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Queue-length balance equations in multiclass multiserver

queues and their generalizations

Marko A.A. Boon∗ Onno J. Boxma †‡ Offer Kella§¶ Masakiyo Miyazawa‖∗∗

April 04, 2017

Abstract

A classical result for the steady-state queue-length distribution of single-class queue-
ing systems is the following: the distribution of the queue length just before an arrival
epoch equals the distribution of the queue length just after a departure epoch. The con-
straint for this result to be valid is that arrivals, and also service completions, with prob-
ability one occur individually, i.e., not in batches. We show that it is easy to write down
somewhat similar balance equations for multidimensional queue-length processes for a
quite general network of multiclass multiserver queues. We formally derive those bal-
ance equations under a general framework. They are called distributional relationships,
and are obtained for any external arrival process and state dependent routing as long as
certain stationarity conditions are satisfied and external arrivals and service completions
do not simultaneously occur. We demonstrate the use of these balance equations, in com-
bination with PASTA, by (i) providing very simple derivations of some known results for
polling systems, and (ii) obtaining new results for some queueing systems with priori-
ties. We also extend the distributional relationships for a non-stationary framework.

Keywords: queue length; steady-state distribution; balance equations; distributional re-
lationship; Palm distribution; non-stationary framework.

1 Introduction

A classical result for the steady-state queue-length distribution of single-class queueing sys-
tems is the following: the distribution of the queue length just before an arrival epoch equals
the distribution of the queue length just after a departure epoch. The constraint for this result
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to be valid is that, with probability one, arrivals, and also service completions, occur indi-
vidually, i.e., not in batches. The result then follows by a simple level-crossing argument:
in steady state, the event that a customer arrives to find j customers present occurs just as
often as the event that a customer leaves j customers behind, for all j = 0, 1, . . . . See [7], pp.
154-156, for a formal statement and proof (due to P.J. Burke, unpublished) of this result.

At first sight this level-crossing argument breaks down in higher dimensions, for exam-
ple in the case of multiple customer classes. Indeed, with x ≥ 0 and ek being a unit vector
with 1 in the kth coordinate and zero elsewhere, an m-dimensional process can leave state x

because of an arrival of a customer of type i, and enter that state from state x + ek because
of a departure of a customer of another type k. However, we shall argue that it is easy to
write down a more global balance equation for multidimensional queue length processes
for a large class of queues and queueing networks – also when service times are not expo-
nentially distributed, and even when arrivals may occur in batches. We shall explore that
fact to obtain a simple relation between the steady-state joint queue-length distribution at
arrival epochs (which under various circumstances is equal to the time average distribution)
and at service completion epochs. Once one has a relation between the probability gener-
ating function (PGF) at arbitrary epochs and at service completion epochs, one can find the
former when one has the latter. The latter results are indeed known in an M/G/1 setting,
where it is natural to look at departure epochs. This will yield both new results (for multi-
class queueing models with fixed priorities and for the longer-queue model), as well as new
and simple derivations of known results for, e.g., polling models.

The research for the present paper was initially motivated by the desire to provide an
intuitive explanation of a result in [3] regarding the steady-state joint queue-length distribu-
tion in a large class of polling models. That distribution turned out to have a remarkably
simple relation with a weighted sum of the joint queue length distributions at departure
epochs of customers from each of the queues. In Section 2 we provide such an explanation.
Although balance equations are intuitively appealing, their mathematical verification may
require a large amount of work. This motivates us to derive distributional relationships for
queue lengths in a unified way using a general tool. The so called rate conservation law is
such a tool as demonstrated in [15] (also see [1, 14]). This method is applicable to a general
model, but requires Palm distributions, which may not be easy to understand. In Section 3
of this paper we take another approach, based on a time evolution of a sample path. This
approach is parallel to the rate conservation law, but does not require Palm distributions,
which are replaced by sample averages. We apply it to a general model, and derive a dis-
tributional relationship among different embedded epochs. In Section 4 a non-stationary
version of the distributional relationship is derived with some error term, which vanishes as
time goes to infinity. Our main result, viz. Theorem 1, as well as the non-stationary results,
are novel to the best of our knowledge.

Literature review. Hébuterne [11] provides a generalization of the above-mentioned classi-
cal result of Burke in two directions: he allows (i) batch arrivals, with batches of random
size, and (ii) batch services, with batches of fixed size. He also points out that emptying the
queue up to N customers is beyond the scope of the analysis, because then the batch sizes
are not independent of the system state. Fakinos [9] manages to treat a quite general group-
arrival group-departure queue. He treats the batch size problem by assuming that customers
within a departing group are randomly ordered, and that they leave the system according
to their order. Papaconstantinou and Bertsimas [16] generalize Burke’s result to the multi-
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server Ek/G/s queue. Kim [13] combines the features of batch arrivals, batch services and
multiple servers, also allowing multiple customer classes. he does not explicitly address the
issue of customers in a departing group being randomly ordered. Hébuterne and Rosenberg
[12] focus on the G/G/1 queue with batch services and finite capacity. Takine has obtained
several relations between queue lengths at random instants and at departure instants; see in
particular the very general Theorem 1 in [19], for a single server queue with multiple Marko-
vian arrival streams – an extension of Markovian arrival processes to (possibly correlated)
multiple arrival streams.

Organization of the paper. Section 2 provides a short proof of a result in [3] by using a multi-
dimensional queue-length balance argument. Section 3 derives the distributional relation-
ship for an open queueing network under a very general setting in Theorem 1. Extensions
to the non-stationary case are discussed in Section 4. Some applications are presented in
Section 5. Section 6 contains concluding remarks.

2 A balance equation for a class of polling models

In this section we provide a simple relation between the steady-state joint queue-length dis-
tribution at arbitrary epochs and at departure epochs for polling models. This relation,
which is derived by introducing a multi-dimensional queue-length balance argument, is
used to provide a short, but somewhat intuitive derivation of Theorem 1 of [3]. In the next
section we shall extend that balance equation in a very general setting, and give a rigorous
derivation. Let us first describe the polling model studied in [3].

Consider a system of m ≥ 1 infinite-buffer queues Q1, . . . , Qm and a single server S.
Queues are indexed by J = {1, 2, . . . ,m}. The service times of customers in Qi are i.i.d.
(independent, identically distributed) positive random variables generically denoted by Bi,
with means bi := EBi. Denote the Laplace-Stieltjes transform (LST) of Bi by B̃i(·). The
server moves among the queues in a cyclic order. When S moves from Qi to Qi+1, it incurs a
switchover period. The durations of successive switchover times are i.i.d. non-negative ran-
dom variables, which we generically denote by Si. Denote the LST of Si by S̃i(·) and assume
that si := ESi < ∞; let s :=

∑m
i=1 si. Customers arrive at Qi according to a Poisson process

with rate λi; let λ :=
∑m

i=1 λi. We do not assume anything about the service disciplines at
Qi. Define ρi := λibi as the traffic intensity at Qi; let ρ :=

∑m
i=1 ρi. We assume that ρ < 1,

which is a necessary condition for the system to be stable. In what follows we shall write z

for an m-dimensional vector in R
m, z = (z1, . . . , zm), and we assume that |zi| ≤ 1 for every

i ∈ J . We implicitly use the convention that any index summation is modulo m, for example
Qm+1 ≡ Q1.

Assume that all the usual independence assumptions hold between the service times, the
switchover times and the interarrival times. We assume that the ergodicity conditions are
fulfilled and we restrict ourselves to results for the stationary situation.

Now introduce the PGF of various joint queue-length distributions: V b
i (z) and V c

i (z) de-
note the PGFs of the joint queue-length distribution at visit beginnings and visit completions
at Qi, while Sb

i (z) and Sc
i (z) denote the PGFs of the joint queue-length distribution at service

beginnings and service completions at Qi; L(z) denotes the PGF of the joint queue-length
distribution at an arbitrary time in steady-state. Theorem 1 of [3] states that, with mean cycle
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time EC = s
1−ρ

:

L(z) =
1

EC

m
∑

i=1





V b
i (z)− V c

i (z)

Σ(z)

zi

(

1− B̃i(Σ(z))
)

zi − B̃i(Σ(z))
+

V c
i (z)− V b

i+1(z)

Σ(z)



 , (1)

with Σ(z) :=
∑m

j=1 λj(1− zj).
Its proof in [3] is based on the following relations:

(i) a balance relation for polling systems, which is due to Eisenberg [8] and which was gen-
eralized in [2]:

γiV
b
i (z) + Sc

i (z) = Sb
i (z) + γiV

c
i (z), i ∈ J. (2)

Here γi := 1/λiEC represents the reciprocal of the mean number of customers served at Qi

per visit, i.e., the long-term ratio of visit beginnings to service beginnings.
(ii) an obvious relation between queue lengths at the beginning and end of a service time:

Sc
i (z) = Sb

i (z)
B̃i(Σ(z))

zi
, i ∈ J. (3)

(iii) an obvious relation between queue lengths at the beginning and end of a switchover
time:

V b
i+1(z) = V c

i (z)S̃i (Σ(z)) , i ∈ J. (4)

(iv) a stochastic mean value theorem, expressingL(z) as an average over the PGFs of the joint
queue-length distribution at an arbitrary moment during a visit to Qi (Xi(z)) and during a
switchover period between Qi and Qi+1 (Yi(z)):

L(z) =
1

EC

m
∑

i=1

(

bi
γi
Xi(z) + siYi(z)

)

, (5)

where, for i ∈ J ,

Xi(z) = Sb
i (z)B̃

past
i (Σ(z)), (6)

Yi(z) = V c
i (z)S̃

past
i (Σ(z)), (7)

where B̃
past
i (·) and S̃

past
i (·) are the LST’s of the past (elapsed) parts of Bi and Si, respectively,

that is, they are defined as

B̃
past
i (Σ(z)) =

1− B̃i(Σ(z))

biΣ(z)
, S̃

past
i (Σ(z)) =

1− S̃i(Σ(z))

siΣ(z)
.

Starting from (5), substituting (6) and (7), and using (2) and (3) to eliminate all Sc
i (z) and

Sb
i (z), yields (1).

Remark 1 In [3] also zero switchover times are allowed; the same result (1) is shown to hold.

In Theorem 1 of [3] it was subsequently observed that one may simplify (1) as follows,
by using (2) and (3):

L(z) =

∑m
i=1 λi(1− zi)S

c
i (z)

∑m
i=1 λi(1− zi)

. (8)
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This formula is remarkably simple; please notice that it does not involve the service time
distributions, and that the service disciplines at the various queues also do not play a role,
which suggests that (1) is based on very general principles. This is the formula for which we
would like to provide a short proof (see below). In combination with (2) – (4), it also gives
a short proof of (1). In other words, one can obtain an expression for the PGF of the joint
steady-state queue-length distribution in a large class of polling systems by just using the
elementary balance equations (2) and (9) (see below), combined with the obvious relations
(3) and (4).

Short proof of (8).
First rewrite (8) into

m
∑

i=1

λi(1− zi)L(z) =

m
∑

i=1

λi(1− zi)S
c
i (z). (9)

Secondly, observe that, because of the Poisson arrival processes, L(z) is also the PGF of the
joint queue-length distribution just before an arrival at Qi, i ∈ J by PASTA (Poisson Arrival
See Time Averages, e.g., see [1, 14]).
Thirdly, invert the transform expressions on both sides of (9), yielding for x ≥ 0 and ei being
the unit vector with 1 in the ith coordinate and zero elsewhere:

m
∑

i=1

λiπ
e
i (x)−

m
∑

i=1

λiπ
e
i (x− ei) =

m
∑

i=1

λiπ
d
i (x)−

m
∑

i=1

λiπ
d
i (x− ei), (10)

where πd
i (·) indicates that we consider the joint queue-length distribution right after a depar-

ture from Qi, and πe
i (·) denotes that we view the system just before an external arrival at Qi.

Fourthly, we reshuffle the terms:

m
∑

i=1

λiπ
e
i (x) +

m
∑

i=1

λiπ
d
i (x− ei) =

m
∑

i=1

λiπ
d
i (x) +

m
∑

i=1

λiπ
e
i (x− ei). (11)

Finally, observe that the lefthand side of (11) represents the rate out of state x, and the right-
hand side represents the rate into that state. Indeed, the first term in the lefthand side cor-
responds to arrivals which find x customers in the system. The second term in the lefthand
side is slightly less obvious. It corresponds to departures that take place in state x. Notice
that the rate at which customers depart from Qi equals λi (although the departure process
will not be a Poisson process), and that πd

i (x − ei) is the fraction of departures from Qi

which take the system out of state x. Similarly interpret the terms in the righthand side. We
conclude that (8) amounts to a simple flow balance formula.

Remark 2 A similar flow balance argument was used in [5] to derive a queue-length expres-
sion in an M/G/1 FCFS queue with multiple customer classes.

Remark 3 Observe that (8) immediately gives the formula for the marginal distributions.
Indeed, for a vector zm,i = (1, . . . , 1, zi, 1, . . . , 1), L(zm,i) = Sc

i (zm,i). From the well-known
‘step’ (level-crossing) argument it follows that Sc

i (zm,i) is also the PGF of the queue-length
distribution in Qi at an arrival epoch at Qi. By PASTA it is also the PGF of the steady-state
distribution of Qi.
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Next take zT = (z, . . . , z). (8) now states that the PGF of the distribution of the total
queue length (in terms of z) equals

∑m
i=1 λiS

c
i (zT )/

∑m
j=1 λj . This formula may be inter-

preted as follows. By PASTA, L(zT ) is also the PGF of the distribution of the total queue
length at an arrival epoch. By a level-crossing argument, it follows that this equals the PGF
of the distribution of the total queue length just after a departure epoch. The result now
follows from the observation that a fraction λi/

∑m
j=1 λj of the departure epochs refers to a

departure from Qi.

Remark 4 Relation (8) may be viewed as an m-dimensional version of the above-mentioned
one-dimensional ‘step’ (level-crossing) relation that holds for queues with single arrivals and
single departures.

3 Formal derivations under a general framework

In this section, we aim to derive distributional relationships at arrival and departure in-
stants for various queues and their network models in a unified way, under general set-
tings. Roughly speaking, these settings allow simultaneous external arrivals, simultaneous
departures and routing at different stations; however, we do not allow an external arrival
to coincide with a departure. We use their time evolutions in sample paths for deriving the
relationships rather than using flow balance.

We describe a queueing network system under a fairly general framework. We consider
an open queueing network system with m queues, where queues uniquely belong to ser-
vice facilities, which are called stations. Queues in the same station may be distinguished
by customer classes. Each station may have multiple servers, which may change in time.
External arrivals at queues are general as long as they satisfy certain stationarity conditions.
Customers completing service may be routed among queues depending on the state of the
whole system. Thus, this model is quite general and very flexible.

To describe this model, we introduce a stochastic process. Queues are still indexed by
J = {1, 2, . . . ,m}. Let

X(t) = (X1(t), . . . ,Xm(t)),

where Xi(t) represents the length of queue i at time t, which includes customers in service.
Here, each queue belongs to a single station. There is a mapping from queues to stations,
which will be given when needed.

In addition to X(t), the following counting processes count the number of specified
events until time t ≥ 0 for i ∈ J ,

• N e
i (t) - external arrivals at queue i,

• Nd
i (t) - departures from queue i,

• N r
i (t) - internal arrivals at queue i (transition from some queue).

With Nu(t) = (Nu
1 (t), . . . , N

u
m(t)) for u = e, d, r, we consider the process

Z(t) ≡ (X(t),N e(t),N d(t),N r(t)) .
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All processes are assumed right-continuous with left limits. Let ∆X(t) = X(t) − X(t−).
∆Nu(t) is similarly defined and is in Z

m
+ for u = e, d, r, where Z+ is the set of nonnegative

integers.
For u = e, d, r, denote

|Nu|(t) =
∑

i∈J

Nu
i (t)

and assume that

i) X(0),N e(t),Nd(t),N r(t) are all finite (in Z
m
+ ) for each t ≥ 0.

ii) ∆|N e|(t)∆|N d|(t) = 0 for each t ≥ 0. That is, external arrivals and service completions
can not occur simultaneously.

We also need to define the intermediate state

Xd(t) = X(t)−∆N r(t) ∈ Z
m
+ . (12)

It differs from X(t) only at departure epochs and it describes the state “after” a departure
and “before” an internal arrival at a different queue.

Clearly, the following dynamics hold.

X(t) = X(0) +N e(t)−Nd(t) +N r(t) ∈ Z
m
+ . (13)

Because of i), X(t) and Xd(t) are also finite. It may be natural to assume that |N r|(t) ≤
|Nd|(t) for t ≥ 0, but we do not require it in this section.

Thus, X(t) is the state of the system at time t of an input-output system driven by count-
ing processes N e,N d,N r. The dynamics of (12) and (13) indicates that we adopt the depar-
ture first framework. We have used queueing terminologies, but our results are valid as long
as the above mathematical assumptions and (13) are satisfied.

In general, |N e|(t), |N d|(t) and N e
i (t) and Nd

i (t) may have jumps greater than one, which
is not convenient to describe the time evolution of Z(t). Thus, for u = e, d, we introduce

|Ñ
u
|(t) =

∑

0<s≤t

1(∆|Nu|(s) ≥ 1), Ñu
i (t) =

∑

0<s≤t

1(∆Nu
i (s) ≥ 1),

then ∆|Ñ
u
|(t) ≤ 1 and ∆Ñu

i (t) ≤ 1, that is, |Ñ
u
| and Ñu

i are simple point processes for
u = e, d. Set te0 = td0 = tei,0 = tdi,0 = 0 for i ∈ J , and for n ≥ 1 and i ∈ J let ten, t

d
n, t

e
i,n, t

d
i,n be the

nth jump epoch of |Ñ
e
|, |Ñ

d
|, Ñ e

i , Ñ
d
i , respectively (of course, if the corresponding process is

not terminating and such an epoch exists).
Another basic assumption on the counting processes is

iii) There exist finite and positive numbers λu, u = e, d such that

λu = lim
t→∞

1

t
|Ñ

u
|(t) , (14)

a.s. (almost surely) w.r.t. the underlying probability measure P.

We further assume the following ergodic type conditions.
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iv) There exist probability distributions πe and πd such that

lim
n→∞

1

n

n
∑

ℓ=1

1(X(teℓ−) = x,∆N e(teℓ) = y) = πe(x,y), a.s., x,y ∈ Z
m
+ , (15)

lim
n→∞

1

n

n
∑

ℓ=1

1(Xd(tdℓ ) = x,∆Nd(tdℓ ) = y,∆N r(tdℓ ) = z) = πd(x,y,z), a.s.,

x,y,z ∈ Z
m
+ . (16)

From the definitions in iv), πe and πd are considered as the embedded stationary distri-
butions just before arrival epochs and just after departure epochs but before internal arrivals,
respectively. They correspond to Palm distributions concerning their counting processes in
the time stationary framework (e.g., see [1]).

Since the process X(t) is vector valued, it is not so convenient for manipulations. So, we
introduce a test function f : Zm

+ → R. Under the setting i)–iv), we will derive distributional
relationships among characteristics at different embedded instants using the test function f .
For this, we need the following lemma.

Lemma 1 If (15) holds, then, for any bounded function g : Z2m
+ → R, we have

lim
n→∞

1

n

n
∑

ℓ=1

g(X(teℓ−),∆N e(teℓ)) =
∑

x,y∈Zm
+

g(x,y)πe(x,y), a.s. (17)

Similarly, if (16) holds, then, for any bounded function h : Z3m
+ → R, we have

lim
n→∞

1

n

n
∑

ℓ=1

h(Xd(tdℓ ),∆N d(tdℓ ),∆N r(tdℓ )) =
∑

x,y,z∈Zm
+

h(x,y,z)πd(x,y,z), a.s. (18)

This lemma may look obvious, but its proof is not immediate because we need to verify
the exchange of limits. We prove it in Appendix A.

We are now ready to prove distributional relationships. First, we denote the expectations
under πe and πd by E

e and E
d, respectively. That is,

E
eg(X ,Y ) =

∑

x,y∈Zm
+

g(x,y)πe(x,y), (19)

E
dh(X ,Y ,Z) =

∑

x,y,z∈Zm
+

h(x,y,z)πd(x,y,z). (20)

Note that Y in E
e represents sizes of externally arriving batches, while Y in E

d represents
sizes of departing batches.

Theorem 1 Under the setting i)–iv), for any bounded function f : Zm
+ → R, we have

λe
E
e
[

f(X + Y )− f(X)
]

+ λd
E
d
[

f(X +Z)− f(X)
]

= λd
E
d
[

f(X + Y )− f(X)
]

. (21)
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Proof Since f(X(t)) changes in time only at the counting instants ten or tdn, we have (with ∆
being defined as earlier in this section)

f(X(t))− f(X(0)) =

|Ñ
e
|(t)

∑

ℓ=1

∆f(X(teℓ)) +

|Ñ
d
|(t)

∑

ℓ=1

∆f(X(tdℓ )). (22)

Recalling (12), we have X(tdℓ ) = Xd(tdℓ ) + ∆N r(tdℓ ), and this and (13) yield

X(tdℓ−) = X(tdℓ ) + ∆Nd(tdℓ )−∆N r(tdℓ ) = Xd(tdℓ ) + ∆Nd(tdℓ ).

Substituting these X(tdℓ ) and X(tdℓ−) into (22), we have

|Ñ
d
|(t)

∑

ℓ=1

∆f(X(tdℓ )) =

|Ñ
d
|(t)

∑

ℓ=1

(f(X(tdℓ ))− f(Xd(tdℓ ))) +

|Ñ
d
|(t)

∑

ℓ=1

(f(Xd(tdℓ ))− f(X(tdℓ−)))

=

|Ñ
d
|(t)

∑

ℓ=1

(f(Xd(tdℓ ) + ∆N r(tdℓ ))− f(Xd(tdℓ )))

+

|Ñ
d
|(t)

∑

ℓ=1

(f(Xd(tdℓ ))− f(Xd(tdℓ ) + ∆Nd(tdℓ ))). (23)

It follows from (22) and (23) that

|Ñ
e
|(t)

∑

ℓ=1

(f(X(teℓ−) + ∆N e(teℓ))− f(X(teℓ−))) +

|Ñ
d
|(t)

∑

ℓ=1

(f(Xd(tdℓ ) + ∆N r(tdℓ ))− f(Xd(tdℓ )))

=

|Ñ
d
|(t)

∑

ℓ=1

(f(Xd(tdℓ ) + ∆Nd(tdℓ ))− f(Xd(tdℓ ))) + f(X(t))− f(X(0)). (24)

Dividing both sides of this equation by t and letting t → ∞ yields (21) by (14)–(16) and
Lemma 1 because f is bounded. �

The assumptions of Theorem 1 exclude arrivals and departures to occur simultaneously,
but allow them to occur separately as multiple simultaneous external arrivals or multiple
simultaneous departures and routing. The model as well as the distributional relationship
may be too general for queueing networks. To make them more specific, we make the fol-
lowing assumption.

v) There exist finite and nonnegative numbers λd
A for nonempty A ⊂ J , that is, A ∈

2J \ {∅}, such that

λd
A = lim

t→∞

1

t
Ñd

A(t), a.s., (25)

where, with notation SA ≡ {x ∈ Z
m
+ ;xi > 0, i ∈ A, xj = 0, j ∈ J \ A},

Ñd
A(t) =

∑

0<s≤t

1(∆Nd(s) ∈ SA). (26)
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Note that Ñd
A counts instants when departures occur simultaneously from queues i ∈ A

but there is no departure from queue j ∈ J \ A, while ∆Ñd
A(t)∆Ñd

B(t) = 0 if A 6= B. Thus,
the setting i)–v) still allows batch arrivals and batch departures and simultaneous transfer of
customers in a departing batch.

We will use the following notation. For each A ∈ 2J \ {∅}, let, for x,y,z ∈ Z
m
+ ,

πd
A(x,y,z) =

{

λd

λd
A

πd(x,y,z), λd
A > 0,

0, λd
A = 0.

Since Ñd
A exclusively counts the increasing epochs of |Ñ

d
| for different A’s, we have

|Ñ
d
|(t) =

∑

A∈2J\{∅}

Ñd
A(t), (27)

which implies that λd =
∑

A∈2J\{∅} λ
d
A, and, for A ∈ {B ∈ 2J |λd

B > 0}, πd
A is a probability

distribution on Z
3m
+ , which can be restricted to Z

m
+ × SA × Z

m
+ .

Let tdA,n be the nth jump epoch of Ñd
A. Just as Lemma 1 does, the following lemma plays

a key role; it is proved in Appendix B.

Lemma 2 Under the setting i)–v), there exist probability distributions πd
A such that, for any bounded

function h : Z3m
+ → R, with A ∈ 2J \ {∅},

lim
n→∞

1

n

n
∑

ℓ=1

h(Xd(tdA,ℓ),∆Nd(tdA,ℓ),∆N r(tdA,ℓ)) =
∑

x,y,z∈Zm
+

h(x,y,z)πd
A(x,y,z), a.s. (28)

By (27), Theorem 1 and Lemma 2 yield the following corollary. As with E
e and E

d, Ed
A

stands for the expectation under πd
A.

Corollary 1 Under the setting i)–v), for any bounded function f : Zm
+ → R,

λe
E
e [f(X + Y )− f(X)] +

∑

A∈2J\{∅}

λd
AE

d
A [f(X +Z)− f(X)]

=
∑

A∈2J\{∅}

λd
AE

d
A [f(X + Y )− f(X)] . (29)

Remark 5 If ∆Ñd
i (t

d
j,n) = 0 for all i 6= j, then λd

A > 0 only if A is a singleton. In this case, the
summations over A in (29) can be reduced to those over i ∈ J , replacing A by i.

Until now, our distributional relationship may still be too general because no assumption
is made on how the counting processes are generated from X(t) and other information. To
describe this, a filtration is convenient. LetFt be the σ-field generated by all events up to time
t, and let Ft− = σ(∪u<tFu), that is, Ft− is a σ-field generated by all events before time t. For
a stopping time τ , let Fτ− = σ(F0, {A ∩ {t < τ} ∈ Ft}), where σ(A) is the σ-field generated
by a family of events A. Using the filtration, the following assumptions are typically used
under the setting i)–v).

(a1) ten, t
d
i,n are stopping times with respect to {Ft; t ≥ 0}. This can always be realized by

choosing a sufficiently large Ft.

10



(a2) ∆N e(ten) is independent of Ften−. That is, the sizes of batch arrivals are independent of
the state of the system just before their arrival epochs.

(a3) ∆|Nd|(tdn) = 1. That is, departures singly occur from one queue at a time.

(a4) ∆N r
j (t

d
i,n) ≤ 1 for j ∈ J , and ∆N r(tdi,n) is in the σ-field generated by Ftdi,n−

and

∆Nd(tdi,n).

By (a3), Ñd
A(t) ≡ 0 if A is not a singleton. Thus, we write Ñd

A(t) as Ñd
i (t) for A = {i}.

Similarly, πd
A is written as πd

i for A = {i}. Under the setting i)–v) and the assumptions
(a1)–(a4), ∆N r

j (t
d
i,ℓ) ≤ 1, and therefore Lemma 2 yields

lim
n→∞

1

n

n
∑

ℓ=1

1(Xd(tdi,ℓ) = x,∆Nd
i (t

d
i,ℓ) = 1,∆N r

j (t
d
i,ℓ) = 1) = πd

i (x,ei,ej),

which is denoted by πd
ij(x). We here recall that ei ∈ Z

m
+ is the unit vector whose i-th entry

is one and the other entries are zero. Thus, applying Corollary 1 for f(x) = zx, where we
recall that zx =

∏

i∈J z
xi

i , we have the following relationship.

Corollary 2 Under the settings i)–v) and assumptions (a1)–(a4), for z = (z1, . . . , zm) satisfying
|zi| ≤ 1 for i ∈ J ,

λe
(

1− E
e[zY ]

)

ϕe(z) +
∑

j∈J

(1− zj)
∑

i∈J

λd
iϕ

d
ij(z) =

∑

i∈J

λd
i (1− zi)ϕ

d
i (z), (30)

where

ϕe(z) = E
e[zX ], ϕd

i (z) = E
d
i [z

X ], ϕd
i,j(z) =

∑

x∈Zm
+

zxπd
ij(x), i, j ∈ J.

Remark 6 Under the assumptions of this corollary, the routing of departing customers may
depend on all queue lengths in the network.

Corollary 2 is specialized to Corollary 3 if external arrivals to queues occur one at a time.
Namely,

vi) No simultaneous arrivals occur, and there exist finite numbers (some, but not all, pos-
sibly zero) λe

k for k ∈ J such that

λe
k = lim

t→∞

1

t
Ñ e

k(t), a.s., k ∈ J. (31)

Corollary 3 Under the assumptions of Corollary 2, assume that vi) also holds. Define the πe
k as

πe
k(x, yk) =

{

λe

λe
k
πe(x, yk), λe

k > 0,

0, λe
k = 0,

then, for k ∈ {i ∈ J |λe
i > 0}, the πe

k is a probability distribution on Z
m+1
+ , and (30) becomes

∑

k∈J

λe
k

(

1− E
e
[

zYk

k

])

ϕe
k(z) +

∑

j∈J

(1− zj)
∑

i∈J

λd
iϕ

d
ij(z) =

∑

i∈J

λd
i (1− zi)ϕ

d
i (z), (32)

where ϕe
k is the generating function of X under the conditional distribution πe

k.
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Corollary 3 immediately implies the following corollary.

Corollary 4 Under the assumptions of Corollary 3, if the event {∆N r
j (t

d
i,ℓ) = 1} is independent of

Ftd
i,ℓ

−, then there exist pij ≥ 0 such that πd
i (x, 1,ej) = πd

i (x, 1)pij , and (32) becomes

∑

k∈Je

λe
k

(

1− E
e
[

zYk

k

])

ϕe
k(z) +

∑

i∈J

λd
iϕ

d
i (z)

∑

j∈J

pij(1− zj) =
∑

i∈J

λd
i (1− zi)ϕ

d
i (z). (33)

Remark 7 In Section 5 we shall present several applications of the above theorem and corol-
laries. In particular, the polling result (8) of Section 2 is there shown to be a special case of
Corollary 1.
Notice that the setup of this section includes the finite buffer case. This is done by having no
arrivals to a queue during times in which it is saturated. This type of dependence is allowed
by our setup. Some results for the single server queue with finite capacity are contained in
[12].

4 Distributional relationship up to a given time

The purpose of this section is to derive a non-stationary version of Theorem 1, a distribu-
tional relationship up to a given time. We adopt the settings i)–iv) of Section 3, and consider
the process Z(t) introduced in the beginning of that section. We first define the expected
relative frequencies for bounded test functions g, h from Z

2m
+ ,Z3m

+ to R up to time t as

Re
tg =

1

|Ñ
e
|(t)

|Ñ
e
|(t)

∑

n=1

g(X(ten−),∆N e(ten))1(|Ñ
e
|(t) > 0),

Rd
th =

1

|Ñ
d
|(t)

|Ñ
e
|(t)

∑

n=1

h(Xd(tdn),∆Nd(tdn),∆N r(tdn))1(|Ñ
d
|(t) > 0).

For each bounded function f : Zm
+ → R, we define the following test functions.

ge(x,y) = f(x), ge+(x,y) = f(x+ y),

hd(x,y,z) = f(x), hd−(x,y,z) = f(x+ y), hd+(x,y,z) = f(x+ z).

Let

λe(t) =
1

t
|Ñ

e
|(t), λd(t) =

1

t
|Ñ

d
|(t).

Then, (24) yields the following lemma.

Lemma 3 Under the setting i)–iv), for any bounded function f : Zm
+ → R, we have, for any t > 0,

λe(t)
(

Re
tg

e
+ −Re

tg
e
)

+ λd(t)
(

Rd
t h

d
+ −Rd

th
d
)

− λd(t)
(

Rd
th

d
− −Rd

th
d
)

=
1

t

(

f(X(t))− f(X(0))
)

. (34)
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We may interpret Lemma 3 as a transient version of Theorem 1. It is notable that (34)
holds without any stability condition, and its right-hand side vanishes as t → ∞ at most
in linear order of t−1 because f is bounded. If there exists a unique probability measure
such that (X(t),∆N e(t),∆N d(t),∆N r(t)) is stationary, then Re

tg,R
d
t h converge to the cor-

responding expectations under the Palm distributions involving |Ñ
e
|, |Ñ

d
|, respectively.

Thus, we have

lim
t→∞

Re
tg

e = E
ef(X), lim

t→∞
Re

tg
e
+ = E

ef(X + Y ),

lim
t→∞

Rd
th

d(x) = E
df(X), lim

t→∞
Rd

th
d
− = E

ef(X + Y ),

lim
t→∞

Rd
th

d
+ = E

df(X +Z),

and we recover (21) from (34). Corollary 1, (30) and (32) are similarly obtained. We omit the
routine details.

5 Some special cases and applications

In this section we consider several applications of the theorem and corollaries of Section 3.
We first note that, if nonzero N e

k for k ∈ J are independent compound Poisson processes,
then by PASTA the embedded stationary distributions πe and πe

k are identical with the time
stationary distributions.

Case 1: An m-class queue with batch arrivals
We consider an m-class single-node service facility, with m ≥ 1. We allow multiple servers.
Customers arrive according to a Poisson process, possibly in batches. Customers of class i
require service at the service facility according to service time distribution Bi(·), i ∈ J . These
distributions are assumed to be continuous, but not otherwise specified. No customers are
lost; there is an infinite waiting room. After completion of their service, customers imme-
diately leave. We assume that the steady-state joint queue-length distribution (numbers of
customers of all classes in the system) exists. Its PGF is denoted by L(z). We also again (as in
Section 2) denote the PGF of the steady-state joint queue-length distributions immediately
after departure epochs of a class i-customer by Sc

i (z), i ∈ J . We do not specify according
to which service discipline the customers are served; polling with FCFS within each class is
just one of many options.

Theorem 2 Consider the above-described m-class single-node service facility. Assume that cus-
tomers arrive according to a batch Poisson process with rate λ and that customers are served indi-
vidually, in some non-specified order. Let an arbitrary batch arrival have size G = (G1, . . . , Gm)
with PGF E[zG] = E[zG1

1 . . . zGm
m ]. Then the following relation holds between the PGF L(z) and the

PGFs Sc
i (z), i ∈ J :

(1− E[zG])L(z) =
m
∑

i=1

(1− zi)EGiS
c
i (z). (35)

Proof After using PASTA, Theorem 2 is a special case of (30) of Corollary 2 in which there is
no routing. �
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Remark 8 Special cases of the above theorem are obtained by assuming that batches always
contain only customers of one type. For the special case that batches have just one customer
of class i with probability λi

λ
, i ∈ J , (35) reduces to (8) that was obtained for the polling

system that provided the initial motivation for the present study (but (8) obviously holds for
a much more general class of service disciplines).

Case 2: Generalization of Theorem 2 to the case of batch services
The following theorem generalizes the main result in [11], but is a special case of Theorem 2
of [19] which allows a more general arrival process (but in that theorem batch service is not
considered).

Theorem 3 Consider the m-class single-node service facility of Theorem 2, with the additional as-
sumption that customers of class-i are always served in batches of fixed size Ki, i ∈ J ; the start of
a service of class-i customers is delayed until Ki customers are present. Then the following relation
holds between the PGF L(z) and the PGFs Sc

i (z), i ∈ J :

(1− E[zG])L(z) =
m
∑

i=1

1− zKi

i

Ki
EGiS

c
i (z). (36)

Proof In view of Remark 5, and after using PASTA, Theorem 3 is a special case of (29) of
Corollary 1 in which there is no routing, the external arrival batch Y (ten) is independent of
Ften− and the departing batch size Yi from queue i is some constant Ki. In this case, it is easy
to see that λd

iE[Yi] = λe/Ki, and we obtain (36) from (29). �

Case 3: Non-preemptive priority queues
In this example we consider a non-preemptive priority queue with P customer classes. We
first verify the equality between the PGFs as given by Theorem 2 for P = 2, and subsequently
point out how one may use the theorem to obtain the steady-state joint queue-length distri-
bution in that example for a P -class queue.

Consider the M/G/1 queue with P classes of customers, with nonpreemptive priority in
descending order 1, 2, . . . , P (so Class 1 has the highest priority). Let λi denote the arrival
rate of customers of class i, i = 1, 2. Takagi ([18], Formula (2.87) on p. 311) presents the
PGF Π(z1, z2, . . . , zP ) of the steady-state joint queue-length distribution immediately after
an arbitrary customer departure epoch. For P = 2 he also obtains the PGF P (z1, z2, . . . , zP )
of the steady-state joint queue-length distribution at an arbitrary epoch ([18], Formula (5.82b)
on p. 397). We have verified that, indeed, for P = 2 classes one has (cf. Theorem 2 with single
arrivals),

(λ1(1− z1) + λ2(1− z2))P (z1, z2) = λ1(1− z1)S
c
1(z1, z2) + λ2(1− z2)S

c
2(z1, z2).

The starting point for this verification was the obvious set of relations, with βi(z1, z2) the PGF
of the numbers of arrivals at both queues during one service of a class-i customer, i = 1, 2:

Π1(z1, z2) :=
λ1

λ
Sc
1(z1, z2) =

Π(z1, z2)−Π(0, z2)

z1
β1(z1, z2) + Π(0, 0)

λ1

λ
β1(z1, z2), (37)

Π2(z1, z2) :=
λ2

λ
Sc
2(z1, z2) =

Π(0, z2)−Π(0, 0)

z2
β2(z1, z2) + Π(0, 0)

λ2

λ
β2(z1, z2). (38)
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Here Πi(z1, z2) is the PGF of the steady-state joint queue-length distribution immediately af-
ter the departure of a class-i customer, with indicator function 1(departing customer is of class i),
i = 1, 2, and Π(z1, z2) is as defined above. The factors λi

λ
in the lefthand side of (37) and (38)

are needed because the Sc
i (z1, z2) are conditional PGFs, the condition being that the depart-

ing customer is of class i.
This example clearly demonstrates the value of our general balance equations. Besides

providing a much shorter proof for Takagi’s Formula (5.82b), it also allows us to extend his
result to the case of P (> 2) customer classes, by using the expressions for λi

λ
Sc
i (z1, z2, . . . , zP )

that follow from Takagi’s Formula (2.87) for Π(z1, z2, . . . , zP ).

Case 4: Priority for the longer queue
Consider a model of one server and two queues. Each queue has its own Poisson arrival
process and service time distribution. After a service completion, the server proceeds with a
customer from the longest queue, if the queue lengths are unequal; if the queue lengths are
equal, the server chooses a customer from queue Qi with probability αi, i = 1, 2. Cohen [6]
has derived the PGF Π(z1, z2) = E[zX1

1 zX2

2 ] of the steady-state joint queue-length distribu-
tion immediately after an arbitrary customer departure epoch, by solving a Riemann-type
boundary value problem. In the process, he also obtained the following PGFs, that naturally
arise in this Priority for the longer queue model: E[zX1

1 zX2

2 1{X1>X2}], E[z
X1

1 zX2

2 1{X1<X2}], and

E[zX1

1 zX2

2 1{X1=X2>0}]. Below we first show how one can obtain the PGFs Πi(z1, z2) of the
steady-state joint queue-length distribution immediately after the departure of a customer
from Qi, i = 1, 2 (we stick as much as possible to the notation of Case 3). By considering
the joint queue-length distribution at two consecutive departure epochs, and with βi(z1, z2)
denoting the PGF of the numbers of arrivals at both queues during one service of a customer
from Qi, we can write:

Π1(z1, z2) = E[zX1

1 zX2

2 1{X1>X2}]
β1(z1, z2)

z1

+ α1E[z
X1

1 zX2

2 1{X1=X2>0}]
β1(z1, z2)

z1
+ P(X1 = X2 = 0)

λ1

λ1 + λ2
β1(z1, z2), (39)

Π2(z1, z2) = E[zX1

1 zX2

2 1{X1<X2}]
β2(z1, z2)

z2

+ α2E[z
X1

1 zX2

2 1{X1=X2>0}]
β2(z1, z2)

z2
+ P(X1 = X2 = 0)

λ2

λ1 + λ2
β2(z1, z2). (40)

The queue-length PGFs in the two righthand sides are derived by Cohen [6], and thus we
obtain Πi(z1, z2), i = 1, 2. This immediately leads to Sc

i (z1, z2), i = 1, 2, as in Case 3. Sub-
sequently, Theorem 2 gives the PGF of the steady-state joint queue-length distribution at
an arbitrary epoch. It should be noticed that it is not at all easy to obtain this PGF in an-
other way, for this non-Markovian model; the Priority for the longer queue model is a difficult
queueing model. In the case of exponential service time distributions, with equal arrival
and service rates at the two queues and α1 = α2, Zheng and Zipkin [20] present a recursive
method to obtain this PGF, while Flatto [10] for this case (but allowing preemption) obtains
the queue-length PGF by solving a boundary value problem.

Case 5: A simple network
Consider a network of m service facilities, with independent external Poisson arrival pro-
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cesses, and with continuous service time distributions. We have Markovian routing, a cus-
tomer moving from Qi to Qk with probability pik and leaving the system after its service
completion in Qi with probability pi0, i, k ∈ J . Define Λi as the total flow through Qi per
time unit, i ∈ J ; these Λi are the unique solution of the set of equations

Λi = λi +

m
∑

k=1

Λkpki, i ∈ J. (41)

Let Ai indicate that the system is viewed just before an arrival at Qi, Di that the system
is viewed just after a departure from Qi, and Iik that the system is viewed just after a
departure from Qi and just before the arrival of the departing customer at Qk. Letting
j = (j1, j2, . . . , jm), one can write down the following balance equations for the queue length
vector X = (X1,X2, . . . ,Xm):

m
∑

i=1

λiP(X = j|Ai) +
m
∑

i=1

Λipi0P(X = j − ei|Di) +
m
∑

i=1

m
∑

k=1

ΛipikP(X = j − ei|Iik)

=
m
∑

i=1

Λipi0P(X = j|Di) +
m
∑

i=1

λiP(X = j − ei|Ai) +
m
∑

i=1

m
∑

k=1

ΛipikP(X = j − ek|Iik). (42)

The (PGF of the) probabilities, given that we observe just after a real departure from Qi

or that we observe just after a departure from Qi that will in an instant result in an arrival at
Qk, are obviously the same. If one takes PGFs, one quickly sees that a special case of (33) is
obtained.

We now use (42) to provide an alternative proof for the joint queue-length distribution in
a queueing network with a single roving server as studied in [4, 17]. Again consider a net-
work of m queues with Markovian customer routing, as described above. In this particular
example, we assume that a single server visits the queues in a fixed, cyclic order, requiring a
switch-over time Si to move from Qi to Qi+1. We do not make any assumptions regarding
the service disciplines at each queue. This model, which can be regarded as a polling model
with customer routing, has been studied by Sidi, Levy and Fuhrmann [17] who refer to this
model as a queueing network with a roving server. Sidi et al. obtain the joint queue-length
distribution at arbitrary moments, as well as the joint queue-length distribution at departure
epochs. The waiting-time distributions are obtained in a different paper [4]. For us, it is
slightly more convenient to refer to this latter paper in the analysis below, because the au-
thors in [4] use the same definition of V c

i (z), the PGF of the joint queue length at departure
epochs, just after a departure from Qi and just before the arrival of the departing customer at
the next queue.

Take the formulas (3.2)–(3.6) of [4]. From (3.2), which is the counterpart of our (2), one
can express (in the notation of the present paper) the differences of PGFs at visit beginning
and visit completion epochs into those at service beginning and service completion epochs:

V b
i (z)− V c

i (z)

ΛiEC
= Sb

i (z)− Sc
i (z)Pi(z), i = 1, 2, . . . ,m. (43)

Here Pi(z) := pi0 +
∑m

k=1 pikzk, and EC = s/(1 − ρ) with ρ :=
∑m

i=1 Λibi. Next use our
relation (3) to express Sb

i (z) into Sc
i (z). Subsequently express L(z), in (3.4) of [4], which is
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the counterpart of (1) above, in differences V b
i (z)−V c

i (z), as was also done in [3]. This gives

m
∑

i=1

λi(1− zi)L(z) =

m
∑

i=1

Λi(Pi(z)− zi)S
c
i (z). (44)

This is indeed in agreement with (42): the LHS of (44) gives the first and the fifth term in (42).
The last term in the RHS gives the second plus the third term in (42), once we realize that
pi0 +

∑m
k=1 pik = 1, and that the conditional probabilities both refer to a service completion

in Qi, no matter whether the condition is Di or Iik. The first term in the RHS gives the fourth
plus fifth term in (42). One could argue that some results in [4] and [17] could have been
derived faster by starting from (44).

6 Concluding remarks

This paper derives a distributional relationship, at different embedded epochs, for analyzing
queues and their networks. As shown in Section 3, it has different forms according to the
abstraction level of the model. This may both lead to new results and easier derivations of
some known results. In Section 5 this is demonstrated for a few examples.

The relationship in Section 4 has a different nature than the rest of this paper because
it does not require any stationarity of the processes of interest. Namely, it suggests that
such an asymptotic relationship may enable us to obtain queueing characteristics with some
error bounds, not assuming any stationarity condition. This is completely different from the
standard analysis in queueing theory. Thus, it would be interesting to see whether it can
yield useful results for the performance evaluation of queueing models. We leave this for
future studies.

Appendix

In the appendices below, we omit “a.s.” because countably many events each of which
occurs w.p. 1 simultaneously occur w.p. 1.

A Proof of Lemma 1

Since the proofs of (17) and (18) are similar, we only prove (17). Since πe is a probability
distribution, we can choose a sufficiently large a for each ǫ > 0 such that

∑

max(|x|,|y|)≥a

πe(x,y) < ǫ.

Let Sa = {(x,y) ∈ Z
2m
+ ;max(|x|, |y|) < a}, then Sa is a finite set. Hence, summing both

sides of (15) for (x,y) ∈ Sa yields

lim
n→∞

1

n

n
∑

ℓ=1

∑

(x,y)∈Sa

1(X(teℓ−) = x,∆N e(teℓ) = y) =
∑

(x,y)∈Sa

πe(x,y),

17



and therefore

lim
n→∞

1

n

n
∑

ℓ=1

∑

(x,y)6∈Sa

1(X(teℓ−) = x,∆N e(teℓ) = y)

= 1− lim
n→∞

1

n

n
∑

ℓ=1

∑

(x,y)∈Sa

1(X(teℓ−) = x,∆N e(teℓ) = y)

= 1−
∑

(x,y)∈Sa

πe(x,y) =
∑

max(|x|,|y|)≥a

πe(x,y) < ǫ. (45)

Multiplying both sides of (15) by g(x,y) and summing them for (x,y) ∈ Sa yields

lim
n→∞

1

n

n
∑

ℓ=1

∑

(x,y)∈Sa

g(x,y)1(X(teℓ−) = x,∆N e(teℓ) = y) =
∑

(x,y)∈Sa

g(x,y)πe(x,y).

Let ‖g‖ = supx,y g(x,y), which is finite by the assumption. Since (45) implies that

lim sup
n→∞

1

n

n
∑

ℓ=1

∑

(x,y)6∈Sa

g(x,y)1(X(teℓ−) = x,∆N e(teℓ) = y)

≤ ‖g‖ lim sup
n→∞

1

n

n
∑

ℓ=1

∑

(x,y)6∈Sa

1(X(teℓ−) = x,∆N e(teℓ) = y) < ‖g‖ǫ,

∑

(x,y)6∈Sa

g(x,y)πe(x,y) < ‖g‖ǫ,

we have

lim sup
n→∞

∣

∣

∣

1

n

n
∑

ℓ=1

∑

x,y

g(x,y)1(X(teℓ−) = x,∆N e(teℓ) = y)−
∑

x,y

g(x,y)πe(x,y)
∣

∣

∣
< 2‖g‖ǫ.

Letting ǫ ↓ 0, we arrive at (17).

B Proof of Lemma 2

In view of Lemma 1, to prove (28) it suffices to prove that, for A ∈ 2J \ {∅},

lim
n→∞

1

n

n
∑

ℓ=1

1(X(tdA,ℓ−) = x,∆Nd(tdA,ℓ) = y,∆N r(tdA,ℓ) = z) = πd
A(x,y,z). (46)

It follows from v) that, for each i ∈ J, ℓ ≥ 1,y ∈ SA,z ∈ Z
m
+ , there is a unique k ≥ 1 such

that ℓ ≤ k and

1(X(tdA,ℓ−) = x,∆Nd(tdA,ℓ) = y,∆Nd(tdA,ℓ) = z)

= 1(X(tdk−) = x,∆Nd(tdk) = y,∆Nd(tdk) = z),

18



and (14) and (25) imply

lim
t→∞

Ñd
A(t)

|Ñ
d
|(t)

= lim
t→∞

1
t
Ñd

A(t)

1
t
|Ñ

d
|(t)

=
λd
A

λd
.

Hence, for y ∈ SA,

πd(x,y,z) = lim
n→∞

1

n

n
∑

k=1

1(X(tdk−) = x,∆Nd(tdk) = y,∆N r(tdk) = z)

= lim
t→∞

1

|Ñ
d
|(t)

|Ñ
d
|(t)

∑

k=1

1(X(tdk−) = x,∆Nd(tdk) = y,∆N r(tdk) = z)

= lim
t→∞

Ñd
A(t)

|Ñ
d
|(t)

1

Ñd
A(t)

Ñd
A(t)
∑

ℓ=1

1(X(tdA,ℓ−) = x,∆Nd(tdA,ℓ) = y,∆N r(tdA,ℓ) = z)

=
λd
A

λd
lim
n→∞

1

n

n
∑

ℓ=1

1(X(tdA,ℓ−) = x,∆Nd(tdA,ℓ) = y,∆N r(tdA,ℓ) = z).

This proves (46) by the definition πd
A, and therefore (28) holds. The fact that πd

A is a probabil-
ity distribution is immediate from (28) with h(x,y,z) ≡ 1.
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