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The list in the table below includes the main notation of the thesis for quick reference.
Other symbols are defined throughout the text.

Nomenclature
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Indices for network connection points in the investigated system (See figure 1)
Index for the day-ahead market periods, #=1,...,24

Discrete step for control periods, i=1,...,n

Index for control periods, ¢=1,...,1440

Current discrete time control period

Index for settlement periods, /=1,...,96

Discrete step for settlement periods, m=1,...,48

Intra-hour (power deviation) schedule (W) at network point (b)

Day-ahead (energy) schedule (Wh) at network point (a)
Battery nominal capacity (Wh)

Predicted power trajectory (W) at time instant &
Day-ahead (power) schedule (W) at network point (a)

Day-ahead (power) schedule (W) at network point (c)

Current settlement period

State of Energy (%) at time instant &

Apparent power (VA) at network point (a) and at control period
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Efficiency factor during the charging process (-)

Efficiency factor during the discharging process (-)

Day-ahead cost function (€)

Day-ahead market clearing price (€/Wh)
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Chapter1 Introduction

1.1. Energy and the environment

In the advent of the 21t century climate change appears to be one of its great
challenges. Demand for energy and associated services, to meet social and economic
development and improve human welfare and health, is continuously increasing. All
societies require energy services to meet their basic human needs and to serve productive
processes. Since approximately 1850, global use of fossil fuels (coal, oil and gas) has
increased to dominate energy supply, leading to a rapid growth in carbon dioxide (CO2)
emissions [1].

It is reported that fossil fuels provided 81.2% of the total primary energy in 2008, while
the combustion of fossil fuels accounted for 56.6% of all anthropogenic greenhouse gas
(GHG) emissions (CO. equivalent) [2]. GHG emissions associated with the provision of
energy services are a major cause of climate change. Most of the observed increase in
global average temperature since the mid-20t century is very likely due to the observed
increase in anthropogenic greenhouse gas concentrations [3]. The rate of growing of the
CO. concentrations are a major concern, while the warming trend has increased
significantly over the last 50 years.

Furthermore, the exploitation of the reserves of fossil-based resources is currently
occurring at a high rate. As far as crude oil is concerned, the maximum point of
extraction i.e. the so-called peak oil has already been exceeded and the security of supply
appears to be a serious concern'. At the same time the capacity of the earth’s atmosphere
to absorb greenhouse gases is limited, and any excess will stretch the impacts of climate
change beyond manageable limits [4].

The climate change may have adverse impacts on water resources, ecosystems, food
security, human health and coastal settlements with potentially irreversible abrupt
changes in the climate system.

In order to maintain both a sustainable economy that is capable of providing essential
goods and services to the citizens of both developed and developing countries, and a
supportive global climate system, a major shift in how energy is produced and utilized is
required [3],[5]. Towards that direction, renewable energy technologies have emerged as
important options to mitigate supply problems and also simultaneously aid economic
development.

Renewable energy (RE) (wind power, solar power, hydro energy, energy from the
ocean, geothermal, biomass and biofuels) are alternatives to fossil fuels and help reduce
greenhouse gas emissions, diversify energy supplies and reduce dependence on
unreliable and volatile fossil fuel markets, especially oil and gas. The advantages
associated with renewable energy technologies are numerous due to their replenishing
nature, the emission of significantly lower amounts of CO, and their supportive character
towards energy self-sufficiency of remote and developing regions. Moreover, such
technologies can be applied for the development of flexible applications where power can
be generated according to the needs of the on-site population, eliminating the need for
huge power plants running on fossil fuel.

1 http: //www.worldenergyoutlook.org/media/weowebsite/2009/we02009 es english.pdf




1.2. Integration of renewable energy sources

Renewable energy refers to energy resources which are continually replenished such as
sunlight, wind, rain, tides, waves and geothermal heat. Renewable energy sources reflect
the time-varying nature of the energy flows in the natural environment, thus their power
generation characteristics are very different in general from other generation based on
stockpiles of fuel (with the exception of biomass-fuelled plants).

In 2008, RE contributed approximately 19% of global electricity generation. The
contribution of RE to primary energy supply varies substantially by country and region.
Future scenarios of low greenhouse gas systems consider RE both in standalone modes
but also in combination with nuclear, and coal and natural gas with carbon capture and
storage.

While the RE share in global energy use is still relatively small, deployment of
associated technologies has been increasing rapidly in recent years. Out of the
approximately 300 GW of new electricity generation capacity added globally over the
two-year period from 2008 to 2009, 140 GW came from RE technologies. Collectively,
developing countries hosted 53% of global RE power generation capacity in 2009 [6].
Under most conditions, increasing the share of RE in the energy mix will require policies
to stimulate changes in the energy system. Government policy, the declining cost of many
RE technologies, changes in the prices of fossil fuels and other factors have supported the
continuing increase in the use of RE. These developments suggest the possibility that RE
could play a much more prominent role in both developed and developing countries over
the coming decades [6].

However, developing renewable resources appear to have some characteristics which
raise a new set of technological challenges not previously faced within established power
systems.

Some of the characteristics of distributed energy resources and renewable energy
sources is their variability, unpredictability and intermittency. Variable energy sources
produce fluctuating and (partly) unpredictable amounts of electricity over time.
Intermittency inherently affects solar and wind energy, as the power generation from
such sources depends on the amount of solar irradiation or the wind speed in a given
location. Apart from that, the unpredictability associated with renewable generation,
primarily caused by unanticipated weather conditions, such as clouds or sudden shifts in
wind velocity is a major challenge for the integration of renewable energy resources in
the power system.

Furthermore, the variability of renewable energy is easily accommodated when
demand and renewable supply are matched, e.g., both rising and falling together.
However when demand and renewable supply move in opposite directions, the cost of
accommodation can rise significantly.

As renewable energy penetration grows, the increasing mismatch between variation of
renewable energy resources and electricity demand makes it necessary to capture
electricity generated by wind, solar and other renewable energy generation for later use.
Energy storage is a possible technical solution to help smooth fluctuations in generation
inherent in RE such as wind or solar energy.



1.3. Energy storage

Energy storage technologies can be used to store electricity, which is produced at times
of low demand and low generation cost, and from intermittent energy sources such as
wind and solar. Stored energy can be released at times of high demand and high
generation cost or when there is limited base generation capacity available.

Reliable and affordable energy storage is a prerequisite for using renewable energy in
remote locations, for the integration into the power system and the development of a
decentralised energy supply system in the future. Furthermore, these concepts
straightforwardly extend to the use of traditional fossil fuel-based generation. Energy
storage therefore has a pivot role to play in the effort to combine a future sustainable
energy supply with the standard of technical services and products that were accustomed
to. In this way, energy storage is the most promising technology currently available to
reduce fuel consumption, and supports the new paradigm of electrical microgrids
operation by permitting distributed generation to seamlessly operate as a dispatchable
unit and autonomously isolated from the main power system [7].

Energy storage solutions can provide a considerable option for the integration of
renewable energy sources and the establishment of efficient generation and delivery of
electrical power. For almost half century there have been dedicated research and
development efforts to introduce batteries to the electric utility industry, in a load
levelling mode, for the large scale integration of renewable energy sources. Early studies
indicated the unique role that integrated battery and photovoltaic (PV) systems can play
in demand side management (DSM) activities, and that those developments will most
likely impact the deregulation of electrical power systems [8], [9], [10].

DSM refers to the modification of the consumer’s energy demand through various
methods (i.e. financial incentives). It addresses a range of functions including program
planning, evaluation, implementation and monitoring [11]. Demand response (DR) is a
term used in economic theory to identify the short-term relationship between price and
quantity. Currently the term is used in a broad sense, as a part of DSM, and is attributed
to a variety of control signals such as prices, resources availability and network security

[12].

Energy storage can be implemented in large-scale (e.g. pump-hydro etc.) but also in a
distributed fashion. A distributed battery system along with distributed generators (DGs)
and flexible loads is a resource that falls under the general term of DSM.

A battery energy storage system (BESS) is defined as [7]: “An energy storage system
using shunt connected, voltage sourced converters capable of rapidly adjusting the
amount of energy that is supplied to or drawn from the ac system. The reactive power
generating or absorbing capability of the voltage sourced converter can be utilised to
generate a capacitive or inductive component of output current independent of the flow
of real power and within the limits of the converter rating”.

In the technical literature, numerous potential applications have been defined for BESS
in planning and operation of electrical power systems. The main drivers for the
developments of energy storage are market opportunities through energy arbitrage, the
provision of ancillary services to the system, efficiency improvements of generation,
transmission and distribution assets, integration of intermittent renewable energy
resources by firming up the service, remote area power supply and multiple
complementary applications [7]. The latter point actually signifies that a single



application of energy storage is unlikely to provide economic justification, however the
possibility of changing storage control strategies depending on the market requirements
could allow maximisation of revenues [7].

In the Netherlands, research related to the impact of BESS on electricity distribution
systems with stochastic generation was initiated with the Bronsbergen microgrid project
[13]. The Bronsbergen microgrid is operated by the distribution system operator (DSO)
Alliander and consists of a distribution system connecting 210 residences, of which 108
are equipped with PV generators (total installed capacity of 315 kWp). The research
activities related to the Bronsbergen microgrid addressed the topics of islanded operation
(maintaining islanded mode for 24 hours, automatic isolation from and reconnection to
MYV network), black start and power quality phenomena.

Enexis DSO developed and commissioned a BESS to enable field-testing and research
of advanced energy storage technologies in LV distribution grids. The BESS was installed
in the LV distribution grid for the purpose of enabling applications such as, but not
limited to: the increase of local PV consumption, improvement of reliability and
flexibility, reduction of losses, and maximizing the utilization of local infrastructure [14].
A schematic of the investigated case study is depicted in Fig.1.1, and consists of an actual
distribution system with integrated energy storage in Etten-Leur, the Netherlands. The
implemented BESS is connected to the LV-side of a local 400 kVA MV/LV transformer
(0.4 / 10 kV) station operated by Enexis DSO, with an average peak-load measured at
385 kW at the moment of installation. Approximately 240 households are connected to
this MV/LV station from which 40 houses have locally installed PV modules (in total 186
kWp).

Measuring
System
MV/LV
£
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w» —_— Ny e e
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=
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=
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Figure 1.1 The system architecture illustrating the single line diagram of the physical power system network and a
schematic of the control architecture. The solid black lines depict the physical power network, while the dashed lines
represent the information and communication network.



1.4. Problem definition

The BESS in Etten-Leur serves as a case study in this investigation. It was built in order
to gain operational experience and to facilitate research on the impact of storage in the
electricity grid at the distribution level [15].

Throughout this thesis, the economic optimisation of the BESS through the application
of optimisation techniques is studied. The work looks at possible markets for small-scale,
grid-connected electricity storage in a liberalised market setting. Specifically, it addresses
the interactions of the system with the day-ahead electricity auction and the real time
balancing market in the Netherlands. A more thorough description of these markets is
provided in Section 2.1.

For analysing the response of the aggregate DR system, the developed simulation
scenario focuses on the Netherlands and covers a period of 24 hours. During the day-
ahead operational planning (a priori), the timescale corresponds to discrete time periods
7n of 1 hour, in line with the defined day-ahead market settlement periods in the
Netherlands. At the intra-hour planning, the timescale corresponds to discrete time
periods of 15 minutes, in line with the defined settlement periods for imbalance energy
verification and settlement in the Netherlands. During real-time operation, the time
interval for simulations and for sampling analogue measurements is set to 1 min.,
inspired by the current implementation of the BESS in Etten-Leur-.

Figure 1.2 Photo of the Smart Storage Unit (SSU), as it is installed in the field at Etten-Leur.

The underlying business model in the developed scenario sets distinct roles among all
system actors. The aggregator is representing all the connected entities to the LV bus, i.e.,
the residential customers, the PV installations and the BESS. The residential users and
the photovoltaic generators are aggregated in a community way and are not participating
separately in the markets. Moreover, throughout the whole thesis, the case study is
considered to be small enough so that it does not influence the market clearing price
(MCP). The interactions between the system actors during the day-ahead planning
phase, the real-time operations, and the verification process are further discussed in the
following paragraphs.
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The specifications of the Etten-Leur case study are presented in Table 1.1.

Table 1.1 Specifications of the Etten-Leur Case Study [14], [16],[17].

Main characteristics Value Unit
THE LOw VOLTAGE DISTRIBUTION GRID
Grid Connection Nominal Voltage 2 400 \%
Transformer Capacity 400 kVA
Average Peak Load Measured 385 kW
Number of Households 240 -
Installed PV capacity 186 kWp
THE BATTERY ENERGY STORAGE SYSTEM
Nominal Voltage 730 \Y%
Minimum (Discharge) Voltage 609 \%
Maximum (Charge) Voltage 812 \%
Nominal Capacity 230 kWh
Nominal Capacity ¢ 328 Ah
Minimum Capacity ¢ 312 Ah
Maximum Discharge Power 4 400 kW
Nominal Discharge Power 400 kw
Maximum Charge Power © 400 kwW
Nominal Charge Power 100 kw
Operating temperature range —20 to +60 °C
aLine to line voltage
bAt the moment of installation around October 2012
cRating C/3 at 25°C
dFor thirty minutes
¢Only for a few seconds

The approach is based on hierarchical decomposition of the control problem in the
time domain, by composing a three-level optimisation problem, i.e., day-ahead, intra-
hour and real-time, where the initial and final states of each sub-problem are chosen as
coordination parameters.

1.5. Scope of work

The scope of this work is to define a viable control scheme for the real-time
management of the residential customers, the PV system and the BESS connected to the
LV grid operated by Enexis DSO, based on the application of economic optimisation
techniques.

The control scheme is responsible for the management of the aggregator in order to
benefit by participating in the APX day-ahead and the Tennet imbalance market.

The work examines the possibility of maximising the revenues or minimising the losses
by changing the control strategy of the BESS subject to the market requirements.

11



1.6. Layout of the thesis

The first chapter includes an introduction presenting the existing environmental
situation, the RE development and the integration challenges, as well as the problem
definition, the scope of work and the layout of the thesis.

In Chapter 2, a description of the system architecture is provided, including an
overview of the electricity markets in the Netherlands and a description of the system
actors.

Chapter 3 describes the day-ahead problem. The day-ahead operational planning is
presented first, followed by the results of the developed optimisation approach. An
economic analysis for several years is provided along with discussion for the relation of
the annual revenues of the system under the specified application and the historical
volatility of the day-ahead market in the Netherlands.

Chapter 4 addresses the interactions with the balancing energy market in the
Netherlands and the intra-hour scheduling approach. The intra-hour scheduling
approach is explained and the results of the optimisation problem are presented. Several
cases studies are examined including prediction errors with respect to the forecasts of the
power profile and market prices.

Chapter 5 describes the real-time problem (i.e. real-time operations under uncertainty
and fast changing conditions) and includes the real-time planning and the results of the
optimisation algorithm for the same cases that were studied in Chapter 4.

In Chapter 6, the conclusions of this study are drawn based on analysis of the overall

results (i.e. for all the investigated simulation scenarios of the day-ahead, intra-hour and
real-time problems). The report ends with recommendations for future research.

12



Chapter 2 System Architecture

In this chapter, the architecture of the system under investigation is described. First,
an overview of electricity markets is provided, defining those procedures and parameters
that are relevant for the problem formulation (Section 2.1). In the second part of this
chapter (Section 2.2) the physical layer of the investigated system is described. The
physical system can be distinguished between the physical power system (i.e. the
electricity distribution system including the BESS the residential customers and the PV
installations) and the physical ICT infrastructure (i.e. the measuring equipment and
communication links). The third part (Section 2.3) addresses the basic logic behind the
control approach, whereas the modelling of the system is presented at the last section of
this chapter (Section 2.4)

2.1. Electricity Markets in the Netherlands

2.1.1. Overview

The Dutch electricity market has been fully open to competition since July 2004 [18]
and from that date, small consumers were free to choose their own electricity supplier. In
the Netherlands, market parties can trade electrical energy, and these transactions are
executed by establishing bilateral contractual purchase and sale relationships within
power exchanges. Currently, there are several markets for trading energy in the Dutch
system; forward (or bilateral) market, day-ahead and intraday spot markets (also called
wholesale markets), and a single buyer energy imbalance market (which is essentially an
ancillary services market). Apart from these markets, there is the imbalance settlement
mechanism which is called the day after the operational day.

The different markets that exist for trading electricity, can be categorised as:

« Forward Markets (based on bilateral trade and anonymous trade through a power
exchange)

« Spot Markets (Day ahead and intra-day auction markets, also called wholesale
markets)

« Ancillary Services Markets (Congestion avoidance, voltage regulation, and energy
reserves for power balancing etc.)

In this study, the focus is on the APX day-ahead auction and the balancing energy

market operated by Tennet, the Dutch Transmission System Operator (TSO), which are
further described in the following sections [19].

13



2.1.2. The APX day-ahead market

Spot Markets refer mainly to the central exchange of electrical energy for the preceding
day of the day that the actual production and physical delivery takes place.

At the day—ahead auction, trading takes place on one day for the delivery of electricity
on the following day. Market members submit their offers and orders electronically, after
which supply and demand schedules are compared and the market price is calculated for
each hour of the following day.

The development of demand and supply curves on the APX spot market is completely
determined by the market parties themselves. Players are production and distribution
companies, large consumers, industrial end-users, brokers and traders. All of these can
be active as buyers or suppliers. The bids from buyers and sellers must be made known to
APX one day in advance. After the closure of the day-ahead bidding, APX provides
matching and sends the result to the bidders [20].

The hourly instruments that the members can trade, are traded for each hour of the
delivery day. Individual hourly instruments are traded in Euro/MWh with a precision of
two decimals.

APX is the central counterparty to all trades; all contracts are traded anonymously,
then cleared and settled on behalf of the members. Contracts on the exchange are fully
collateralised, as all members are required to lodge collateral. All trades are notified to
the Dutch Power grid operator TenneT BV by double-sided nominations, to be sent by
APX and the trading member.

Fig. 2.1 depicts the timing of actions of the several markets, and it can be seen that the
day-ahead bidding takes place on the previous day (D-1 in Fig.2.1.) and closes at the Gate
Closure Time (GCT), at 12:00 pm.

Ancillary serlvicu markets

I 1

Forward and future Day-ahead market Intra-day and Financial
mllikets \ ml-ﬁmti markets settlelment
r \ W R )
GCT
. 1 N
Day®n |  paymn | Day (D) Day (D+n)

Figure 2.1 Timing of electricity markets in the Netherlands.
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2.1.3. Imbalance Settlement System

In the Netherlands, TenneT, the national TSO, is the authorised entity to procure
balancing services for maintaining the system balance. TenneT transfers part of this
responsibility to market participants by implementing a system of programme
responsibility. Market participants are acknowledged as Programme Responsible Parties
(PRP) with the responsibility to keep their portfolio balanced for each settlement period.
In the Netherlands, the settlement period is termed Programme Time Unit (PTU) and is
defined in a 15 minutes basis. A PRP uses information from the imbalance settlement
system to either act and internally solve its own imbalance, or to accept the adjustment
imbalance by the TSO, or to contribute to system balancing without being actively
selected via the bidding ladder (i.e. having an internal imbalance in the opposite
direction of the system imbalance) [21]. This last form of participation to restore the
system balance is also known as passive contribution and is rewarded in the Dutch
balancing framework [22]. However, for the provision of operating reserve capacity by
active contribution, TenneT acknowledges market entities that place bids in the market
for operating reserves as Regulating and Reserve Power Suppliers (RRPS), and/or
Emergency Power Suppliers (EPS) [23].

2.1.3.1. Active contribution

Following the clearing of the day-ahead market, each PRP submits its positions to the
TSO in terms of energy schedules (e-programmes), one for each PTU of the day-ahead.
These e-programmes include energy volumes traded and settled on the wholesale
(forward, future and spot) markets. The TSO receives the e-programmes of each PRP and
performs consistency checks. Furthermore, before approval, the TSO performs a network
security analysis. Then, during operation, each PRP is subjected to adjustment imbalance
(difference between actually allocated values and submitted positions in e-programmes).
The TSO monitors the system imbalance on real-time and if needed calls bids for
operating reserves to restore the system balance. The TSO might also contract on
beforehand balancing capacity to ensure system security. Specifically, TenneT contracts a
part of the operating reserve capacity with suppliers, from which the suppliers will have
the obligation to offer this minimum capacity on the market for operating reserves.
Finally, the financial imbalance settlement between the TSO and market parties occurs
ex-post (i.e. after the operational day) [21].

2.1.3.2. Passive contribution

In the Dutch imbalance management system control area imbalance positions and
imbalance price are made public in near real-time. Therefore all market participants have
the opportunity to voluntarily contribute to the TSO efforts in maintaining the system
balance. This approach is called ‘passive contribution’ (‘passief meeregelen’ in Dutch)
and is believed to result in a substantial reduction in the required control energy [24].
TenneT, the Dutch TSO, publishes the Dutch system balance position and balance energy
price near real-time. This information is used by market participants to actively reduce
the system imbalance, utilizing non-contracted reserve power. The Dutch balancing
mechanism seems likely to reveal higher-level macro-economic efficiencies and the
passive contribution of decentralized market parties seems to create more competition
without jeopardizing the system’s stability [24].
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TenneT publishes the table entitled ‘Bid price ladder balancing’ for each date and for
each settlement period, which shows price information for bids of regulating and reserve
power capacity offered to TenneT for real-time balancing[24].

The bid price ladder balancing can be used to a limited extent to estimate real-time
settlement prices in combination with the ‘Balance Delta’ table. TenneT publishes the
‘Balance delta’ table which shows the quantities of regulating and reserve capacities (for
each minute of the most recent half hour) that were requested for its operations [25].

An example of the bidding ladder for the imbalance settlement system is illustrated in
Fig.2.1. The TSO monitors on real-time the system imbalance and selects bids for the
imbalance settlement either for positive (AP.) or negative (AP-) reserves. In Fig.2.1, 7. is
the settled price for up-regulating balancing capacity AP, sz- is the price for down-
regulating capacity AP-, and 7niq is the price which corresponds to the mid price, i.e., the
midpoint between the lowest bid price at the upward and the highest bid price at the
downward regulating side. In the case of real-time imbalance, the TSO will call as many
bids as necessary to restore the system balance, and finally all the service providers are
paid the same price which is equal to the most expensive bid called.

Price (€/MWh)

g_

500 AP: 1000

e

--------------- J' n

200

=300

400

Power (MW)

Figure 2.2 Schematic illustration of the bid price ladder for the imbalance settlement system in the Netherlands.

In Table 2.2, the price interdependencies for Program Responsible Parties (PRP) in the
Dutch imbalance settlement system are presented. A PRP with a surplus (or shortage)
faces an imbalance price z,,, (or zy,,) which is dependent on the system state. Let us

denote the predicted system state for the lth settlement period as sP (1) = {0,1,-1, 2}, where

each value corresponds respectively to a balanced state ‘0’, i.e., neither upward nor
downward regulation, exclusively upward regulation ‘+1’, exclusively downward
regulation ‘-1’, and both upward and downward regulation ‘2’ [22]. The incentive
component 7 is the component of the imbalance price that is intended to encourage
market parties to actually submit bids of regulating and reserve capacity used by TenneT
to maintain and restore the balance, and as an incentive to minimise the imbalance to be
settled. An analysis of the data for the year 2012, shows that the incentive component
was non-zero for about 2.73 % of the total time [26].
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Table 2.1 Price dependencies for Program Responsible Parties in the Dutch imbalance settlement system [23].

System = Time = Regulation = PRP Surplus (Taump PRP Shortage
State = (%)4d Actions for AE>0) (7Tshort for AE<0)

o 06.99 None i Hmid=Te . n ) Tk

+1 36.27 Upwards2 TT4—TTie T +Tie
(short) o

-1 | 45.04 Downwards ? TT—TTic : TT+TTie
(long) :

2 11.50 | Bidirectional e T4 +TTic
+1,em¢  00.17 Upwards2 max(7rs, MTem) —7Tic max(7r, em) +7ic
(short) ' N Y
2,em¢  00.03 Bidirectional | TT—TTic max (s, Mem) +Tic.

alf . > 0, then the TSO pays the PRP, else the PRP pays the TSO.
bIf 1. > 0, then the PRP pays the TSO, else the TSO pays the PRP.
¢ The acronym ‘em’ indicates that ‘emergency power’ was called.
d For the reference year 2012 [26].

It has to be noted that prices 7. and n- can be either positive or negative which
indicates the flow of payments from a PRP to the TSO and vice versa. For example, for
negative volumes of control energy, positive price values refer to a payment from the PRP
to the TSO, while negative values refer to a payment from the TSO to the market party. In
the case that the system is long, during the lth settlement period, then a PRP has an
interest to maintain an internal energy imbalance AE([)<0 whenever m.+mi. < 0. An
analysis of TenneT data for the year 2012 shows that while the system was long, the latter
condition was fulfilled for about 13.5 % of the total time [26].

Contrary, in the case that the system is short, during the Ilth settlement period, then a
PRP has an interest to maintain an internal energy imbalance AE(I)>0 whenever o,—;. >
0. An analysis of TenneT data for the year 2012 shows that while the system was short,
the latter condition was fulfilled for 100 % of the total time. This information indicates
that there are opportunities for the aggregator to receive additional revenues through
passive contribution in real-time balancing [26].

The imbalance settlement in the Netherlands for market parties that contribute
through passive contribution is based on the net energy volumes of provided control
energy per settlement period. According to the previous analysis, when the system state
is explicitly short or long then certain market parties might try to minimise or maximise
the net amount of energy traded per settlement period. In such a case, the provision of
more regulating capacity than requested is simply passive contribution which is delivered
at the party’s own risk. Furthermore, such actions might jeopardize any contractual
payments and slow down a possible increase in marginal price, thus have a negative
economic impact for certain suppliers of operating reserves. At the same time, this can be
beneficial for market parties that are subjected to deviations from their e-programmes
since it can result in reduced prices for the imbalance adjustment. Even though the
system state will be known only ex-post, still certain market parties can try to estimate
the balancing situation on real-time based on the delta-signals and historical data, and
thus benefit from passive balancing (e.g. up-regulation), but such a situation might lead
to an increase in marginal price for control power in the opposite direction (e.g. down-
regulation).
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2.2, System Design

An electrical power system consists of different control areas interconnected through
high voltage (HV) synchronous or asynchronous connections. In Europe, each control
area is operated by the transmission system operator (TSO), the legal entity that
monitors the electricity network, ensures the connections with other control areas, and
organises the markets for operating reserves and cross-border capacity. Regional DSO
companies connect individual customers to the grid and provide the distribution of
electricity. Medium voltage (MV) electrical networks (i.e., 10 — 110 kV) are connected to
low voltage (LV) networks through MV/LV transformer substations, which subsequently
feed a large number of end-users at the LV level.

The main actors distinguished in this work are: the system operators (i.e., the
operators of the electricity markets, and the transmission and distribution systems), the
aggregators (legal entities that hold contracts with system users, represent them to
markets and operators, and coordinate them in real-time), and the system users (e.g.
producers and consumers). For the selected case study in Etten-Leur, the aggregator is
representing all the connected entities to the LV bus, i.e., the residential customers, the
PV installations and the BESS. In the next sections, a decentralised control structure with
a global coordinator (i.e., the aggregator) is presented. The aggregator is the operator of a
virtual power plant (VPP) which consists of an aggregation of distributed resources. The
residential loads and the PV installations are considered non-controllable resources,
while the BESS is actually the only controllable process in the considered case study.

2.2.1. Technical Description and Specifications of the Battery Energy
Storage System

The BESS consists of four main building blocks, i.e., the battery unit, the power
conversion system, the measuring system and the control system, which are further
described in the following paragraphs.

2.2.1.1. The Measuring System

In this work, since bidirectional energy flows are considered, by convention it is
assumed that power values are positive for the energy flows from the secondary
conductor of the MV/LV transformer to the BESS and the residential loads. As can be
seen in the single-line diagram of Fig. 1, four network points (a)—(d) are defined: points
(a)—(c) are at the AC side of the network, whereas only rms values are considered, and
point (d) is at the DC side. For simplicity, the AC and DC indexes are omitted from the
equations in the following descriptions.

The measuring instruments consist of transducer devices which are applicable for the
measurement of voltage and current in energy distribution systems [27]. As can be seen
in Fig. 1, transducer devices, for measuring the voltages and currents, are installed next
to the secondary conductor of the MV/LV transformer at measuring point (a) and at the
point of connection of the inverter and the battery system at measuring point (b). In this
arrangement it is possible to determine all relevant power flows in the investigated LV
grid. The power at time instant k at the coupling point (c) of the residential customers
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and the PV system can be calculated, while neglecting network losses, by using (2.1):
F.(k) = F,(k)— B, (k) (21)

The 3-phase AC apparent power |S,| at network point (a) can be calculated by using
(2.2):

1S, (k)| = (B, (k) +(Q, (k) (2.2)

The implemented BESS is connected to the LV-side of a local 400 kVA MV/LV
transformer (0.4 / 10 kV) station operated by Enexis DSO, with an average peak-load
measured at 385 kW at the moment of installation. Considering a P-Q decoupled control
scheme, and under the assumption that the reactive power is zero, then the capacity
constraint related to the installed transformer can be written as follows:

|S,, (k)| <400 kVA = —400 kW < P,(k) <400 kW  (2.3)

2.2.1.2. The Battery Unit

The battery unit consists of a number of lithium-ion battery modules in series and
parallel connections. Each module contains 14 cells which are assembled in two parallel
strings, whereas each string is composed by 7 cells in series. This configuration results to
a nominal voltage potential of 24 V and capacity of 2 kWh per module [17]. The BESS
consists of four parallel battery strings, with each string comprising 29 lithium-ion
battery modules in series. Each battery string has a 730 V nominal battery with a rated
energy capacity of 57 kWh and is connected to a Battery Management Module (BMM).
This provides electronic control of the 29 individual battery modules in charge and
discharge and monitors their state of charge (SoC), state of health (SOH) and other
operational data such as temperature. The four parallel battery strings are controlled by a
Master Battery Management Module (MBMM). Its main function is to ensure that there
is an equal SoC in all parallel strings and if unbalance is detected, or for maintenance
purposes, it can bypass one or several strings. This is a critical feature for Li-ion battery
architecture that prevents undesired discharges between strings, as well as enabling
strings at a different SoC to be connected during installation or maintenance. The
MBMM provides the control interface with the Power Conversion System. The total
capacity of the BESS is about 230 kWh, whereas the power charging and discharging rate
is 200 kW (only seconds) and 400 kW (30 min.) respectively.
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2.2.1.3. The Power Conversion System

The power conversion system, depicted between points (b) and (d) in the network
diagram of Fig. 1, consists of four separate inverter units, each connected to one of the
four battery strings. During the discharging mode, the inverters convert the DC power
into 3-phase AC power. During the charging mode, the AC power is converted to DC. The
BESS operates in three states depending on whether the battery is in idle, charging or
discharging mode. A basic approach to consider the power losses of the energy flows
during the conversion and charging or discharging processes is by incorporating an
estimation of the efficiency of the power electronic devices for both the charging and
discharging modes.

1
B (k) = —— P2 (k) + 1 - P32 (K) (2.4)

Hen

where ne, and na;s are the efficiency factors of the inverters system during the charging
and discharging modes respectively.

The charging and discharging efficiencies of a BESS are found to depend on a range of
parameters such as the power rate, the temperature, the SoC and the internal resistance
[28]. Since the focus of this work is not the exact modelling of the losses of the BESS, a
simple representation will be used. Some preliminary analysis of the measurements from
Enexis, show that both charging and discharging efficiencies can be assumed to be
around 0.8. Therefore, at all the analyses in that thesis, the efficiencies are going to be
considered constant and equal to 0.8.

In grid-connected applications, the output of an inverter can also inject current into
the grid according to control actions (i.e., as a current source). In a current-controlled
inverter the voltage and frequency are defined by the bus to which the power electronic
device is connected.

Figure 2.3 Photo of the two inverters of the BESS at Etten Leur, seen from the side-door.
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2.2.1.4. The Control System

As the controller software runs on server hardware, it offers great flexibility and
customization possibilities. By simply updating controller software, a different control
strategy can be executed. Among other basic functionalities of the control system, the
controller executes the overall control algorithm, that determines the inverter set points
(these set points are sent to the inverters via a LAN connection), while there is the
possibility to import external variables which might be necessary for executing the
optimisation algorithm.

2.2.1.5. Costs of the BESS

The total cost of a BESS includes costs for the battery itself, the power electronics, the
monitoring as well as engineering and installation costs. Table 2.2. presents the
abovementioned costs for the BESS in Etten-Leur.

The engineering costs are mentioned to be relatively high. This can be explained by the
pilot character of the project. When large scale deployment is applied to such battery
storage systems, the engineering costs are expected to be considerably lower.

Table 2.2 Analytical and total costs of the BESS.

Description Amount
Battery ' 350.000
Power electronics 150.000
Operating system - : % 25.000
Englneermg, securlty estmg 1nstallat10n 230.000
Smal &  44.000
108.000
. 31666
938 666
Total Smart Storage (cost - subsidy) 572 849

2.2.2. The power profile

The coupling point (c) in Fig.1.1 is the point of the network where the PV installation
and the households are connected. The aggregate power is denoted as P. and refers to its

rms value which ranges between -50 kW and 380 kW.

In order to define the power profile at the coupling point, an analysis is made for the PV
generation and the household’s profile. The PV profiles both for summer and winter are
presented in Fig.2.4 and Fig.2.5 and are generated based on historic data from KNMI
[29], for the year 2012, considering the hourly solar irradiation at Etten-Leur and taking
into account the efficiency, the installation angle and the total surface of the PV panels.
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Figure 2.5 Average daily PV generation profile for the winter months.

The PV generation is depicted to be negative because as it was mentioned, power
values are considered positive for energy flows from the LV busbar towards the loads and
the PV panels. For energy flow from the panels to the MV bus, the power values are
considered negative.

As it is expected, there is a peak at around 12hoo, when the solar radiation is the
highest during the day, while at the first and last hours of the day it approximately zero.
At the peak of the summer profile, the power is around 160 kW, while at the winter the
peak power is around 65 kW.
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By processing the measurements from the substation and the inverters of the BESS (at
the points (a) and (c) in Fig.2.1) it is possible to generate a profile for the total power
profile at point (c). By extracting the PV power from the P, then, the household average

power profile are generated. The average household power profile is presented at Fig.2.6
for the summer months, and at Fig.2.7 for the winter months.
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Figure 2.6 Average (summer) daily power consumption profile for the residential customers.
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Figure 2.7 Average (winter) daily power consumption profile for the residential customers.

Both profiles are as expected, with low power consumption at the beginning and at the
end of the day and larger power values at the hours from 8 a.m. to 8 p.m. In the summer
profile it can be noticed that there is a peak at noon hours that could be possibly
explained by cooling domestic devices i.e. air-conditioning systems. Similarly, at the
winter profile there is a peak at 18-21 p.m. probably due to fact that is a time when people
return home and there is increased activity in the households.
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Lastly, the profiles considering the total power consumed at the coupling point (c) are
generated, which are also going to be used during computer simulations in this study.

The P summer profile is presented at Fig.2.8 whereas the P. winter profile is presented

at Fig. 2.9.
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Figure 2.8 Average (summer) daily power profile at network point (c).
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Figure 2.9 Average (winter) daily profile at network point (c).
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2.3. The Control Logic

The goal in this work is to control the power P, at point (b), to account for any
deviations of the power P. at point (c), to shape the exchanging power P, with the MV
grid according to (2.1). The realised power exchange P, with the MV grid is subject to
contractual agreements with electricity markets that occur prior to the real-time
operations (e.g. day-ahead). The basic logic behind the control approach is to perform an
economic optimisation which can be formulated into three control levels (i.e.,
upper/intermediate/lower levels).

The upper-level addresses energy trade and corresponds to discrete time periods of 1
hour, in line with the defined settlement periods for wholesale electricity trade in the
APX day-ahead market.

The intermediate-level addresses the interaction with real-time markets for ancillary
services, and specifically the balancing energy market for the provision of operating
frequency restoration reserves for load frequency control which is organised by the Dutch
TSO, under passive balancing. At this intermediate (intra-hour) level, the timescale
corresponds to discrete time periods of 15 minutes, in line with the defined settlement
periods for imbalance energy verification and settlement in the Netherlands.

The lower-level controller receives updated predictions for the power profile at the
coupling point (c) (See figure 1) and the state of the system, calculates the expected
future imbalances and acts accordingly (close to real-time) on a timescale of one minute.

The upper-level control problem is formulated in Chapter 3, whereas the intermediate-
level control is described in Chapter 4, and finally the lower-level control problem is
presented in Chapter 5.

All simulations are implemented in Matlab in a Lenovo IdeaPad Z580A with an Intel
Core i5-3210M processor of 2.5 GHz with 4 GB of RAM. The optimisation problems are
solved by the Global Optimisation Toolbox by using the fmincon function. The exact
philosophy of the developed algorithms is provided in Appendices A and B.
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2.4. State-space first order model

The state of energy (SoE) of a battery system at time instant k is typically expressed in
a number that corresponds to a percentage and is defined as the ratio of the net amount
of energy stored within the battery and the nominal capacity of the battery:

SoE (k) = 5(—") (2.5)

nom

where E(k) denotes the measured energy content that is present in the battery at time
instant k, and E,,, =230 kWh refers to the nominal capacity of the battery. Since the SoE

does not correspond to a physical quantity, it cannot be directly measured.

The most popular model-based approaches for SoE determination are based on state-
space models that have the SoE as a state variable. Considering the BESS as a single
input Pg={Pqch, Paatisy single output P, system, a simplified first order linear model, in
discrete-time domain, can be deduced (while assuming a coulombic efficiency of unity
for the battery unit):

E(k+1)=E(k)+F;(k)-T (2.6)
Fy(k) =F o (k) + Py 4 (k) (2.7)
Boin < By 4 (k) <0 (2.8)
OSPd,ch(k)SPmax (2.9)

Fy cn(k)-Fy 45 (k) =0 (2.10)

The last constraint expressed in (2.10) shows that the BESS can be either in charging
or discharging mode. The constraint formulated in (2.3) can be re-written as follows:

< —400 kW < B, (k) + P.(k) <400 kW <
& —400 KW-P, (k) < P, (k) < 400 KW-P. (k) (2.11)
Given the fact that P (k)e[-50,380]kW, based on actual measurements, and the
constraint expressed in (2.10), then (2.11) can be formulated as two inequalities:

—400 kW — P7" (k) < 15 - By i (k)

and
1 (2.12)
— P, (k) <400 kW — P7" (k)

Men
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Chapter 3 Day-ahead schedule

3.1. Day-ahead Planning

In order to assess the performance of the aggregate DR system, it is important to create
a realistic representation of the aggregate residential load and PV generation in terms of
energy volumes and time schedules. The aggregate power demand can be distinguished
between the non-controllable part measured at network point (c¢) and the controllable
part due to the power injection and absorption of the BESS which is measured at network
point (b). Accurate short-term forecast of net generation and load is essential for the
optimal real-time control of the BESS. Different techniques can be employed for creating
short-term forecasts such as time series prediction methods, or artificial neural network
(ANN) models such as the one presented in [30].

Since the focus of this work is not on the forecasting methods, it is assumed that a
forecast of the power trajectory P.(k+i|k) is available at any time instant k, (note that in
this work the power trajectory P.(k+i|k) is resembled by the actual measurements at
network point (c)). The notation P.(k+i|k) indicates that the power predictions trajectory
depends on the conditions at time instant k [31].

During the operational planning, the aggregator defines an energy schedule Padas (h) for

the day-ahead which is actually a piecewise constant function with a finite value for each
settlement period of the day-ahead market (7,= 1 hour), with h=1,..., 24, whereas h=1
corresponds to the first hour of the operational day (i.e., from 00:00 to 01:00).

3.2. Day-ahead Objective Function

The day-ahead power schedule P%* (k) is actually constructed based on: the day-
ahead prediction of the net PV generation and residential load p7“(#), and the result of
an optimisation process for the BESS which defines an optimised power profile A% (4) at
network point (b). The day-ahead prediction p7<n)is constructed based on a day-

ahead forecast of the net PV generation and residential load (i.e., the trajectory
P.(k-1+i|kf) at network point (c), whereas for i=1 and k=1 corresponds to the first
control period of the operational day and k. is the control period that signifies the gate
closure time instant of the day-ahead market, e.g. around 12:00 of the day-ahead. The

schedule P (k) is actually an optimised constant power profile of the BESS for the htt

hour as the result of the upper-level optimisation problem which can be formulated as
follows:

24
}_}:(1}13) hZ=:] o(h) (3.1)
O(h) = EZ (hy- 27" () (3.2)
E% ()= P% (h)-1, (3.3)
P (h) = B (h)+ PP (h) (3.4)
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where @(h) is a cost function that represents the hourly costs for purchasing an amount
of electrical energy £%“(h) in (Wh) at a price z”(h) in (€/Wh) from the day-ahead
market, whereas ps () ={ P (), Pjes. (h)} is the input trajectory for the BESS which
satisfies the objective function and refers to the DC charging and discharging power set
points. For the price values 77 (k) it is assumed that a forecast is available, resembled
by the actual market clearing prices of the day-ahead market in the Netherlands for the
year 2012 [32]. Considering that P”(h)is considered as a known and fixed parameter,
by substituting Pd from (2.4), (3.1) can be rewritten as:

24
min 3 P (h)- " (h) =
PJ’““(hmz:l ’

u 1 (3.5)
min El(n_ch'% (k) + 1 - P () 77 ()
Subject to the day-ahead constraints:
P, <P (h)<0, he[l,24] (36)
0< P& (M) <Py, hell,24] (3.7)
P4, (h)- P{% (h) =0 (3.8)
SOE® < SoE™ (h+1) < SoE™ (3.9)
—400 kW — PP (h) < 174, - Pi'%, (h)
and

1 (3.10)

- P{% (h) < 400 kW — PP™ (h)
ch

where P,. =—-400kW, P, =100 kW. In the above mentioned constraints, it could also be

min 3 ¥ max

added one to ensure that the SoE at the beginning and at the end of each day remains the
same. Nevertheless, the battery always respects this constraint by the default definition
of the day-ahead optimization and during a day, the sum of all charging power set points
is equal to the sum of all discharging setpoints.

The results of the day-ahead optimisation problem are optimised charging and
discharging profiles of the BESS, ie., hourly power set-point values
P (h) = {P;{ij,(h),Rj’,?iL (h)} and energy states SoE“* (h+1) for h=1,..., 24. These results can

be further employed in the intra-hour optimisation problem (See chapter 4).
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3.3. Results of the day-ahead optimization

Given the fact that energy arbitrage applications through storage technologies are
susceptible to the efficiency of the storage systems, the basic principle behind the
decision whether the battery should be used or not in a specific day is dependent on the

term 7, -n, —Zmin where T, 1S the highest price of the day-ahead market and 7
nch
the lowest.
If this term is positive, then the battery will be charged at the hour when the price is

7., and discharged when the price is 7, . Accordingly, the algorithm continues

comparing the next highest price with the next lowest and if the term mentioned above is
positive and subject to the SoE constraints, then another charging and discharging cycle
is scheduled.

Practically, the above-mentioned term is representing the losses of the system, and
therefore determines the decision whether the battery should or not be charged or
discharged at a specific time instant (i.e. at the hth hour).

As it is already mentioned, the charging and discharging efficiencies for the
investigated BESS at Etten-Leur were estimated to be around 0.8 based on actual
measurements, and for this investigation are assumed to be constant.

An example of the day-ahead optimization is provided in Figure 3.1 where the charging
and discharging profiles are illustrated for a random day of 2012 based on the APX day
ahead clearing prices.
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Figure 3.1 Typical BESS optimisation. APX prices for the gt June, 2012.

As can been seen in Figure 3.1., at the lowest price during the day the BESS is charged
until it reaches its maximum allowed SoE. As it cannot reach it within one hour, due to
maximum allowed charging power (100 kW), the charging takes place at the two hours
with the lowest price (5t and 6t). As it is expected, the battery is discharged at the time
with the highest price, which happens to be the 24t hour for that day.
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A typical day ahead optimised profile for the investigated BESS is depicted in Figure
3.1. However, depending on the expected prices and considered efficiencies the optimised
profile can be characterised by more than one charging and discharging cycle. An
example where the battery is charged and discharged twice during one day is provided in
Figure 3.2. based on prices from the 7t of February, 2012.
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Figure 3.2 Optimal BESS optimisation with two charging and discharging cycles during one day (APX prices from
February 7, 2012).

Another distinct case during the day-ahead optimisation is when the expected prices
and considered efficiencies result in a null schedule for charging and discharging. An
example with such a profile is provided in Figure 3.3.
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Figure 3.3 BESS optimisation with no optimised charging and discharging profiles (APX prices from the 21t January,
2012).
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Focusing on data for the year 2012, the revenues that the BESS can generate under the
defined day ahead optimisation are on average around 5€ per day. This amount may
increase to 27.5€ for the investigated BESS for a selected day and theoretically can reach
up to 36€ for an ideal system which is characterised by no energy losses.

To provide an impression of the potential revenues from energy arbitrage application,
and how these revenues vary depending on the efficiencies of the BESS and the expected
day-ahead prices, a representative sample of results is provided in tables 3.1 and 3.2.
Specifically, three cases are considered: case 1 stands for charging and discharging
efficiencies equal to 0.8, case 2 stands for charging and discharging efficiencies equal to
0.9, and case 3 stands for charging and discharging efficiencies equal to 1. Furthermore,
a selection of days from the year 2012 that are characterised by large price differences
and two daily charging and discharging cycles are included in Table 3.1. whereas days
characterised by average daily price differences are included in Table 3.2.

Table 3.1 Daily revenues for the potentially most profitable days for the year 2012 based on APX data.

Day Revenues (€) Revenues (€) Revenues (€)
Case 1 Case 2 | Case 3
06/02 108 176 23.8
__08/o2 185 275 364
LogloRl i LR aag iy e gy e
10/02 o 16 18 | 24.1 |

Table 3.2 Daily revenues for the average days.

Day Revenues (€) Revenues (€) | Revenues (€)
Case 1 Case 3
~ 23/02 | AR 116
09/06 577
18/12 | 5.8 ; 9
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3.4. Economic results of the day-ahead optimisation

Based on computer simulation for the years from 2000 to 2012, large deviations in
calculated annual revenues can be observed. The results from computations are
presented in Tables 3.3 and 3.4. The first table captures the annual profits per year and
for several charging and discharging efficiencies between 0.5 and 1 while the second table
presents the percentage of the days of the whole year that the BESS is being used for the
considered years and BESS efficiencies.

Table 3.3 Calculated profits per year for the period 2000-2012 for varying charging and discharging
efficiencies.

Annual Proﬁts (€) ___
m-mm
mmmmm
2008 | 285 | 764 | 1615 | 2602 | 3697 | 5406 |
mmemm

200 2125 3018 3949 5104 6333 7760

Table 3.4 Calculated percentage of the days of a whole year that the day-ahead optimization is performed.
Percenta pe of days used (%)

mmmmm——
m-——
mmm_—
mmm———
m__

2000 | 28.7 | 31.9 | 51.6 71.3 76.8 100

By processing the data from APX for the period 2000-2012, large prices deviations can
be noticed during a day between several years. It is mentioned above, that the term that
mostly affects the annual revenues is the difference between the highest and lowest price
of the day-ahead market. To assist in interpreting the results, the historical price
volatility metric is utilised in the study.
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3.5. Historical volatility
3.5.1. Definition of the historical volatility

In finance, volatility is a measure for variation of price of a financial instrument over
time. Historic volatility is derived from time series of post market prices. In competitive
electricity markets, prices are not regulated any longer, but are determined by the market
operators for each specific interval of the day (e.g. every 1 hour or 15 min), while taking
into account various economic and operational factors. Given the uncertainty associated
with the electricity market prices, and such a wide variety of options, the applications of
volatility analysis to competitive electricity markets are undoubtedly useful for market
participants [33].

Historical volatility is defined as the standard deviation of arithmetic or logarithmic
returns over a time window I'. The logarithmic return, over the time period #, is defined
as follows:

- =ln( P j=ln(p,)—1n(1’r-h)

Pi-n
where p, denotes the spot price for a commodity at time /.

The arithmetic return, over the time period £, is defined as
_ PP
Rt,h -
pt—h

The estimated value of historical volatility over the time window I can be calculated as
[33]:

where o, , is the estimated value of historical volatility, ».

o

is the number of -,
observations, 7, is the average of the returns ,, (either logarithmic or arithmetic) , all of

them for the time window T.

In this volatility analysis study, # =1 (kour) which is the settlement period for the day-

ahead spot market for electricity.
The time window is one day, as the scope of this analysis is to compute the daily
volatilities, based on both logarithmic and arithmetic returns for each year and compare

them with each other. Therefore, T is defined as 7 =1 (day)and N, =24.
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3.5.2. Historical price volatility calculations

Figure 3.5 depicts the annual revenues for the years 2000-2012, assuming charging
and discharging efficiencies equal to 0.8. Figures 3.6 and 3.7 show the boxplots of the
historical price volatilities for the same years, based on arithmetic and logarithmic
returns calculations respectively. Each boxplot depicts all the daily volatilities for a year
and the spacing between the different parts of the box help indicate the degree of
spreading and identify the outliers. On each box, the red central mark is the median, the
edges of the blue box are the 25t and 75t percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers (i.e. observations that are

numerically distant from the rest of the data) are plotted individually.

@———— OUTLIER More than 3/2
PP times of upper quartile

MAXIMUM Greatest value,
excluding outliers

UPPER QUARTILE 25% of
data greater than this value

MEDIAN 50% of data is
greater than this value;
middle of dataset

LOWER QUARTILE 25% of
data less than this value

MINIMUM Least value,
excluding outliers

@———— OUTLIER Less than 3/2
times of lower quartile

Figure 3.4 Description of the boxplots used for volatility analysisz.

2h

://www.mathworks.com/help/symbolic/mupad ref/plot-boxplot.html
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The results of the volatility calculations for the years 2000-2012 are shown at the figures
below:

[ I ) Tk o 1

I I I [ [

7000 —

|
6000 —

1
5000 —
4000 L .
3000‘} - |
2000 - - 1‘
1000 — g

o— , ! :

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Year

Annual Revenues(€)

Figure 3.5 Annual revenues per year from the day-ahead optimisation (charging and discharging efficiencies are
considered to be 0.8).
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Figure 3.6 Boxplot of historical price volatilities per year based on calculations of the arithmetic return.
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Figure 3.7 Boxplot of historical price volatilities per year based on the calculations of the logarithmic return.

Based on observations and comparisons between figures 3.4 - 3.6, it can be noticed
that the arithmetic volatility seems to be rather correlated with revenues while the
logarithmic is not. The correlation of the profits with either the median values or the
whole box containing the 50% of the data is low for both arithmetic and logarithmic
volatilities. However, in the case of the arithmetic volatility, it appears that the outliers
and the profits are well correlated. It can be concluded, that the annual revenues are
mostly related to the magnitude and the frequency of the outliers above the upper
quartile.

This volatility analysis explains up to a point the correlation of the annual profits with
the volatility of the prices. However, the definition of historical volatility is based on the
assumption that the logarithmic returns follow an independent and identically
distributed random variable which means that they are assumed to have a random
behavior but with constant mean and variance over the time window T. However,
electricity prices are characterized by a seasonal behavior depending on the specific day,
week or season of the year and therefore could not be seen as independent and
identically distributed random variables [33].

Apart from that, it is not only the price differences during a day that define the annual
profits. The SoE of the BESS at a certain time instant is a factor that also affects the
scheduling of the charging/discharging cycles regardless of the prices mentioned. This
dependence though, cannot be captured by the analysis of the historical prices volatility.

36



Chapter 4 Intra-hour Schedule

4.1. Intra-hour Planning

Following the clearing of the day-ahead market, the aggregator has defined an hourly
power schedule pé=(p) for the day-ahead which is actually a piecewise constant function

with a finite power value for each hour h of the operational day, h=1,..., 24. The
verification of the energy provision and the financial settlement by the system and
market operators are performed a posteriori, i.e., after the operational day, and is
performed on the basis of settlement periods : of 15 minutes each. Therefore, the hourly

power schedule pé () for the day-ahead is transformed on the basis of 15 min,, i.e.,
P 1y, with [=1,..., 96. Any energy imbalance ag,(;) with respect to the energy schedule
Py must be internally solved by the aggregator before the end of the I settlement
period, or settled with the TSO through the imbalance settlement.

Moving closer to the operational day, updated forecasts are at the disposal of the
aggregator which can be further employed during intra-hour optimisation. Taking the
Dutch market design as a reference, the aggregator can contribute to system balancing
through passive contribution. Passive contribution can only be identified in case of
unidirectional dispatch during a settlement period (i.e., when the system state is: ‘1" or
‘~1). Therefore, if the system is expected to be short or long during certain settlement
periods, then the aggregator can decide to maintain an amount of internal imbalance
which can be regarded as passive contribution and allow for additional revenues. An
analysis of the data for the year 2012, indicate that the Dutch system was either in short
or long position for about 81.5 % of the time [24].

At the end of the operational planning day, the operations proceed with the intra-hour
planning which occurs for each Ith settlement period. At current settlement period ¢, the

aggregator creates an updated forecast about the net PV generation and residential load,
ie., Pf’" (g+m|q), with m=1,...,48. At the same time instant the aggregator generates a
prediction about the system state and imbalance prices for the forthcoming settlement
periods. Let us denote the predicted imbalance prices as nsp":(q +m|q) and nf::j (g+m|q)

for net energy surplus and shortage respectively, and the predicted system state
sp"d(q+m | q) s With m= 1,. . ,48 5

Based on (2.4), from the optimised charging profiles ¢ (x), the pé () profiles can be

defined. During the intra-hour scheduling the expected energy imbalance AE,-p,,,rZ (/) for
the Ilth settlement period can be expressed as follows:

AEPE (D) =B (D) -BFD-B* W)z, (41)

where the intra-hour power schedule 7" )= p% 1y+ap” 1), and ap ) is a deviation
value which can be set to command for corrective actions with reference to the day-
ahead optimised charging schedule pé=(y. Equivalently, 7 (1) = p* 1)+ ar™ (1), where
P is the most recent prediction of the net generation and load at network point (c),
and 4p* (1) =0 when assuming a prediction with no errors.
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4.2. Intra-hour Optimisation

Considering the current settlement periodq, the objective function for the intra-hour
optimisation problem can be formulated as a profit function Ii(¢+m|q) that represents

the profits associated with the passive contribution in the real-time balancing market for
the (g+m)t settlement period, with m=1,...,48. The optimisation objective is to maximise
the objective function:

48
Jmax > Tl(g+m|q) (4.2)
dr;” (g+mlq) m=1

T(g+m|q)=AEP? (q+m|q)- z" (g+m|q) (4.3)

AEPY (q+m|q)=(~dP" (g +m|q)—dP" (g +m|q))-7, (4.4)

where 7r,-',’,,rf (g+m|q) is the predicted imbalance price in (€/MWh) for the real-time
balancing market and 4P (4+m|q)is the input trajectory which satisfies the objective

function and refers to a DC charging (and discharging) power deviation value. The latter
can be expressed according to the following equation:

1

Nen

dB" (1) = —— - dPS, (D) + 14 - AP (D) - (4.5)

Note that the price zr,-”,,,’;,” (/) is dependent of the sign of the net energy imbalance
AEP (g+m|q). Therefore, .74y =z 1), z24 (1; depending on whether there is

Surp. short

energy surplus (AE” (1) > 0)or shortage (AEE (1)<0).

surp short

For the price values ﬂf,,,’,'j (/) it is assumed that a forecast is available, resembled by the

actual market prices of the real-time balancing market in the Netherlands for the year
2012 [26].

The resulted hourly charging states of the day-ahead optimisation problem SOEdas(h),
for h=1,..., 24, are transformed on a 15 min. basis by using (4.6):

das _ Q, podas
SoEi}u(I)=SoEdm(h)+SOE (h+1)—SoE“* (h)

s ; (1-1-4--1)  (4.6)

where / e[4-(h-1)+1,4- k] for each hour h, whereas I=1, ..., 96.
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subject to the intra-hour constraints:

P < P, (D) + Pyl (1) <0 (4.7)
0< B.;,“::,(l) + APy () S P (4.8)
o) Pl (1) =0 (4.9)

SOE, 1, < SoEmms. (I +1) < SOE, (4.10)
SoE™ (q+48) = SoEje; (¢ +48) (4.11)

—400 kW — PP (1) < 145, - P (1)
1 2l (4.12)

nch

P, (1) < 400 kW — PP (1)

where (4.11) reflects the fact that during the intra-hour optimisation, the charging state
at the end of the prediction horizon should meet the reference value of the day-ahead
optimisation.

The imbalance prices for shortage and surplus given by Tennet and presented at Table
2.2. consider the active balancing market. As passive contribution refers only to the cases
when the system state in a settlement period is 1 or -1, the prices have to be defined
appropriately to match the objective function. The imbalance prices have to be defined in
a way, such that the term of  the objective function

(g +m|q)=AEPY (g+m|q)- 7l (g+m|q)is positive when the aggregator is receiving

additional revenues from passive balancing and it is negative when the aggregator is
facing penalties. The appropriate definition of the imbalance prices is given in Table 4.1.

Table 4.1 Intra-hour optimisation pseudo code: imbalance prices definition.

begin;
# Current settlement period is q (e.g., the last settlement period of the operational planning day),
whereas 7s = 15 min., m= 1, ..., 48.

3. for m=1to 48 do

4. if s77(g+m)=0 then
5. fApr(q+m)>0 then
6. 727 (g e m) =2 (g +m) = abs(xl7 g + m) -2 (g +m) else
7- if AElprd(q + m) <0 then
d d
8. prd(q+m) ﬂphfn(q+m)=abs( Zd(q+m)+7r£r (g+m))
9. end if
10. if s79(g+m)=2 then
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11.

12.

13.

14.
15.
16.

17.

18.
19.
20.

21.

22,

23.
24.
25.

26.

27.
28.
29.
30.

31.

32.
33.
34.
35.
36.

37.
38.

39.
40.

1fApr(q+m)>0 then

”prd(q +m)= ”prd

imb surpl (q+m)=—abs(z” rd (g+m)- ﬂ;ﬁrd (g+m)) else

prd(q+m) <0 then

If (emergency power is called) then
7P (g +m)= ﬂfh::jn(q+m) abs(max(77™ (g + m), 27 (g + m)) + 727 (g + m))

else ;27 my= 22 (g +m)=absal™ (q+m)+ 2l q+m))

End if
end if

if 574 (g+m)=-1 then
AEP"(g+m)>0 then

;zipmr:(q +m) = z":;‘;),(q +m) =P (g +m)— :t’”d(q +m) else

AEP (g +m)<0 then

prd
short

prd

Pt (g+m)=rP(g+m)+ (g +m) else

q+m)=nx
end if

if s7?(g+m)=+1 then
if AEP(g+m)>0 then

if (emergency power is called) then
el (q+my=xFrt (g 4 m) = max(zE™ (q + m), 2B (g + m)) - 7l (g 4 m)

else Irprd(q +m)= Itg;‘;, (g+m)= lrfrd(q +m)— I!‘-‘Zrd(q + n)

End if
if AEprd(q+m)<0 then

if (emergency power is called) then

/tprd(q+m) /rprd hor (4 M) = rmx(zrp"i(q+m) ;rp’d

d
imb (g+m)+xl (g+m)

else v (q+m)= 2l (g +m) =7 (q+m)+ 7 (g + m)

End if
end if

end for
# The iteration continues with the next settlement period and the whole process is repeated.

g=g+1
end
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As it has already been stated, the electricity prices for the imbalance market are only
known ex-post and not close to real-time. Therefore, an optimisation approach that is
applied just before the beginning of the PTU can only rely on a price forecasting method.
It is expected that the appliance of forecasting tools, poses risks in the problem
associated with erroneous predictions. Since the development of price forecasting is not
the contribution of this thesis though, the price prediction is going to be considered
perfect (by utilising the actual historical market data) and only in some case studies
discussed in section 4.3. specific prediction errors for the state of the system and the
power imbalance at point (c) are considered. Aspects concerning the risks that are
imposed in the system from the presence of the forecasting tools are not addressed at all
throughout this thesis.

4.3. Results of the intra-hour optimisation

The results of the intra-hour optimisation problem are optimized charging and
discharging profiles of the BESS, i.e., power set-point valuesdP} (/) = {def’jh (), dP}"; (l)}
and charging states so£”s (7 +1) for an horizon of 48 PTUs starting from the current PTU.

The results about the charging states will be further employed in the real-time
optimisation problem.

An example of the intra-hour optimisation is provided in Figure 4.1. where the
optimised profile of the BESS is illustrated for the 7t of July, 2012 starting from the 15t
PTU based on the Tennet energy imbalance prices.

Imbalance Prices for shortage (€/MWh)
00— =T — —

200 r o . B S i -

Imbalance Prices for surplus (€/MWh)
200 == e ! 0 = —

o | .
200 - ! — - — — —- 1 -
States
2 7 N - T 7 7 = =
1 ol
o | U
o I = — = —
Day-ahead State Of Energy
o9~ 1 T T —F—1 - —‘1
0.2 S =S o= oo I S [ =]
o 8 16 32 40 48

Time (PTU)

Figure 4.1 Input parameters of the intra-hour optimisation problem (An example based on TenneT data for the 7t July).
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Figure 4.2 Illustration of the outputs of the intra-hour optimisation (An example based on TenneT data for the 7t July).

Figure 4.1 shows the predicted imbalance prices for surplus and shortage, the predicted
state of the system and the day-ahead SoE while Fig.4.2 shows the battery optimized
schedule for the horizon of the 48 PTUs, the accumulated profits per PTU, as well as the
SoE of the BESS per PTU based on the intra-hour optimisation.

At the first 2 PTUs, the state of the system is 1. This means upwards regulation and the
aggregator has an interest to maintain a positive energy imbalance (dE >0 ). The only
way that the battery system can respond to this is by being discharged. It can be observed
though, that at the same time the SoE of the battery is at the minimum allowed bound
(0.2) and therefore the battery cannot be discharged further.

At the next PTUs (3rd and 4th), the predicted state of the system changes from 1 to -1.
This means downwards regulation (dE <0) and the aggregator is now incentivised to

maintain a negative imbalance. It can be seen that the battery reacts accordingly, by
being charged with the maximum allowed power rate (100kW).

The same pattern is being followed during the whole horizon of the optimization. It
can also be noticed that when the system state is either 0 or 2, the battery is neither
charged nor discharged. This is expected because, as it has been stated, at the passive
balancing any energy imbalance dE is going to be penalised and lead to economic losses.

In real-time operations, the intra-hour optimisation is applied at the last minute before
the beginning of each PTU. The first step of this optimisation is applied at that PTU
whereas at the following PTU a new optimized schedule is generated by the algorithm
taking into account the updated predictions. This technique, where the prediction
horizon is continuously being shifted forward, is called the receding horizon technique.

The simulations for the intra-hour optimization problem lasted on average 18 seconds
with respect to the utilized hardware and software that was mentioned in Chapter 2.
Therefore, the calculations for the intra-hour optimisation are performed fast enough to
be implemented at the last minute of each PTU and close to real-time operations.
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4.4. Case studies with erroneous predictions in the states of the
system and the power profile

In real life applications, the predictions of the state of the system and the P power

profiles are expected to involve errors and deviations from the forecasted values will
most probably occur during a day. In order to ensure that the output of the optimization
algorithms in such cases can account for such prediction errors, the algorithms are
examined in several case studies.

In these case studies, the prediction error that is assumed to appear, considers only the
state of the system at the first PTU and the power profile at the coupling network point

(0).

Apart from that and in order to have a better insight of the way that a prediction error
in the P power profile affects the whole system, the case studies are examined for both
large and small errors.

The measure that is used to quantify the difference between the P predicted values

and the P measurements is the Root Means Square Error (RMSE). The RMSE serves to

aggregate the magnitudes of the errors in predictions into a single measure of predictive
power.

The RMSE is given by

RMSE = [~ (7, - vy’
n g

where Y is a vector of n predictions, and Y is the vector of the measured values. In
this thesis, all case studies are going to consider a large prediction error for P

(RMSE=40) and a small prediction error (RMSE=20).

Apart from that, two different situations are considered for the forecasting of the P

(6]

profile.

The first one, is assumed to happen in the summer and considers the case in which the
PV generation is larger than predicted during the day, due to more solar irradiation,

which results in a lower B: than expected (ch <0 ).
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The summer case study is performed based on data from measurements at point (a)
and point (c) from the 30t June 2012 and the PV forecasted and real power profiles are
presented in Fig.4.3 and Fig.4.4 for small and large prediction error respectively.
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Figure 4.3 Pc summer profiles for small prediction error (RMSE=20) at the PV generation.
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Figure 4.4 Pc summer profiles for large prediction error (RMSE=40) at the PV generation.
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The second case study, is assumed to happen in the winter and examines the case

where the household consumption is larger than forecasted and therefore the P

c

measured is larger than expected (ch >0).

This case is performed at the 12t January and the PV forecasted power profile and real
profile are presented in Fig.4.5 and Fig. 4.6 for both small and large prediction errors.
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Figure 4.5 Pc winter profiles for small prediction error (RMSE=20) at the residential customers’ consumption.
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Figure 4.6 Pc winter profiles for large prediction error (RMSE=40) at the residential customers’ consumption.
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An overview of the case studies that are studied both for the summer and winter
months are concentrated and presented in Table 4.2.

Table 4.2 Case studies for the intra-hour optimisation.

" State of the system ‘ ~ Pcprofile
Case1 . Perfectprediction . = |. Perfect prediction
Case 2 Erroneous prediction for the 1t Perfect prediction |
) PTU
k queaa | Erroneous prediction forthe 1 | Erroneous prediction with small
B S PTU ~ prediction rror (RMSE =20)
Case 3b Erroneous prediction for the 1t Erroneous prediction with large
PTU prediction error (RMSE =40)

As it is already mentioned, the only difference between the summer and the winter case

studies is the ch , which is negative at the first occasion and positive at the second.

It can be seen at Table 4.2 that the prediction errors which are assumed for the state of
the system consider only the 15t PTU. This assumption could be easily expanded to
include errors for the state of even more PTUs, at the beginning of the horizon or even for
all 48 PTUs. However, this would increase tremendously the complexity of the results.
The scope of these case studies though is to give a better insight in the intra-hour
algorithm and present its output when it receives wrong predictions. Therefore, it is
believed that adding such complexity to the assumptions, even though it may lead to
more realistic representations, is not desirable and would make the results confusing
rather than explanative.

The case studies that were described in the table above are more thoroughly examined
in the next sections.

4.4.1. Case Studies for the summer months

For the case studies that refer to the summer months, a date was selected randomly to
equip the algorithms with realistic data from the Dutch TSO. Specifically, the case studies
are performed based on data from the 3oth of June 2012, and the optimisation starts at
the 36t PTU of that date, i.e. at 9:00 a.m.

For the 1%t case, the predictions are considered to be perfect, both for the state of the
system and for the power profile at network point (c), the optimisation reacts as it is
shown in Fig.4.7.

At the 1t PTU of the horizon (the 36% PTU of the day under examination), the
imbalance price is very high and as the system state is 1 (request for upwards regulation),
the BESS is being discharged with the maximum allowed power rate to maximise the
revenues.
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The next high imbalance price during the day is that referring to the 69th PTU, when
the system also requires upwards regulation (state 1) and the BESS needs to react to that
again by being fully discharged. In order to have the ability to be fully discharged at that
PTU (with the maximum allowed power rate of 400kW) it needs to be charged at the
previous PTUs to reach the maximum allowed SoE (i.e., SoE=0.9). As it can be seen in
Fig. 4.7, even though the system states at the previous PTUs are 1 and 2 and pose a
penalty for charging, the algorithm chooses the PTUs with the lowest penalising price,
being the 371, 44", 47t 48% and 515t respectively. In Fig. 4.8. it can be seen that the
profits are the largest at the 69t PTU, while the losses due to the penalties for charging
are much less.
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Figure 4.7 Input parameters for the 15t summer case study of the intra-hour optimisation problem.
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Figure 4.8 Outputs for the 15t summer case study of the intra-hour optimisation problem.
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For the 21d case, the prediction for the state of the system referring to the 15t PTU of the
optimisation horizon (being the 36% of the day that is examined) is assumed to be
erroneous, and the predicted state is considered 0. The basic difference that can be
observed comparing with the results of the 1%t case is that at the 15t PTU the algorithm
decides not to schedule a discharging cycle as the state is now assumed to be 0, and any
energy imbalance is going to be penalised. The discharging that was taking place during
the 36 PTU in case 1, now takes place during the 39% and the 437 PTUs. This is
happening because at these PTUs the price is equal to the one in the 36% PTU, when the
BESS was being discharged in case 1. For all the subsequent PTUs, within the
optimisation horizon, the result of the BESS optimisation are identical with the previous
case.
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Figure 4.9 Input parameters for the 27 summer case of the intra-hour optimisation problem.
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Figure 4.10 Outputs for the 2nd summer case of the intra-hour optimisation.
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For the third case, an additional assumption is considered, that is that the prediction of

the P power profile is erroneous as the PV generation is more than expected. Therefore,

the power at network point (c) is less than its predicted value from the day-ahead
schedule, resulting into an expected power imbalance dP. <0. As the state of the system

is predicted to be 0, during the first PTU, the energy imbalance should be kept 0 to avoid
penalising costs, and therefore the battery is scheduled to be charged in order to create

an imbalance (dF, >0) equal and opposite todP., as dE=—(dP.+dP,)-z,. This can be

seen in Fig. 4.12 and Fig. 4.14 for both large and small errors in the prediction of the PV
generation.
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Figure 4.11 Input parameters for the 3@ summer case of the intra-hour optimisation problem for small prediction error.
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Figure 4.12 Output of the 3/ summer case of the intra-hour optimisation for small prediction error.
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Imbalance Prices for shortage (€/MWh)
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Figure 4.13 Input parameters for the 3 summer case of the intra-hour optimisation problem for large prediction error .
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Figure 4.14 Output of the 37 summer case of the intra-hour optimisation for large prediction error.
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4.4.2. Case Studies for the winter months

For the first winter case study, there are no prediction errors assumed. At the 15t PTU of
the horizon, the system requires upwards regulation (state=1) and the BESS is scheduled
to be fully discharged. The next price that the aggregator wants to take advantage of, is
the one during the 3 PTU, within the optimisation horizon, when the BESS should be
discharged again. As this would not be possible if its SoE remains at the lowest limit, i.e.,
SoE=0.2, therefore the algorithm decides to schedule a charging cycle during the 2 PTU
of the optimisation horizon, Even though the state is expected to be 2 and any imbalance
will be penalised, the penalising price for charging at that time is rather low compared
with the rewarding price of the subsequent PTU. The same pattern is being followed by
the optimisation algorithm for the rest PTUs of the horizon. Fig. 4.15 and 4.16 show the
inputs and the outputs of the intra-hour optimisation for the 1%t winter case study.
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Figure 4.15 Input parameters for the 15t winter case study of the intra-hour optimisation problem.

dP at the intra-hour optimisation (kW)

o ] [ —
L] ; |

200 L : J %
-4001- ] I p__ [ R I =

dE at the intra-hour optimisation (kWh)
100‘:': T T - [ - T EES
|

o- i
00! S L I 1
Profits (€)
10pme [ P 0 T
o — o Sl Uy
ol SR S S (S B o n o

Intra-hour State Of Energy
0.9 T e 0 . ; —

0.2 ] I I A I -
33 41 49

25
Time (PTU)

Figure 4.16 Output of the 15t winter case study of the intra-hour optimisation.
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Figures 4.17 and 4.18 show the input and output of the 21d case study. Having the same
assumption as in the 21d case of section 4.4.1. a wrong prediction is considered for the 1st
PTU’s state of the system, which is forecasted to be 0. As every energy imbalance is
penalised when the state is 0, the BESS is not being discharged, as it was in the previous
case study, and the dP, remains 0. For the remaining PTUs of the optimisation horizon,

the BESS follows the same profile as in case 1.
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Figure 4.17 Input parameters for the 2"d winter case study of the intra-hour optimisation problem.
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Figure 4.18 Output of the 2d winter case study of the intra-hour optimisation.
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For the 3% case, an erroneous prediction for the P. power profile is also included. At

that time, the residential customers’ power profile is expected to exceed the predicted
values. This leads to a positive imbalance with respect to the power profile at network

point (c) (ch >0). As the state of the system is still assumed to be o, this energy
imbalance has to be cancelled out by the BESS in order to keep the overall energy
imbalance dE to 0. In order to achieve this, the BESS is being discharged with a rate
that results the de to be equal and opposite to the ch . The figures 4.19-4.22 present
the BESS behaviour for large and small prediction errors.

Imbalance Prices for shortage (€/MWh)
200 T Tk T

o 1 S

Imbalance Prices for surplus (€/MWh)
200 - —t T T

P I -~

Day-ahead State Of Energy

Figure 4.19 Input parameters for the 3 winter case study of the intra-hour optimisation problem for small prediction
€rTor.
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Figure 4.20 Output of the 3 winter case study of the intra-hour optimisation for small prediction error.
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Figure 4.21 Input parameters for the 3 winter case study of the intra-hour optimisation problem for large prediction
error.
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Figure 4.22 Output of the 3r winter case study of the intra-hour optimisation for large prediction error.

The case studies presented in 4.4.1 and 4.4.2. illustrate that the algorithm is able to adapt
to the scheduling of the charging and discharging cycles under updated forecasts and
maximise the revenues or minimise the losses for the optimisation horizon. This is
particularly useful particularly for real life simulations, as it takes into consideration
updated forecasts of residents’ behavior and generation from stochastic processes (i.e.,
PV generation) and acts accordingly.
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4.5. Economic impact of imbalances

Table 4.3 captures the daily profits and losses for a randomly selected day from the
year 2012, i.e., the 26th of June. At that day, a deviation is assumed to appear for the
power profile at network point (c) between the predicted and the measured value,

causing a power imbalance dP, . This example examines the economic impact that a
positive or negative power imbalance can have on the investigated system. The absolute
value of dP. is considered to be equal to the value that was defined in section 4.3 with
respect to large prediction error (RMSE=40).

As it can be seen in table 4.3, when there is no power imbalance at network point (c),
the daily profit is 37.95€. A negative imbalance though, raises the daily profit to 40.44€
while a positive one leads to decreased profits of 20.52€.

The reason for this is that at the 26th June, the state of the system was 1 for most PTUs
of the day which means that most of the time the aggregator had an incentive to maintain

a positive imbalance (dE > 0) to benefit from passive contribution. In the case that the
dP. is negative, the energy imbalance that occurs is positive as dE =—(dP. +dP,)-z,and

leads to increased profits, whereas in the case that the imbalance is positive the energy
imbalance is negative and leads to reduced profits or even financial losses. Therefore, it is

expected that in such a day, a negative dP, is more beneficial than a negative one as it
contributes to the overall system balance.

Table 4.3 Profits and losses that occur at a random day (26% June) from the participation of the system in the Tennet
balancing market.

Imbalance | Daily profits/losses  Daily profits/losses
. including the BESS(€) without the BESS(€)
dPc>0 -24.78

The results presented in Table 4.3 illustrate the importance of the BESS combined with
renewable energy sources in terms of financial impact for the aggregator. Considering the
case where the aggregator represents only the residential customers and the PV
generators (excluding the BESS), any power imbalance that would occur at network point
(c) would lead to penalties or rewards in a stochastic way to which the aggregator would
not be able to react. The presence of the BESS though adds flexibility to the system, and
the algorithms decide whether to utilise that flexibility to cancel out any expected
imbalance that is considered to be undesired, or to contribute even more to increase the
total imbalance dE when it is expected to bring additional revenues through passive
contribution. The importance of the BESS presence is also depicted in the results of the
above-mentioned example where it can be seen that regardless of the energy imbalance,
the contribution of the BESS is significant in terms of improved financial performance.
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4.6. Economic assessment of the intra-hour optimisation

In multi-level optimisation (i.e. day-ahead schedule in advance), part of the capacity of
the battery might be committed for certain hours. In some cases these commitments a
priori might lead to larger energy imbalances during the intra-hour optimisation that can
be beneficial for the system balance, and result in additional revenues. In other occasions
though, it might limit the options for the BESS to respond close to real-time and
therefore might bound the potential profits. Since the answer to such a question cannot
be answered in a deterministic way due to the stochastic nature of energy processes and
power system procedures (what the state of the system might be at each time period that
the battery is committed to be charged or discharged), it is not easy to decide which is the
optimal approach.

In order to create an insight into this topic, an analysis is run for several years in order
to compare the estimated annual revenues between two potential applications: the case
of an hierarchical multilevel optimisation approach, where the intra-hour optimisation is
performed after the day ahead optimisation, and the case of a stand-alone intra-hour
optimisation approach.

Table 4.4 Annual revenues for the approach of stand-alone intra-hour optimisation and hierarchical multilevel
optimisation.

Year Annual Revenues (€) '~ Annual Revenues (€)
‘ (with day-ahead on top) (without day-ahead on top)
[ zoz | 23748 | l S e
2011 18817 21725
| 2010 | 12434 b 14750
2006 24816 30424 ‘
. 2003 o 125259 |

Table 4.4 depicts the calculated annual revenues for each distinct case. It can be seen
that, for every year that was examined, the revenues at the case of a stand-alone intra-
hour optimisation are more than those in the case of an hierarchical multi-level
approach. This indicates that if the capacity which has been committed due to the day-
ahead optimisation could be fully exploited during the intra-hour optimisation then it
would leads to more profits. Therefore it seems that from a financial point of view, a
single intra-hour schedule is the most preferable solution.

This assessment is valid though in the case of rather accurate predictions for the intra-
hour state of the system and the imbalance prices. However, due to the stochastic nature
of the imbalance market, these predictions are inherently very difficult to be assumed
perfect. On the other hand, the task of creating rather accurate predictions of the day-
ahead price dynamics is more plausible as the day-ahead market follows a more regular
pattern.
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Chapter 5 Real-time operations
5.1. Real-time Planning

As mentioned in the previous section, in real-time operations the aggregator has to
comply with the a priori defined power schedule pé(, I=1,..., 96, for each settlement

period (s = 15 min.) of the operational day, whereas any mismatch from the submitted
schedule will be regarded as an energy imbalance AE(/) for the I settlement period.

il-¢-l_1
B ()1, — X P (t)-7=AB,()-7, = AE(]) (5.1)

t=il
where P (r)is the actual measured power at network point (a) and at control period
t, =15-(I-1)+1 corresponds to the first control period of the I settlement period, and
teli,i,-1].
In real-time, the aggregator is tracking any deviations from the submitted day-ahead
schedule p# () by using (5.2). Considering that the current time instant is k, during the

" settlement period of the day, the aggregator obtains the actual measurements at
network points (a) and (b), and calculates the power at network point (¢) by using
(1.1)(2.1). Then, the forecast of the power trajectory p+i|k) is acquired for the

control horizon i=1, ..., therizon. Any expected energy imbalance AE(/) at the end of the It
settlement period can be expressed through an energy balance equation:

k 15-1-k
PAsWy.og— Y BPT@0)r— Y PSG+ilk)-T=AEQ)
1=15(1=1)+1 =1 (5.2)

where the first term in (5.2) represents the energy volume which has been cleared in
the day-ahead market for the I settlement period, the second term represents the
accumulated energy content up to current time instant k (based on actual
measurements since the beginning of the It settlement period), and the third term
represents the expected accumulated energy from current time instant k until the end
of the [ settlement period.

In theory, the aggregator’s goal is to cancel any energy imbalance AE(/) by the end of

the I settlement period. However, as mentioned in the previous section, when the
system state is explicitly short or long during the I settlement period, then the
aggregator might try to minimise or maximise the energy imbalance AE(/) to benefit

from passive contribution. To achieve this, in real-time, the aggregator coordinates the
BESS operation by determining a set-point power trajectory that the power output
should ideally follow from current time instant k and until the end of the I settlement
period. This set-point power trajectory Py(k+i|k), for i=1, ..., 15:1-k can be calculated by
using (5.3):

k 15-1-k
PsWrg— Y B(@0r- Y (B k+il )+ B k+ilk) t=AE(D)  (5.3)

t=15(1-1)+1 i=l
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The set-point trajectory p, (« +i|k)can be written as:
B (k+i| k)= B (k+i)+dP]™ (k +i| k) (5.4)

where pés(k+i) reflects the power set-points defined during the day-ahead
optimisation, ie. pdsn), whereas gpk+i|k) 1s a deviation set-point which is
defined in real-time. The optimisation objective of the real-time problem is to
maximise the objective function:

max J
P i) (5.5)

The profit function J is defined in (5.6):
J =AE()- 727 (1)

imb
+(SoE s (15-1+1) = SoE% (15-1+1))- E,,, - wlrs (1 +1) (5.6)
where the first term in (5.6) reflects the expected profits to be obtained through the
imbalance settlement system for the It settlement period, whereas the last term is
meant to penalise any deviations from the expected intra-hour optimised SoE at the
end of the control horizon. The control horizon in the real time problem is set to be 15
time units of 1 minute, contrary to the real time problem. Note that, in real-time, the
predicted state of the system 57 () might change which will subsequently influence the

imbalance price .7 that the aggregator will face.
The resulted quarterly charging states of the intra-hour optimisation problem

SoEii’} (l), for I=1,..., 96, are transformed on a per minute basis by using (5.7):

’ SoE™
SoEL% (1) = SoE™s () + —L

(I+1)—SoE}% (1)
(i-1-15-(I -1
15 @ ( ) (5.7)

where ¢ <[j,i,,, —1] for each lth settlement period, I=1, ..., 96.

As mentioned before, the second term of the objective function is meant to give an
economic value to the deviation of the SoE at the end of the 1 PTU from its expected
SoE!% (7). In order to accomplish that, the imbalance price 727 (/+1)has to be defined

imb
accordingly so that this term acts as a rewarding or a penalising term, depending on
the occasion. For example, if the state of the (/+1)% PTU is predicted to be 1 (upwards

regulation), a positive deviation of the SoE ( asok,, ) >0) would mean that more capacity

of the BESS is available for discharging, and therefore it should be rewarded. On the
other hand, if the deviation of the SoE is negative ( usoz,, ) <o) it should be penalised.

The definition of these imbalance prices for the real-time optimisation problem is
provided in Table 5.1.

Table 5.1 Real time optimisation pseudo code: imbalance prices definition.

begin;
# Current settlement period is q (e.g., the last settlement period of the operational planning day), whereas s =
15 min., m= 1, ..., 48.
# dSOE,,(!) is the deviation from the expected intra hour optimised SOE at the end of the control horizon.
if s72(1+1)=0 then

if JdSOE,(1)>0 then
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10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.
33.

34.
35.
36.
37.
38.

39.
40.

xPrd (1+1)=;r§",‘;’,,(1+1)=-abs(nf,’,§j (+1)-72 (1 +1)) else

if dSOE,;(1)<0 then

d d d d
b (1) =rh (1+1)=abs(zh (1+1)+ 2L (1+1))
end if

if sP4(1+1)=2 then

if JsoOE, . (/)>0 then

prd __prd
mpp (+1)= LA

(41 =—abs(zP™ (1 +1) - 2" (1 +1)) else
if dSOE,(/)<0 then
if (emergency power is called) then
AP 1y=72 (141) = abstmax(e" (1 +1), 729 1+ D)+ 227 +1))
else rrdqiny=zBrd (141)=abs(zr P 1+ 1)+ 71 +1)
end if
end if
if s74(1+1)=-1 then
if dSOE, (1) >0 then
221y = 2P (14 1) = —abs(z P 1+ 1) — 2P 1+ 1)) else

imb surpl

if JSOE,,(/)<0 then

A1) =2P? (141 =P 4D+ 2891 4)) else
end if

if sP9(+1)=+1 then

if 4SOE,,.(/)>0 then

ris
if (emergency power is called) then

P 1= nf,f;,(1+ 1) = max(z2 @+ 1), 728 1+ 1) - 2l (1 +1)

else gL+ =2l 1+ 1) = 2L )= 2P+

end if

if dSOE,,;(1)<0 then
if (emergency power is called) then
P41y = bt 141y = max(z " 1+ 0,283+ 1)+ 7291 +1)
else 7brd (1 +1)= /({:l:‘;,(l +) =P+ 2P 1+ 1)
end if
end if

end for

# The iteration continues with the next settlement period and the whole process is repeated.

I=1+1
end
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The simulation of the real-time algorithm lasts on average a total time of 18 s. in the
aforementioned software which means that it is fast enough to be implemented in
control procedures with a control step of one minute as proposed in this investigation.
Furthermore, within the hierarchical multi-level optimisation approach, the output of
the SoE from the last real-time simulation at a certain PTU (i.e., the 15 minute of each
PTU) is applied as an input to the intra-hour optimisation for the following PTUs.

5.2. Real time case studies

The cases that are going to be studied in this chapter are the same as the ones in
Chapter 4. For both summer and winter months, erroneous predictions are assumed
for the state of the system at the 15t PTU of the optimisation horizon and for the power
profile at network point (c). In this chapter however, one more case study is examined,
in which at a certain minute during the PTU (i.e. the 10t%) the prediction of the system
state is updated and the aggregator responds to that accordingly. Table 5.2 presents the
case studies that are examined throughout the chapter.

Table 5.2 Overview of the case studies for the real-time optimisation problem.

T State of the system 7 ~ Pcprofile
Case1 |  Erroneous prediction forthe1*PTU | Perfect prediction
Case2a  Erroneous prediction for the 15t PTU Erroneous predictibn with small prediction

error (RMSE =20)

Cascabs] " Erroneqns prdiction i e ININTE: & Pivorisovs predictigition B

: e A error (RM; :
Case 3a Erroneous prediction for the 1¢t PTU, | Erroneous prediction with small brediction
corrected at the 10t minute error (RMSE=20)

Case 3b. |

These case studies are examined for both situations of winter and summer months.
Their only difference is that during the winter case the aggregate residential customers’

load is overestimated which results to power imbalances dP. >0, while the summer

case considers overestimations of the PV generation which results to power imbalances
dP <0.
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5.2.1. Real time case studies for the summer months

At the first case, an erroneous prediction for the system state is assumed for the 1%t
PTU, while the prediction of the power profile P. is considered perfect. As the state of

the system is 0 at the 1% PTU, the control system of the BESS is keeping the dP, to o, to
avoid additional imbalances and subsequent financial penalties.

dPd actual in real time(kW)
2007 i B - el o

200

SOE actual in real time

f ) - L [
0.8 .
0.6~
0.4 |
0.2 i L

o 5 10 15

Time (min)

Figure 5.1 Power profile and SoE of the BESS for the 15t summer case study according to the real-time optimisation (30t
June, 2012).

At the next case, the assumption of erroneous predictions for the PV generation and
as a result in the P power profile is considered. As the state of the system is still
wrongly predicted to be o, the aggregator tries to minimise the energy imbalance dE
and therefore the output of the algorithm, i.e., the power deviation value dPF,, is equal
and opposite to the dP. power value. The Fig. 5.2 and 5.3 show the result of the real-
time optimisation for both small and large prediction errors (cases 2a and 2b in Table
5.2).

dPd actual in real time(kW)
2007 A S i ) - — T — —

-200 —

-4001-

SOE actual in real time
0.8;' ~
0.6 —

0.4

Time (min)

Figure 5.2 Power profile and SoE of the BESS for summer case 2a according to the real time optimisation (30t June,
2012).
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Figure 5.3 Power profile and SoE of the BESS for summer case 2b according to the real time optimisation (30t June,
2012).

The 31 case examines how the algorithm reacts to the updated predictions that the
aggregator receives during the PTU. Specifically, while at the first 10 minutes the
prediction is wrong as in cases 1 and 2 and assumes the system state to be 0, at the 11t
minute there is an updated prediction that defines the state of the system to be 1. This
means that the system requires upwards regulation and the BESS reacts to that by
being discharged. Fig. 5.4 and 5.5 depict this reaction for both small and large errors in
the prediction of the power profile P. (cases 3a and 3b in Table 5.2).
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Figure 5.4 Power profile and SoE of the BESS for summer case 3a according to the real time optimisation (30t June,
2012).
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Figure 5.5 Power profile and SoE of the BESS for summer case 3b according to the real time optimisation (30t June,
2012).

5.2.2. Real time case studies for the winter months

The first winter case examines the case of erroneous predictions about the state of
the system. The state is forecasted to be 0 instead of 1 and therefore, no energy
imbalance is desired. As it is expected, the output of the algorithm, the power devation

set-point dP, is set to 0 to avoid any penalties. Figures 5.6 and 5.7 present the output
of the optimisation for this case.
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Figure 5.6 Power profile and SoE of the BESS for winter case 1 according to the real time optimisation (12t January,
2012).
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At the 2" case, following an updated prediction, the power profile P, is larger than
expected and as this leads to an undesired imbalance, the dP, is set to be negative and

equal to dP. to eliminate the overall energy imbalance. Figures 5.7 and 5.8 show the

output of the algorithm under these assumptions for both small and large prediction
errors (cases 2a and 2b in Table 5.2).
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Figure 5.7 Power profile and SoE of the BESS for winter case 2a according to the real time optimisation (12t January,
2012).
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Figure 5.8 Power profile and SoE of the BESS for winter case 2b according to the real time optimisation (12t January,
2012).
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Finally, as in section 5.2.1, at the last case the prediction for the state of the system is
assumed to be erroneous for the first 10 minutes and at the 11t minute the updated
prediction that the aggregator receives is the correct one. Figures 5.9 and 5.10 show how
the BESS reacts in that scenario by being discharged with the maximum allowed rate in
order to respond to the upwards regulation that is required. The real time algorithm was
tested under conditions of updated predictions in real-time and was found to successfully
respond in order to increase revenues or to minimise costs.
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Figure 5.9 Power profile and SoE of the BESS for winter case 3a according to the real time optimisation (12t January,
2012).
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Figure 5.10 Power profile and SoE of the BESS for winter case 3b according to the real time optimisation (12t January,
2012).
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Chapter 6 Conclusion

6.1. Discussion and conclusions

In future power systems, characterised by large penetration of renewable energy
sources, the use of energy storage technologies can be a significant option to cope with
the challenges that the fluctuating nature of wind and solar energy imposes to the
system.

Apart from all the services that an energy storage system can provide to the power
grid, such as ancillary services, power security or power quality enhancement, many
other opportunities arise in the advent of liberalisation of the electricity sector.
Different possible markets have appeared in the last years that could provide financial
benefits to owners of systems that combines renewable energy sources along with
storage devices.

The first market that is examined throughout this work is the APX day-ahead market
at which, electricity is traded in the form of day-ahead commitments. The benefits
from a storage system at such a market arise purely by following a certain pattern every
day, according to which the BESS is being charged at the hours when the electricity
prices are low and is being discharged at the hours when the electricity prices are high.
In the calculation of the revenues, future prices are assumed to be known beforehand.
The potential revenues that the system may have depend greatly on the charging and
discharging efficiencies which define the losses of the system. Moreover, another factor
that affects the profits from participating in the day-ahead market is the price
difference during a day. This price difference varies significantly from year to year, and
from day to day, but it can be stated that it is mostly characterised by a decreasing
trend in the last decade.

The profit margin that a participant in the day-ahead market may have though, is not
as large as the one from participating in the balancing market. The benefits of
participating in the imbalance market can be several times larger, and the participant
can take advantage of any imbalances that occur from its stochastic procedures (PV
generation), the loads of the residential customers or the manipulated output of the
BESS and contribute to the system via the passive balancing. The increased revenues
occur due to the higher imbalance prices, and the larger number of possible cycles that
are performed per day compared with the day-ahead schedule. Despite the fact that
such a contribution can be rather profitable, many risks arise considering the accuracy
of the predictions. Since the imbalance prices and the state of the system are published
later and not in real-time, the aggregator that represents a number of stochastic energy
processes has to rely on forecasting algorithms. If the forecasting at the state of the
system or the imbalance price at a certain PTU is erroneous, the aggregator may face
penalties that are irreversible and this would lead to losses instead of profits.

The risks associated with participation in the balancing market, through passive
contribution, are significantly reduced by the adaptable characteristics of the real-time
algorithm. The aggregator receives updated predictions on time intervals of one minute
and therefore at each minute a new prediction is received for the state of the system,
the imbalance prices and the power imbalances from the PV generators and the
households’ consumption. This leads to a decreased risk as the BESS can react to the
updated prediction on real-time and minimise any undesired imbalance or contribute
even more to either upwards or downwards regulation. The importance of the real time
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algorithm is even bigger when it comes to energy sources that are characterised by
variability, intermittency and fluctuation such as solar and wind energy sources. The
aggregator receives power measurements and updated predictions for the power
profile of all the processes in its portfolio, on a time basis of 1 minute and this can
minimise the associated risks.

From a financial point of view, participation in the imbalance market seems to be by
far the most interesting market to receive revenues from an energy storage system. The
revenues though, are highly affected by the forecasting accuracy of the power
generation from the stochastic sources, the electricity prices and the imbalance states
of the system. On the other hand, the forecasting is much more accurate for power
exchange markets (i.e. the APX day-ahead market) as the prices follow daily regular
patterns and therefore are easier to predict.

It is a matter of fact though, that compared with the initial costs of a small-scale
battery system, the revenues from participation in the day—ahead auction and the
balancing market are still rather small. Until now, distributed battery storage systems
are mostly used within pilot programs and research activities and as a result, the
capital costs are relatively high. This is also the reason why until now grid-connected
electricity storage technologies are seldom economically efficient. This might change
over time however, when large scale deployment is applied to battery systems and the
costs are likely to be greatly reduced due to economies of scale.

6.2. Recommendations for future research

The current thesis addressed the participation of an aggregator, representing a
number of distributed energy resources connected to LV grids, in the day ahead and
balancing markets. The work was focused on many specific aspects while other key
principles were not examined thoroughly and may need further research and
development.

First of all, for the economic assessment, the prediction models throughout the thesis
were assumed to be accurate and therefore the predictions were considered perfect
both for the APX day-ahead and the imbalance market. In order to optimise the
benefits from the participation of the aggregator in the electricity markets, efficient
forecasting is required. The development of a forecasting algorithm that could predict
the imbalance prices and the state of the system with an efficiency of at least 90%
would be the most crucial step in making participation if electricity markets financially
viable [34].

Another field that could be further developed is the modelling of the power
conversion system. As the contribution of this work does not address thoroughly the
modelling of the system, the model that is actually used to describe the losses of the
BESS in section 2.2.1.3. is simplified and ignores a whole range of parameters that
affect the power losses during charging and discharging modes. A model that takes into
account the power rate, the temperature, the SoC and the internal resistance can be
formulated for a more exact and accurate representation of the power conversion
system and the overall power losses of the BESS.
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APPENDIX A

DAY-AHEAD PROBLEM - IMPLEMENTATION IN MATLAB

The objective function of the day-ahead problem is given by (3.5)

min 2241’,;"” (h)- 7P (h) =

P (h) p=

7 () p=1 (A.l)
. & 1 das das prd

min 3 (— Py, (h) + 1y - Py s () - 77 (h)

P (M) h=t Moy

subject to the following constraints that are given from (3.10)-(3.16):

P, <P% (N)<0, he[l,24] (A.2)
0< P/ (h) < P,,, he[l,24] (A.3)
B (h)- P (=0 (A.4)
SoE%s < SoE™ (h+1) < SoEZ% (A.5)

—400 KW — P" () < 1 - P (h)
A (A.6)

L. B (h) < 400 kW — PP (1)
Men ’

In order to solve the day-ahead optimisation problem the fmincon command is applied.
Fmincon is used to find a minimum of constrained nonlinear multivariable functions.

The syntax of fmincon is
x = fmincon (objfun, x0, A, B, Aeq, Beq, Ib, ub, confun)

And it finds a constrained minimum of the function objfun subject to :
A-x<b, 4,-x=b,

c(x)<0, ¢, (x)=0

ub<x<Ib

The first two equations address the liner constraints, the next two address the
nonlinear constraints and the last one sets the bounds of the variable.
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In this problem, x vector is the sequence of P, ,, P, ,; .Itis a 48X1 vector whose first

24 elements are the P, , sequence and the last 24 elements are the P, , sequence.

IJd‘ch (1)

£y (24)
I)d,dis (1)

£y (24)

The objfun is going to be the objective function described in (A.1) while the only
nonlinear constraint (A.4) is going to be defined in the function confun.

The other linear constraints are formulated in a compliable form to the fmincon
structure. The constraint concerning the SoE limits (A.5) can be rewritten as 4-x < b:

T

[SoEmm—soE(O)_E ] 1 - 01 -

0
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APPENDIX B

INTRA-HOUR PROBLEM - IMPLEMENTATION IN MATLAB

The objective function of the intra-hour problem can be formulated by (4.2)-(4.5) :

48
max Y T(g+m|q) B.1
dP;’“’(q+n1Ir1)mZ=1 (B.1)
(g +m|q)=AEX (g+m|q)-zle (g +m|q) (B.2)

AEP (q+m| q) = (~dB" (g+m| q)-dP™ (g +m|g))-z,  (B.3)

imb

Where dB™ can be expressed as:

1

Men

AR (1) = ——- B}, (D) + 1y - AP (1) - (B.4)

Subject to the intra-hour constraints

Py < Bl (D+dByl5, (D <0 (B.5)
0< P, (D) + AP35, (1) < Py (B.6)

Bl Bl (D=0 (B.7)
SOE,,;, < SoEus.(l+1) < SoE,,, (B.8)
SoE™ (q+48) = SoE.s (q +48) (B.9)

—400 kW — PP (1) < - P, (1)

i (B.10)

Men

- P, (1) < 400 kW — PP (1)

As in the day-ahead schedule, the fmincon command is applied in order to solve the
intra-hour optimisation problem.

The syntax of fmincon is
x = fmincon (objfun, x0, A, B, Aeq, Beq, Ib, ub, confun)

And it finds a constrained minimum of the function objfun subject to :
A-x<b, 4, -x=b,

c(x)<£0, ¢, (x)=0

ub<x<Ib
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In the intra-hour problem, x vector is the sequence of dP;",, dP;", . It is a 96X1 vector

whose first 48 elements are the dP,"; sequence and the last 48 elements are the dP;",;

sequence.

dPys, (1)

dpP;,(48)
dar},. (1)

dFy,(48))

The objfun is going to be the objective function described in (B.1)-(B.4). In the
function confun the nonlinear constraint (B.7) is going to be defined as in the day-
ahead problem. The other linear constraints are formulated in a compliable form to the
fmincon structure. The constraint concerning the SoFE limits (B.8) can be rewritten as

A-x<b

#a0 SoE,,, - SoE™ (0
: oF ,, —SoE™( )'Em-m+P.ldm(1)

,

‘1om

ihs
SoE_, - SoE (0)-E +Po()

1 " O 1 " 0 Yll&l

N AN
_ o P (1) |
SoE,, —SoE™ (0) ) )
T

SoE,, - SoE™(0)
2 1}

“Eyp + PP (1) 4.+ P(48) ‘B, + PE() 4.+ P (48)

Pt 49

The constraints used to ensure that the constraint (B.9) is not violated can be written as
A,-x=b,

dpr;, ()

(l 1). dP’d’?h (48) _ SaEdav(48)_SoElhx(O) -

5 = E,, —[P% 1) +...+ P (48)]
dl):.’l{dis (¢Y) T N !

dP;,(48)
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