

Numerically reliable identification of complex systems

Citation for published version (APA): Voorhoeve, R. J., Oomen, T. A. E., & Steinbuch, M. (2014). Numerically reliable identification of complex systems. In *33rd Benelux Meeting on Systems and Control, 25-27 March 2014, Heijen, The Netherlands* (pp. 120)

Document status and date: Published: 01/01/2014

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Numerically reliable identification of complex systems

Robbert Voorhoeve, Tom Oomen, Maarten Steinbuch

Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology group, PO Box 513, 5600MB Eindhoven, The Netherlands, e-mail: r.j.voorhoeve@tue.nl

1 Introduction

Parametric identification of complex systems in the frequency domain, typically requires a model to be fitted over a wide range of frequencies with large variations in amplitude. This imposes challenges with respect to numerical reliability of the identification methods. These issues are evidenced by the multitude of methods found in literature that aim to improve this numerical stability[1][2]. The aim of this work is to compare these different methods and to establish new connections. This leads to two new identification methods. These new methods and the considered methods from literature are compared using simulated and experimental data.

2 Methods

In this work two aspects are considered. First, the convergence properties of the underlying identification algorithms are compared. Second, the numerical properties of the different implementations are studied. The considered identification algorithms are the Sanathanan-Koerner algorithm (SK) [3] and the recently developed Instrumental Variable (IV) algorithm [4]. For both these algorithms various implementations are considered, which utilise different basis functions to describe the parametric model. The considered methods are listed below; new methods are marked with *.

- Frequency localising basis functions (FLBF's) using pole relocation (similar to Vector Fitting)* (SK FLBF);
- Vector Fitting as proposed by Gustavsen [5] (SK VF);
- Data dependent orthonormal polynomials [1] (SK OP);
- Monomial polynomial basis (SK Mon);
- IV FLBF as proposed by Gilson [2] (IV FLBF);
- Vector Fitting extended to IV^{*} (IV VF);
- Data dependent bi-orthonormal polynomials [1] (IV BP).

3 Results

A set of sixteenth order models, generated randomly as the sum of eight second order resonators, is used to analyse the numerical conditioning of the considered methods.

Figure 1: Average numerical conditioning properties for the considered methods on simulated data.

Figure 1 shows the numerical conditioning issues that are present when the choice of basis functions is not appropriate for the given problem. The monomial polynomial basis leads to a very ill conditioned problem ($\kappa > 10^{30}$) for the SK algorithm, which in general has better conditioning than the equivalent IV problem. The data dependent polynomial bases lead to optimal conditioning for both identification algorithms, further validating the theoretical results in [1].

Figure 2: Bode diagram of AVIS (Active Vibration Isolation System) FRF measurements and resulting parametric fits.

In Figure 2 it can be seen that the resulting fits are accurate up to 200Hz for the AVIS data. The IV methods lead to a slightly lower value of the cost function (weighted 2-norm of the fitting error) than the SK methods. This result is consistent with theory.

4 Ongoing research

A topic of ongoing research is the efficient implementation of the data dependent (bi-)orthonormal bases for multivariable identification. Also the viability of an IV or SK implementation which utilises an orthonormal rational basis in combination with the pole relocation technique is being investigated further.

References

[1] van Herpen, R., Oomen, T. and Bosgra, O. (2012). Bi-orthonormal basis functions for improved frequency-domain system identification. In *Proc. of the 51st IEEE Conference on Decision and Control*, 3451-3456.

[2] Gilson, M., Welsh J.S. and Garnier, H. (2013). Frequency-domain instrumental variable based method for wide band system identification. In *Proc. of the* 2013 American Control Conference, 1663-1668.

[3] Sanathanan, C.K. and Koerner, J. (1963) Transfer function synthesis as a ratio of two complex polynomials. *IEEE Trans. on Automatic Control*, 8(1), 56-58.

[4] Blom, R. and van den Hof, P. (2010) Multivariable frequency domain identification using iv-based linear regression. In *Proc. of the 49th IEEE Conference on Decision and Control*, 1148-1153.

[5] Gustavsen, B. and Semlyen, A. (1999) Rational approximation of frequency domain responses by vector fitting. *IEEE Trans. on Power Delivery*, 14(3), 1052-1061.

Robbert van Herpen is gratefully acknowledged for his contributions. The authors also acknowledge the TU/e Impuls program and ASML research for their support.