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The list in the table below includes the main notation of the thesis for quick reference. 
Other symbols are defined throughout the text. 

a,b,c,d 
h 

k 

I 
m 

Enom 

P(k+i lk) 

ptas(h) 

~(h) 
q 

SoE(k) 

IS0 (k)l 

!lE(l) 

0(h) 

Jr(h) 

Nomendature 

Indices for network conneetion points in the investigated system (See figure 1) 
Index for the day-ahead market periods, h = 1, ... ,24 

Discrete step for control periods, i = I, ... , n 

Index for control periods, t = 1, ... , 1440 

Current discrete time control period 
Index for settiement periods, I= 1, ... ,96 

Discrete step for settiement periods, m = 1, ... ,48 

Intra-hour {power deviation) schedule (W) at network point (b) 

Day-ahead (energy) schedule (Wh) at network point (a) 

Battery nominal capacity (Wh) 
Predicted power trajectory (W) at time instant k 

Day-ahead {power) schedule (W) at network point (a) 

Day-ahead (power) schedule (W) at network point (c) 

Current settiement period 
State of Energy (%) at time instant k 

Apparent power (VA) at network point (a) and at control period k 

Energy imbalance (Wh) 

Efficiency factor during the charging process (-) 

Efficiency factor during the discharging process (-) 

Day-ahead cost function (C) 
Day-ahead market clearing price (C/Wh) 
Time intervals (s) 
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Chapter 1 Introduetion 

1.1. Energy and the environment 

In the advent of the 21st century elimate change appears to be one of its great 
challenges. Demand for energy and associated services, to meet social and economie 
development and improve human welfare and health, is continuously increasing. All 
societies require energy servicestomeet their basic human needs and toserve productive 
processes. Since approximately 1850, global use of fossil fuels (coal, oil and gas) bas 
increased to dominate energy supply, leading toa rapid growth in carbon dioxide (C02) 
emissions [1]. 

It is reported that fossil fuels provided 81.2% of the total primary energy in 2008, while 
the combustion of fossil fuels accounted for 56.6% of all anthropogenic greenhouse gas 
(GHG) emissions (C02 equivalent) [2]. GHG emissions associated with the provision of 
energy services are a major cause of elimate change. Most of the observed increase in 
global average temperature since the mid-2oth century is very likely due to the observed 
increase in anthropogenic greenhouse gas concentrations [3]. The ra te of growing of the 
C02 concentrations are a major concern, while the warming trend bas increased 
significantly over the last so years. 

Furthermore, the exploitation of the reserves of fossil-based resources is currently 
occurring at a high rate. As far as crude oil is concerned, the maximum point of 
extraction i.e. the so-called peak oil bas already been exceeded and the security of supply 
appears to be a serious concern1

• At the sametime the capacity of the earth's atmosphere 
to absorb greenhouse gases is limited, and any excess will stretch the impacts of elimate 
change beyond manageable limits [4]. 

The elimate change may have adverse impacts on water resources, ecosystems, food 
security, human health and coastal settlements with potentially irreversible abrupt 
changes in the elimate system. 

In order to maintain both a sustainable economy that is capable of providing essential 
goods and services to the citizens of both developed and developing countries, and a 
supportive global elimate system, a major shift in how energy is produced and utilized is 
required [3],[5]. Towards that direction, renewable energy technologies have emerged as 
important options to mitigate supply problems and also simultaneously aid economie 
development. 

Renewable energy (RE) (wind power, solar power, hydro energy, energy from the 
ocean, geothermal, biomass and biofuels) are alternatives to fossil fuels and helpreduce 
greenhouse gas emissions, diversify energy supplies and reduce dependenee on 
unreliable and volatile fossil fuel markets, especially oil and gas. The advantages 
associated with renewable energy technologies are numerous due to their replenishing 
nature, the emission of significantly lower amounts of C02 and their supportive eh araeter 
towards energy self-sufficiency of remote and developing regions. Moreover, such 
technologies can be applied for the development of flexible applications where power can 
be generated according to the needs of the on-site population, eliminating the need for 
huge power plants running on fossil fuel. 

1 htt;p: //www.worldenergyoutlook.org/media/weowebsitel2oog/weo2009 es english.pdf 
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1.2. Integration ofrenewable energy sourees 

Renewable energy refers to energy resources which are continually replenisbed such as 
sunlight, wind, rain, tides, waves and geothermal heat. Renewable energy sourees reflect 
the time-varying nature of the energy flows in the natural environment, thus their power 
generation characteristics are very different in general from other generation based on 
stockpil es of fuel ( with the exception of biomass-fuelled plants). 

In 2008, RE contributed approximately 19% of global electricity generation. The 
contribution of RE to primary energy supply varies substantially by country and region. 
Future scenarios of low greenhouse gas systems consider RE both in standalone modes 
but also in combination with nuclear, and coal and natural gas with carbon capture and 
storage. 

While the RE share in global energy use is still relatively small, deployment of 
associated technologies bas been increasing rapidly in recent years. Out of the 
approximately 300 GW of new electricity generation capacity added globally over the 
two-year period from 2008 to 2009, 140 GW came from RE technologies. Collectively, 
developing countries hosted 53% of global RE power generation capacity in 2009 [6]. 
Under most conditions, increasing the share of RE in the energy mix will require policies 
to stimulate changes in the energy system. Government policy, the declining cost ofmany 
RE technologies, changes in the prices of fossil fuels and other factors have supported the 
continuing increase in the use of RE. These developments suggest the possibility that RE 
could play a much more prominent role in both developed and developing countries over 
the coming decades [ 6]. 

However, developing renewable resources appear to have some characteristics which 
raise a new set of technologkal challenges not previously faced within established power 
systems. 

Some of the characteristics of distributed energy resources and renewable energy 
sourees is their variability, unpredictability and intermittency. Variabie energy sourees 
produce fluctuating and (partly) unpredictable amounts of electricity over time. 
Intermittency inherently affects solar and wind energy, as the power generation from 
such sourees depends on the amount of solar irradiation or the wind speed in a given 
location. Apart from that, the unpredictability associated with renewable generation, 
primarily caused by unanticipated weather conditions, such as clouds or sudden shifts in 
wind velocity is a major challenge for the integration of renewable energy resources in 
the power system. 

Furthermore, the variability of renewable energy is easily accommodated when 
demand and renewable supply are matched, e.g., both rising and falling together. 
However when demand and renewable supply move in opposite directions, the cost of 
accommodation can rise significantly. 

As renewable energy penetration grows, the increasing mismatch between variation of 
renewable energy resources and electricity demand makes it necessary to capture 
electricity generated by wind, solar and other renewable energy generation for later use. 
Energy starage is a possible teehoical salution to help smooth fluctuations in generation 
inherent in RE such as wind or solar energy. 
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1.3. Energy storage 

Energy storage technologies can be used to store electricity, which is produced at times 
of low demand and low generation cost, and from intermiltent energy sourees such as 
wind and solar. Stored energy can be released at times of high demand and high 
generation cost or when there is limited base generation capacity available. 

Reliable and affordable energy storage is a prerequisite for using renewable energy in 
remote locations, for the inlegration into the power system and the development of a 
decentralised energy supply system in the future. Furthermore, these concepts 
straightforwardly extend to the use of traditional fossil fuel-based generation. Energy 
storage therefore has a pivot role to play in the effort to combine a future sustainable 
energy supply with the standard of technica! services and products that were accustomed 
to. In this way, energy storage is the most promising technology currently available to 
reduce fuel consumption, and supports the new paradigm of electrical microgrids 
operation by permitting distributed generation to seamlessly operate as a dispatchable 
unit and autonomously isolated from the main power system [7]. 

Energy storage solutions can provide a considerable option for the inlegration of 
renewable energy sourees and the establishment of efficient generation and delivery of 
electrical power. For almost half century there have been dedicated research and 
development efforts to introduce batteries to the electric utility industry, in a load 
levelling mode, for the large scale inlegration of renewable energy sources. Early studies 
indicated the unique role that integrated battery and photovoltaic (PV) systems can play 
in demand side management (DSM) activities, and that those developments will most 
likely impact the deregulation of electrical power systems [8], [9], [10]. 

DSM refers to the modification of the consumer's energy demand through various 
methods (i.e. financial incentives). It addresses a range of functions including program 
planning, evaluation, implementation and monitoring [n]. Demand response (DR) is a 
term used in economie theory to identify the short-term relationship between price and 
quantity. Currently the term is used in a broad sense, as a part of DSM, and is attributed 
to a variety of control signals such as prices, resources availability and network security 
[12]. 

Energy storage can be implemenled in large-scale (e.g. pump-hydro etc.) but also in a 
distributed fashion. A distributed battery system along with distributed generators (DGs) 
and flexible loads is a resource that falls under the general term of DSM. 

A battery energy storage system (BESS) is defined as [7]: "An energy storage system 
using shunt connected, voltage soureed converters capable of rapidly adjusting the 
amount of energy that is supplied to or drawn from the ac system. The reactive power 
generating or absorbing capability of the voltage soureed converter can be utilised to 
generate a capacitive or inductive component of output current independent of the flow 
of real power and within the limits of the converter rating". 

In the technicalliterature, numerous potential applications have been defined for BESS 
in planning and operation of electrical power systems. The main drivers for the 
developments of energy storage are market opportunities through energy arbitrage, the 
provision of ancillary services to the system, efficiency improvements of generation, 
transmission and distribution assets, inlegration of intermiltent renewable energy 
resources by firming up the service, remote area power supply and multiple 
complementary applications [7]. The latter point actually signifies that a single 
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application of energy storage is unlikely to provide economie justification, however the 
possibility of changing storage control strategies depending on the market requirements 
could allow maximisation of revenu es [7]. 

In the N etherlands, research related to the impact of BESS on electricity distribution 
systems with stochastic generation was initiated with the Bronsbergen microgrid project 
[13]. The Bronsbergen microgrid is operated by the distribution system operator (DSO) 
Alliander and consists of a distribution system connecting 210 residences, of which 108 
are equipped with PV generators (total installed capacity of 315 kWp). The research 
activities related to the Bronsbergen microgrid addressed the topics of islanded opera ti on 
(maintaining islanded mode for 24 hours, automatic isolation from and reconnection to 
MV network), black start and power quality phenomena. 

Enexis DSO developed and commissioned a BESS to enable field-testing and research 
of advanced energy storage technologies in LV distribution grids. The BESS was installed 
in the LV distribution grid for the purpose of enabling applications such as, but not 
limited to: the increase of local PV consumption, improvement of reliability and 
flexibility, reduction of losses, and maximizing the utilization of local infrastructure [14]. 
A schematic of the investigated casestudy is depicted in Fig.1.1, and consistsof an actual 
distribution system with integrated energy storage in Etten-Leur, the Netherlands. The 
implemented BESS is connected to the LV -si de of a local 400 kVA MV /LV transformer 
(0.4 I 10 kV) station operated by Enexis DSO, with an average peak-load measured at 
385 kW at the moment of installation. Approximately 240 households are connected to 
this MV /LV station from which 40 houses have locally installed PV modules (in total186 
kWp). 

u 
< 

PVsystem 

MV 

MV/LV 

---------
,/ 

I 
I 

------ --- - -1 

Battery Unit 

Measuring 
System 

Control 
System 

Figure 1.1 The system architecture mustrating the single line diagram of the physical power system network and a 
schematic of the control architecture. The solid black lines depiet the physical power network, while the dasbed lines 
represent the information and communication network. 
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1.4. Problem definition 

The BESSin Etten-Leur serves as a casestudy in this investigation. It was built in order 
to gain operational experience and to facilitate research on the impact of storage in the 
electricity grid at the distribution level [15]. 

Throughout this thesis, the economie optimisation of the BESS through the application 
of optimisation techniques is studied. The work looks at possible markets for small-scale, 
grid-connected electricity storage in a liberalised market setting. Specifically, it addresses 
the interactions of the system with the day-ahead electricity auction and the real time 
balancing market in the Netherlands. A more thorough description of these markets is 
provided in Section 2.1. 

For analysing the response of the aggregate DR system, the developed simulation 
scenario focuses on the Netherlands and covers a period of 24 hours. During the day­
ahead operational planning (a priori), the timescale corresponds to discrete time periods 
Th of 1 hour, in line with the defined day-ahead market settiement periods in the 
Netherlands. At the intra-hour planning, the timescale corresponds to discrete time 
periods of 15 minutes, in line with the defined settiement periods for imbalance energy 
verification and settiement in the Netherlands. During reai-time operation, the time 
interval for simulations and for sampling analogue measurements is set to 1 min., 
inspired by the current implementation of the BESSin Etten-Leur. 

Figure 1.2 Photo of the Smart Storage Unit (SS U), as it is installed in the field at Etten-Leur. 

The underlying business model in the developed scenario sets distinct roles among all 
system actors. The aggregator is representing all the connected entities to the LV bus, i.e., 
the residential customers, the PV installations and the BESS. The residential users and 
the photovoltaic generators are aggregated in a community way and are not participating 
separately in the markets. Moreover, throughout the whole thesis, the case study is 
considered to be small enough so that it does not influence the market clearing price 
(MCP). The interactions between the system actors during the day-ahead planning 
phase, the reai-time operations, and the verification process are further discussed in the 
following paragraphs. 
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The specifications ofthe Etten-Leur casestudy are presented in Table 1.1. 

Table 1.1 Specifications of theEtten-Leur CaseStudy [14], [16],[17]. 

Main characteristics I V alue 

THE Low VOLTAGE DISTRIBliTION GRID 

Grid Conneetion Nominal Voltage a 

Transfarmer Capacity 
Average Peak Load Measured b 

Number of Households 
Installed PV capacity 

THE BATIERY ENERGY SroRAGE SYSTEM 

Nominal Voltage 
Minimum (Discharge) Voltage 

Maximum (Charge) Voltage 
Nomina] Capacity 

Nomina] Capacity c 

Minimum Capacity c 

Maximum Discharge Power d 

Nomina] Discharge Power 
Maximum Charge Power e 

Nomina] Charge Power 
Operating temperature range 

a Line to line voltage 
bAt the moment of installation around October 2012 
cRating C/3 at 25°C 
d For thirty minutes 
c Only for a few seconds 

400 
400 
385 
240 
186 

730 
609 
812 
230 
328 
312 
400 
400 
400 
100 

-20 to +6o 

Unit 

V 
kVA 
kW 

-
kWP 

V 
V 
V 

kWh 
Ah 
Ah 
kW 
kW 
kW 
kW 
oe 

The approach is based on hierarchical decomposition of the control problem in the 
time domain, by composing a three-level optimisation problem, i.e., day-ahead, intra­
hour and real-time, where the initia! and final states of each sub-problem are chosen as 
coordination parameters. 

1.5. Scope ofwork 

The scope of this work is to define a viabie control scheme for the reai-time 
management of the residential customers, the PV system and the BESS connected to the 
LV grid operated by Enexis DSO, based on the application of economie optimisation 
techniques. 

The control scheme is responsible for the management of the aggregator in order to 
benefit by participating in the APX day-ahead and the Tennet imbalance market. 

The work examines the possibility of maximising the revennes or minimising the losses 
by changing the control strategy of the BESS subject to the market requirements. 
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1.6. Layout ofthe thesis 

The first chapter includes an introduetion presenting the existing environmental 
situation, the RE development and the inlegration challenges, as well as the problem 
definition, the scope of work and the layout of the thesis. 

In Chapter 2, a description of the system architecture is provided, including an 
overview of the electricity markets in the Netherlands and a description of the system 
actors. 

Chapter 3 describes the day-ahead problem. The day-ahead operational planning is 
presented first, foliowed by the results of the developed optimisation approach. An 
economie analysis for several years is provided along with discussion for the relation of 
the annual revenues of the system under the specified application and the bistorical 
volatility of the day-ahead market in the Netherlands. 

Chapter 4 addresses the interactions with the balancing energy market in the 
Netherlands and the intra-hour scheduling approach. The intra-hour scheduling 
approach is explained and the results of the optimisation problem are presented. Several 
cases studies are examined including prediction errors with respect to the forecasts of the 
power profile and market prices. 

Chapter 5 describes the reai-time problem (i.e. reai-time operations under uncertainty 
and fast changing conditions) and includes the reai-time planning and the results of the 
optimisation algorithm for the same cases that were studied in Chapter 4· 

In Chapter 6, the conclusions of this study are drawn based on analysis of the overall 
results (i.e. for all the investigated simulation scenarios of the day-ahead, intra-hour and 
reai-time problems). The report ends with recommendations for future research. 
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Chapter 2 System Architecture 

In this chapter, the architecture of the system under investigation is described. First, 
an overview of electricity markets is provided, defining those procedures and parameters 
that are relevant for the problem formulation (Section 2.1). In the second part of this 
chapter (Section 2.2) the physical layer of the investigated system is described. The 
physical system can be distinguished between the physical power system (i.e. the 
electricity distribution system including the BESS the residential customers and the PV 
installations) and the physical ICT infrastructure (i.e. the measuring equipment and 
communication links). The third part (Section 2.3) addresses the basic logic bebind the 
control approach, whereas the modelling of the system is presented at the last section of 
this chapter (Section 2-4) 

2.1. Electricity Markets in the Netherlands 

2.1.1. Overview 

The Dutch electricity market has been fully open to competition since July 2004 [18] 
and from that date, small consumers were free to choose their own electricity supplier. In 
the Netherlands, market parties can trade electrical energy, and these transactions are 
executed by establishing bilateral contractual purebase and sale relationships within 
power exchanges. Currently, there are several markets for trading energy in the Dutch 
system; forward (or bilateral) market, day-ahead and intraday spot markets (also called 
wholesale markets), and a single buyer energy imbalance market (which is essentially an 
ancillary services market). Apart from these markets, there is the imbalance settiement 
mechanism which is called the day after the operational day. 

The different markets that exist for trading electricity, can be categorised as: 

• Forward Markets (based on bilateral trade and anonymous trade through a power 
exchange) 

• Spot Markets (Day ahead and intra-day auction markets, also called wholesale 
mar kets) 

• Ancillary Services Markets (Congestion avoidance, voltage regulation, and energy 
reserves for power balancing etc.) 

In this study, the focus is on the APX day-ahead auction and the balancing energy 
market operated by Tennet, the Dutch Transmission System Operator (TSO), which are 
further described in the following sections [19]. 
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2.1.2. The APX day-ahead market 

Spot Markets refer mainly to the central exchange of electrical energy for the preceding 
day of the day that the actual production and physical delivery takes place. 

At the day-ahead auction, trading takes place on one day for the delivery of electricity 
on the following day. Market memhers submit their offers and orders electronically, after 
which supply and demand schedules are compared and the market price is calculated for 
each hour of the following day. 

The development of demand and supply curves on the APX spot market is completely 
determined by the market parties themselves. Players are production and distribution 
companies, large consumers, industrial end-users, brokers and traders. All of these can 
he active as buyers or suppliers. The bids from buyers and sellers must he made known to 
APX one day in advance. After the ciosure of the day-ahead bidding, APX provides 
matching and sends the result to the bidders [20]. 

The hourly instruments that the memhers can trade, are traded for each hour of the 
delivery day. Individual hourly instruments are traded in Euro/MWh with a precision of 
two decimals. 

APX is the central counterparty to all trades; all contracts are traded anonymously, 
then cleared and settled on behalf of the members. Contracts on the exchange are fully 
collateralised, as all memhers are required to lodge collateral. All trades are notified to 
the Dutch Power grid operator TenneT BV by double-sided nominations, to he sent by 
APX and the trading member. 

Fig. 2.1 depiets the timing of actionsof the several markets, and it can heseen that the 
day-ahead bidding takes place on the previous day (D-1 in Fig.2.1.) and doses at the Gate 
Ciosure Time (GCT), at 12:00 pm. 

Ancillary servic:es markets 

Forward and future 
matets 

Day (D-n) 

w 

Day-abead market 
I 

eer 

Day (D-1) 

lntra-day and 
real-tim5 markets 

w u 

Day (D) 

Figure 2.1 Timing of electricity markets in the Netherlands. 
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2.1.3. Imbalance Settiement System 

In the Netherlands, TenneT, the national TSO, is the authorised entity to procure 
balancing services for maintaining the system balance. TenneT transfers part of this 
responsibility to market participants by implementing a system of programme 
responsibility. Market participants are acknowledged as Programme Responsible Parties 
(PRP) with the responsibility to keep their portfolio balanced for each settiement period. 
In the Netherlands, the settiement period is termed Programme Time Unit (PTU) and is 
defined in a 15 minutes basis. A PRP uses information from the imbalance settiement 
system to either act and internally solve its own imbalance, or to accept the adjustment 
imbalance by the TSO, or to contribute to system balancing without being actively 
selected via the bidding ladder (i.e. having an internal imbalance in the opposite 
direction of the system imbalance) [21]. This last form of participation to restore the 
system balance is also known as passive contribution and is rewarded in the Dutch 
balancing framework [22]. However, for the provision of operating reserve capacity by 
active contribution, TenneT acknowledges market entities that place bids in the market 
for operating reserves as Regulating and Reserve Power Suppliers (RRPS), andjor 
Emergency Power Suppliers (EPS) [23]. 

2.1.3.1. Active contribution 

Following the clearing of the day-ahead mar ket, each PRP submits its positions to the 
TSO in termsof energy schedules (e-programmes), one for each PTU of the day-ahead. 
These e-programmes include energy volumes traded and settled on the wholesale 
(forward, future and spot) markets. The TSO receives the e-programmes of each PRP and 
performs consistency checks. Furthermore, before approval, the TSO performs a network 
security analysis. Then, during operation, each PRP is subjected to adjustment imbalance 
(difference between actually allocated values and submitted positions in e-programmes). 
The TSO monitors the system imbalance on reai-time and if needed calls bids for 
operating reserves to restore the system balance. The TSO might also contract on 
befarehand balancing capacity to ensure system security. Specifically, TenneT contracts a 
part of the operating reserve capacity with suppliers, from which the suppliers will have 
the obligation to offer this minimum capacity on the market for operating reserves. 
Finally, the financial imbalance settiement between the TSO and market parties occurs 
ex-post (i.e. after the operational day) [21]. 

2.1.3.2. Passive contribution 

In the Dutch imbalance management system control area imbalance positions and 
imbalance price are made public in near real-time. Therefore all market participants have 
the opportunity to voluntarily contribute to the TSO efforts in maintaining the system 
balance. This approach is called 'passive contribution' ('passief meeregelen' in Dutch) 
and is believed to result in a substantial reduction in the required control energy [24]. 
TenneT, the Dutch TSO, publishes the Dutch system balance position and balance energy 
price near real-time. This information is used by market participants to actively reduce 
the system imbalance, utilizing non-contracted reserve power. The Dutch balancing 
mechanism seems likely to reveal higher-level macro-economie efficiencies and the 
passive contribution of decentralized market parties seems to create more competition 
withoutjeopardizing the system's stability [24]. 
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TenneT publishes the table entided 'Bid price ladder balancing' for each date and for 
each setdement period, which shows price information for bids of regulating and reserve 
power capacity offered toTenneT for real-time balancing[24]. 

The bid price ladder balancing can be used to a limited extent to estimate real-time 
settiement prices in combination with the 'Balance Delta' table. TenneT publishes the 
'Balance delta' table which shows the quantities of regulating and reserve capacities (for 
each minute ofthe most recent halfhour) that were requested for its operations [25]. 

An example of the bidding ladder for the imbalance settiement system is illustrated in 
Fig.2.1. The TSO monitors on real-time the system imbalance and selects bids for the 
imbalance settiement either for positive (M+) or negative (aJJ_) reserves. In Fig.2.1, Jr+ is 
the settled price for up-regulating balancing capacity M+, Jr_ is the price for down­
regulating capacity M -, and Jrmid is the price which corresponds to the mid price, i.e., the 
midpoint between the lowest bid price at the upward and the highest bid price at the 
downward regulating side. In the case of real-time imbalance, the TSO will callas many 
bids as necessary to restore the system balance, and finally all the service providers are 
paid the same price which is equal to the most expensive bid called. 

Power (MW) 

Figure 2.2 Schematic illustration ofthe bid price ladder for the imbalance settiement system in the Netherlands. 

In Table 2.2, the price interdependencies for Program Responsible Parties (PRP) in the 
Dutch imbalance setdement system are presented. A PRP with a surplus (or shortage) 
faces an imbalance price " surpl ( or " short ) which is dependent on the system state. Let us 

denote the predicted system state for the Zth setdement period as sprd (I) = { 0, 1, -1, 2} , where 

each value corresponds respectively to a balanced state 'o', i.e., neither upward nor 
downward regulation, exclusively upward regulation '+1', exclusively downward 
regulation '-1', and both upward and downward regulation '2' [22]. The incentive 
component Jric is the component of the imbalance price that is intended to encourage 
market parties to actually submit bids of regulating and reserve capacity used by TenneT 
to maintain and restore the balance, and as an incentive to minimise the imbalance to be 
settled. An analysis of the data for the year 2012, shows that the incentive component 
was non-zeroforabout 2.73% ofthe total time [26]. 
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Table 2.1 Price dependendes for Program Responsible Parties in the Dutch imbalance settiement system [23]. 

System Time Regulation PRP Surplus (7rsurpl 

State (%) d Actions for LlE>o) 
0 06.99 None Jlmici-Jlic 

+1 36.27 Upwards a Jf+-Jlic 

(short) 
-1 45.04 Downwardsb Jf--mc 

OonK) 
2 n.so Bidirectional Jf--Jlic 

+1, emc 00.17 Upwardsa max(Jr+, Jrem) -me 

(short) 
2,emc 00.03 Bidirectional Jf--Jlic 

a If JC+ > o, then the TSO pays the PRP, else the PRP pays the TSO. 
b If JC_ > o, then the PRP pays the TSO, else the TSO pays the PRP. 
c The acronym 'em' indicates that 'emergency power' was called. 
d For the reference year 2012 [26]. 

PRP Shortage 
(7rshort for LlE<O) 

Jlmid+mc 

7f++7fic 

Jf-+Jlic 

Jf++Jric 

max(Jr+, Jfem) +me 

max(Jr+, Jfem) +me 

It has to be noted that prices Jr+ and Jr_ can be either positive or negative which 
indicates the flow of payments from a PRP to the TSO and vice versa. For example, for 
negative volumes of control energy, positive price values refer to a payment from the PRP 
to the TSO, while negative values refer to a payment from the TSO to the market party. In 
the case that the system is long, during the lth settiement period, then a PRP has an 
interest to maintain an internal energy imbalance LlE(l)<o whenever Jr-+mc < o. An 
analysis of TenneT data for the year 2012 shows that while the system was long, the latter 
condition was fulfilled forabout 13.5 % of the total time [26]. 

Contrary, in the case that the system is short, during the lth settiement period, then a 
PRP has an interest to maintain an internal energy imbalance LlE(l)>o whenever Jr+-mc > 
o. An analysis of TenneT data for the year 2012 shows that while the system was short, 
the latter condition was fulfilled for 100 % of the total time. This information indicates 
that there are opportunities for the aggregator to receive additional revenues through 
passive contribution in reai-time balancing [26]. 

The imbalance settiement in the Netherlands for market parties that contribute 
through passive contribution is based on the net energy volumes of provided control 
energy per settiement period. According to the previous analysis, when the system state 
is explicitly short or long then certain market parties might try to minimise or maximise 
the net amount of energy traded per settiement period. In such a case, the provision of 
more regulating capacity than requested is simply passive contribution which is delivered 
at the party's own risk. Furthermore, such actions might jeopardize any contractual 
payments and slow down a possible increase in marginal price, thus have a negative 
economie impact for certain suppliers of operating reserves. At the same time, this can be 
beneficia} for market parties that are subjected to deviations from their e-programmes 
since it can result in reduced prices for the imbalance adjustment. Even though the 
system state will be known only ex-post, still certain market parties can try to estimate 
the balancing situation on reai-time based on the delta-signals and bistorical data, and 
thus benefit from passive balancing (e.g. up-regulation), but such a situation might lead 
to an increase in marginal price for control power in the opposite direction (e.g. down­
regulation). 
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2.2. System Design 

An electrical power system consists of different control areas interconnected through 
high voltage (HV) synchronous or asynchronous connections. In Europe, each control 
area is operated by the transmission system operator (TSO), the legal entity that 
monitors the electricity network, ensures the connections with other control areas, and 
organises the markets for operating reserves and cross-border capacity. Regional DSO 
companies conneet individual customers to the grid and provide the distribution of 
electricity. Medium voltage (MV) electrical networks (i.e., 10 - 110 kV) are connected to 
low voltage (LV) networks through MV/LV transfarmer substations, which subsequently 
feed a large number of end-users at the LV level. 

The main actars distinguished in this work are: the system operators (i.e., the 
operators of the electricity markets, and the transmission and distribution systems), the 
aggregators (legal entities that hold contracts with system users, represent them to 
markets and operators, and coordinate them in real-time), and the system users (e.g. 
producers and consumers). For the selected case study in Etten-Leur, the aggregator is 
representing all the connected entities to the LV bus, i.e., the residential customers, the 
PV installations and the BESS. In the next sections, a decentralised control structure with 
a global coordinator (i.e., the aggregator) is presented. The aggregator is the operator of a 
virtual power plant (VPP) which consists of an aggregation of distributed resources. The 
residential loads and the PV installations are considered non -controllable resources, 
while the BESS is actually the only controllable process in the considered case study. 

2.2.1. Technical Descripoon and Specifications ofthe Battery Energy 
Storage System 

The BESS consists of four main building blocks, i.e., the battery unit, the power 
conversion system, the measuring system and the control system, which are further 
described in the following paragraphs. 

2.2.1.1. The Measuring System 

In this work, since bidirectional energy flows are considered, by convention it is 
assumed that power values are positive for the energy flows from the secondary 
conductor of the MV/LV transfarmer to the BESS and the residentialloads. As can be 
seen in the single-line diagram of Fig. 1, four network points (a)-(d) are defined: points 
(a)-(c) are at the AC side of the network, whereas only rms values are considered, and 
point (d) is at the DC side. For simplicity, the AC and DC indexes are omitted from the 
equations in the following descriptions. 

The measuring instruments consist of transducer devices which are applicable for the 
measurement of voltage and current in energy distribution systems [27]. As can beseen 
in Fig. 1, transducer devices, for measuring the voltages and currents, are installed next 
to the secondary conductor ofthe MV/LV transfarmer at measuring point (a) and at the 
point of conneetion of the inverter and the battery system at measuring point (b ). In this 
arrangement it is possible to determine all relevant power flows in the investigated LV 
grid. The power at time instantkat the coupZing point (c) of the residential customers 
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and the PV system can be calculated, while neglecting network losses, by using (2.1): 

~(k) = ~(k)-ft(k) (2.1) 

The 3-phase AC apparent power ISal at network point (a) can be calculated by using 
(2.2): 

The implemented BESS is connected to the LV-side of a local 400 kVA MV/LV 
transformer (0-4 f 10 kV) station operated by Enexis DSO, with an average peak-load 
measured at 385 kW at the moment of installation. Consiclering a P-Q decoupled control 
scheme, and under the assumption that the reactive power is zero, then the capacity 
constraint related to the installed transformer can be written as follows: 

ISa(k)l ::=;; 400 kVA=> -400 kW::=;; ~(k) ::=;; 400 kW (2.3) 

2.2.1.2. The Battery Unit 

The battery unit consists of a number of lithium-ion battery modules in series and 
parallel connections. Each module contains 14 cells which are assembied in two parallel 
strings, whereas each string is composed by 7 cells in series. This contiguration results to 
a nomina! voltage potential of 24 V and capacity of 2 kWh per module [17]. The BESS 
consists of four parallel battery strings, with each string comprising 29 lithium-ion 
battery modules in series. Each battery string has a 730 V nomina! battery with a rated 
energy capacity of 57 kWh and is connected toa Battery Management Module (BMM). 
This provides electronic control of the 29 individual battery modules in charge and 
discharge and monitors their state of charge (SoC), state of health (SOH) and other 
operational data such as temperature. The four parallel battery strings are controlled by a 
Master Battery Management Module (MBMM). lts main function is to ensure that there 
is an equal SoC in all parallel strings and if unbalance is detected, or for maintenance 
purposes, it can bypass one or several strings. This is a critica! feature for Li-ion battery 
architecture that prevents undesired discharges between strings, as well as enabling 
strings at a different SoC to be connected during installation or maintenance. The 
MBMM provides the control interface with the Power Conversion System. The total 
capacity of the BESS is about 230 kWh, whereas the power charging and discharging ra te 
is 200 kW (only seconds) and 400 kW (30 min.) respectively. 
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2.2.1.3. The Power Conversion System 

The power conversion system, depicted between points (b) and (d) in the network 
diagram of Fig. 1, consists of four separate inverter units, each connected to one of the 
four battery strings. During the discharging mode, the inverters convert the DC power 
into 3-phase AC power. During the charging mode, the AC power is converted to DC. The 
BESS operates in three states depending on whether the battery is in idle, charging or 
discharging mode. A basic approach to consider the power losses of the energy flows 
during the conversion and charging or discharging processes is by incorporating an 
estimation of the efficiency of the power electronic devices for both the charging and 
discharging modes. 

where nch, and ndis are the efficiency factors of the inverters system during the charging 
and discharging modes respectively. 

The charging and discharging efficiencies of a BESS are found to depend on a range of 
parameters such as the power rate, the temperature, the SoC and the internal resistance 
[28]. Since the focus of this work is not the exact modeHing of the losses of the BESS, a 
simple representation will be used. Some preliminary analysis of the measurements from 
Enexis, show that both charging and discharging efficiencies can be assumed to be 
around 0.8. Therefore, at all the analyses in that thesis, the efficiencies are going to be 
considered constant and equal to 0.8. 

In grid-connected applications, the output of an inverter can also inject current into 
the grid according to control actions (i.e., as a current source). In a current-controlled 
inverter the voltage and frequency are defined by the bus to which the power electronic 
device is connected. 

Figure 2.3 Photo of the two inverters of the BESS at Etten Leur, seen from the side-door. 
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2.2.1.4. The Control System 

As the controller software runs on server hardware, it offers great flexibility and 
customization possibilities. By simply updating controller software, a different control 
strategy can be executed. Among other basic functionalities of the control system, the 
controller executes the overall control algorithm, that determines the inverter set points 
(these set points are sent to the inverters via a LAN connection), while there is the 
possibility to import external variables which might be necessary for executing the 
optimisation algorithm. 

2.2.1.5. Costs ofthe BESS 

The total cost of a BESS includes costs for the battery itself, the power electronics, the 
monitoring as well as engineering and instaBation costs. Table 2.2. presents the 
abovementioned costs for the BESSin Etten-Leur. 

The engineering costs are mentioned to be relatively high. This can be explained by the 
pilot character of the project. When large scale deployment is applied to such battery 
storage systems, the engineering costs are expected to be considerably lower. 

Table 2 2 Analytica! and total costs of the BESS 

Description Amount 
Batterv ~!)0.000 

Power electranies 150.000 
Ooerating svstem 2!).000 

Engineering, security testing, installation 230.000 
Commissioning Smart Storage 44.000 

Monitoring and management (entire project duration) 108.000 
Con tribution of Enexis in activities of ECN ~1.666 

Total cost 938.666 
Subsidv EOSDemo ~6!1.817 

TotalSmart Storage (cost- subsidy) 572.849 

2.2.2. The power profile 

The coupling point (c) in Fig.1.1 is the point of the network where the PV instanation 
and the households are connected. The aggregate power is denoted as ~ and refers to its 

rms value which ranges between -50 kW and 380 kW. 

In order to define the power profile at the coupling point, an analysis is made for the PV 
generation and the household's profile. The PV profiles both for summer and winter are 
presented in Fig.2-4 and Fig.2.5 and are generated based on historie data from KNMI 
[29], for the year 2012, considering the hourly solar irradiation at Etten-Leur and taking 
into account the efficiency, the installation angle and the total surface of the PV panels. 
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Figure 2.4 Average daily PV generation profile for the summer months. 
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Figure 2.5 Average daily PV generation profile for the winter months. 

The PV generation is depicted to be negative because as it was mentioned, power 
values are considered positive for energy flows from the LV busbar towards the loads and 
the PV panels. For energy flow from the panels to the MV bus, the power values are 
considered negative. 

As it is expected, there is a peak at around 12hoo, when the solar radiation is the 
highest during the day, while at the first and last hours of the day it approximately zero. 
At the peak of the summer profile, the power is around 160 kW, while at the winter the 
peak power is around 65 kW. 
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By processing the measurements from the substation and the inverters of the BESS (at 
the points (a) and (c) in Fig.2.1) it is possible to generate a profile for the total power 
profile at point (c). By extracting the PV power from the ~ then, the household average 

power profile are generated. The average household power profile is presented at Fig.2.6 
for the summer months, and at Fig.2. 7 for the winter months. 
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Figure 2.6 Average (summer) daily power consumption profile for the residential customers. 
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Figure 2.7 Average (winter) daily power consumption profile for the residential customers. 

Both profiles are as expected, with low power consumption at the beginning and at the 
end of the day and larger power values at the hours from 8 a.m. to 8 p.m. In the summer 
profile it can be noticed that there is a peak at noon hours that could be possibly 
explained by cooling dornestic devices i.e. air-conditioning systems. Similarly, at the 
winter profile there is a peak at 18-21 p.m. probably due to fact that is a time when people 
return home and there is increased activity in the households. 

23 



Lastly, the profiles consirlering the total power consumed at the coupling point (c) are 
generated, which arealso going to be used during computer simulations in this study. 
The ~ summer profile is presented at Fig.2.8 whereas the ~ winter profile is presented 
at Fig. 2.9. 
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Figure 2.8 Average (surnrner) daily power profile at network point (c). 
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Figure 2.9 Average (winter) daily profile at network point (c). 
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2.3. The Control Logic 

The goal in this work is to control the power Pb at point (b), to account for any 
deviations of the power Pc at point (c), to shape the exchanging power Pa with the MV 
grid according to (2.1). The realised power exchange Pa with the MV grid is subject to 
contractual agreements with electricity markets that occur prior to the reai-time 
operations (e.g. day-ahead). The basic logic behind the control approach is to perform an 
economie optimisation which can be formulated into three control levels (i.e., 
upperjintermediatejlower levels). 

The upper-level addresses energy trade and corresponds to discrete time periods of 1 
hour, in line with the defined settiement periods for wholesale electricity trade in the 
APX day-ahead market 

The intermediate-level addresses the interaction with reai-time markets for ancillary 
services, and specifically the balancing energy market for the provision of operating 
frequency restoration reserves for load frequency control which is organised by the Dutch 
TSO, under passive balancing. At this intermediate (intra-hour) level, the timescale 
corresponds to discrete time periods of 15 minutes, in line with the defined settiement 
periods for imbalance energy verification and settiement in the Netherlands. 

The lower-level controller receives updated predictions for the power profile at the 
coupling point (c) (See figure 1) and the state of the system, calculates the expected 
future imbalances and acts accordingly (close to real-time) on a timescale of one minute. 

The upper-level control problem is formulated in Chapter 3, whereas the intermediate­
level control is described in Chapter 4, and finally the lower-level control problem is 
presented in Chapter 5. 

All simulations are implemented in Matlab in a Lenovo IdeaPad Z580A with an Intel 
Core i5-3210M processor of 2.5 GHz with 4 GB of RAM. The optimisation problems are 
solved by the Global Optimisation Tooibox by using the fmincon function. The exact 
philosophy of the developed algorithms is provided in Appendices A and B. 
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2.4. State-spacefirst order model 

The state of energy (SoE) of a battery system at time instant k is typically expressed in 
a number that corresponds to a percentage and is defined as the ratio of the net amount 
of energy stored within the battery and the nomina! capacity of the battery: 

SoE(k) = E(k) 
Enom 

(2.5) 

where E(k) denotes the measured energy content that is present in the battery at time 
instant k, and Enom = 230 kWh refers to the nomina! capacity of the battery. Since the SoE 

does not correspond to a physical quantity, it cannot be directly measured. 
The most popular model-based approaches for SoE determination arebasedon state­

space models that have the SoE as a state variable. Considering the BESS as a single 
input Pd={Pd,ch, Pd,dis} single output Pb system, a simplified first order linear model, in 
discrete-time domain, can be deduced (while assuming a coulombic efficiency of unity 
for the battery unit): 

E(k+l) = E(k)+Pd(k) · r 

~(k) = ~.ch(k)+~,dis (k) 

pmin 5:, Pd,dis(k) 5:, 0 

0 5, Pd,ch(k) 5, p max 

Pd,ch(k)·~,dis(k) = 0 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The last constraint expressed in (2.10) shows that the BESScan be either in charging 
or discharging mode. The constraint formulated in (2.3) can be re-written as follows: 

<=> -400 kW 5. ~(k)+~(k) 5. 400 kW<=> 

<=> -400 kW-~(k) 5: ~(k)::;; 400 kW-~(k) 
(2.11) 

Given the fact that Pc (k) E [-50,380] kW, based on actual measurements, and the 
constraint expressed in (2.10), then (2.11) can be formulated as two inequalities: 

-400 kW- Pfrd (k) 5: 17dis · Pd,dis (k) 

and 

-
1
- · Pd,ch (k) 5:400 kW- P:rd (k) 

17ch 

26 

(2.12) 



Chapter 3 Day-ahead schedule 

3.1. Day-ahead Planning 

In order to assess the performance of the aggregate DR system, it is important to create 
a realistic representation of the aggregate residentialload and PV generation in terms of 
energy volumes and time schedules. The aggregate power demand can be distinguished 
between the non-controllable part measured at network point (c) and the controllable 
part due to the power injection and absorption of the BESS which is measured at network 
point (b) . Accurate short-term forecast of net generation and load is essential for the 
optima! reai-time control of the BESS. Different techniques can be employed for creating 
short-term forecasts such as time series prediction methods, or artificial neural network 
(ANN) models such as the one presented in [30]. 

Since the focus of this work is not on the forecasting methods, it is assumed that a 
forecast of the power trajectory Pc(k+ilk) is available at any time instant k, (note that in 
this work the power trajectory Pc(k+ilk) is resembied by the actual measurements at 
network point (c)). The notation Pc(k+ilk) indicates that the power predictions trajectory 
depends on the conditions at time instant k [31] . 

During the operational planning, the aggregator defines an energy schedule nas (h) for 
the day-ahead which is actually a piecewise constant function with a finite value for each 
settiement period of the day-ahead market (Th= 1 hour), with h=1, .. . , 24, whereas h=1 

corresponds to the first hour of the operational day (i.e., from oo:oo to 01:00). 

3.2. Day-ahead Objective Function 

The day-ahead power schedule p;as (h) is actually constructed based on: the day­
ahead prediction of the net PV generation and residentialload P,prd (h) , and the result of 

an optimisation process for the BESS which defines an optimised power profile Jidas (h) at 
network point (b). The day-ahead prediction P,P'd(h ) is constructed based on a day­
ahead forecast of the net PV generation and residential load (i.e., the trajectory 
Pc(k-l+ilkref) at network point (c), whereas for i=1 and k=1 corresponds to the first 
control period of the operational day and kref is the control period that signifies the gate 
dosure time instant of the day-ahead market, e.g. around 12:00 of the day-ahead. The 
schedule ftdas (h) is actually an optimised constant power profile of the BESS for the hth 
hour as the result of the upper-level optimisation problem which can be formulated as 
follows: 

0(h) = E:as (h) · 7r prd (h) 

E:as (h) = padas (h) · Th 

J1as (h) = ptas (h)+ P/ rd (h) 
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where E>(h) is a cost function that represents the hourly costs for purchasing an amount 
of electrical energy E:as (h) in (Wh) at a price ;rprd (h) in (€/Wh) from the day-ahead 

market, whereas ?f's (h) = { .P,f.d, (h),~s (h)} is the input trajectory for the BESS which 

satisfies the objective function and refers to the DC charging and discharging power set 
points. For the price values ;r prd (h) it is assumed that a forecast is available, resembied 
by the actual market clearing prices of the day-ahead market in the Netherlands for the 
year 2012 [32]. Considering that Prd (h)is considered as a known and fixed parameter, 
by substituting Pd from (2.4), (3.1) can be rewritten as: 

Subject to the day-ahead constraints: 

Pmin ~ Pf;;5 (h) ~ 0, hE [1,24] 

0 ~ ~(h) ~ P max• hE [1,24] 

P/::;, (h) · P/J';;s (h) = 0 

SoE~'J:, ~ SoEdas (h+l) ~ SoE~C::X 

-400 kW- Pj'rd (h):::; '17dis · Pf,':};s (h) 

and 

_ I_· pdas (h) < 400 kW- p prd (h) 
d ,ch - c 

'17ch 

(3-5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

where Pmin = -400 kW, Pmax = 100 kW. In the above mentioned constraints, it could also be 
added one to ensure that the SoE at the beginning and at the end of each day remains the 
same. N evertheless, the battery always respects this constraint by the default definition 
of the day-ahead optimization and during a day, the sum of all charging power set points 
is equal to the sum of all discharging setpoints. 

The results of the day-ahead optimisation problem are optimised charging and 
discharging profiles of the BESS, i.e., hourly power set-point values 
J1as (h ) = {Pf.d, (h) , P,f.':is(h)} and energy states Soëas (h + I) for h=1, ... , 24. These results can 

be further employed in the intra-hour optimisation problem (See chapter 4). 

28 



3·3· Results ofthe day-ahead optimization 

Given the fact that energy arbitrage applications through storage technologies are 
susceptible to the efficiency of the storage systems, the basic principle bebind the 
decision whether the battery should be used or not in a specific day is dependent on the 

term trmax • ndis - trmin where 7rmax is the highest price of the day-ahead market and Jrmin 

n ch 

the lowest. 
If this term is positive, then the battery will be charged at the hour when the price is 

trmin and discharged when the price is ;rmax . Accordingly, the algorithm continues 

comparing the next highest price with the next lowest and if the term mentioned above is 
positive and subject to the SoE constraints, then another charging and discharging cycle 
is scheduled. 

Practically, the above-mentioned term is representing the losses of the system, and 
therefore determines the decision whether the battery should or not be charged or 
dischargedat a specific time instant (i.e. at the hth hour). 

As it is already mentioned, the charging and discharging efficiencies for the 
investigated BESS at Etten-Leur were estimated to be around 0.8 based on actual 
measurements, and for this investigation are assumed to be constant. 

An example of the day-ahead optimization is provided in Figure 3.1 where the charging 
and discharging profiles are illustrated for a random day of 2012 based on the APX day 
ahead clearing prices. 
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Figure 3.1 Typical BESS optimisation. APX prices for the 9'h J une, 2012. 
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24 

As can been seen in Figure 3.1., at the lowest price during the day the BESS is charged 
until it reaches its maximum allowed SoE. As it cannot reach it within one hour, due to 
maximum allowed charging power (wo kW), the charging takes place at the two hours 
with the lowest price (5th and 6th). As it is expected, the battery is dischargedat the time 
with the highest price, which happens to be the 24th hour for that day. 

29 



A typical day ahead optimised profile for the investigated BESS is depicted in Figure 
3.1. However, depending on the expected prices and considered efficiencies the optimised 
profile can be characterised by more than one charging and discharging cycle. An 
example where the battery is charged and discharged twice during one day is provided in 
Figure 3.2. basedon prices from the 7th of February, 2012. 
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Figure 3.2 Optima) BESS optimisation with two charging and discharging cycles during one day (APX prices from 
February 7, 2012). 

Another distinct case during the day-ahead optimisation is when the expected prices 
and considered efficiencies result in a null schedule for charging and discharging. An 
example with such a profile is provided in Figure 3.3. 
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Figure 3·3 BESS optimisation withno optimised charging and discharging profiles (APX prices from the 21" January, 
2012) . 
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Focusing on data for the year 2012, the revenues that the BESS can generate under the 
defined day ahead optimisation are on average around 5€ per day. This amount may 
increase to 27.5€ for the investigated BESS for a selected day and theoretically can reach 
up to 36€ for an ideal system which is characterised by no energy losses. 

To provide an impression of the potential revenues from energy arbitrage application, 
and how these revenues vary depending on the efficiencies of the BESS and the expected 
day-ahead prices, a representative sample of results is provided in tables 3.1 and 3.2. 
Specifically, three cases are considered: case 1 stands for charging and discharging 
efficiencies equal to 0.8, case 2 stands for charging and discharging efficiencies equal to 
0.9, and case 3 stands for charging and discharging efficiencies equal to 1. Furthermore, 
a selection of days from the year 2012 that are characterised by large price differences 
and two daily charging and discharging cycles are included in Table 3.1. whereas days 
characterised by average daily price differences are included in Table 3.2. 

Table 3.1 Daily revenues for the potentially most profitable days for the year 2012 basedon APX data. 

,~--~------~ -· 

Revennes(C) Day Revennes (C) Revennes (C) 
Case1 Case2 Case3 

I 06/02 10.8 17.6 23.8 
• 

o8jo2 18.5 27·5 36-4 
[ 0.9/J>2 13..:._3. 19.7 27..9 

10/02 11.6 18 24.1 J 

Table 3.2 Daily revenues for the average days. 

- -- ·---

Day Revennes (C) Revennes ( C) Revennes (C) 
Case1 Case2 Case3 

I 23/02 4,1 7·7 11.6 
09/06 4·3 5·5 7·7 

I 05/10 .3.8 5·9 9.6. 
18/12 3.6 5.8 9 
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3·4· Economie results ofthe day-ahead optimisation 

Based on computer simulation for the years from 2000 to 2012, large deviations in 
calculated annual revenues can be observed. The results from computations are 
presented in Tables 3-3 and 3-4. The first table captures the annual profits per year and 
for several charging and discharging efficiencies between 0.5 and 1 while the second table 
presents the percentage of the days of the whole year that the BESS is being used for the 
considered years and BESS efficiencies. 

Table 3·3 Calculated profits per year for the period 2000-2012 for varying charging and discharging 
efficiencies 

Annual Profits ( C) 
o.s o.6 o.7 o.S 0.9. 1 

2012 34 141 489 1170 1904 3128 
2011 33.8 106.7. 289~7 698.5 1417. 2581 
2010 45 132 383 938 1596 2573 
200~1 153.7 .. 406 858 1385 2015. 2964. 
2008 285 764 1615 2602 3697 5406 
2007 .754 1374 . 2112 2865 .3735 .1 4890 
2006 1358 2294 3393 4489 5730 7440 
2005 1277 2055 3025 4089. .52V, 6832 
2004 685 1151 1729 2356 3008 3875 
2003 3143. 4269 .5601 6992 8526 10325 
2002 1626 2264 2936 3679 4540 5671 
2001 1853 2614. '3464 4389 5485 6~53 
2000 2125 3018 3949 5104 6333 7760 

Table 3·4 Calculated percentage of the days of a whole year that the day-ahead optimization is performed. 

Percentage of days used (%) 
0~5 o.6 0.71~ o.S 0.9 i 1 

2012 8.2 26.8 65.6 97-5 100 100 
2011 7-1 16.7 .37.3 82.7 .99~5 ! 100 
2010 12.1 24-7 65.5 97-3 100 100 
2009. 30.7 65.7 . 90 1 .99;2 100 ; 100 
2008 28.7 58.5 88.5 99-5 100 100 
2007 55.6 1 :~84.9~ :97~5 100 100 .l too 
2006 60.5 91.8 99-7 100 100 100 
2905 · 4o~s,;· L~D4.t 92~~ 100 ·;ioo ''] 100 
2004 47-5 71.5 93.8 99-7 100 100 
2003 71';5 ''·1934; ·ggi§ -100 100 '\; 100 
2002 76·7 92 99.2 100 100 100 
2001 · :59~ t;i83t6 -·-~~ - JJ,_OO \• 100 :· l too 
2000 28.7 31.9 51.6 71.3 76.8 100 

By processing the data from APX for the period 2000-2012, large prices deviations can 
be noticed during a day between several years. It is mentioned above, that the term that 
mostly affects the annual revenues is the difference between the highest and lowest price 
of the day-ahead market. To assist in interpreting the results, the bistorical price 
volatility metric is utilised in the study. 
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3·5· Historical volutility 

3·5·1· Definition ofthe historical volatility 

In finance, volatility is a measure for variation of price of a financial instrument over 
time. Historie volatility is derived from time series of post market prices. In competitive 
electricity mar kets, prices are not regulated any longer, but are determined by the market 
operators for each specific interval of the day (e.g. every 1 hour or 15 min), while taking 
into account various economie and operational factors. Given the uncertainty associated 
with the electricity market prices, and such a wide variety of options, the applications of 
volatility analysis to competitive electricity markets are undoubtedly useful for market 
participants [33]. 

Ristorical volatility is defined as the standard deviation of arithmetic or logarithmic 
returns over a time window T. The logarithmic return, over the time period h , is defined 
as follows: 

'i ,h =In(_}}_]= ln(p1 )-ln(Pr-h) 
Pr-h 

where p 1 denotes the spot price fora commodity at time t . 

The arithmetic return, over the time period h, is defined as 

R = Pr- Pr-h 
t,h 

P t-h 

The estimated value of historica! volatility over the time window T can be calculated as 
[33]: 

No 2 

L:('i,h - 'h ,r) 
(1 - -'-=1=:.:_1 ----

h,T- N -1 
0 

where a h,T is the estimated value of historica! volatility, N0 is the number of 'i,h 

observations, r;,h is the average of the returns 'i ,h (either logarithmic or arithmetic), all of 

them for the time window T. 

In this volatility analysis study, h = 1 (hour ) which is the settiement period for the day­
ahead spot market for electricity. 

The time window is one day, as the scope of this analysis is to compute the daily 
volatilities, based on both logarithmic and arithmetic returns for each year and compare 
them with each other. Therefore, T is defined as T = 1 (day) and N0 = 24 . 
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3.5.2. Bistorical price volutility calculations 

Figure 3·5 depiets the annual revenues for the years 2000-2012, assuming charging 
and discharging efficiencies equal to 0.8. Figures 3.6 and 3. 7 show the boxplots of the 
bistorical price volatilities for the same years, based on arithmetic and logarithmic 
returns calculations respectively. Each boxplot depiets all the daily volatilities for a year 
and the spacing between the different parts of the box help indicate the degree of 
spreading and identify the outliers. On each box, the red central mark is the median, the 
edges of the blue box are the 25th and 75th percentiles, the whiskers extend to the most 
extreme data points not considered outliers, and outHers (i.e. observations that are 
numerically distant from the rest of the data) are plotled individually. 

••--ouruER More tn.n 312 

•• tirnes of~~ quant Ie 

-.--MAXIMUM Greetest value, 
exdudl~ oulllers 

- I..UYVI:K QUA.RT'LE ~%of 
data IHs .,., 1hls value 

....11---fiiiNNIUIII Leastvalue, 
exoludlng oulllers 

e OUnJER L.ess than 312 
tirnes of lower quarlle 

Figure 3·4 Description of the boxplots used for volatility analysis•. 

2 http://www.mathworks.com/help/symbolic/mupad ref/plot-bmçplot.html 
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The results of the volatility calculations for the years 2000-2012 are shown at the figures 
below: 
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Figure 3 ·5 Annual revenu es per year from the day-ahead optimisation (charging and discharging efficiencies are 
considered to he o.S). 
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Figure 3.6 Boxplot of historica! price volatilities per year based on calculations of the arithmetic return. 
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Figure 3· 7 Boxplot of historica! price volatilities per year based on the calculations of the logarithmic return. 

Based on observations and comparisons between figures 3-4 - 3.6, it can be noticed 
that the arithmetic volatility seems to be rather correlated with revenues while the 
logarithmic is not. The correlation of the profits with either the median values or the 
whole box containing the 50% of the data is low for both arithmetic and logarithmic 
volatilities. However, in the case of the arithmetic volatility, it appears that the outliers 
and the profits are well correlated. It can be concluded, that the annual revenues are 
mostly related to the magnitude and the frequency of the outliers above the upper 
quartile. 

This volatility analysis explains up to a point the correlation of the annual profits with 
the volatility of the prices. However, the definition of bistorical volatility is based on the 
assumption that the logarithmic returns follow an independent and identically 
distributed random variabie which means that they are assumed to have a random 
behavior but with constant mean and varianee over the time window T. However, 
electricity prices are characterized by a seasonal behavior depending on the specific day, 
week or season of the year and therefore could not be seen as independent and 
identically distributed random variables [33]. 

Apart from that, it is not only the price differences during a day that define the annual 
profits. The SoE of the BESS at a certain time instant is a factor that also affects the 
scheduling of the charging/ discharging cycles regardless of the prices mentioned. This 
dependenee though, cannot be captured by the analysis of the bistorical prices volatility. 



Chapter 4 Intra-hour Schedule 

4.1. Intra-hour Planning 

Following the clearing of the day-ahead mar ket, the aggregator has defined an hourly 
power schedule ~as (h) for the day-ahead which is actually a piecewise constant function 

with a finite power value for each hour h of the operational day, h=1, ... , 24. The 
verification of the energy provision and the financial settiement by the system and 
market operators are performed a posteriori, i.e., after the operational day, and is 
performed on the basis of settiement periods r,of 15 minutes each. Therefore, the hourly 
power schedule p: as (h) for the day-ahead is transformed on the basis of 15 min., i.e., 
~as (/), with 1=1, .. . , 96. Any energy imbalance M

0
(1) with respect to the energy schedule 

~as (I) must be internally solved by the aggregator befare the end of the [th settiement 
period, or settled with the TSO through the imbalance settlement. 

Moving closer to the operational day, updated forecasts are at the disposal of the 
aggregator which can be further employed during intra-hour optimisation. Taking the 
Dutch market design as a reference, the aggregator can contribute to system balancing 
through passive contribution. Passive contribution can only be identified in case of 
unidirectional dispatch during a settiement period (i.e., when the system state is: '1' or 
' -1'). Therefore, if the system is expected to beshortor long during certain settiement 
periods, then the aggregator can decide to maintain an amount of internal imbalance 
which can be regarded as passive contribution and allow for additional revenues. An 
analysis of the data for the year 2012, indicate that the Dutch system was either in short 
or long position forabout 81.5 % of the time [24]. 

At the end of the operational planning day, the operations praeeed with the intra-hour 
planning which occurs for each [tb settiement period. At current settiement period q , the 
aggregator creates an updated forecast about the net PV generation and residentialload, 
i.e., P:rd ( q + m 1 q) , with m = 1, ... , 48 . At the same time instant the aggregator generates a 
preilietion about the system state and imbalance prices for the fortbeaming settiement 
periods. Let us denote the predicted imbalance prices as ;rprd ( q + m 1 q) and ;r prd ( q + m I q) 

surpl short 

for net energy surplus and shortage respectively, and the predicted system state 
sprd(q+m l q), with m=1, ... ,48. 

Basedon (2-4), from the optimised charging profiles pjas (h), the Jfas (/) profilescan be 

defined. During the intra-hour scheduling the expected energy imbalance Mt::,t (/) for 

the lth settiement period can be expressedas follows: 

Mt:::: (/)=(~as (/)_ pths (/) _ ~hs (/)). ' s ( 4.l) 

where the intra-hour power schedule P/,hs (/) = P;'as (I)+ dP/,hs (I) , and dP~hs (I) is a deviation 
value which can be set to cammand for corrective actions with reference to the day­
ahead optimised charging schedule P/as {I). Equivalentiy, P/,hs (I)= ?{'as (I)+ d?/,hs (I) , where 
P}hs (I) is the most recent prediction of the net generation and load at network point ( c), 
and dP}hs (I) = o when assuming a prediction with no errors. 
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4.2. Intra-hour Optimisation 

Considering the current settiement periodq, the objective function for the intra-hour 

optimisation problem can be formulated as a profit function II(q+m 1 q) that represents 

the profits associated with the passive contribution inthereai-time balancing market for 
the (q+m)th settiement period, with m = 1,0 0 0,48 0 The optimisation objective is to maximise 
the objective function: 

48 
max L ll(q +mI q) (402) 

dPd1
" (q+ m lq) m =l 

IT(q+m I q) = Mr:t (q+m 1 q)o~rr,;: (q+m 1 q) (4°3) 

where ~rr,:t (q+m I q) is the predicted imbalance price in (€/MWh) for the reai-time 
balancing market and dP:/s (q + m 1 q ) is the input trajectory which satisfies the objective 
function and refers toa DCcharging (and discharging) power deviation valueo The latter 
can be expressed according to the following equation: 

Note that the price ~rt::,f (!) is dependent of the sign of the net energy imbalance 

Mr,:;: (q+m 1 q) o Therefore, 7rr::;t (/) = {7r::::,
1
(1) ,7r:::;::,_,(l)} depending on whether there is 

energy surplus (M::~1 (1) ~ O)or shortage (M:;;rr (l) ~ 0) 0 

For the price values 7rf,;t (/) it is assumed that a forecast is available, resembied by the 
actual market prices of the reai-time balancing market in the Netherlands for the year 
2012 [26]o 

The resulted hourly charging states of the day-ahead optimisation problem SoEdas ( h) , 
for h=1,ooo' 24, are transformed on a 15 min. basis by using (4.6): 

where 1 e [4o(h - l) +l,4oh] for each hour h, whereas 1=1, ... , g6. 



subject to the intra-hour constraints: 

0 ::; J>f~ (!) + dPj~h (!) ::; p max 
' ' 

.hs .hs 
J>/t, ch (/) · J>/t,dis (/) = 0 

Soëhs (q+48) = SoE:':}(q+48) 

-400 kW- prd (/) ::; 'ldis · PJh'd;s (I) 

and 

_1_ . pihs (/) < 400 kW- p prd (/) 
d eh - c 

'lch ' 

(4.7) 

(4.9) 

(4.10) 

(4.12) 

where (4.11) reflects the fact that during the intra-hour optimisation, the charging state 
at the end of the prediction horizon should meet the reference value of the day-ahead 
optimisation. 

The imbalance prices for shortage and surplus given by Tennet and presented at Table 
2.2. consider the active balancing market. As passive contribution refers only to the cases 
when the system state in a settiement period is 1 or -1, the prices have to he defined 
appropriately to match the objective function. The imbalance prices have to he defined in 
a way, such that the term of the objective function 

ll(q+mlq)=L\E:f(q+mlq) ·Jr:f(q+mlq)is positive when the aggregator is receiving 

additional revenues from passive balancing and it is negative when the aggregator is 
facing penalti es. The appropriate definition of the imbalance prices is given in Table 4.1. 

1. 

2. 

3· 

4· 

s. 

6. 

7· 

8. 

9· 

10. 

Table 4.1 Intra-hour optimisation pseudo code: imbalance prices definition. 

begin; 
# Current settiement period is q (e.g., the last settiement period ofthe operational planning day) , 
whereas Ts = 15 min., m= 1, ... , 48. 

for m = 1 to 48 do 

if sP'd(q+m)=O then 

if Mt::;t(q+m) >O then 

prd( ) prd ( ) abs( prd( ) prd( )) 1!imb q+m =!!short q+m = 1!mid q+m +!!ie q+m 

endif 

if sprd(q+m)=2 then 
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11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33· 

34-

35· 

36. 

37· 

38. 

39· 
40. 

if Mt:f(q+ m)< O then 

If (emergency power is called) then 

trt:;; (q +m) = tr::;;,(q+m) = abs(rrnx(tr_ri (q +m), trf".rd (q+ m))+ trfcrd (q+m)) 

Endif 

endif 

Ü sprd(q+m)=- 1 then 

"prd (q + m) = "prd (q + m) = "prd (q + m) - "prd (q + m) else tmb surpl - te 

Jrt:f (q +m) = 1r{{:rt(q + m) = 1r!!.rd (q+ m)+ 1r{crd (q+ m) else 

endif 

if sprd(q +m)=+ l then 

if Mr,;t(q+m)> O then 

if ( emergency power is called) then 

nf:"'t (q + m) = ff:;'pl(q + m) = max(lTfrd (q +m},trf:/<q + m)) -ttf:·d (q + m) 

Endü 

if Mt:f(q +m)<O then 

if (emergency power is called) then 

Jr:::;t (q+m) = tr{:;:;,.,(q +m) =rrnx(tr_rl (q+m),trt:':,d (q +m))+tr~ (q+ m) 

else TCf"-d (q + m) = TCp•·d (q + m) = t<p'-d(q + m) + ;<prd(q + m) 
tmb sutpl + te 

Endif 

endif 

endfor 

# The iteration continues with the next settiement period and the whole process is repeated. 

q = q+1 

end 
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As it has already been stated, the electricity prices for the imbalance market are only 
known ex-post and notclose to real-time. Therefore, an optimisation approach that is 
applied just before the beginning of the PTU can only rely on a price forecasting method. 
It is expected that the appliance of forecasting tools, poses risks in the problem 
associated with erroneous predictions. Since the development of price forecasting is not 
the contribution of this thesis though, the price prediction is going to be considered 
perfect (by utilising the actual bistorical market data) and only in some case studies 
discussed in section 4·3· specific prediction errors for the state of the system and the 
power imbalance at point (c) are considered. Aspects concerning the risks that are 
imposed in the system from the presence of the forecasting tools are not addressed at all 
throughout this thesis. 

4·3· Results ofthe intra-hour optimisation 

The results of the intra-hour optimisation problem are optimized charging and 

discharging profiles of the BESS, i.e., power set-point valuesd~hs (/) = {d~~h (l),d~~is (l)} 

and charging states SoE:Z; (I+ 1) for an horizon of 48 PTU s starting from the current PTU. 

The results about the charging states will be further employed in the reai-time 
optimisation problem. 

An example of the intra-hour optimisation is provided in Figure 4.1. where the 
optimised profile of the BESSis illustrated for the 7th of July, 2012 starting from the 1st 

PTU based on the Tennet energy imbalance prices. 

Imbalance Prices for shortage (C/MWh) 
200~--------~--------~--------~--------~---------~------~ 

o l_ fL_~r .___ 
-2oo '-------------L---------_j__ ________ _[_ ---------'------~--

Imbalance Prices for surplus (C/MWh) 

~r-J 1 ~ L _ _j_ __ _f_l_~----'---~ =--" _ __,_____ _ ____r--_ _ l -L-'---J-~_1-------lJ 
States 

Day-ahead State Of Energy 

0.21=== ===±::=:====±== = ::__ __ __r_ ________ ___L ________ _L ________ _::! 

0 8 16 24 
Time (PTU) 

32 40 

Figure 4.1 Input parameters ofthe intra-hour optimisation problem (An example based on TenneT data for the !"" July). 
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Figure 4.2 mustration ofthe outputs ofthe intra-hour optimisation (An example basedon TenneT data for the 7'h July). 

Figure 4.1 shows the predicted imbalance prices for surplus and shortage, the predicted 
state of the system and the day-ahead SoE while Fig-4.2 shows the battery optimized 
schedule for the horizon of the 48 PTUs, the accumulated profits per PTU, as well as the 
SoE of the BESSper PTU basedon the intra-hour optimisation. 

At the first 2 PTU s, the state of the system is 1. This means upwards regulation and the 
aggregator has an interest to maintain a positive energy imbalance (dE> 0 ). The only 
way that the battery system can respond to this is by being discharged. lt can be observed 
though, that at the same time the SoE of the battery is at the minimum allowed bound 
(0.2) and therefore the battery cannot be discharged further. 

At the next PTUs (3rd and 4th), the predicted state of the system changes from 1 to -1. 

This means downwards regulation ( dE < 0) and the aggregator is now incentivised to 
maintain a negative imbalance. lt can be seen that the battery reacts accordingly, by 
being charged with the maximum allowed power rate (wokW). 

The same pattern is being followed during the whole horizon of the optimization. lt 
can also be noticed that when the system state is either o or 2, the battery is neither 
charged nor discharged. This is expected because, as it has been stated, at the passive 
balancing any energy imbalance dE is going to be penalised and lead to economie losses. 

In real-time operations, the intra-hour optimisation is applied at the last minute before 
the beginning of each PTU. The first step of this optimisation is applied at that PTU 
whereas at the following PTU a new optimized schedule is generated by the algorithm 
taking into account the updated predictions. This technique, where the prediction 
horizon is continuously being shifted forward, is called the receding horizon technique. 

The simulations for the intra-hour optimization problem lasted on average 18 seconds 
with respect to the utilized hardware and software that was mentioned in Chapter 2. 
Therefore, the calculations for the intra-hour optimisation are performed fast enough to 
be implemented at the last minute of each PTU and close to real-time operations. 
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4·4· Case studies with erroneous predienons in the states of the 
system and the power profile 

In real life applications, the predictions of the state of the system and the P" power 

profiles are expected to involve errors and deviations from the forecasted values will 
most probably occur during a day. In order to ensure that the output of the optimization 
algorithms in such cases can account for such prediction errors, the algorithms are 
examined in several case studies. 

In these case studies, the preilietion error that is assumed to appear, considers only the 
state of the system at the first PTU and the power profile at the coupling network point 
(c). 

Apart from that and in order to have a better insight of the way that a prediction error 
in the P" power profile affects the whole system, the case studies are examined for both 

large and small errors. 

The measure that is used to quantify the difference between the P" predicted values 

and the P" measurements is the Root Means Square Error (RMSE). The RMSE serves to 
aggregate the magnitudes of the errors in predictions into a single measure of predictive 
power. 

The RMSE is given by 

1 ~ A 2 
RMSE = -· L..(}'; -Jt;) 

n i=I 

A 

where Y is a vector of n predictions, and Y is the vector of the measured values. In 
this thesis, all case studies are going to consider a large prediction error for P" 
(RMSE=40) and a small prediction error (RMSE=20). 

Apart from that, two different situations are considered for the forecasting of the P" 
profile. 

The first one, is assumed to happen in the summer and considers the case in which the 
PV generation is larger than predicted during the day, due to more solar irradiation, 

which results in a lower ~ than expected ( d~ < 0 ). 
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The summer casestudy is performed basedon data from measurements at point (a) 
and point (c) from the 30th June 2012 and the PV forecasted and real power profiles are 
presented in Fig-4.3 and Fig.4-4 for small and large prediction error respectively. 
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Figure 4·3 Pc summer profiles for smal! prediction error (RMSE=20) at the PV generation. 
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Figure 4·4 Pc summer profiles for large prediction error (RMSE=40) at the PV generation. 
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The second case study, is assumed to happen in the winter and examines the case 

where the household consumption is larger than forecasted and therefore the ~ 

measured is larger than expected ( d~ > Û). 

This case is performed at the 12th January and the PV forecasted power profile and real 
profile are presented in Fig-4.5 and Fig. 4.6 for both small and large prediction errors. 
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Figure 4·5 Pc winter profiles for small prediction error (RMSE=20) at the residential customers' consumption. 

- ForecastedPcprofile - RealPcprofile 

300 

250 

.-. 200 

~ ._, .. 150 ~ 

~ 
0 

c:l. 
100 

50 

Tbne (min.) 

Figure 4.6 Pc winter profiles for large prediction error (RMSE=40) at the residentlal customers' consumption. 
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An overview of the case studies that are studied both for the summer and winter 
months are concentrated and presented in Table 4.2. 

Table 4.2 Case studies for the intra-hour optimisation. 

State of the system Pc profile 
Caset Perfect prediction Perfect pred.ietion 

Case2 Erroneous prediction for the 1st Perfect prediction 
PTU 

Case3a Erroneous prediction for the 1st Erroneous prediction with small 
PTU prediction error (RMSE =20) 

Case3b Erroneous prediction for the 151 Erroneous prediction with large 
PTU prediction error (RMSE =40) 

- - - -· - -

As it is already mentioned, the only difference between the summer and the winter case 

studies is the d~ , which is negative at the first occasion and positive at the second. 

It can be seen at Table 4.2 that the prediction errors which are assumed for the state of 
the system consider only the 151 PTU. This assumption could be easily expanded to 
include errors for the state of even more PTUs, at the beginning of the horizon or even for 
all 48 PTUs. However, this would increase tremendously the complexity of the results. 
The scope of these case studies though is to give a better insight in the intra-hour 
algorithm and present its output when it receives wrong predictions. Therefore, it is 
believed that adding such complexity to the assumptions, even though it may lead to 
more realistic representations, is not desirabie and would make the results confusing 
rather than explanative. 

The case studies that were described in the table above are more thoroughly examined 
in the next sections. 

4·4·1· Case Studiesfor the summer months 

For the case studies that refer to the summer months, a date was selected randomly to 
equip the algorithms with realistic data from the Dutch TSO. Specifically, the case studies 
are performed based on data from the 30th of June 2012, and the optimisation starts at 
the 36th PTU of that date, i.e. at g:oo a.m. 

For the 151 case, the predictions are considered to be perfect, both for the state of the 
system and for the power profile at network point (c), the optimisation reacts as it is 
shown in Fig-4.7. 

At the 1st PTU of the horizon (the 36th PTU of the day under examination), the 
imbalance price is very high and as the system state is 1 (request for upwards regulation), 
the BESS is being discharged with the maximum allowed power rate to maximise the 
revenu es. 



The next high imbalance price during the day is that referring to the 6gth PTU, when 
the system also requires upwards regulation (state 1) and the BESS needs to react to that 
again by being fully discharged. In order to have the ability to be fully discharged at that 
PTU (with the maximum allowed power rate of 400kW) it needs to be chargedat the 
previous PTUs to reach the maximum allowed SoE (i.e., SoE=o.g). As it can be seen in 
Fig. 4.7, even though the system states at the previous PTUs are 1 and 2 and pose a 
penalty for charging, the algorithm chooses the PTU s with the lowest penalising price, 
being the 37th, 44th, 4~, 48th and 51st respectively. In Fig. 4.8. it can be seen that the 
profits are the largestat the 6gth PTU, while the losses due to the penalties for charging 
are much less. 
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Figure 4· 7 Input parameters for the I" summer case study of the intra-hour optirnisation problem. 
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Figure 4.8 Outputs for the I " summer case study of the intra-hour optimisation problem. 
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For the 2nd case, the pred.ietion for the state of the system referring to the 1 st PTU of the 
optimisation horizon (being the 36th of the day that is examined) is assumed to be 
erroneous, and the predicted state is considered o. The basic difference that can be 
observed camparing with the results of the 1st case is that at the 1st PTV the algorithm 
decides not to schedule a discharging cycle as the state is now assumed to be o, and any 
energy imbalance is going to be penalised. The discharging that was taking place during 
the 36th PTU in case 1, now takes place during the 39th and the 43rd PTUs. This is 
happening because at these PTUs the price is equal to the one in the 36th PTU, when the 
BESS was being discharged in case 1. For all the subsequent PTUs, within the 
optimisation horizon, the result of the BESS optimisation are identical with the previous 
case. 
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Figure 4·9 Input parameters for the 2nd summer case of the intra-hour optimisation problem. 
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Figure 4.10 Outputs for the 2nd summer case of the intra-hour optimisation. 



For the third case, an additional assumption is considered, that is that the prediction of 

the ~ power profile is erroneous as the PV generation is more than expected. Therefore, 

the power at network point (c) is less than its predicted value from the day-ahead 
schedule, resulting into an expected power imbalance ~ < 0. As the state of the system 

is predicted to be o, during the first PTU, the energy imbalance should be kept o to avoid 
penalising costs, and therefore the battery is scheduled to be charged in order to create 
an imbalance ( df1, > 0 ) equal and opposite to d~ , as dE = -( d~ + df1,) · T

5 
• This can be 

seen in Fig. 4.12 and Fig. 4.14 for both large and small errors in the prediction of the PV 
generation. 
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Figure 4.11 Input parameters for the 3rd summer case of the intra-hour optimisation problem for small pred.ietion error. 
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Figure 4.12 Output of the 3n1 summer case of the intra-hour optimisation for small pred.ietion error. 

49 



Imbalance Prices for shortage (C/MWh) 

.1== ---,_ 

Imbalance Prices for surplus (C/MWh) 
200 r-------------.--------------,-------------.--------------r-------------,-------------~ 

~~----es"" _,-~~~--- ~-~~ --ë__l~ J. 
-2o:L---------~L----------~----------~----------_i __________ ~. -------

States :- I'_. 

Day-ahead State OfEnergy 
0.9r=======t==------r-------~------, -------

0.2 c_ ___ __ _L ____ -===~============~==========~============~===========d 
~ ~ ~ ~ ~ ~ ~ 

Time(PTU) 

Figure 4.13 Input parameters for the 3rd summer case of the intra-hour optimisation problem for large pred.ietion error. 
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Figure 4.14 Output ofthe 3n1 summer case ofthe intra-hour optirnisation for large prediction error. 

50 



4.4.2. Case Studiesjor the winter months 

For the first winter case study, there are no prediction errors assumed. At the 1 st PTU of 
the horizon, the system requires upwards regulation (state=!) and the BESS is scheduled 
to be fully discharged. The next price that the aggregator wants to take advantage of, is 
the one during the 3rd PTU, within the optimisation horizon, when the BESS should be 
discharged again. As this would not be possible if its SoE remains at the lowest limit, i.e., 
SoE=0.2, therefore the algorithm decides to schedule a charging cycle during the 2nd PTU 
of the optimisation horizon, Even though the state is expected to be 2 and any imbalance 
will be penalised, the penalising price for charging at that time is rather low compared 
with the rewarding price of the subsequent PTU. The same patternis being foliowed by 
the optimisation algorithm for the rest PTUs of the horizon. Fig. 4.15 and 4.16 show the 
inputs and the outputs of the intra-hour optimisation for the 1st winter casestudy. 
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Figure 4.15 Input parameters for the 1st winter casestudy of the intra-hour optimisation problem. 

dP atthe intra-hour optimisation (kW) 

dE at the intra-hour optimisation (kWh) 

49 

too -

o L_IL---u-~-----c~.r--n'--~L___r-..,___~--
-tooL-________ _L __________ L_ ________ ~----------~--------_J·----------~ 

Profits(C) 

JLIL ~--,~~: ~~~J ==~~~-j 

9 17 25 
Time(PTU) 

33 

Figure 4.16 Output ofthe 1st winter casestudy ofthe intra-hour optimisation. 
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Figures 4.17 and 4.18 showtheinput and output of the 2nd casestudy. Having the same 
assumption as in the 2nd case of section 441. a wrong prediction is considered for the rst 
PTU's state of the system, which is forecasted to be o. As every energy imbalance is 
penalised when the state is o, the BESS is not being discharged, as it was in the previous 
case study, and the d~ remains o. For the remaining PTUs of the optimisation horizon, 

the BESS follows the same profile as in case 1. 
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Figure 4.17 Input parameters for the 2nd winter casestudy of the intra-hour optimisation problem. 
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Figure 4.18 Output of the 2 nd winter casestudy of the intra-hour optimisation. 
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For the 3rd case, an erroneous prediction for the ~ power profile is also included. At 

that time, the residential customers' power profile is expected to exceed the predicted 
values. This leads to a positive imbalance with respect to the power profile at network 

point (c) ( ~ > Ü). As the state of the system is still assumed to be o, this energy 

imbalance has to be cancelled out by the BESS in order to keep the overall energy 
imbalance dE to o. In order to achieve this, the BESS is being discharged with a rate 

that results the d~ to be equal and opposite to the d~. The figures 4.19-4.22 present 

the BESS behaviour for large and small prediction errors. 
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Figure 4.19 Input parameters for the 3 rd wintercase study of the intra-hour optimisation problem for small prediction 
error. 
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Figure 4.20 Output of the 3rd winter case study of the intra-hour optimisation for small prediction error. 
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Figure 4.21 Input parameters for the 3'd winter casestudy of the intra-hour optimisation problem for large prediction 
error. 
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Figure 4.22 Output of the 3rd winter casestudy of the intra-hour optimisation for large prediction error. 
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The case studies presented in 4.4.1 and 4.4.2. illustrate that the algorithm is able to adapt 
to the scheduling of the charging and discharging cycles under updated forecasts and 
maximise the revenues or minimise the losses for the optimisation horizon. This is 
particularly useful particularly for real life simulations, as it takes into consideration 
updated forecasts of residents' behavior and generation from stochastic processes (i.e., 
PV generation) and acts accordingly. 
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4·5· Economie impact ofimbalances 

Table 4·3 captures the daily profits and losses for a randomly selected day from the 
year 2012, i.e., the 26th of June. At that day, a deviation is assumed to appear for the 
power profile at network point (c) between the predicted and the measured value, 
causing a power imbalance d~ . This example examines the economie impact that a 

positive or negative power imbalance can have on the investigated system. The absolute 
value of d~ is considered to be equal to the value that was defined in section 4.3 with 

respect to large prediction error (RMSE=40). 

As it can beseen in table 4.3, when there is no power imbalance at network point (c), 
the daily profit is 37.95€. A negative imbalance though, raises the daily profit to 40-44€ 
while a positive one leads to decreased profits of 20.52€. 

The reason for this is that at the 26th June, the state ofthe system was 1 for most PTUs 
of the day which means that most of the time the aggregator had an incentive to maintain 
a positive imbalance ( dE > 0 ) to benefit from passive contribution. In the case that the 
d~ is negative, the energy imbalance that occurs is positive as dE = -( d~ + d~) · rs and 

leads to increased profits, whereas in the case that the imbalance is positive the energy 
imbalance is negative and leads to reduced profits or even financiallosses. Therefore, it is 
expected that in such a day, a negative d~ is more beneficia! than a negative one as it 

contributes to the overall system balance. 

Table 4·3 Profits and losses that occur at a random day (26th June) from the participation ofthe system intheTennet 
balancing market 

Imbalance Daily profitsjlosses ~-- Daily profitsflosses 
--

including the BESS( C) without the BESS( C) 

dPc=o 37·95 0 
dPc>o 20.52 -24·78 

.dPc<o 40·44 .. -14.38 

The results presented in Table 4·3 illustrate the importance of the BESS combined with 
renewable energy sourees in termsof financial impact for the aggregator. Consirlering the 
case where the aggregator represents only the residential customers and the PV 
generators (excluding the BESS), any power imbalance that would occur at network point 
(c) would lead to penalties or rewards in a stochastic way to which the aggregator would 
not be able to react. The presence of the BESS though adds flexibility to the system, and 
the algorithms decide whether to utilise that flexibility to cancel out any expected 
imbalance that is considered to be undesired, or to contribute even more to increase the 
total imbalance dE when it is expected to bring additional revenues through passive 
contribution. The importance of the BESS presence is also depicted in the results of the 
above-mentioned example where it can be seen that regardless of the energy imbalance, 
the contribution of the BESS is significant in terms of improved financial performance. 
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4.6. Economie assessment ofthe intra-hour optimisation 

In multi-level optimisation (i.e. day-ahead schedule in advance), part of the capacity of 
the battery might be committed for certain hours. In some cases these commitments a 
priori might lead to larger energy imbalances during the intra-hour optimisation that can 
be beneficia! for the system balance, and result in additional revenues. In other occasions 
though, it might limit the options for the BESS to respond close to reai-time and 
therefore might bound the potential profits. Since the answer to such a question cannot 
be answered in a deterministic way due to the stochastic nature of energy processes and 
power system procedures (what the state of the system might beateach time period that 
the battery is committed to be chargedor discharged), it is not easy to decide which is the 
optima! approach. 

In order to create an insight into this topic, an analysis is run for several years in order 
to compare the estimated annual revenues between two potential applications: the case 
of an hierarchical multilevel optimisation approach, where the intra-hour optimisation is 
performed after the day ahead optimisation, and the case of a stand-alone intra-hour 
optimisation approach. 

Table 4·4 Annual revenues for the approach of stand-alone intra-hour optimisation and hierarchical multilevel 
optimisation. 

Year Annual Revennes (C) Annual Revennes (C) 
(with day-ahead on top) (without day-ahead on top) 

2012 23748 27443 
2011 18817 21725 
2010 12434 14750 
2006 24816 30424 
2003 20164 25259 

Table 4-4 depiets the calculated annual revenues for each distinct case. It can be seen 
that, for every year that was examined, the revenues at the case of a stand-alone intra­
hour optimisation are more than those in the case of an hierarchical multi-level 
approach. This indicates that if the capacity which has been committed due to the day­
ahead optimisation could be fully exploited during the intra-hour optimisation then it 
would leads to more profits. Therefore it seems that from a financial point of view, a 
single intra-hour schedule is the most preferabie solution. 

This assessment is valid though in the case of rather accurate predictions for the intra­
hour state ofthe system and the imbalance prices. However, due to the stochastic nature 
of the imbalance market, these predictions are inherently very difficult to be assumed 
perfect. On the other hand, the task of creating rather accurate predictions of the day­
ahead price dynamics is more plausible as the day-ahead market follows a more regular 
pattern. 
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Chapter 5 Real-time operations 

5.1. Real-time Planning 

As mentioned in the previous section, in reai-time operations the aggregator bas to 
comply with the a priori defined power schedule ~as (/), 1=1, ... , 96, for each settiement 
period (rs = 15 min.) ofthe operational day, whereas any mismatch from the submitted 
schedule will be regarded as an energy imbalance M(/) for the fth settiement period. 

where Pamsr (t) is the actual measured power at network point (a) and at control period 
t, Îi=15·(l-1)+1 corresponds to the first control period of the fth settiement period, and 
I E[i, ,i/+1 -1] · 

In real-time, the aggregator is tracking any deviations from the submitted day-ahead 
schedule I1" (I) by using (5.2). Consirlering that the current time instant is k, during the 
fth settiement period of the day, the aggregator obtains the actual measurements at 
network points (a) and (b), and calculates the power at network point (c) by using 
(1.1)(2.1). Then, the forecast of the power trajectory p; rs (k + i 1 k) is acquired for the 
control horizon i=1, ... , Îhorizon· Any expected energy imbalance M(l) at the end of the fth 

settiement period can be expressed through an energy balance equation: 

k 15·1- k 
pfas (l) · rs- L P/:'' (t) ·r- L P:/ s(k+ i lk) · r=t!.E(I) 

1=15·(1-1)+1 i=l (5.2) 

where the first term in (5.2) represents the energy volume which bas been cleared in 
the day-ahead market for the fth settiement period, the second term represents the 
accumulated energy content up to current time instant k (based on actual 
measurements since the beginning of the fth settiement period), and the third term 
represents the expected accumulated energy from current time instant k until the end 
of the fth settiement period. 

In theory, the aggregator's goal is to cancel any energy imbalance M(/) by the end of 
the fth settiement period. However, as mentioned in the previous section, when the 
system state is explicitiy short or long during the fth settiement period, then the 
aggregator might try to minimise or maximise the energy imbalance M(l) to benefit 
from passive contribution. To achieve this, in real-time, the aggregator coordinates the 
BESS operation by determining a set-point power trajectory that the power output 
should ideally follow from current time instant k and until the end of the fth settiement 
period. This set-point power trajectory Pb(k+ilk), for i=1, ... , 15·1-k can be calculated by 
using (5.3): 

k 15·1- k 
pgas (l) · r5 - L ?/:'' (t) · r - L (~5(k+i Ik)+ Jf' (k+i Ik))· r = M (/) (S.3) 

1=1 5·(1- 1)+1 i=l 

57 



The set-point trajectory 11, (k +i 1 k ) can be written as: 

P{ 's (k +i Ik)= p:as (k + i) + dP{ 's (k + i I k) (5-4) 

where ptas(k + i) reflects the power set-points defined during the day-ahead 
optimisation, i.e. Pfas (h), whereas dP//s (k +i 1 k) is a deviation set-point which is 
defined in real-time. The optimisation objective of the rea1-time problem is to 
maximise the objective function: 

max J 
dPdlu (k +ilk) 

The profit function J is defined in (5.6): 
J = M(/). ~rt::.t (/) 

(s.s) 

+(SoE:;::X (15 · I+ I)- SoE;!j (I5 · I+ I)) · Enom · ~rt::.t (I + I) (5.6) 

where the first term in (5.6) reflects the expected profits to be obtained through the 
imbalance settiement system for the [th settiement period, whereas the last term is 
meant to penalise any deviations from the expected intra-hour optimised SoE at the 
end of the control horizon. The control horizon in the real time problem is set to be 15 
time units of 1 minute, contrary to the real time problem. Note that, in rea1-time, the 
predicted state of the system sprd ( /) might change which will subsequently influence the 
imbalance price 1rt::t (I) that the aggregator will face. 

The resulted quarterly charging states of the intra-hour optimisation problem 

SoE;~ (l), for 1=1, ... , 96, are transformed on a per minute basis by using (5.7): 

SoE;hs (I+ I)- SoEihs (I ) 
SoE;;"r (t) = SoE::} (I) + ref 

15 
ref · (i - 1-15 · (/ - ! )) 

, (s.?) 

where tE [i1, i1+1 -I] for each 1th settiement period, 1=1, ... , g6. 

As mentioned before, the second term of the objective function is meant to give an 
economie value to the deviation of the SoE at the end of the }th PTU from its expected 
SoE;'if (I) . In order to accomplish that, the imbalance price ~rr::;t (I+ I) bas to be defined 

accordingly so that this term acts as a rewarding or a penalising term, depending on 
the occasion. For example, if the state of the (I+ I) th PTU is predicted to be 1 ( upwards 
regulation), a positive deviation of the SoE ( dSOErrs<t) > o) would mean that more capacity 
of the BESS is available for discharging, and therefore it should be rewarded. On the 
other hand, if the deviation of the SoE is negative ( dSOErrs (ll < o ) it should be penalised. 

The definition of these imbalance prices for the reai-time optimisation problem is 
provided in Table 5.1. 

1. 

2. 

3-

4 -

5· 

Tabie 5.1 Real time optimisation pseudo code: imbalance prices definition. 

begin; 

# Current settiement period is q (e.g., the last settiement period of the operational planning day) , whereas Ts = 
15 min., m= 1, .. . , 48. 

# dSOErrs(l) is the deviation from the expected intra hour optimised SOE at the end of the control horizon. 

if dSOEr15 (1) > 0 then 

ss 



6. 

7· 

8. 

9· 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33· 

34· 

35· 

36. 

37· 

38. 

39· 
40. 

if dSOErts(l) < 0 then 

Jrprd (I+ I)= Jrprd (/+I)= abs(nprd (I+ I)+ Jrprd (I+ I)) 
1mb short m1d IC 

endif 

if sprd (I+ I) = 2 then 

Ü dSOEr15 (1) > 0 then 

nf,;f (/+I)= n{;~1 (1 +I)= - abs(nE'd (I+ I) -Jrtd (I+ I)) else 

if dSOErtsU) < 0 then 

if ( emergency power is called) then 

endif 

endif 

if sprd(/+1)= - 1 then 

if dSOEr15 (1) > 0 then 

if dSOEr15 (/) < 0 then 

endif 

if sprd (I+ I) = + I then 

if dSOErts (!) > 0 then 

if (emergency power is called) then 

nf"';t (I + J) = n:;::n(l + 1) = max(Jrf"d (I + I),Hf"'"f (I + l)) - 7rfcrd (I+ 1) 

else trprd(l + I ) = trprd (I+ I) = trprd (I + 1) - trprd(l+ I ) 
1mb sutpl + 1c 

endif 

if dSOErts (!) < 0 then 

if ( emergency power is called) then 

e}Se tr!"d ( / + I) = trprd (I+ I) = :rprd (I+ I) + :rprd (I+ I ) 
1mb ,\'Urp/ + IC 

endif 

endif 

endfor 

# The iteration continues with the next settiement period and the whole processis repeated. 

l= 1+1 
end 
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The simulation of the reai-time algorithm lasts on average a total time of 18 s. in the 
aforementioned software which means that it is fast enough to be implemented in 
control procedures with a control step of one minute as proposed in this investigation. 
Furthermore, within the hierarchical multi-level optimisation approach, the output of 
the SoE from the last reai-time simulation at a certain PTU (i.e., the 15th minute of each 
PTU) is applied as an input to the intra-hour optimisation for the following PTUs. 

5.2. Real time case studies 

The cases that are going to be studied in this chapter are the same as the ones in 
Chapter 4· For both summer and winter months, erroneous predictions are assumed 
for the state of the system at the 1 st PTU of the optimisation horizon and for the power 
profile at network point (c). In this chapter however, one more casestudy is examined, 
in which at a certain minute during the PTU (i.e. the 10th) the prediction of the system 
state is updated and the aggregator responds to that accordingly. Table 5.2 presents the 
case studies that are examined throughout the chapter. 

Table 5.2 Overview of the case studies forthe reai-time optimisation problem. 

--c-----
State of the system Pc profile 

-

Case1 Erroneous piediction for the 1st PTU -,, 
Perfect prediction 

Case 2a Erroneous prediction for the 151 PTU Erroneous prediction with small prediction 
error (RMSE =20) 

Case2b Erroneous prediction for the 1st PTU Erroneous prediction with large piediction 
error (RMSE =40) 

Case3a Erroneous prediction for the 151 PTU, Erroneous prediction with small prediction 
corrected at the 101h minute error (RMSE=20) 

Case3b Erroneous prediction for the 1st PTU, Erroneous prediction with large prediction 
corrected at the 1oth minute error (RMSE=40) 

These case studies are examined for both situations of winter and summer months. 
Their only difference is that during the winter case the aggregate residential customers' 
load is overestimated which results to power imbalances ~ > 0, while the summer 

case considers overestimations of the PV generation which results to power imbalances 

~<0. 

60 



5.2.1. Real time case studiesfor the summer months 

At the first case, an erroneous prediction for the system state is assumed for the 1 st 

PTU, while the prediction of the power profile P" is considered perfect. As the state of 

the system is o at the 1st PTU, the control system ofthe BESSis keeping the d~ to o, to 

avoid additional imbalances and subsequent financial penalties. 

dPd actual in real time(kW) 
200 \__ 

0~---------------------------------------------------------------~ 

·200 

~ooL_ __________________ ~ ________ _____________ J_ __________________ ~ 

SOE actual in real time 

o.8 

0.6 
-------------· -- ---- ------- --- ----

o.2 L '----------------- __ _L__ ________________ __L_ ____________ _ 

0 5 10 
Time(min) 

Figure 5.1 Power profile and SoE of the BESS for the 1st summer casestudy according tothereai-time optimisation (301h 

June, 2012). 

At the next case, the assumption of erroneous predictions for the PV generation and 
as a result in the P" power profile is considered. As the state of the system is still 

wrongly predicted to be o, the aggregator tries to minimise the energy imbalance dE 
and therefore the output of the algorithm, i.e., the power deviation value d~, is equal 

and opposite to the dP" power value. The Fig. 5.2 and 5.3 show the result of the reai­

time optimisation for both smalland large prediction errors (cases 2a and 2b in Table 
5.2). 

dPd actual in real time(kW) 

20:=~ =======-=-=-=--=---=----=--~------=r~ 
-200 
·400L_ __________________ ___L ____________________ _]___ ---------------------1 

SOE actual in real time 

Time (min) 

Figure 5.2 Power profile and SoE of the BESS for summer case 2a according to the real time optimisation (3olh June, 
2012). 
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dPd actual in real time(kW) 
200 

0 

-200 

-400 
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SOE actual in real time 

0.8 

o.6 

0 . 4 

0.2 

0 5 10 15 
Time(min) 

Figure 5·3 Power profile and SoE of the BESS for summer case 2b according to the real time optimisation (30'h June, 
2012) . 

The 3rd case examines how the algorithm reacts to the updated predictions that the 
aggregator receives during the PTU. Specifically, while at the first 10 minutes the 
prediction is wrong as in cases 1 and 2 and assumes the system state to be o, at the 11 th 

minute there is an updated prediction that defines the state of the system to be 1. This 
means that the system requires upwards regulation and the BESS reacts to that by 
being discharged. Fig. 5-4 and 5-5 depiet this reaction for both small and large errors in 
the prediction of the power profile ~ (cases 3a and 3b in Table 5.2). 

dPd actual in real time(kW) 

2oo r I -

0 -

-2oo r-- -

-4oo f-

SOE actual in real time 

--- --
0 5 10 

Time(min) 

Figure 5·4 Power profile and SoE of the BESS for summer case 3a according to the real time optimisation (3oth June, 
2012). 
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dPd actual in real time(kW) 
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,----­
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0.2 

SOE actual in real time 

0.4 l 

____________________ L_ ______ ___ 

0 5 
Time (min) 

10 

Figure 5·5 Power profile and SoE of the BESS for summer case 3b according to the real time optimisation (3oth June, 
2012) . 

5.2.2. Real time case studiesfor the winter months 

The first winter case examines the case of erroneous predictions about the state of 
the system. The state is forecasted to be o instead of 1 and therefore, no energy 
imbalance is desired. As it is expected, the output of the algorithm, the power devation 
set-point d~ is set to o to avoid any penalties. Figures 5.6 and 5-7 present the output 

of the optimisation for this case. 

dPd actual in real time(kW) 
T 

0 5 10 15 

SOE actual in real time 

f----------- --- -

0 5 10 15 
Time(min) 

Figure 5.6 Power profile and SoE of the BESS for winter case 1 according to the real time optimisation (12th January, 
2012). 



At the 2nd case, following an updated prediction, the power profile ~ is larger than 

expected and as this leads to an undesired imbalance, the df1, is set to be negative and 

equal to d~ to eliminate the overall energy imbalance. Figures 5.7 and s.8 show the 

output of the algorithm under these assumptions for both small and large prediction 
errors (cases 2a and 2b in Table 5.2). 

dPd actual in real time(kW) 

200 

ob­

-2oJ 
-- -----------------------------

-400 
~-----

SOE actual in real time 

0.8 

0.6 
----- -- --------------

0.2 
L_ __________ ~----------_L ________ _ _ 

0 5 10 
Time(min) 

.J. 

15 

Figure 5·7 Power profile and SoE of the BFSS for winter case 2a according to the real time optimisation (121h January, 
2012). 
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Figure s.S Power profile and SoE of the BFSS for winter case 2b according to the real time optimisation (12th January, 
2012). 



Finally, as in section 5.2.1, at the last case the prediction for the state of the system is 
assumed to be erroneous for the first 10 minutes and at the u th minute the updated 
preilietion that the aggregator receives is the correct one. Figures 5·9 and 5.10 show how 
the BESS reacts in that scenario by being discharged with the maximum allowed rate in 
order to respond to the upwards regulation that is required. The real time algorithm was 
tested under conditions of updated predictions in reai-time and was found to successfully 
respond in order to increase revenues or to minimise costs. 

dPd actual in real time(kW) 

o -

-20l 

-400 L_ ____________________ L_ ____________________ t===========-----------_~~~-

SOE actual in real time ----~~--,-------l 

___ j 
----- ----- --

0.2 L>--___________________ __[_ 

0 5 10 
Time(min) 

Figure 5·9 Power profile and SoE of the BESS for winter case 3a according to the real time optimisation (12th January, 
2012) . 
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Figure 5.10 Power profile and SoE ofthe BESS for winter case 3b according to the real time optimisation (12th January, 
2012) . 
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Chapter 6 Conclusion 

6.1. Discussion and conclusions 

In future power systems, characterised by large penetration of renewable energy 
sources, the use of energy storage technologies can be a significant option to cope with 
the challenges that the fluctuating nature of wind and solar energy imposes to the 
system. 

Apart from all the services that an energy storage system can provide to the power 
grid, such as ancillary services, power security or power quality enhancement, many 
other opportunities arise in the advent of liberalisation of the electricity sector. 
Different possible markets have appeared in the last years that could provide financial 
benefits to owners of systems that combines renewable energy sourees along with 
storage devices. 

The first market that is examined throughout this work is the APX day-ahead market 
at which, electricity is traded in the form of day-ahead commitments. The benefits 
from a storage system at such a market arise purely by following a certain pattern every 
day, according to which the BESS is being charged at the hours when the electricity 
prices are low and is being discharged at the hours when the electricity prices are high. 
In the calculation of the revenu es, future prices are assumed to be known beforehand. 
The potential revenues that the system may have depend greatly on the charging and 
discharging efficiencies which define the losses of the system. Moreover, another factor 
that affects the profits from participating in the day-ahead market is the price 
difference duringa day. This price difference varies significantly from year to year, and 
from day to day, but it can be stated that it is mostly characterised by a decreasing 
trend in the last decade. 

The profit margin that a participant in the day-ahead market may have though, is not 
as large as the one from participating in the balancing market. The benefits of 
participating in the imbalance market can be several times larger, and the participant 
can take advantage of any imbalances that occur from its stochastic procedures (PV 
generation), the loads of the residential customers or the manipulated output of the 
BESS and contribute to the system via the passive balancing. The increased revenues 
occur due to the higher imbalance prices, and the larger number of possible cycles that 
are performed per day compared with the day-ahead schedule. Despite the fact that 
such a contribution can be rather profitable, many risks arise consirlering the accuracy 
of the predictions. Since the imbalance prices and the state of the system are published 
later and not in real-time, the aggregator that represents a number of stochastic energy 
processes has to rely on forecasting algorithms. If the forecasting at the state of the 
system or the imbalance price at a certain PTU is erroneous, the aggregator may face 
penalti es that are irreversible and this would lead to losses instead of profits. 

The risks associated with participation in the balancing market, through passive 
contribution, are significantly reduced by the adaptable characteristics of the reai-time 
algorithm. The aggregator receives updated predictions on time intervals of one minute 
and therefore at each minute a new prediction is received for the state of the system, 
the imbalance prices and the power imbalances from the PV generators and the 
households' consumption. This leads to a decreased risk as the BESS can react to the 
updated prediction on reai-time and minimise any undesired imbalance or contribute 
even more to either upwards or downwards regulation. The importance of the real time 
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algorithm is even bigger when it comes to energy sourees that are characterised by 
variability, intermittency and fluctuation such as solar and wind energy sources. The 
aggregator receives power measurements and updated predictions for the power 
profile of all the processes in its portfolio, on a time basis of 1 minute and this can 
minimise the associated risks. 

From a financial point of view, participation in the imbalance market seems to be by 
far the most interesting market to receive revenues from an energy storage system. The 
revenues though, are highly affected by the forecasting accuracy of the power 
generation from the stochastic sources, the electricity prices and the imbalance states 
of the system. On the other hand, the forecasting is much more accurate for power 
exchange markets (i.e. the APX day-ahead market) as the prices follow daily regular 
patterns and therefore are easier to predict. 

It is a matter of fact though, that compared with the initial costs of a small-scale 
battery system, the revenues from participation in the day-ahead auction and the 
balancing market are still rather small. Until now, distributed battery storage systems 
are mostly used within pilot programs and research activities and as a result, the 
capita! costs are relatively high. This is also the reason why until now grid-connected 
electricity storage technologies are seldom economically efficient. This might change 
over time however, when large scale deployment is applied to battery systems and the 
costs are likely to be greatly reduced due to economies of scale. 

6.2. Recommendationsfor future research 

The current thesis addressed the participation of an aggregator, representing a 
number of distributed energy resources connected to LV grids, in the day ahead and 
balancing markets. The work was focused on many specific aspects while other key 
principles were not examined thoroughly and may need further research and 
development. 

First of all, for the economie assessment, the prediction models throughout the thesis 
were assumed to be accurate and therefore the predictions were considered perfect 
both for the APX day-ahead and the imbalance market. In order to optimise the 
benefits from the participation of the aggregator in the electricity markets, efficient 
forecasting is required. The development of a forecasting algorithm that could predict 
the imbalance prices and the state of the system with an efficiency of at least 90% 
would be the most crudal step in making participation if electricity markets financially 
viabie [34]. 

Another field that could be further developed is the modeHing of the power 
conversion system. As the contribution of this work does not address thoroughly the 
modeHing of the system, the model that is actually used to describe the losses of the 
BESS in section 2.2.1.3. is simplified and ignores a whole range of parameters that 
affect the power losses during charging and discharging modes. A model that takes into 
account the power rate, the temperature, the SoC and the internal resistance can be 
formulated for a more exact and accurate representation of the power conversion 
system and the overall power losses of the BESS. 
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APPENDIX A 

DAY-AHEAD PROBLEM- IMPLEMENTATION IN MATLAB 

The objective function of the day-ahead problem is given by (3.5) 

subject to the following constraints that are given from (3.10)-(3.16): 

Pmin ~P/Jd;s (h)~O, hE[1,24] 

0 ~ Pf':" (h) ~ P max• hE [1,24] 

Pf:j, (h) · F'f:J;s (h) = 0 

SoE :.'f:t :5; SoEdas (h +I) :5; SoE:,'; 

-400 kW -Pj'rd (h) :5; 17dis ·Pf."J;s(h) 

and 

_I_· P'fas (h) < 400 kW- p prd (h) 
d ,ch - c 

11ch 

(A.2) 

(A.3) 

(A.4) 

CA.s) 

(A.6) 

In order to solve the day-ahead optimisation problem the finineon command is applied. 
Frnineon is used to find a minimum of constrained nonlinear multivariable functions. 

The syntax of finineon is 

x =fmincon (objfun , xO, A, B, Aeq, Beq , lb, ub, confun) 

And it finds a constrained minimum of the function objfun subject to : 
A · X ~ b, Aeq ·X = beq 

c(x) ~ 0, ceq (x) = 0 

ub ~x~ lb 

The first two equations address the liner constraints, the next two address the 
nonlinear constraints and the last one sets the bounds of the varia bie. 
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In this problem, x vector is the sequence of Pd ,ch, ~,dis .It is a 48X1 vector whose first 

24 elements are the Pd ,ch sequence and the last 24 elements are the ~,dis sequence. 

x= 
~,ch(24) 

~,dis (l) 

The objfun is going to be the objective function described in (A.l) while the only 
nonlinear constraint (A.4) is going to be defined in the function confun. 

The other linear constraints are formulated in a compliable form to the fmincon 
structure. The constraint concerning the SoE limits (AS) can be rewritten as A· x ~ b : 

[

SoEmin -SoE(O) ·E l [1 
r nom ~ : 

: 1 

0 0] 
": ; 
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APPENDIXB 

INТRA-HOUR PROBLEM - IMPLEMENТAТION IN МАТLАВ 

The objective function of the intra-hour proЫem can Ье formulated Ьу (4.2)-(4.5) : 

48 
max 2:П(q+ m [ q) 

dP;/'(q+mlч)т~1 

П(q+т 1 q) =ЛEf::;ffi (q+m 1 q)·лf::;l (q+m 1 q) 

d "h "h ЛЕ~~Ь (q+m [ q) = (-df"ь 5 (q+m [ q)-d~ 5 (q+m 1 q))·r5 

Where dP/,1is can Ье expressed as: 

d ihs (/) 1 d'пihs d'nih' 'Рь =-· Гd ch (l)+Т/d;~ · ГJdis (Z) • 
. llch ' . ' 

Subject to the intra-hour constraints 

~,;" s P'/d;, (/) + dP/j'~;, (/) ~ о ' . ' . 

"hs "hs 
P/J,ch (l) · P/J,dis (/) =О 

SoEmin :S Sов:::;. (l + 1) :::; SoEma~ 

SoE;hs ( q + 48) = SoE:.~J ( q + 48) 

-400 kW -P/"·d (/) :S 77J;s · PJ''d;, (/) 

-
1
- · PJ~~h (!) s 400 kW - P/'·d (/) 

17ch 

(В.1) 

(В.2) 

(В.3) 

(В.5) 

(В.б) 

(В.7) 

(В.В) 

(В.9) 

(В.10) 

As in the day-ahead schedule, the fmincon command is applied in order to solve the 
intra-hour optimisation proЫem. 

Тhе syntax of fmincon is 

х = .fmincon ( obj.fun, хО, А, В, Aeq, Beq, lb, ub, confun) 

And it finds а constrained minimum of the function objfun subject to : 
А · х ~ Ь , A.q · х = Ъ.q 

с(х) ~О, ceq(x) = О 

ub ~ x ~ lb 
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In the intra-hour proЫem, х vector is the sequence of dP;~:h, dP;~;;s. It is а 96Х1 vector 

whose first 48 elements аге the dP;~:h sequence and the last 48 elements are the dP;~;;s 

sequence. 

dP;1z., (1) 
d ,ch 

Х = 

dP~~~;, ( 48) 

The objfun is going to Ье the objective function described in (В.1)-(В4). In the 
function confun the nonlinear constraint (В.7) is going to Ье defined as in the day­
ahead proЫem. The other linear constraints are formulated in а compliaЫe form to the 
fmincon structure. Тhе constraint concerning the SoE limits (В.8) can Ье rewritten as 
А·х~Ь 

SoE~, -SoE"' (О). Е + Р."" (!) SoE",,,, - SoEil" (О). Е". + Pj" (!) 
r 

< • : , J,rh . < 
r ""' J [! ." о 1 ". о] dP"';(48) 

- : . dP;,, (!) -

_So~E~~· _-S_oE_il_"(O_)·E_+P,f"(l)+ ... +P,f"(4S) 1 ··· 1 1 ··· 1 "·~" SoE,.,.-SoE""(O) .E
00

"+Pj"'(l)+ ... +Pj"(4S) 
т r 

dP~:~(48) 

Тhе constraints used to ensure that the constraint (В.9) is not violated can Ье written as 
Aeq ·Х =beq 

(! ... !) · dp;/;1,(48) = SoEdu.'(48)-SoE;ь, (O) · Е"°"' -[~'*" (I)+" .+ P,;'"'(48)) 
d~~~;, (1) т 
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