conversely, it is an abstract event that can or must occur which therefore acts as an obligation
for any component that implements that interface.

4

Figure 2: interface model of door controller

Figure 3: sensor interface model

3.2 ASD Design Models

The ASD design model implements the interface model and extends it with more detailed internal
behavior. The design model is used to specify how the provided interface model is implemented
by mapping it to all required (or used) interface models. This means that the design model may
include calls to other interface models of other components.

Figure 4 depicts the design model of the Door controller. The specification refines the inter-
face model of Figure 2 with all required internal details and uses the interface models of other
components such as the Sensor interface model of Figure 3. For example, row 4 specifies that
when the Door component receives a systemOn request, it does not only return voidReply to
the client, as specified in the interface model, but it also calls a configuration component via the
getConfiguration action and asks the Sensor hardware to start monitoring the surroundings via
the startSensing action. After that, the controller transits to the DoorClose state. Note that, the

Figure 4: Design model of door controller. Illegal events are hidden

call to the configuration is supplied with 2 data parameters namely, speed and time. When the

5

call returns, the component stores their values in the local storage parameters of the component
using the � operator, to be retrieved later when needed via � operator. Careful attention and
thorough review of the data is needed because checking actual content of the data is excluded
from formal verification in ASD. The rest of the specification is self-explanatory.

An example of processing a callback that is stored in the ASD queue is depicted in row 13 and
21 where the component may receive a detectedObject and a timeOut callback from the Sensor
and the Timer components respectively.

4 Tailoring code metrics for ASD models

To measure the quality of ASD models, we tailored a number of metrics that are widely used in
industrial practice for measuring the quality of source code like McCabe and Halstead complexity
metrics [21, 17]. In this section we introduce these metrics and discuss how we adapt them to
measure ASD design and interface models.

We start by introducing McCabe cyclomatic complexity metric (CC) and its application to
measure complexity of ASD models. Then, we introduce our tailored version of the CC metric
and also its application to ASD models. We discuss how both metrics complement each other
and how they provide more insights on the complexity of the models. After that we introduce
Halstead metrics detailing how they are adapted to measure ASD models. Finally, we present
metrics related to formal verification generated by the model checker of ASD:Suite.

4.1 Cyclomatic complexity of ASD models

The cyclomatic complexity (CC) metric provides a quantitative measure on the number of linearly
independent paths in a program source code, represented by a control flow directed graph [21]. At
the time the CC metric was developed, the main purpose was to calculate the minimum number
of test cases required to test the independent paths of a program. When the CC metric is high it
indicates not only that the number of related test cases is high but also that the program itself is
hard to read and understand by developers.

Figure 5: code and its graph representation

To calculate the CC of source code, the program should first be represented as a connected
graph. For example, Figure 5 depicts a function foo and its graph representation. The CC of a
program can be calculated using the following equation:

CC = E − N + 1,

where E denotes the number of edges in the graph and N is the total number of nodes. Clearly
the CC of the code presented in Figure 5 is: 5 − 5 + 1 = 1.

6

In a similar way, we can use CC for code as a basis to calculate the CC of ASD models.
The tabular notation of ASD models can also be seen as a directed graph that contains edges
and nodes. Note that, for ASD components we are mainly concerned with the understandability
aspect of ASD components rather than testing effort since model checking replaces testing and
guarantees that all paths of a model are exhaustively and fully checked. Testing efforts can be of
a concern for ASD foreign components since their implementation is handcrafted.

To illustrate how CC can be collected for ASD models, consider the specification depicted
in Figure 6. The specification consists of 2 states namely state X and state Y . In state X, the

Figure 6: An ASD interface model with 2 states and 5 transitions

machine accepts events a1, a2 and a3 via the IF interface and then moves to state Y . The machine
stays in state Y forever accepting a4 and a5 events.

Figure 7: a) Graphical representation with independent edges for events. b) Graphical represen-
tation with unique edges with set of actions

The graphical representation of the ASD state machine is depicted in Figure 7.a. The CC of
this model can be calculated as follows:

E = 5,N = 2,
CC = 5 − 2 + 1 = 4

Application to the Door models
The CC of the Door interface model depicted in Figure 2 is 1, while CC of the design model
depicted in Figure 4 is 4. The CC of the Sensor interface model of Figure 3 is 2.

4.2 Actual (structural) complexity

We tailored the CC metric to collect the so-called Actual (or structural) complexity (ACC) of a
model. With the ACC metric we group edges between states. If there are multiple edges between
certain states, we only count them as one. This means that in ACC any edge may contain one or
more events (a set of events) while in CC each edge has only one event. For example, in Figure
7b, it is possible to transit from state X to state Y via either a1, a2 or a3 events (one transition
labeled by a set of events). In state Y only a4 or a5 events are accepted.

Note that, the ACC metric does not replace CC but it complements it by providing additional
insight to complexity. It groups events that have similar transitions and identical effect on a state.
The metric gives an indication on how complex and difficult it is for a human to read and to

7

understand the model through navigating and memorizing the history of states. The metric is not
concerned with the number of tests required to exercise the state machine. ACC can be calculated
using the following equation:

ACC = EU − N + 1,

where EU denotes the total number of unique edges and N is the total number of nodes. For
instance, the ACC of the ASD state machine depicted earlier in Figure 6a can be calculated as
follows:

EU = 2,N = 2,
ACC = 2 − 2 + 1 = 1.

Application to the Door models
The ACC of the Door interface model depicted in Figure 2 is 1, while the ACC of the design
model depicted in Figure 4 is 4. The ACC of the Sensor interface model of Figure 3 is 1.

4.3 Halstead metrics, LoC and maintainability index

Using Halstead approach, metrics are collected based on counting operators and operands of
source code [17]. We introduce these metrics and discuss how we tailored them to ASD models.
Furthermore, we show how the lines of code metric is collected for ASD models. Another metric
called the maintainability index can be derived based on Halstead metrics, the lines of code and
CC metrics. We show how this metric is calculated for ASD models.

We start by introducing Halstead metrics. The metrics measure the cognitive load of a program
which is the mental effort used to understand, maintain and develop the program. The higher the
load, the more time it takes to design or understand it, and the higher the chances of introducing
bugs. Halstead considered programs as implementation of algorithms, consisting of operators and
operands. His metrics are designed to measure the complexity of any kind of algorithms regardless
of the language in which they are implemented. Halstead metrics use the following basis measures:

• n1: the number of unique operators,

• N1: the total number of occurrences of operators,

• n2: the number of unique operands,

• N2: the total number of occurrences of operands,

• n = n1 + n2 which indicates the model vocabulary,

• N = N1 + N2 which denotes the length of the model.

For any ASD model we consider the following to be operands:

• state variables used as guards,

• states of the state machine,

• data variables in events and actions.

Furthermore, we consider the following to be operators:

• events (calls, internal events and stimuli callbacks) and actions (all responses including return
values and callbacks),

8

• operators on state variables such as not, and, or, >, <, ==, 6, >, +, −, and otherwise (a
keyword denotes the else part of a guard),

• operators on data variables such as �, � , >< (value of variable is stored and retrieved),
and $ (literal value a programming language allows).

The basic measures are then used to calculate the metrics below:

• Volume: V = N ∗ log2n,

• Difficulty: D = (n1/2) ∗ (N2/n2),

• Effort: E = D ∗ V denotes the effort spent to make the model,

• Time required to understand the model: T = (E/18) (seconds),

• Expected number of Bugs: B = V/3000.

The volume metric V considers the information content of a program as bits. Assuming
that humans use binary search when selecting the next operand or operator to write, Halstead
interpreted volume as a number of mental comparisons a developer would need to write a program
of length N . Program difficulty D is based on a psychology theory that adding new operators,
while reusing the existing operands increases the difficulty to understand an algorithm.

Program effort E measures the mental effort required to implement or comprehend an algo-
rithm. It is measured in elementary mental discriminations. For each mental comparison (and
there are V of them), depending on the difficulty, the human mind will perform several elementary
mental discriminations. The rate at which a person performs elementary mental discriminations is
given by a Stroud number that ranges between 5 and 20 elements per second. Halstead empirically
determined that in the calculation of the time T to understand an algorithm this constant should
be adjusted to 18.

Finally, the estimated number of bugs B correlates with the volume of the software. The more
the size increases, the more the likelihood to introduce bugs. Halstead empirically calculated the
estimated number of bugs by a simple division by 3000.

We calculate the lines of code metric based on not only the total number of rows in the model
but also the number of actions in the Actions list. Therefore, each action counts as 1 line, for
instance, the specification of the Door interface model contains 4 LoC.

The original maintainability index of source code is calculated based on volume, LoC and CC
of source code [10]. It indicates whether it is worth to keep maintaining, modifying and extending
a program or to immediately consider refactoring or redesigning it. MI should be above 85 or not
less than 65 in the worst case. The Maintainability Index is defined as follows:

MI = 171 − 5.2 ∗ ln(V) − 0.23 ∗ CC − 16.2 ∗ ln(LOC)

Microsoft incorporated the metrics in Microsoft Studio environment with a slight modification
to the above formula:

MI = MAX(0, (171 − 5.2 ∗ ln(V) − 0.23 ∗ ACC − 16.2 ∗ ln(LOC)) ∗ 100/171)

The formula produces a number between 0 and 100, where 20 or above indicates good and
highly maintainable source code.

Application to the Door models
Table 1 lists the metrics of the three ASD models of the Door system. The table is self-explanatory.
Notable is the time required to understand the models. The reader of this paper is expected to
read and understand the specification of the Door design model in about 210 seconds. All models
exhibit a maintainability index of 20 and above, hence they are highly maintainable. The rest of
the data provided in the table is self-explanatory.

9

Model Volume Bugs Difficulty Time (s) LoC MI
Door interface 33 0.01 2 4 4 76
Door design 236 0.08 16 210 19 55
Sensor interface 56 0.02 4 13 6 70.5

Table 1: Metrics of Door controller models

4.4 Metrics for formal verification overhead

ASD uses model checking for formal verification of interface models and design models. The model
checking tool produces statistical information about the state space that captures all possible
execution scenarios of a model (or a group of communicating models).

Figure 8: List of models and verification metrics (states and verification time).

Figure 8 depicts a screenshot of the results of the formal verification of ASD:Suite. It includes
the design model of the Door controller and its used interface models. A green color indicates
success of the formal check while red indicates a failing result.

As can be seen from the figure, the number of generated states of the design model for the
deadlock check is 47 and the time required for all listed checks to complete is less than a minute.
These metrics can also be obtained from a file generated by the ASD:Suite when the verification
check is accomplished.

The deadlock check for the door design model is marked by a green tick sign indicating that
the design model is deadlock-free for all possible execution paths.

5 Optimal values and recommended limits of metrics

In this section, we propose limits of metrics for good quality interface and design models. The
limits were established after carefully analyzing and reviewing over 615 interface and design models

10

Metric Type of model
Interface Model Design Model

Low Moderate High Low Moderate High
CC 6 30 6 50 > 50 6 30 6 50 > 50
ACC 6 20 6 40 > 40 6 20 6 40 > 40
Volume 6 8000 6 14000 > 14000 6 8000 6 14000 > 14000
LoC 6 200 6 400 > 400 6 500 6 800 > 800
MI 6 10 6 20 > 20 6 10 6 20 > 20
VT 6 1 min 6 5 min > 5 min 6 1 min 6 5 min > 5 min

Table 2: Optimal values of metrics for ASD models

built for a large photolithography system, developed by ASML [2]. The limits were established
after iterative review meetings and alignments with various engineers who owned and developed
the models.

Table 2 lists all metrics and the advised limits in our industrial context. As can be seen from
the table, the limits of the metrics for interface and design models are similar except for the LoC
metric.

Note that in our industrial context, the CC of a module written in C++ should not exceed
10. If source code exhibits a CC between 10 to 40 then the code should be refactored while if it
is more than 40 then the code is end-of-life and has to be rewritten again in a simpler way. This
CC limit may vary from one organization to another.

The reason that the limit of CC for models is raised compared to the CC for source code is
that the metrics are collected at the level of models. We found that the tabular representation of
the model raises the abstraction level and increases the understandability of the software artifact
compared to source code. Models with a CC less than 30 were easy to understand when reviewing
the tabular format of the models.

Similarly, we were reasonably comfortable reviewing models that exhibit an ACC of less than
20. For the size metric, we used the limit suggested by VerifySoft [28] and observed that models
exceeding 8000 are big in size. Finally, the thresholds of MI were chosen as used by Microsoft.

In our industrial context, we recommend that verification time (or waiting time for the model
checker during debugging) should not exceed 1 minute. The reason is that we want to prevent
that productivity of developers is hindered by the model-checking technology. We want to avoid
that a developer fixes an error in the specification and waits for a long time before the model
checker succeeds or detects another error (and the behaviour repeats itself causing undesired long
waits reducing the productivity of the designer). More important is that this limit is set to also
prevent designers from making overly complex specification because they are safe with verification
of model-checking.

Design and modeling are creative processes and having good metrics of a model does not
always mean that the underlying design is good. It is possible that certain models exhibit metrics
within the accepted limits while mixing the level of abstractions with inappropriate decomposition
of components and mixed responsibilities. Human creativity is still needed to judge whether a
design is conceptually acceptable while metrics can help detecting bad smells and decays in the
architecture very early.

6 Detailed data analysis

In this section we detail the application of the proposed metrics and the recommended limits to
measure and evaluate the existing ASD models, see Table 3. In order to make the process of data
analysis and collection of the models more efficient, we built a tool that automatically extracts
the metrics and visualize the results graphically. The tool is compatible with ASD:Suite version

11

9.2.7. We used the tool to extract metrics from 615 ASD interface and design models, developed
in four different projects, within the period of 2008 until the end of 2015.

Metric Interface Models Design Models
of models 348 267
Average CC 18 39.4

Average ACC 4.5 11
Total Volume 204,593 3,533,640

Total LoC 12,580 205,772
Total C++ LoC 55,710 611,724

Table 3: Summary of statistical data of developed models

Table 3 provides collected metrics data about the models. The total number of interface models
is 348 while there are 267 design models. Row 3 and 4 list the average CC and ACC measures for
the models. In row 5 the total volume or size of models is depicted. Row 6 lists the total number
of lines of code in the models while the last row lists the total number of lines of the generated
C++ code excluding blank lines.

Metric Limit Interface Design Percentage
models models

CC
6 30 299 178 77.56%
(30, 50) 24 26 8.13%
> 50 25 63 14.31%

ACC
< 20 333 231 91.71%
(20, 40) 7 17 3.9%
> 40 8 19 4.4%

Volume
< 8K 344 181 85.37%
(8K, 14K) 3 17 3.25%
> 14K 1 69 11.4%

LOC
< 200 338 182 84.55%
(200, 400) 5 14 3.08%
> 400 5 71 12.36%

VT
< 1 min 348 266 99.84%
(1 min,5 min) 0 1 0.16%
> 5 min 0 0 0%

Table 4: Analysis of metrics values

We separated ASD interface models from design models and then carefully evaluated them
in isolation. After that, we ordered the models according to CC, ACC and volume, to sort the
models based on their complexity and size. The purpose of sorting the models is to capture the
complex and big models that are present in our archive to refactor and improve these models. The
data analysis of these models is summarized in Table 4.

In summary, the analysis revealed that over 22% of the models are relatively complex based on
the CC metric and the models should be refactored to reduce complexity. Considering the ACC
metric over 10% of the models should be refactored to simpler models. We discuss the relation
between CC and ACC shortly. With respect to size we considered the volume and LoC metrics.
Over 15% of the models are big in size and should be split into smaller models. Similarly, over 15%
of the models include many lines of code. Most of these big models exhibit also high complexity
metrics; therefore, improving one metric will consequently improve the other metrics.

All models were verified in less than 1 minute except one model which took about 5 minutes
from the model checker. This model is also the biggest and the most complex model compared
to others. The reason that all models were verified in a short time is that the execution of the

12

components is configured to be single-threaded; therefore there is no concurrency that leads to
the generation of big state spaces.

The data and results of our analysis are communicated to the development teams together
with the metric extraction tool to facilitate repeating the experiments. The teams appreciated the
work since it helped them uncover hidden complex and big models although controlled empirical
validation of the metrics are planned for future. A team of one of the projects planned refactoring
tasks to gradually improve the quality of complex models. For newly started projects, developers
frequently check the quality of their models to address any issue early during the modeling phase
and before final delivery of the models.

Figure 9: Representing a stateless machine as a flower-shape (CC) or a mouse ear (ACC)

One observation during the data analysis is that not all models with high CC are really complex
to understand. We discuss this observation by comparing CC and ACC of an example specification
and discuss how the ACC metrics provided more insight on complexity. Consider Figure 9. At
the left of the figure a stateless machine accepts N events. If we set N to 31 (meaning that 31
different events are accepted by the machine) then CC = 31 while ACC = 1. Therefore, from CC
perspective the state machines is considered to be complex since it exceeded the complexity limit
we set before as a guideline.

Figure 10: Complexity of interface models of components sorted by ACC

In fact, all models that exhibit a flower-shape behavior are not very complex but they may

13

be rather big because the interface is verbose with many events. These machines are relatively
simple to understand since they just consume input events in a single state. This type of models
exhibit a relatively very low ACC metric. Correlating CC and ACC can help developers detecting
interfaces that include many different events that have actually the same behavior. In hindsight, it
indicates to developers the need to split the interface early and categorize the events into smaller
models.

Figure 10 depicts the CC and ACC of interface models of a number of components in one
project. Comp08 in the figure gives an example of a flower-shaped interface model with high CC
and low ACC. By reviewing the contents of the model we realized that the interface contains many
events that should be categorized and split into smaller interface models. Notable are Comp05
and Comp06 which exhibit similar metrics. After reviewing the models we found that they are
exact copies (they model 2 physical sensors of the same type with different ids). An action was
taken to combine the two models in one and parametrize the ids of the sensors.

We observed that Halstead T and E metrics are very controversial. We found that these metrics
provide good estimates for models that are within the recommended size limit of 8000. For some
models that exceed this limit the metrics are not very accurate. Empirical experiments are needed
to adapt the formula for this type of models.

7 Conclusions and future work

As industry is rapidly migrating towards model-based development, it is becoming urgent to
establish means to measure the quality of models since they form the main software artifact in
the modeling paradigm. In this article we proposed a number of metrics to measure the quality
of ASD models which are state machines specified in a tabular format.

An apparent limitation of our work is that we only considered the structural complexity of
models. The added complexity of introducing guards in the specification is not considered. In
fact, guards can have a similar effect in complexity as introducing states. For some developers,
specifications with guards are relatively more complex to understand than specifications without
guards. Future empirical evaluation is needed to validate this observation.

The metrics and the limits proposed in this article are constructed based on consensus and
alignment with the majority of ASD designers through a number of meetings and interviews. The
designers applied the metrics and the limits to their own developed models. As a future work we
are planning to validate the metrics and the limits by executing controlled empirical experiments
with a set of models selected from different projects.

For further validation we want to answer a number of questions like: is it always the case
that any model big in size is complex (and vice versa)? Which metric contributes more to the
number of bugs in the field? Size or complexity? How is McCabe’s CC metric correlated to
Halstead’s difficulty metric? Shall we pay more attention to one of them or both? How can we
re-calibrate the expected number of bugs of Halstead given that models are formally verified?
Another interesting direction is to correlate these metrics to software quality attributes such as
extensibility, scalability, testability and verifiability.

Another future direction is to detect similarities in the models caused by duplicating guards
or responses events in the actions list. As highlighted previously in the paper, we accidentally
detected clones between models by observing the plots of complexity. In the future we are in-
vestigating other systematic means to detect clones between models (part of a model is included
in another model). Furthermore, modularity metrics will be introduced to indicate the degree of
coupling and cohesion among the models.

Finally, the results of this work reveal the importance and need for metrics at the model level.

14

Based on the metric feedback, and subsequent review of the flagged models, interesting patterns
and opportunities for model improvement were identified. Moreover, the results reveal that more
work is needed to extend the set of metrics making them also less sensitive or biased for certain
patterns and aspects.

Acknowledgment
We would like to thank Sven Weber for his constructive and valuable comments to the article.

References

[1] J.R. Abrial. The B tool (Abstract). Springer Berlin Heidelberg, Berlin, Heidelberg, 1988.

[2] ASML homepage. http://www.asml.com. (Accessed 2017).

[3] F. Badeau and A. Amelot. Using B as a High Level Programming Language in an Industrial
Project: Roissy VAL, p 334–354. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[4] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A Successful Application of B
in a Large Project, p 369–387. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[5] E. Börger, P. Päppinghaus, and J. Schmid. Report on a practical application of asms in soft-
ware design. In Abstract State Machines, Theory and Applications, International Workshop,
ASM 2000, Monte Verit à, Switzerland, March 19-24, 2000, Proceedings, p 361–366, 2000.

[6] J.L. Boulanger, F.-X. Fornari, J.-L. Camus, and B. Dion. SCADE: Language and Applications.
Wiley-IEEE Press, 1st edition, 2015.

[7] G.H. Broadfoot and P.J. Broadfoot. Academia and industry meet: some experiences of formal
methods in practice. In Tenth Asia-Pacific Software Engineering Conference, 2003., p 49–58,
Dec 2003.

[8] J.M. Carter and J.H. Poore. Sequence-based specification of feedback control systems in
simulink®. In Proceedings of the 2007 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ’07, pages 332–345, Riverton, NJ, USA, 2007. IBM Corp.

[9] CodeSonar homepage. http://www.grammatech.com. (Accessed 2017).

[10] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate software system
maintainability. Computer, 27(8):44– 49, Aug. 1994.

[11] Formal Systems (Europe) Ltd. FDR2 model checker, 2011. http://www.fsel.com/

[12] J.S. Fitzgerald, P. G. Larsen, and S. Sahara. Vdmtools: advances in support for formal
modeling in VDM. SIGPLAN Notices, 43(2):3–11, 2008.

[13] M. Fowler and K. Beck. Refactoring: Improving the Design of Existing Code. Component
software series. Addison-Wesley, 1999.

[14] J.F. Groote and M. R. Mousavi. Modeling and Analysis of Communicating Systems. The
MIT Press, 2014.

[15] L. Guo, A.S. Vincentelli, and A. Pinto. A complexity metric for concurrent finite state
machine based embedded software. In 2013 8th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 189–195, June 2013.

15

[16] M. Hall, P. McMinn, and N. Walkinshaw. Superstate identification for state machines using
search-based clustering. In Genetic and Evolutionary Computation Conference, Proceedings,
Portland, Oregon, USA, July 7-11, 2010, pages 1381–1388, 2010.

[17] M.H. Halstead. Elements of Software Science (Operating and Programming Systems Series).
Elsevier Science Inc., New York, NY, USA, 1977.

[18] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1985.

[19] P.J. Hopcroft and G.H. Broadfoot. Combining the box structure development method and
csp for software development. Electron. Notes Theor. Comput. Sci., 128(6):127–144, May
2005.

[20] J. Jürjens and S. Wagner. Component-Based Development of Dependable Systems with UML,
pages 320–344. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[21] T.J. McCabe. A complexity measure. IEEE Trans. Softw. Eng., 2(4):308–320, July 1976.

[22] H. D. Mills. Stepwise refinement and verification in box-structured systems. Computer,
21(6):23–36, June 1988.

[23] A. Osaiweran. Formal development of control software in the medical systems domain. Eind-
hoven : Technische Universiteit Eindhoven, 2012.

[24] A. Osaiweran, M. Schuts, J. Hooman, J.F. Groote, and B. van Rijnsoever. Evaluating the
effect of a lightweight formal technique in industry. International Journal on Software Tools
for Technology Transfer, 18(1):93–108, 2016.

[25] A. Osaiweran, M. Schuts, J. Hooman, and J. Wesselius. Incorporating formal techniques into
industrial practice: An experience report. Electron. Notes Theor. Comput. Sci., 295:49–63,
May 2013.

[26] SourceMonitor homepage. http://www.campwoodsw.com/sourcemonitor.html. (Accessed
2017).

[27] Tiobe homepage. http://www.tiobe.com. (Accessed 2017).

[28] VerifySoft homepage. http://www.asd.verum.com. (Accessed 2017).

[29] Verum homepage. http://www.verifysoft.com. (Accessed 2017).

[30] W.M. Zage and D.M. Zage. Evaluating design metrics on large-scale software. IEEE Softw.,
10(4):75–81, July 1993.

[31] W.M. Zage, D.M. Zage, M. Bhargava, and D.J. Gaumer. Design and code metrics through
a diana-based tool. In Proceedings of the 11th Ada-Europe International Conference on Ada:
Moving Towards 2000, pages 60–71, London, UK, UK, 1992. Springer-Verlag.

16

 Science Reports Department of Mathematics and Computer Science
 Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2012):

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
 the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
 J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
 Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
 Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system

12/07 Dirk Fahland and Robert Prüfer Data and Abstraction for Scenario-Based Modeling with Petri Nets

12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for
 Model-Driven Development

12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems
 R.J. Bril, J.J. Lukkien and T. Nolte - extended version –

12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates
 Johan J. Lukkien and data compression

12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins
 Mark van den Brand

12/12 Jeroen J.A. Keiren and Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2
 Martijn D. Klabbers

12/13 Ammar Osaiweran, Jan Friso Groote, Evaluating the Effect of Formal Techniques in Industry
 Mathijs Schuts, Jozef Hooman
 and Bart van Rijnsoever

12/14 Ammar Osaiweran, Mathijs Schuts, Incorporating Formal Techniques into Industrial Practice
 and Jozef Hooman

13/01 S. Cranen, M.W. Gazda, J.W. Wesselink Abstraction in Parameterised Boolean Equation Systems
 and T.A.C. Willemse

13/02 Neda Noroozi, Mohammad Reza Mousavi Decomposability in Formal Conformance Testing
 and Tim A.C. Willemse
13/03 D. Bera, K.M. van Hee and N. Sidorova Discrete Timed Petri nets

13/04 A. Kota Gopalakrishna, T. Ozcelebi, Relevance as a Metric for Evaluating Machine Learning Algorithms
 A. Liotta and J.J. Lukkien

13/05 T. Ozcelebi, A. Weffers-Albu and Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures
 J.J. Lukkien (WAmIi)

13/06 Lotfi ben Othmane, Pelin Angin, Extending the Agile Development Process to Develop Acceptably
 Harold Weffers and Bharat Bhargava Secure Software

13/07 R.H. Mak Resource-aware Life Cycle Models for Service-oriented Applications
 managed by a Component Framework

13/08 Mark van den Brand and Jan Friso Groote Software Engineering: Redundancy is Key

13/09 P.J.L. Cuijpers Prefix Orders as a General Model of Dynamics

mailto:wsinsan@tue.nl

14/01 Jan Friso Groote, Remco van der Hofstad On the Random Structure of Behavioural Transition Systems
 and Matthias Raffelsieper

14/02 Maurice H. ter Beek and Erik P. de Vink Using mCRL2 for the analysis of software product lines

14/03 Frank Peeters, Ion Barosan, Tao Yue A Modeling Environment Supporting the Co-evolution of
 and Alexander Serebrenik User Requirements and Design

14/04 Jan Friso Groote and Hans Zantema A probabilistic analysis of the Game of the Goose

14/05 Hrishikesh Salunkhe, Orlando Moreira Buffer Allocation for Real-Time Streaming on a
 and Kees van Berkel Multi-Processor without Back-Pressure

14/06 D. Bera, K.M. van Hee and Relationship between Simulink and Petri nets
 H. Nijmeijer

14/07 Reinder J. Bril and Jinkyu Lee CRTS 2014 - Proceedings of the 7th International Workshop
 on Compositional Theory and Technology for Real-Time Embedded Systems

14/08 Fatih Turkmen, Jerry den Hartog, Analysis of XACML Policies with SMT
 Silvio Ranise and Nicola Zannone

14/09 Ana-Maria Şutîi, Tom Verhoeff Ontologies in domain specific languages – A systematic literature review
 and M.G.J. van den Brand

14/10 M. Stolikj, T.M.M. Meyfroyt, Improving the Performance of Trickle-Based Data Dissemination in
 P.J.L. Cuijpers and J.J. Lukkien Low-Power Networks

15/01 Önder Babur, Tom Verhoeff and Multiphysics and Multiscale Software Frameworks: An Annotated Bibliography
 Mark van den Brand

15/02 Various Proceedings of the First International Workshop on Investigating Dataflow
 In Embedded computing Architectures (IDEA 2015)

15/03 Hrishikesh Salunkhe, Alok Lele, Buffer Allocation for Realtime Streaming Applications Running on a
 Orlando Moreira and Kees van Berkel Multi-processor without Back-pressure

15/04 J.G.M. Mengerink, R.R.H. Schiffelers, Evolution Specification Evaluation in Industrial MDSE Ecosystems
 A. Serebrenik, M.G.J. van den Brand

15/05 Sarmen Keshishzadeh and Exact Real Arithmetic with Pertubation Analysis and Proof of Correctness
 Jan Friso Groote

15/06 Jan Friso Groote and Anton Wijs An O(m log n) Algorithm for Stuttering Equivalence and Branching Bisimulation

17/01 Ammar Osaiweran, Jelena Marincic Assessing the quality of tabular state machines through metrics
 Jan Friso Groote

	TITEL.PG17-01
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 17-01

	Blanco
	techrep
	Blanco
	PUBL.LS4csr 2012 tm

